1
|
Pan C, Liu Y, Wang L, Fan WY, Ni Y, Zhang X, Wu D, Li C, Li J, Li Z, Liu R, Hu C. The Kv2.2 channel mediates the inhibition of prostaglandin E2 on glucose-stimulated insulin secretion in pancreatic β-cells. eLife 2025; 13:RP97234. [PMID: 40028769 PMCID: PMC11875535 DOI: 10.7554/elife.97234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Prostaglandin E2 (PGE2) is an endogenous inhibitor of glucose-stimulated insulin secretion (GSIS) and plays an important role in pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). This study aimed to explore the underlying mechanism by which PGE2 inhibits GSIS. Our results showed that PGE2 inhibited Kv2.2 channels via increasing PKA activity in HEK293T cells overexpressed with Kv2.2 channels. Point mutation analysis demonstrated that S448 residue was responsible for the PKA-dependent modulation of Kv2.2. Furthermore, the inhibitory effect of PGE2 on Kv2.2 was blocked by EP2/4 receptor antagonists, while mimicked by EP2/4 receptor agonists. The immune fluorescence results showed that EP1-4 receptors are expressed in both mouse and human β-cells. In INS-1(832/13) β-cells, PGE2 inhibited voltage-gated potassium currents and electrical activity through EP2/4 receptors and Kv2.2 channels. Knockdown of Kcnb2 reduced the action potential firing frequency and alleviated the inhibition of PGE2 on GSIS in INS-1(832/13) β-cells. PGE2 impaired glucose tolerance in wild-type mice but did not alter glucose tolerance in Kcnb2 knockout mice. Knockout of Kcnb2 reduced electrical activity, GSIS and abrogated the inhibition of PGE2 on GSIS in mouse islets. In conclusion, we have demonstrated that PGE2 inhibits GSIS in pancreatic β-cells through the EP2/4-Kv2.2 signaling pathway. The findings highlight the significant role of Kv2.2 channels in the regulation of β-cell repetitive firing and insulin secretion, and contribute to the understanding of the molecular basis of β-cell dysfunction in diabetes.
Collapse
Affiliation(s)
- Chengfang Pan
- School of Life Sciences, Fudan UniversityShanghaiChina
- International Human Phenome Institute (Shanghai)ShanghaiChina
| | - Ying Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Liangya Wang
- School of Life Sciences, Fudan UniversityShanghaiChina
- International Human Phenome Institute (Shanghai)ShanghaiChina
| | - Wen-Yong Fan
- School of Life Sciences, Fudan UniversityShanghaiChina
| | - Yunzhi Ni
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Xuefeng Zhang
- School of Life Sciences, Fudan UniversityShanghaiChina
| | - Di Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Chenyang Li
- School of Life Sciences, Fudan UniversityShanghaiChina
| | - Jin Li
- School of Life Sciences, Fudan UniversityShanghaiChina
| | - Zhaoyang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Rui Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Changlong Hu
- School of Life Sciences, Fudan UniversityShanghaiChina
- International Human Phenome Institute (Shanghai)ShanghaiChina
| |
Collapse
|
2
|
Forzisi-Kathera-Ibarra E, Jo C, Castillo L, Gaur A, Lad P, Bortolami A, Roser C, Venkateswaran S, Dutto S, Selby M, Sampath H, Pan PY, Sesti F. KCNB1-Leptin receptor complexes couple electric and endocrine function in the melanocortin neurons of the hypothalamus. FASEB J 2024; 38:e70111. [PMID: 39436109 PMCID: PMC11556505 DOI: 10.1096/fj.202401931r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
The neurons of the melanocortin system regulate feeding and energy homeostasis through a combination of electrical and endocrine mechanisms. However, the molecular basis for this functional heterogeneity is poorly understood. Here, a voltage-gated potassium (Kv+) channel named KCNB1 (alias Kv2.1) forms stable complexes with the leptin receptor (LepR) in a subset of hypothalamic neurons including proopiomelanocortin (POMC) expressing neurons of the Arcuate nucleus (ARHPOMC). Mice lacking functional KCNB1 channels (NULL mice) have less adipose tissue and circulating leptin than WT animals and are insensitive to anorexic stimuli induced by leptin administration. NULL mice produce aberrant amounts of POMC at any developmental stage. Canonical LepR-STAT3 signaling-which underlies POMC production-is impaired, whereas non-canonical insulin receptor substrate PI3K/Akt/FOXO1 and ERK signaling are constitutively upregulated in NULL hypothalami. The levels of proto-oncogene c-Fos-that provides an indirect measure of neuronal activity-are higher in arcuate NULL neurons compared to WT and most importantly do not increase in the former upon leptin stimulation. Hence, a Kv channel provides a molecular link between neuronal excitability and endocrine function in hypothalamic neurons.
Collapse
Affiliation(s)
- Elena Forzisi-Kathera-Ibarra
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Chanmee Jo
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
- current address: University of Pennsylvania, School of Engineering and Applied Science, 3312 Walnut St., Philadelphia, PA 19104, United States of America
| | - Leonard Castillo
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Anika Gaur
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Prachi Lad
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Alessandro Bortolami
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Christian Roser
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Srinidi Venkateswaran
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Stefania Dutto
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Matthew Selby
- Department of Nutritional Sciences, Rutgers University, 61 Dudley Road, New Brunswick, NJ 08901, United States of America
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers University, 61 Dudley Road, New Brunswick, NJ 08901, United States of America
| | - Ping-Yue Pan
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Ln. West, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Wang H, Li Q, Yuan YC, Han XC, Cao YT, Yang JK. KCNH6 channel promotes insulin exocytosis via interaction with Munc18-1 independent of electrophysiological processes. Cell Mol Life Sci 2024; 81:86. [PMID: 38349432 PMCID: PMC10864572 DOI: 10.1007/s00018-024-05134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Abstract
Glucose-stimulated insulin secretion (GSIS) in pancreatic islet β-cells primarily relies on electrophysiological processes. Previous research highlighted the regulatory role of KCNH6, a member of the Kv channel family, in governing GSIS through its influence on β-cell electrophysiology. In this study, we unveil a novel facet of KCNH6's function concerning insulin granule exocytosis, independent of its conventional electrical role. Young mice with β-cell-specific KCNH6 knockout (βKO) exhibited impaired glucose tolerance and reduced insulin secretion, a phenomenon not explained by electrophysiological processes alone. Consistently, islets from KCNH6-βKO mice exhibited reduced insulin secretion, conversely, the overexpression of KCNH6 in murine pancreatic islets significantly enhanced insulin release. Moreover, insulin granules lacking KCNH6 demonstrated compromised docking capabilities and a reduced fusion response upon glucose stimulation. Crucially, our investigation unveiled a significant interaction between KCNH6 and the SNARE protein regulator, Munc18-1, a key mediator of insulin granule exocytosis. These findings underscore the critical role of KCNH6 in the regulation of insulin secretion through its interaction with Munc18-1, providing a promising and novel avenue for enhancing our understanding of the Kv channel in diabetes mechanisms.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China.
| | - Qi Li
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Ying-Chao Yuan
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xue-Chun Han
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yong-Ting Cao
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Department of Endocrinology, Beijing Mentougou District Hospital, Beijing, 102399, China
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology and Metabolism, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
4
|
Ramanadham S, Turk J, Bhatnagar S. Noncanonical Regulation of cAMP-Dependent Insulin Secretion and Its Implications in Type 2 Diabetes. Compr Physiol 2023; 13:5023-5049. [PMID: 37358504 PMCID: PMC10809800 DOI: 10.1002/cphy.c220031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Impaired glucose tolerance (IGT) and β-cell dysfunction in insulin resistance associated with obesity lead to type 2 diabetes (T2D). Glucose-stimulated insulin secretion (GSIS) from β-cells occurs via a canonical pathway that involves glucose metabolism, ATP generation, inactivation of K ATP channels, plasma membrane depolarization, and increases in cytosolic concentrations of [Ca 2+ ] c . However, optimal insulin secretion requires amplification of GSIS by increases in cyclic adenosine monophosphate (cAMP) signaling. The cAMP effectors protein kinase A (PKA) and exchange factor activated by cyclic-AMP (Epac) regulate membrane depolarization, gene expression, and trafficking and fusion of insulin granules to the plasma membrane for amplifying GSIS. The widely recognized lipid signaling generated within β-cells by the β-isoform of Ca 2+ -independent phospholipase A 2 enzyme (iPLA 2 β) participates in cAMP-stimulated insulin secretion (cSIS). Recent work has identified the role of a G-protein coupled receptor (GPCR) activated signaling by the complement 1q like-3 (C1ql3) secreted protein in inhibiting cSIS. In the IGT state, cSIS is attenuated, and the β-cell function is reduced. Interestingly, while β-cell-specific deletion of iPLA 2 β reduces cAMP-mediated amplification of GSIS, the loss of iPLA 2 β in macrophages (MØ) confers protection against the development of glucose intolerance associated with diet-induced obesity (DIO). In this article, we discuss canonical (glucose and cAMP) and novel noncanonical (iPLA 2 β and C1ql3) pathways and how they may affect β-cell (dys)function in the context of impaired glucose intolerance associated with obesity and T2D. In conclusion, we provide a perspective that in IGT states, targeting noncanonical pathways along with canonical pathways could be a more comprehensive approach for restoring β-cell function in T2D. © 2023 American Physiological Society. Compr Physiol 13:5023-5049, 2023.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Alabama, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
| | - John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sushant Bhatnagar
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
5
|
Regulation of neuronal excitation-transcription coupling by Kv2.1-induced clustering of somatic L-type Ca 2+ channels at ER-PM junctions. Proc Natl Acad Sci U S A 2021; 118:2110094118. [PMID: 34750263 PMCID: PMC8609631 DOI: 10.1073/pnas.2110094118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
In hippocampal neurons, gene expression is triggered by electrical activity and Ca2+ entry via L-type Cav1.2 channels in a process called excitation–transcription coupling. We identified a domain on the voltage-gated K+ channel Kv2.1 that promotes the clustering of L-type Cav1.2 channels at endoplasmic reticulum–plasma membrane junctions in the soma of neurons. Importantly, we discovered by disrupting this domain that the Kv2.1-mediated clustering of Cav1.2 at this somatic microdomain is critical for depolarization-induced excitation–transcription coupling. In mammalian brain neurons, membrane depolarization leads to voltage-gated Ca2+ channel-mediated Ca2+ influx that triggers diverse cellular responses, including gene expression, in a process termed excitation–transcription coupling. Neuronal L-type Ca2+ channels, which have prominent populations on the soma and distal dendrites of hippocampal neurons, play a privileged role in excitation–transcription coupling. The voltage-gated K+ channel Kv2.1 organizes signaling complexes containing the L-type Ca2+ channel Cav1.2 at somatic endoplasmic reticulum–plasma membrane junctions. This leads to enhanced clustering of Cav1.2 channels, increasing their activity. However, the downstream consequences of the Kv2.1-mediated regulation of Cav1.2 localization and function on excitation–transcription coupling are not known. Here, we have identified a region between residues 478 to 486 of Kv2.1’s C terminus that mediates the Kv2.1-dependent clustering of Cav1.2. By disrupting this Ca2+ channel association domain with either mutations or with a cell-penetrating interfering peptide, we blocked the Kv2.1-mediated clustering of Cav1.2 at endoplasmic reticulum–plasma membrane junctions and the subsequent enhancement of its channel activity and somatic Ca2+ signals without affecting the clustering of Kv2.1. These interventions abolished the depolarization-induced and L-type Ca2+ channel-dependent phosphorylation of the transcription factor CREB and the subsequent expression of c-Fos in hippocampal neurons. Our findings support a model whereby the Kv2.1-Ca2+ channel association domain-mediated clustering of Cav1.2 channels imparts a mechanism to control somatic Ca2+ signals that couple neuronal excitation to gene expression.
Collapse
|
6
|
Thapa P, Stewart R, Sepela RJ, Vivas O, Parajuli LK, Lillya M, Fletcher-Taylor S, Cohen BE, Zito K, Sack JT. EVAP: A two-photon imaging tool to study conformational changes in endogenous Kv2 channels in live tissues. J Gen Physiol 2021; 153:212666. [PMID: 34581724 PMCID: PMC8480965 DOI: 10.1085/jgp.202012858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022] Open
Abstract
A primary goal of molecular physiology is to understand how conformational changes of proteins affect the function of cells, tissues, and organisms. Here, we describe an imaging method for measuring the conformational changes of the voltage sensors of endogenous ion channel proteins within live tissue, without genetic modification. We synthesized GxTX-594, a variant of the peptidyl tarantula toxin guangxitoxin-1E, conjugated to a fluorophore optimal for two-photon excitation imaging through light-scattering tissue. We term this tool EVAP (Endogenous Voltage-sensor Activity Probe). GxTX-594 targets the voltage sensors of Kv2 proteins, which form potassium channels and plasma membrane–endoplasmic reticulum junctions. GxTX-594 dynamically labels Kv2 proteins on cell surfaces in response to voltage stimulation. To interpret dynamic changes in fluorescence intensity, we developed a statistical thermodynamic model that relates the conformational changes of Kv2 voltage sensors to degree of labeling. We used two-photon excitation imaging of rat brain slices to image Kv2 proteins in neurons. We found puncta of GxTX-594 on hippocampal CA1 neurons that responded to voltage stimulation and retain a voltage response roughly similar to heterologously expressed Kv2.1 protein. Our findings show that EVAP imaging methods enable the identification of conformational changes of endogenous Kv2 voltage sensors in tissue.
Collapse
Affiliation(s)
- Parashar Thapa
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Robert Stewart
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Rebecka J Sepela
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Oscar Vivas
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Laxmi K Parajuli
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Mark Lillya
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Sebastian Fletcher-Taylor
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA.,Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
7
|
Stožer A, Paradiž Leitgeb E, Pohorec V, Dolenšek J, Križančić Bombek L, Gosak M, Skelin Klemen M. The Role of cAMP in Beta Cell Stimulus-Secretion and Intercellular Coupling. Cells 2021; 10:1658. [PMID: 34359828 PMCID: PMC8304079 DOI: 10.3390/cells10071658] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic beta cells secrete insulin in response to stimulation with glucose and other nutrients, and impaired insulin secretion plays a central role in development of diabetes mellitus. Pharmacological management of diabetes includes various antidiabetic drugs, including incretins. The incretin hormones, glucagon-like peptide-1 and gastric inhibitory polypeptide, potentiate glucose-stimulated insulin secretion by binding to G protein-coupled receptors, resulting in stimulation of adenylate cyclase and production of the secondary messenger cAMP, which exerts its intracellular effects through activation of protein kinase A or the guanine nucleotide exchange protein 2A. The molecular mechanisms behind these two downstream signaling arms are still not fully elucidated and involve many steps in the stimulus-secretion coupling cascade, ranging from the proximal regulation of ion channel activity to the central Ca2+ signal and the most distal exocytosis. In addition to modifying intracellular coupling, the effect of cAMP on insulin secretion could also be at least partly explained by the impact on intercellular coupling. In this review, we systematically describe the possible roles of cAMP at these intra- and inter-cellular signaling nodes, keeping in mind the relevance for the whole organism and translation to humans.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Lidija Križančić Bombek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| |
Collapse
|
8
|
Venditti R, Wilson C, De Matteis MA. Regulation and physiology of membrane contact sites. Curr Opin Cell Biol 2021; 71:148-157. [PMID: 33932623 DOI: 10.1016/j.ceb.2021.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Membrane contact sites (MCSs) in addition to impacting the functions of membrane-limited organelles also have a role in the spatial and functional organization of cells, tissues and whole organisms. MCSs have been identified between all organelles and the identification of their molecular composition has progressed significantly in recent years. Equally important is how MCSs respond dynamically to physiological stimuli, how this is regulated, and the physiological roles of MCSs in tissues and at the organismal level, an area that still remains relatively unexplored. In the present review, we focus on the regulation of MCSs, considerations of their function at the organismal level, and how mutations of MCS components linked to genetic diseases might inform us about their physiological relevance.
Collapse
Affiliation(s)
- Rossella Venditti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II-Medical School, Naples, Italy
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II-Medical School, Naples, Italy.
| |
Collapse
|
9
|
Marcheva B, Perelis M, Weidemann BJ, Taguchi A, Lin H, Omura C, Kobayashi Y, Newman MV, Wyatt EJ, McNally EM, Fox JEM, Hong H, Shankar A, Wheeler EC, Ramsey KM, MacDonald PE, Yeo GW, Bass J. A role for alternative splicing in circadian control of exocytosis and glucose homeostasis. Genes Dev 2020; 34:1089-1105. [PMID: 32616519 PMCID: PMC7397853 DOI: 10.1101/gad.338178.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/10/2020] [Indexed: 11/24/2022]
Abstract
The circadian clock is encoded by a negative transcriptional feedback loop that coordinates physiology and behavior through molecular programs that remain incompletely understood. Here, we reveal rhythmic genome-wide alternative splicing (AS) of pre-mRNAs encoding regulators of peptidergic secretion within pancreatic β cells that are perturbed in Clock-/- and Bmal1-/- β-cell lines. We show that the RNA-binding protein THRAP3 (thyroid hormone receptor-associated protein 3) regulates circadian clock-dependent AS by binding to exons at coding sequences flanking exons that are more frequently skipped in clock mutant β cells, including transcripts encoding Cask (calcium/calmodulin-dependent serine protein kinase) and Madd (MAP kinase-activating death domain). Depletion of THRAP3 restores expression of the long isoforms of Cask and Madd, and mimicking exon skipping in these transcripts through antisense oligonucleotide delivery in wild-type islets reduces glucose-stimulated insulin secretion. Finally, we identify shared networks of alternatively spliced exocytic genes from islets of rodent models of diet-induced obesity that significantly overlap with clock mutants. Our results establish a role for pre-mRNA alternative splicing in β-cell function across the sleep/wake cycle.
Collapse
Affiliation(s)
- Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Benjamin J Weidemann
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Akihiko Taguchi
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Haopeng Lin
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Yumiko Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Marsha V Newman
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Eugene J Wyatt
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Jocelyn E Manning Fox
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Heekyung Hong
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Archana Shankar
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Emily C Wheeler
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Patrick E MacDonald
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
10
|
Thurmond DC, Gaisano HY. Recent Insights into Beta-cell Exocytosis in Type 2 Diabetes. J Mol Biol 2020; 432:1310-1325. [PMID: 31863749 PMCID: PMC8061716 DOI: 10.1016/j.jmb.2019.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 01/26/2023]
Abstract
As one of the leading causes of morbidity and mortality worldwide, diabetes affects an estimated 422 million adults, and it is expected to continue expanding such that by 2050, 30% of the U.S. population will become diabetic within their lifetime. Out of the estimated 422 million people currently afflicted with diabetes worldwide, about 5% have type 1 diabetes (T1D), while the remaining ~95% of diabetics have type 2 diabetes (T2D). Type 1 diabetes results from the autoimmune-mediated destruction of functional β-cell mass, whereas T2D results from combinatorial defects in functional β-cell mass plus peripheral glucose uptake. Both types of diabetes are now believed to be preceded by β-cell dysfunction. T2D is increasingly associated with numerous reports of deficiencies in the exocytosis proteins that regulate insulin release from β-cells, specifically the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. SNARE protein's functionality is further regulated by a variety of accessory factors such as Sec1/Munc18 (SM), double C2-domain proteins (DOC2), and additional interacting proteins at the cell surface that influence the fidelity of insulin release. As new evidence emerges about the detailed mechanisms of exocytosis, new questions and controversies have come to light. This emerging information is also contributing to dialogue in the islet biology field focused on how to correct the defects in insulin exocytosis. Herein we present a balanced review of the role of exocytosis proteins in T2D, with thoughts on novel strategies to protect functional β-cell mass.
Collapse
Affiliation(s)
- Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, CA, USA.
| | | |
Collapse
|
11
|
Selvaraj C, Selvaraj G, Kaliamurthi S, Cho WC, Wei DQ, Singh SK. Ion Channels as Therapeutic Targets for Type 1 Diabetes Mellitus. Curr Drug Targets 2020; 21:132-147. [PMID: 31538892 DOI: 10.2174/1389450119666190920152249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Ion channels are integral proteins expressed in almost all living cells and are involved in muscle contraction and nutrient transport. They play a critical role in the normal functioning of the excitable tissues of the nervous system and regulate the action potential and contraction events. Dysfunction of genes encodes ion channel proteins, which disrupt the channel function and lead to a number of diseases, among which is type 1 diabetes mellitus (T1DM). Therefore, understanding the complex mechanism of ion channel receptors is necessary to facilitate the diagnosis and management of treatment. In this review, we summarize the mechanism of important ion channels and their potential role in the regulation of insulin secretion along with the limitations of ion channels as therapeutic targets. Furthermore, we discuss the recent investigations of the mechanism regulating the ion channels in pancreatic beta cells, which suggest that ion channels are active participants in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Department of Bioinformatics, Computer-Aided Drug Design, and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, 630004, India
| | - Gurudeeban Selvaraj
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Satyavani Kaliamurthi
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Dong-Qing Wei
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
- Department of Bioinformatics, The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, Computer-Aided Drug Design, and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, 630004, India
| |
Collapse
|
12
|
Jacobson DA, Shyng SL. Ion Channels of the Islets in Type 2 Diabetes. J Mol Biol 2019; 432:1326-1346. [PMID: 31473158 DOI: 10.1016/j.jmb.2019.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Ca2+ is an essential signal for pancreatic β-cell function. Ca2+ plays critical roles in numerous β-cell pathways such as insulin secretion, transcription, metabolism, endoplasmic reticulum function, and the stress response. Therefore, β-cell Ca2+ handling is tightly controlled. At the plasma membrane, Ca2+ entry primarily occurs through voltage-dependent Ca2+ channels. Voltage-dependent Ca2+ channel activity is dependent on orchestrated fluctuations in the plasma membrane potential or voltage, which are mediated via the activity of many ion channels. During the pathogenesis of type 2 diabetes the β-cell is exposed to stressful conditions, which result in alterations of Ca2+ handling. Some of the changes in β-cell Ca2+ handling that occur under stress result from perturbations in ion channel activity, expression or localization. Defective Ca2+ signaling in the diabetic β-cell alters function, limits insulin secretion and exacerbates hyperglycemia. In this review, we focus on the β-cell ion channels that control Ca2+ handling and how they impact β-cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7415 MRB4 (Langford), 2213 Garland Avenue, Nashville, TN 37232, USA.
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, L224, MRB 624, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
13
|
Fu J, Githaka JM, Dai X, Plummer G, Suzuki K, Spigelman AF, Bautista A, Kim R, Greitzer-Antes D, Fox JEM, Gaisano HY, MacDonald PE. A glucose-dependent spatial patterning of exocytosis in human β-cells is disrupted in type 2 diabetes. JCI Insight 2019; 5:127896. [PMID: 31085831 DOI: 10.1172/jci.insight.127896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Impaired insulin secretion in type 2 diabetes (T2D) is linked to reduced insulin granule docking, disorganization of the exocytotic site, and an impaired glucose-dependent facilitation of insulin exocytosis. We show in β-cells from 80 human donors that the glucose-dependent amplification of exocytosis is disrupted in T2D. Spatial analyses of granule fusion, visualized by total internal reflection fluorescence (TIRF) microscopy in 24 of these donors, demonstrate that these are non-random across the surface of β-cells from donors with no diabetes (ND). The compartmentalization of events occurs within regions defined by concurrent or recent membrane-resident secretory granules. This organization, and the number of membrane-associated granules, is glucose-dependent and notably impaired in T2D β-cells. Mechanistically, multi-channel Kv2.1 clusters contribute to maintaining the density of membrane-resident granules and the number of fusion 'hotspots', while SUMOylation sites at the channel N- (K145) and C-terminus (K470) determine the relative proportion of fusion events occurring within these regions. Thus, a glucose-dependent compartmentalization of fusion, regulated in part by a structural role for Kv2.1, is disrupted in β-cells from donors with type 2 diabetes.
Collapse
Affiliation(s)
- Jianyang Fu
- Alberta Diabetes Institute and Department of Pharmacology and
| | | | - Xiaoqing Dai
- Alberta Diabetes Institute and Department of Pharmacology and
| | - Gregory Plummer
- Alberta Diabetes Institute and Department of Pharmacology and
| | - Kunimasa Suzuki
- Alberta Diabetes Institute and Department of Pharmacology and
| | | | - Austin Bautista
- Alberta Diabetes Institute and Department of Pharmacology and
| | - Ryekjang Kim
- Alberta Diabetes Institute and Department of Pharmacology and
| | - Dafna Greitzer-Antes
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
14
|
Kirmiz M, Palacio S, Thapa P, King AN, Sack JT, Trimmer JS. Remodeling neuronal ER-PM junctions is a conserved nonconducting function of Kv2 plasma membrane ion channels. Mol Biol Cell 2018; 29:2410-2432. [PMID: 30091655 PMCID: PMC6233057 DOI: 10.1091/mbc.e18-05-0337] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endoplasmic reticulum (ER) and plasma membrane (PM) form junctions crucial to ion and lipid signaling and homeostasis. The Kv2.1 ion channel is localized at ER–PM junctions in brain neurons and is unique among PM proteins in its ability to remodel these specialized membrane contact sites. Here, we show that this function is conserved between Kv2.1 and Kv2.2, which differ in their biophysical properties, modulation, and cellular expression. Kv2.2 ER–PM junctions are present at sites deficient in the actin cytoskeleton, and disruption of the actin cytoskeleton affects their spatial organization. Kv2.2-containing ER–PM junctions overlap with those formed by canonical ER–PM tethers. The ability of Kv2 channels to remodel ER–PM junctions is unchanged by point mutations that eliminate their ion conduction but eliminated by point mutations within the Kv2-specific proximal restriction and clustering (PRC) domain that do not impact their ion channel function. The highly conserved PRC domain is sufficient to transfer the ER–PM junction–remodeling function to another PM protein. Last, brain neurons in Kv2 double-knockout mice have altered ER–PM junctions. Together, these findings demonstrate a conserved in vivo function for Kv2 family members in remodeling neuronal ER–PM junctions that is distinct from their canonical role as ion-conducting channels shaping neuronal excitability.
Collapse
Affiliation(s)
- Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Stephanie Palacio
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Parashar Thapa
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616
| | - Anna N King
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| | - James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616.,Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
15
|
Greitzer-Antes D, Xie L, Qin T, Xie H, Zhu D, Dolai S, Liang T, Kang F, Hardy AB, He Y, Kang Y, Gaisano HY. K v2.1 clusters on β-cell plasma membrane act as reservoirs that replenish pools of newcomer insulin granule through their interaction with syntaxin-3. J Biol Chem 2018; 293:6893-6904. [PMID: 29549124 DOI: 10.1074/jbc.ra118.002703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/09/2018] [Indexed: 01/22/2023] Open
Abstract
The voltage-dependent K+ (Kv) channel Kv2.1 is a major delayed rectifier in many secretory cells, including pancreatic β cells. In addition, Kv2.1 has a direct role in exocytosis at an undefined step, involving SNARE proteins, that is independent of its ion-conducting pore function. Here, we elucidated the precise step in exocytosis. We previously reported that syntaxin-3 (Syn-3) is the key syntaxin that mediates exocytosis of newcomer secretory granules that spend minimal residence time on the plasma membrane before fusion. Using high-resolution total internal reflection fluorescence microscopy, we now show that Kv2.1 forms reservoir clusters on the β-cell plasma membrane and binds Syn-3 via its C-terminal C1b domain, which recruits newcomer insulin secretory granules into this large reservoir. Upon glucose stimulation, secretory granules were released from this reservoir to replenish the pool of newcomer secretory granules for subsequent fusion, occurring just adjacent to the plasma membrane Kv2.1 clusters. C1b deletion blocked the aforementioned Kv2.1-Syn-3-mediated events and reduced fusion of newcomer secretory granules. These insights have therapeutic implications, as Kv2.1 overexpression in type-2 diabetes rat islets restored biphasic insulin secretion.
Collapse
Affiliation(s)
- Dafna Greitzer-Antes
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Li Xie
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Tairan Qin
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Huanli Xie
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Dan Zhu
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Subhankar Dolai
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Tao Liang
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Fei Kang
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Alexandre B Hardy
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Yan He
- the Department of Epidemiology and Health Statistics, School of Public Health and Family Medicine, Capital Medical University, Beijing 100050, China
| | - Youhou Kang
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Herbert Y Gaisano
- From the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| |
Collapse
|
16
|
Gaisano HY. Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis. Diabetes Obes Metab 2017; 19 Suppl 1:115-123. [PMID: 28880475 DOI: 10.1111/dom.13001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/23/2017] [Accepted: 05/02/2017] [Indexed: 01/22/2023]
Abstract
Initial work on the exocytotic machinery of predocked insulin secretory granules (SGs) in pancreatic β-cells mimicked the SNARE hypothesis work in neurons, which includes SM/SNARE complex and associated priming proteins, fusion clamps and Ca2+ sensors. However, β-cell SGs, unlike neuronal synaptic vesicles, exhibit a biphasic secretory response that requires additional distinct features in exocytosis including newcomer SGs that undergo minimal docking time at the plasma membrane (PM) before fusion and multi-SG (compound) fusion. These exocytotic events are mediated by Munc18/SNARE complexes distinct from that which mediates predocked SG fusion. We review some recent insights in SNARE complex assembly and the promiscuity in SM/SNARE complex formation, whereby both contribute to conferring different insulin SG fusion kinetics. Some SNARE and associated proteins play non-fusion roles, including tethering SGs to Ca2+ channels, SG recruitment from cell interior to PM, and inhibitory SNAREs that block the action of profusion SNAREs. We discuss new insights into how sub-PM cytoskeletal mesh gates SG access to the PM and the targeting of SG exocytosis to PM domains in functionally polarized β-cells within intact islets. These recent developments have major implications on devising clever SNARE replacement therapies that could restore the deficient insulin secretion in diabetic islet β-cells.
Collapse
|
17
|
Fu J, Dai X, Plummer G, Suzuki K, Bautista A, Githaka JM, Senior L, Jensen M, Greitzer-Antes D, Manning Fox JE, Gaisano HY, Newgard CB, Touret N, MacDonald PE. Kv2.1 Clustering Contributes to Insulin Exocytosis and Rescues Human β-Cell Dysfunction. Diabetes 2017; 66:1890-1900. [PMID: 28607108 PMCID: PMC5482075 DOI: 10.2337/db16-1170] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/15/2017] [Indexed: 12/12/2022]
Abstract
Insulin exocytosis is regulated by ion channels that control excitability and Ca2+ influx. Channels also play an increasingly appreciated role in microdomain structure. In this study, we examine the mechanism by which the voltage-dependent K+ (Kv) channel Kv2.1 (KCNB1) facilitates depolarization-induced exocytosis in INS 832/13 cells and β-cells from human donors with and without type 2 diabetes (T2D). We find that Kv2.1, but not Kv2.2 (KCNB2), forms clusters of 6-12 tetrameric channels at the plasma membrane and facilitates insulin exocytosis. Knockdown of Kv2.1 expression reduces secretory granule targeting to the plasma membrane. Expression of the full-length channel (Kv2.1-wild-type) supports the glucose-dependent recruitment of secretory granules. However, a truncated channel (Kv2.1-ΔC318) that retains electrical function and syntaxin 1A binding, but lacks the ability to form clusters, does not enhance granule recruitment or exocytosis. Expression of KCNB1 appears reduced in T2D islets, and further knockdown of KCNB1 does not inhibit Kv current in T2D β-cells. Upregulation of Kv2.1-wild-type, but not Kv2.1-ΔC318, rescues the exocytotic phenotype in T2D β-cells and increases insulin secretion from T2D islets. Thus, the ability of Kv2.1 to directly facilitate insulin exocytosis depends on channel clustering. Loss of this structural role for the channel might contribute to impaired insulin secretion in diabetes.
Collapse
Affiliation(s)
- Jianyang Fu
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoqing Dai
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Gregory Plummer
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Kunimasa Suzuki
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - John M Githaka
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Laura Senior
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Mette Jensen
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University, Durham, NC
| | - Dafna Greitzer-Antes
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jocelyn E Manning Fox
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University, Durham, NC
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Lee SM, Baik J, Nguyen D, Nguyen V, Liu S, Hu Z, Abbott GW. Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus. FASEB J 2017; 31:2674-2685. [PMID: 28280005 DOI: 10.1096/fj.201601347] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/21/2017] [Indexed: 02/05/2023]
Abstract
Type 2 diabetes mellitus (T2DM) represents a rapidly increasing threat to global public health. T2DM arises largely from obesity, poor diet, and lack of exercise, but it also involves genetic predisposition. Here we report that the KCNE2 potassium channel transmembrane regulatory subunit is expressed in human and mouse pancreatic β cells. Kcne2 deletion in mice impaired glucose tolerance as early as 5 wk of age in pups fed a Western diet, ultimately causing diabetes. In adult mice fed normal chow, skeletal muscle expression of insulin receptor β and insulin receptor substrate 1 were down-regulated 2-fold by Kcne2 deletion, characteristic of T2DM. Kcne2 deletion also caused extensive pancreatic transcriptome changes consistent with facets of T2DM, including endoplasmic reticulum stress, inflammation, and hyperproliferation. Kcne2 deletion impaired β-cell insulin secretion in vitro up to 8-fold and diminished β-cell peak outward K+ current at positive membrane potentials, but also left-shifted its voltage dependence and slowed inactivation. Interestingly, we also observed an aging-dependent reduction in β-cell outward currents in both Kcne2+/+ and Kcne2-/- mice. Our results demonstrate that KCNE2 is required for normal β-cell electrical activity and insulin secretion, and that Kcne2 deletion causes T2DM. KCNE2 may regulate multiple K+ channels in β cells, including the T2DM-linked KCNQ1 potassium channel α subunit.-Lee, S. M., Baik, J., Nguyen, D., Nguyen, V., Liu, S., Hu, Z., Abbott, G. W. Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Soo Min Lee
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Jasmine Baik
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Dara Nguyen
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Victoria Nguyen
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Shiwei Liu
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA
| | - Zhaoyang Hu
- Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA;
| |
Collapse
|
19
|
Ferdaoussi M, MacDonald PE. Toward Connecting Metabolism to the Exocytotic Site. Trends Cell Biol 2016; 27:163-171. [PMID: 27932063 DOI: 10.1016/j.tcb.2016.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022]
Abstract
Within cells the regulated exocytosis of secretory granules controls multiple physiological functions, including endocrine hormone secretion. Release of the glucose-regulating hormone insulin from pancreatic islet β cells is critical for whole-body metabolic homeostasis. Impaired insulin secretion appears early in the progression to type 2 diabetes (T2D). Key mechanisms that control the β-cell exocytotic response, mediating the long-known but little understood metabolic amplification of insulin secretion, are becoming clearer. Recent insights indicate a convergence of metabolism-driven signals, such as lipid-derived messengers and redox-dependent deSUMOylation, at the plasma membrane to augment Ca2+-dependent insulin exocytosis. These pathways have important implications for the metabolic control of hormone secretion, for the functional compensation that occurs in obesity, and for impaired insulin secretion in diabetes.
Collapse
Affiliation(s)
- Mourad Ferdaoussi
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada T6G 2E1.
| |
Collapse
|
20
|
Pancreatic Beta Cell G-Protein Coupled Receptors and Second Messenger Interactions: A Systems Biology Computational Analysis. PLoS One 2016; 11:e0152869. [PMID: 27138453 PMCID: PMC4854486 DOI: 10.1371/journal.pone.0152869] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/21/2016] [Indexed: 12/17/2022] Open
Abstract
Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. The regulatory properties of adenylyl cyclase isoforms determine fluctuations in cytoplasmic cAMP concentration and reveal a synergistic action of glucose, GLP-1 and GIP on insulin secretion. On the other hand, the regulatory properties of phospholipase C isoforms determine the interaction of glucose, acetylcholine and free fatty acids (FFA) (that act through the FFA receptors) on insulin secretion. We found that a combination of GPCR agonists activating different messenger pathways can stimulate insulin secretion more effectively than a combination of GPCR agonists for a single pathway. This analysis also suggests that the activators of GLP-1, GIP and FFA receptors may have a relatively low risk of hypoglycemia in fasting conditions whereas an activator of muscarinic receptors can increase this risk. This computational analysis demonstrates that study of second messenger pathway interactions will improve understanding of critical regulatory sites, how different GPCRs interact and pharmacological targets for modulating insulin secretion in type 2 diabetes.
Collapse
|
21
|
Bocksteins E. Kv5, Kv6, Kv8, and Kv9 subunits: No simple silent bystanders. J Gen Physiol 2016; 147:105-25. [PMID: 26755771 PMCID: PMC4727947 DOI: 10.1085/jgp.201511507] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/11/2015] [Indexed: 12/19/2022] Open
Abstract
Members of the electrically silent voltage-gated K(+) (Kv) subfamilies (Kv5, Kv6, Kv8, and Kv9, collectively identified as electrically silent voltage-gated K(+) channel [KvS] subunits) do not form functional homotetrameric channels but assemble with Kv2 subunits into heterotetrameric Kv2/KvS channels with unique biophysical properties. Unlike the ubiquitously expressed Kv2 subunits, KvS subunits show a more restricted expression. This raises the possibility that Kv2/KvS heterotetramers have tissue-specific functions, making them potential targets for the development of novel therapeutic strategies. Here, I provide an overview of the expression of KvS subunits in different tissues and discuss their proposed role in various physiological and pathophysiological processes. This overview demonstrates the importance of KvS subunits and Kv2/KvS heterotetramers in vivo and the importance of considering KvS subunits and Kv2/KvS heterotetramers in the development of novel treatments.
Collapse
Affiliation(s)
- Elke Bocksteins
- Laboratory for Molecular Biophysics, Physiology, and Pharmacology, Department for Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
22
|
Caldwell ST, Cairns AG, Olson M, Chalmers S, Sandison M, Mullen W, McCarron JG, Hartley RC. Synthesis of an azido-tagged low affinity ratiometric calcium sensor. Tetrahedron 2015; 71:9571-9578. [PMID: 26709317 PMCID: PMC4660056 DOI: 10.1016/j.tet.2015.10.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Changes in high localised concentrations of Ca2+ ions are fundamental to cell signalling. The synthesis of a dual excitation, ratiometric calcium ion sensor with a Kd of 90 μM, is described. It is tagged with an azido group for bioconjugation, and absorbs in the blue/green and emits in the red region of the visible spectrum with a large Stokes shift. The binding modulating nitro group is introduced to the BAPTA core prior to construction of a benzofuran-2-yl carboxaldehyde by an allylation–oxidation–cyclisation sequence, which is followed by condensation with an azido-tagged thiohydantoin. The thiohydantoin unit has to be protected with an acetoxymethyl (AM) caging group to allow CuAAC click reaction and incorporation of the KDEL peptide endoplasmic reticulum (ER) retention sequence.
Collapse
Affiliation(s)
- Stuart T Caldwell
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew G Cairns
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Marnie Olson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Susan Chalmers
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Mairi Sandison
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - William Mullen
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Richard C Hartley
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
23
|
Wu Y, Shyng SL, Chen PC. Concerted Trafficking Regulation of Kv2.1 and KATP Channels by Leptin in Pancreatic β-Cells. J Biol Chem 2015; 290:29676-90. [PMID: 26453299 DOI: 10.1074/jbc.m115.670877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 11/06/2022] Open
Abstract
In pancreatic β-cells, voltage-gated potassium 2.1 (Kv2.1) channels are the dominant delayed rectifier potassium channels responsible for action potential repolarization. Here, we report that leptin, a hormone secreted by adipocytes known to inhibit insulin secretion, causes a transient increase in surface expression of Kv2.1 channels in rodent and human β-cells. The effect of leptin on Kv2.1 surface expression is mediated by the AMP-activated protein kinase (AMPK). Activation of AMPK mimics whereas inhibition of AMPK occludes the effect of leptin. Inhibition of Ca(2+)/calmodulin-dependent protein kinase kinase β, a known upstream kinase of AMPK, also blocks the effect of leptin. In addition, the cAMP-dependent protein kinase (PKA) is involved in Kv2.1 channel trafficking regulation. Inhibition of PKA prevents leptin or AMPK activators from increasing Kv2.1 channel density, whereas stimulation of PKA is sufficient to promote Kv2.1 channel surface expression. The increased Kv2.1 surface expression by leptin is dependent on actin depolymerization, and pharmacologically induced actin depolymerization is sufficient to enhance Kv2.1 surface expression. The signaling and cellular mechanisms underlying Kv2.1 channel trafficking regulation by leptin mirror those reported recently for ATP-sensitive potassium (KATP) channels, which are critical for coupling glucose stimulation with membrane depolarization. We show that the leptin-induced increase in surface KATP channels results in more hyperpolarized membrane potentials than control cells at stimulating glucose concentrations, and the increase in Kv2.1 channels leads to a more rapid repolarization of membrane potential in cells firing action potentials. This study supports a model in which leptin exerts concerted trafficking regulation of KATP and Kv2.1 channels to coordinately inhibit insulin secretion.
Collapse
Affiliation(s)
- Yi Wu
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and
| | - Show-Ling Shyng
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and
| | - Pei-Chun Chen
- the Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
24
|
Yu Y, Wang J, Kang R, Dong J, Zhang Y, Liu F, Yan Y, Zhu R, Xia L, Peng X, Zhang L, He D, Gaisano HY, Herbert G, Chen Z, He Y. Association of KCNB1 polymorphisms with lipid metabolisms and insulin resistance: a case-control design of population-based cross-sectional study in Chinese Han population. Lipids Health Dis 2015; 14:112. [PMID: 26377690 PMCID: PMC4574025 DOI: 10.1186/s12944-015-0115-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
Background In our previous study, we had assessed in the Chinese Han population the association of KCNB1 rs1051295 with metabolic traits indicating metabolic syndrome, and showed that KCNB1 rs1051295 genotype TT was associated with increase of waist to hip ratio (WHR), fasting insulin (FINS), triglycerides (TG) and decreased insulin sensitivity at basal condition. Here, we aimed at detecting whether there were associations between other tag SNPs of KCNB1 and favorable or unfavorable metabolic traits. Methods We conducted a case–control design of population-based cross-sectional study to investigate the association between each of the 22 candidates tag SNPs of KCNB1 and metabolic traits in a population of 733 Chinese Han individuals. The association was assessed by multiple linear regression analysis or unconditional logistic regression analysis. Results We found that among the 22 selected tag SNPs, four were associated with an increase (rs3331, rs16994565) or decrease (rs237460, rs802950) in serum cholesterol levels; two of these (rs237460, rs802590) further associated or were associated with reduced serum LDL-cholesterol. Two novel tag SNPs (rs926672, rs1051295) were associated with increased serum TG levels. We also showed that KCNB1 rs926672 associated with insulin resistance by a case–control study, and two tag SNPs (rs2057077and rs4810952) of KCNB1 were associated with the measure of insulin resistance (HOMA-IR) in a cross-section study. Conclusion These results indicate that KCNB1 is likely associated with metabolic traits that may either predispose or protect from progression to metabolic syndrome. This study provides initial evidence that the gene variants of KCNB1, encoding Kv2.1 channel, is associated with perturbation of lipid metabolism and insulin resistance in Chinese Han population.
Collapse
Affiliation(s)
- Yuncui Yu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Jing Wang
- Departments of Emergency, Beijing Xuanwu Hospital, Capital Medical University, No.45Changchun Street, Xuanwu District, Beijing, 100053, Beijing, PR China.
| | - Ruiying Kang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Jing Dong
- Departments of Emergency, Beijing Xuanwu Hospital, Capital Medical University, No.45Changchun Street, Xuanwu District, Beijing, 100053, Beijing, PR China.
| | - Yuxiang Zhang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Fen Liu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Yuxiang Yan
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Rong Zhu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Lili Xia
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Xiaoxia Peng
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Ling Zhang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Dian He
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto, 315 Bloor Street West, Toronto, Ontario, Canada.
| | | | - Zhenwen Chen
- School of Basic Medicine, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Yan He
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| |
Collapse
|
25
|
Zhang B, Karnik R, Wang Y, Wallmeroth N, Blatt MR, Grefen C. The Arabidopsis R-SNARE VAMP721 Interacts with KAT1 and KC1 K+ Channels to Moderate K+ Current at the Plasma Membrane. THE PLANT CELL 2015; 27:1697-717. [PMID: 26002867 PMCID: PMC4498211 DOI: 10.1105/tpc.15.00305] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/08/2015] [Accepted: 05/06/2015] [Indexed: 05/04/2023]
Abstract
SNARE (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) proteins drive vesicle traffic, delivering membrane and cargo to target sites within the cell and at its surface. They contribute to cell homeostasis, morphogenesis, and pathogen defense. A subset of SNAREs, including the Arabidopsis thaliana SNARE SYP121, are known also to coordinate solute uptake via physical interactions with K(+) channels and to moderate their gating at the plasma membrane. Here, we identify a second subset of SNAREs that interact to control these K(+) channels, but with opposing actions on gating. We show that VAMPs (vesicle-associated membrane proteins), which target vesicles to the plasma membrane, also interact with and suppress the activities of the inward-rectifying K(+) channels KAT1 and KC1. Interactions were evident in yeast split-ubiquitin assays, they were recovered in vivo by ratiometric bimolecular fluorescence complementation, and they were sensitive to mutation of a single residue, Tyr-57, within the longin domain of VAMP721. Interaction was also recovered on exchange of the residue at this site in the homolog VAMP723, which normally localizes to the endoplasmic reticulum and otherwise did not interact. Functional analysis showed reduced channel activity and alterations in voltage sensitivity that are best explained by a physical interaction with the channel gates. These actions complement those of SYP121, a cognate SNARE partner of VAMP721, and lead us to propose that the channel interactions reflect a "hand-off" in channel control between the two SNARE proteins that is woven together with vesicle fusion.
Collapse
Affiliation(s)
- Ben Zhang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yizhou Wang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | |
Collapse
|
26
|
Quiñones M, Al-Massadi O, Fernø J, Nogueiras R. Cross-talk between SIRT1 and endocrine factors: effects on energy homeostasis. Mol Cell Endocrinol 2014; 397:42-50. [PMID: 25109279 DOI: 10.1016/j.mce.2014.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/01/2014] [Accepted: 08/01/2014] [Indexed: 12/14/2022]
Abstract
The mammalian sirtuins (SIRT1-7) are a family of highly conserved nicotine adenine dinucleotide (NAD(+))-dependent deacetylases that act as cellular sensors to detect energy availability. SIRT1 is a multifaceted protein that is involved in a wide variety of cellular processes. SIRT1 is activated in response to caloric restriction, acting on multiple targets in a wide range of tissues. SIRT1 regulates the role of multiple hormones implicated in energy balance, including glucose and lipid metabolism. Here, we review the relevant role of SIRT1 as a mediator of endocrine function of several hormones to modulate energy balance. In addition, we analyze the potential of targeting SIRT1 for the treatment of obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mar Quiñones
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, San Francisco s/n, Santiago de Compostela (A Coruña), 15782, and Avda. Barcelona 3, 15782, Santiago de Compostela, Spain.
| | - Omar Al-Massadi
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, San Francisco s/n, Santiago de Compostela (A Coruña), 15782, and Avda. Barcelona 3, 15782, Santiago de Compostela, Spain
| | - Johan Fernø
- Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Ruben Nogueiras
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, San Francisco s/n, Santiago de Compostela (A Coruña), 15782, and Avda. Barcelona 3, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
27
|
McCord MC, Kullmann PH, He K, Hartnett KA, Horn JP, Lotan I, Aizenman E. Syntaxin-binding domain of Kv2.1 is essential for the expression of apoptotic K+ currents. J Physiol 2014; 592:3511-21. [PMID: 24928958 DOI: 10.1113/jphysiol.2014.276964] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Intracellular signalling cascades triggered by oxidative injury can lead to upregulation of Kv2.1 K(+) channels at the plasma membrane of dying neurons. Membrane incorporation of new channels is necessary for enhanced K(+) efflux and a consequent reduction of intracellular K(+) that facilitates apoptosis. We showed previously that the observed increase in K(+) currents is a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated process, and that the SNARE protein syntaxin binds directly to Kv2.1 channels. In the present study, we tested whether disrupting the interaction of Kv2.1 and syntaxin promoted the survival of cortical neurons following injury. Syntaxin is known to bind to Kv2.1 in a domain comprising amino acids 411-522 of the channel's cytoplasmic C terminus (C1a). Here we show that this domain is required for the apoptotic K(+) current enhancement. Moreover, expression of an isolated, Kv2.1-derived C1a peptide is sufficient to suppress the injury-induced increase in currents by interfering with Kv2.1/syntaxin binding. By subdividing the C1a peptide, we were able to localize the syntaxin binding site on Kv2.1 to the most plasma membrane-distal residues of C1a. Importantly, expression of this peptide segment in neurons prevented the apoptotic K(+) current enhancement and cell death following an oxidative insult, without greatly impairing baseline K(+) currents or normal electrical profiles of neurons. These results establish that binding of syntaxin to Kv2.1 is crucial for the manifestation of oxidant-induced apoptosis, and thereby reveal a potential new direction for therapeutic intervention in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Meghan C McCord
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Paul H Kullmann
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Kai He
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Karen A Hartnett
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - John P Horn
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Ilana Lotan
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| |
Collapse
|
28
|
Ling C, Pease M, Shi L, Punj V, Shiroishi MS, Commins D, Weisenberger DJ, Wang K, Zada G. A pilot genome-scale profiling of DNA methylation in sporadic pituitary macroadenomas: association with tumor invasion and histopathological subtype. PLoS One 2014; 9:e96178. [PMID: 24781529 PMCID: PMC4004564 DOI: 10.1371/journal.pone.0096178] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/04/2014] [Indexed: 11/23/2022] Open
Abstract
Pituitary adenomas (PAs) are neoplasms that may cause a variety of neurological and endocrine effects. Although known causal contributors include heredity, hormonal influence and somatic mutations, the pathophysiologic mechanisms driving tumorigenesis and invasion of sporadic PAs remain unknown. We hypothesized that alterations in DNA methylation are associated with PA invasion and histopathology subtype, and that genome-scale methylation analysis may complement current classification methods for sporadic PAs. Twenty-four surgically-resected sporadic PAs with varying histopathological subtypes were assigned dichotomized Knosp invasion scores and examined using genome-wide DNA methylation profiling and RNA sequencing. PA samples clustered into subgroups according to functional status. Compared with hormonally-active PAs, nonfunctional PAs exhibited global DNA hypermethylation (mean beta-value 0.47 versus 0.42, P = 0.005); the most significant site of differential DNA methylation was within the promoter region of the potassium voltage-gated channel KCNAB2 (FDR = 5.11×10−10). Pathway analysis of promoter-associated CpGs showed that nonfunctional PAs are potentially associated with the ion-channel activity signal pathway. DNA hypermethylation tended to be negatively correlated with gene expression. DNA methylation analysis may be used to identify candidate genes involved in PA function and may potentially complement current standard immunostaining classification in sporadic PAs. DNA hypermethylation of KCNAB2 and downstream ion-channel activity signal pathways may contribute to the endocrine-inactive status of nonfunctional PAs.
Collapse
Affiliation(s)
- Chao Ling
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Matthew Pease
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Lingling Shi
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Vasu Punj
- NCCC Bioinformatics Core and Division of Hematology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Mark S. Shiroishi
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Deborah Commins
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Daniel J. Weisenberger
- USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kai Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (GZ); (KW)
| | - Gabriel Zada
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (GZ); (KW)
| |
Collapse
|
29
|
Renigunta V, Fischer T, Zuzarte M, Kling S, Zou X, Siebert K, Limberg MM, Rinné S, Decher N, Schlichthörl G, Daut J. Cooperative endocytosis of the endosomal SNARE protein syntaxin-8 and the potassium channel TASK-1. Mol Biol Cell 2014; 25:1877-91. [PMID: 24743596 PMCID: PMC4055267 DOI: 10.1091/mbc.e13-10-0592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
SNARE proteins can have functions unrelated to membrane fusion. The unassembled form of the SNARE protein syntaxin-8 interacts with the K+ channel TASK-1; both proteins are internalized via clathrin-mediated endocytosis in a cooperative manner. This is a novel mechanism for the control of endocytosis by cargo proteins. The endosomal SNARE protein syntaxin-8 interacts with the acid-sensitive potassium channel TASK-1. The functional relevance of this interaction was studied by heterologous expression of these proteins (and mutants thereof) in Xenopus oocytes and in mammalian cell lines. Coexpression of syntaxin-8 caused a fourfold reduction in TASK-1 current, a corresponding reduction in the expression of TASK-1 at the cell surface, and a marked increase in the rate of endocytosis of the channel. TASK-1 and syntaxin-8 colocalized in the early endosomal compartment, as indicated by the endosomal markers 2xFYVE and rab5. The stimulatory effect of the SNARE protein on the endocytosis of the channel was abolished when both an endocytosis signal in TASK-1 and an endocytosis signal in syntaxin-8 were mutated. A syntaxin-8 mutant that cannot assemble with other SNARE proteins had virtually the same effect as wild-type syntaxin-8. Total internal reflection fluorescence microscopy showed formation and endocytosis of vesicles containing fluorescence-tagged clathrin, TASK-1, and/or syntaxin-8. Our results suggest that the unassembled form of syntaxin-8 and the potassium channel TASK-1 are internalized via clathrin-mediated endocytosis in a cooperative manner. This implies that syntaxin-8 regulates the endocytosis of TASK-1. Our study supports the idea that endosomal SNARE proteins can have functions unrelated to membrane fusion.
Collapse
Affiliation(s)
- Vijay Renigunta
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Thomas Fischer
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Marylou Zuzarte
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Stefan Kling
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Xinle Zou
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Kai Siebert
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Maren M Limberg
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Günter Schlichthörl
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Jürgen Daut
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| |
Collapse
|
30
|
Jensen MV, Haldeman JM, Zhang H, Lu D, Huising MO, Vale WW, Hohmeier HE, Rosenberg P, Newgard CB. Control of voltage-gated potassium channel Kv2.2 expression by pyruvate-isocitrate cycling regulates glucose-stimulated insulin secretion. J Biol Chem 2013; 288:23128-40. [PMID: 23788641 DOI: 10.1074/jbc.m113.491654] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent studies have shown that the pyruvate-isocitrate cycling pathway, involving the mitochondrial citrate/isocitrate carrier and the cytosolic NADP-dependent isocitrate dehydrogenase (ICDc), is involved in control of glucose-stimulated insulin secretion (GSIS). Here we demonstrate that pyruvate-isocitrate cycling regulates expression of the voltage-gated potassium channel family member Kv2.2 in islet β-cells. siRNA-mediated suppression of ICDc, citrate/isocitrate carrier, or Kv2.2 expression impaired GSIS, and the effect of ICDc knockdown was rescued by re-expression of Kv2.2. Moreover, chronic exposure of β-cells to elevated fatty acids, which impairs GSIS, resulted in decreased expression of Kv2.2. Surprisingly, knockdown of ICDc or Kv2.2 increased rather than decreased outward K(+) current in the 832/13 β-cell line. Immunoprecipitation studies demonstrated interaction of Kv2.1 and Kv2.2, and co-overexpression of the two channels reduced outward K(+) current compared with overexpression of Kv2.1 alone. Also, siRNA-mediated knockdown of ICDc enhanced the suppressive effect of the Kv2.1-selective inhibitor stromatoxin1 on K(+) currents. Our data support a model in which a key function of the pyruvate-isocitrate cycle is to maintain levels of Kv2.2 expression sufficient to allow it to serve as a negative regulator of Kv channel activity.
Collapse
Affiliation(s)
- Mette V Jensen
- Duke Institute of Molecular Physiology, Duke University Medical Center, Durham, North Carolina 27704, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Incretin-stimulated interaction between β-cell Kv1.5 and Kvβ2 channel proteins involves acetylation/deacetylation by CBP/SirT1. Biochem J 2013; 451:227-34. [DOI: 10.1042/bj20121669] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The incretins, GIP (glucose-dependent insulinotropic polypeptide) and GLP-1 (glucagon-like peptide-1) are gastrointestinal hormones conferring a number of beneficial effects on β-cell secretion, survival and proliferation. In a previous study, it was demonstrated that delayed rectifier channel protein Kv2.1 contributes to β-cell apoptosis and that the prosurvival effects of incretins involve Kv2.1 PTMs (post-translational modifications), including phosphorylation and acetylation. Since Kv1.5 overexpression was also shown to stimulate β-cell death, the present study was initiated in order to determine whether incretins modulate Kv1.5α–Kvβ2 interaction via PTM and the mechanisms involved. GIP and GLP-1 reduced apoptosis in INS-1 β-cells (clone 832/13) overexpressing Kv1.5, and RNAi (RNA interference)-mediated knockdown of endogenous Kv1.5 attenuated apoptotic β-cell death. Both GIP and GLP-1 increased phosphorylation and acetylation of Kv1.5 and its Kvβ2 protein subunit, leading to their enhanced interaction. Further studies demonstrated that CBP [CREB (cAMP-response-element-binding protein)-binding protein]/SirT1 mediated acetylation/deacetylation and interaction between Kvβ2 and Kv1.5 in response to GIP or GLP-1. Incretin regulation of β-cell function therefore involves the acetylation of multiple Kvα and Kvβ subunits.
Collapse
|
32
|
Fridlyand LE, Jacobson DA, Philipson LH. Ion channels and regulation of insulin secretion in human β-cells: a computational systems analysis. Islets 2013; 5:1-15. [PMID: 23624892 PMCID: PMC3662377 DOI: 10.4161/isl.24166] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In mammals an increase in glucose leads to block of ATP dependent potassium channels in pancreatic β cells leading to membrane depolarization. This leads to the repetitive firing of action potentials that increases calcium influx and triggers insulin granule exocytosis. Several important differences between species in this process suggest that a dedicated human-oriented approach is advantageous as extrapolating from rodent data may be misleading in several respects. We examined depolarization-induced spike activity in pancreatic human islet-attached β-cells employing whole-cell patch-clamp methods. We also reviewed the literature concerning regulation of insulin secretion by channel activity and constructed a data-based computer model of human β cell function. The model couples the Hodgkin-Huxley-type ionic equations to the equations describing intracellular Ca²⁺ homeostasis and insulin release. On the basis of this model we employed computational simulations to better understand the behavior of action potentials, calcium handling and insulin secretion in human β cells under a wide range of experimental conditions. This computational system approach provides a framework to analyze the mechanisms of human β cell insulin secretion.
Collapse
|
33
|
Abstract
Pancreatic β cells secrete insulin, the body's only hormone capable of lowering plasma glucose levels. Impaired or insufficient insulin secretion results in diabetes mellitus. The β cell is electrically excitable; in response to an elevation of glucose, it depolarizes and starts generating action potentials. The electrophysiology of mouse β cells and the cell's role in insulin secretion have been extensively investigated. More recently, similar studies have been performed on human β cells. These studies have revealed numerous and important differences between human and rodent β cells. Here we discuss the properties of human pancreatic β cells: their glucose sensing, the ion channel complement underlying glucose-induced electrical activity that culminates in exocytotic release of insulin, the cellular control of exocytosis, and the modulation of insulin secretion by circulating hormones and locally released neurotransmitters. Finally, we consider the pathophysiology of insulin secretion and the interactions between genetics and environmental factors that may explain the current diabetes epidemic.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Center for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, United Kingdom.
| | | |
Collapse
|
34
|
DeSUMOylation Controls Insulin Exocytosis in Response to Metabolic Signals. Biomolecules 2012; 2:269-81. [PMID: 24970137 PMCID: PMC4030845 DOI: 10.3390/biom2020269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 12/25/2022] Open
Abstract
The secretion of insulin by pancreatic islet β-cells plays a pivotal role in glucose homeostasis and diabetes. Recent work suggests an important role for SUMOylation in the control of insulin secretion from β-cells. In this paper we discuss mechanisms whereby (de)SUMOylation may control insulin release by modulating β-cell function at one or more key points; and particularly through the acute and reversible regulation of the exocytotic machinery. Furthermore, we postulate that the SUMO-specific protease SENP1 is an important mediator of insulin exocytosis in response to NADPH, a metabolic secretory signal and major determinant of β-cell redox state. Dialysis of mouse β-cells with NADPH efficiently amplifies β-cell exocytosis even when extracellular glucose is low; an effect that is lost upon knockdown of SENP1. Conversely, over-expression of SENP1 itself augments β-cell exocytosis in a redox-dependent manner. Taken together, we suggest that (de)SUMOylation represents an important mechanism that acutely regulates insulin secretion and that SENP1 can act as an amplifier of insulin exocytosis.
Collapse
|