1
|
Valencia-Morales ND, Rodríguez-Cubillo B, Loayza-López RK, Moreno de la Higuera MÁ, Sánchez-Fructuoso AI. Novel Drugs for the Management of Diabetes Kidney Transplant Patients: A Literature Review. Life (Basel) 2023; 13:1265. [PMID: 37374048 DOI: 10.3390/life13061265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The management of diabetes and renal failure is changing thanks to the appearance of new drugs such as glucagon-like peptide 1 receptor agonists (GLP1-RA) and sodium-glucose cotransporter type 2 inhibitors (SGLT2i) that have benefits in terms of survival and cardiorenal protection. Based on the potential mechanisms of GLP1-RA, kidney transplant recipients (KTRs) could benefit from their effects. However, high-quality studies are needed to demonstrate these benefits, in the transplant population, especially those related to cardiovascular benefits and renal protection. Studies with SGLT2i performed in KTRs are much less potent than in the general population and therefore no benefits in terms of patient or graft survival have been clearly demonstrated in this population to date. Additionally, the most frequently observed side effects could be potentially harmful to this population profile, including severe or recurrent urinary tract infections and impaired kidney function. However, benefits demonstrated in KTRs are in line with a known potential effects in cardiovascular and renal protection, which may be essential for the outcome of transplant recipients. Better studies are still needed to confirm the benefits of these new oral antidiabetics in the renal transplant population. Understanding the characteristics of these drugs may be critical for KTRs to be able to benefit from their effects without being damaged. This review discusses the results of the most important published studies on KTRs with GLP1-RA and SGLT2i as well as the potential beneficial effects of these drugs. Based on these results, approximate suggestions for the management of diabetes in KTRs were developed.
Collapse
|
2
|
Park YM, Yang CM, Cho HY. Therapeutic Effects of Insulin-Producing Human Umbilical Cord-Derived Mesenchymal Stem Cells in a Type 1 Diabetes Mouse Model. Int J Mol Sci 2022; 23:6877. [PMID: 35805883 PMCID: PMC9266974 DOI: 10.3390/ijms23136877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/01/2023] Open
Abstract
In patients with type 1 diabetes (T1D), compromised pancreatic β-cell functions are compensated through daily insulin injections or the transplantation of pancreatic tissue or islet cells. However, both approaches are associated with specific challenges. The transplantation of mesenchymal stem cells (MSCs) represents a potential alternative, as MSCs have tissue-forming capacity and can be isolated from various tissues. The human umbilical cord (hUC) is a good source of freely available MSCs, which can be collected through pain-free, non-invasive methods subject to minimal ethical concerns. We sought to develop a method for the in vitro generation of insulin-producing cells (IPCs) using MSCs. We examined the potential therapeutic uses and efficacy of IPCs generated from hUC-derived MSCs (hUC-IPCs) and human adipose tissue (hAD)-derived MSCs (hAD-IPCs) through in vitro experiments and streptozotocin (STZ)-induced C57BL/6 T1D mouse models. We discovered that compared to hAD-IPCs, hUC-IPCs exhibited a superior insulin secretion capacity. Therefore, hUC-IPCs were selected as candidates for T1D cell therapy in mice. Fasting glucose and intraperitoneal glucose tolerance test levels were lower in hUC-IPC-transplanted mice than in T1D control mice and hAD-IPC-transplanted mice. Our findings support the potential use of MSCs for the treatment of T1D.
Collapse
Affiliation(s)
- Yu Mi Park
- CHA Advanced Research Institute, 335, Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea
- Department of Biomedical Science, CHA University, 335, Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea
- Cell Therapy R&D Center, HansBiomed Corp, 7, Jeongui-ro 8-gil, Songpa-gu, Seoul 05836, Gyeonggi-do, Korea; (C.M.Y.); (H.Y.C.)
| | - Chang Mo Yang
- Cell Therapy R&D Center, HansBiomed Corp, 7, Jeongui-ro 8-gil, Songpa-gu, Seoul 05836, Gyeonggi-do, Korea; (C.M.Y.); (H.Y.C.)
| | - Hee Yeon Cho
- Cell Therapy R&D Center, HansBiomed Corp, 7, Jeongui-ro 8-gil, Songpa-gu, Seoul 05836, Gyeonggi-do, Korea; (C.M.Y.); (H.Y.C.)
| |
Collapse
|
3
|
Tahbaz M, Yoshihara E. Immune Protection of Stem Cell-Derived Islet Cell Therapy for Treating Diabetes. Front Endocrinol (Lausanne) 2021; 12:716625. [PMID: 34447354 PMCID: PMC8382875 DOI: 10.3389/fendo.2021.716625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin injection is currently the main therapy for type 1 diabetes (T1D) or late stage of severe type 2 diabetes (T2D). Human pancreatic islet transplantation confers a significant improvement in glycemic control and prevents life-threatening severe hypoglycemia in T1D patients. However, the shortage of cadaveric human islets limits their therapeutic potential. In addition, chronic immunosuppression, which is required to avoid rejection of transplanted islets, is associated with severe complications, such as an increased risk of malignancies and infections. Thus, there is a significant need for novel approaches to the large-scale generation of functional human islets protected from autoimmune rejection in order to ensure durable graft acceptance without immunosuppression. An important step in addressing this need is to strengthen our understanding of transplant immune tolerance mechanisms for both graft rejection and autoimmune rejection. Engineering of functional human pancreatic islets that can avoid attacks from host immune cells would provide an alternative safe resource for transplantation therapy. Human pluripotent stem cells (hPSCs) offer a potentially limitless supply of cells because of their self-renewal ability and pluripotency. Therefore, studying immune tolerance induction in hPSC-derived human pancreatic islets will directly contribute toward the goal of generating a functional cure for insulin-dependent diabetes. In this review, we will discuss the current progress in the immune protection of stem cell-derived islet cell therapy for treating diabetes.
Collapse
Affiliation(s)
- Meghan Tahbaz
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Eiji Yoshihara
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
- *Correspondence: Eiji Yoshihara,
| |
Collapse
|
4
|
Tang Q, Zheng YM, Song T, Reyes-García J, Wang C, Wang YX. Inhibition of big-conductance Ca 2+-activated K + channels in cerebral artery (vascular) smooth muscle cells is a major novel mechanism for tacrolimus-induced hypertension. Pflugers Arch 2020; 473:53-66. [PMID: 33033891 DOI: 10.1007/s00424-020-02470-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/17/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Tacrolimus (TAC, also called FK506), a common immunosuppressive drug used to prevent allograft rejection in transplant patients, is well known to alter the functions of blood vessels. In this study, we sought to determine whether chronic treatment of TAC could inhibit the activity of big-conductance Ca2+-activated K+ (BK) channels in vascular smooth muscle cells (SMCs), leading to hypertension. Our data reveal that the activity of BK channels was inhibited in cerebral artery SMCs (CASMCs) from mice after intraperitoneal injection of TAC once a day for 4 weeks. The voltage sensitivity, Ca2+ sensitivity, and open time of single BK channels were all decreased. In support, BK channel β1-, but not α-subunit protein expression was significantly decreased in cerebral arteries. In TAC-treated mice, application of norepinephrine induced stronger vasoconstriction in both cerebral and mesenteric arteries as well as a larger [Ca2+]i in CASMCs. Chronic treatment of TAC, similar to BK channel β1-subunit knockout (KO), resulted in hypertension in mice, but did not cause a further increase in blood pressure in BK channel β1-subunit KO mice. Moreover, BK channel activity in CASMCs was negatively correlated with blood pressure. Our findings provide novel evidence that TAC inhibits BK channels by reducing the channel β1-subunit expression and functions in vascular SMCs, leading to enhanced vasoconstriction and hypertension.
Collapse
Affiliation(s)
- Qiang Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.,Department of Pharmacology, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| | - Tengyao Song
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Jorge Reyes-García
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Chen Wang
- Department of Pharmacology, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
5
|
Vasiljević J, Torkko JM, Knoch KP, Solimena M. The making of insulin in health and disease. Diabetologia 2020; 63:1981-1989. [PMID: 32894308 PMCID: PMC7476993 DOI: 10.1007/s00125-020-05192-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
Abstract
The discovery of insulin in 1921 has been one of greatest scientific achievements of the 20th century. Since then, the availability of insulin has shifted the focus of diabetes treatment from trying to keep patients alive to saving and improving the life of millions. Throughout this time, basic and clinical research has advanced our understanding of insulin synthesis and action, both in healthy and pathological conditions. Yet, multiple aspects of insulin production remain unknown. In this review, we focus on the most recent findings on insulin synthesis, highlighting their relevance in diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Jovana Vasiljević
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Juha M Torkko
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Klaus-Peter Knoch
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.
| |
Collapse
|
6
|
Abstract
Islet transplantation is a potential treatment for Type 1 diabetes; however, improvements need to be made before it could become clinically widely available. In preclinical studies, the mouse is often used to model islet transplantation, with most studies aiming to improve transplantation outcome by manipulating the islets prior to transplantation or by treating the recipient mouse. Here, we describe the process of islet transplantation in the mouse, including how one can make the mouse diabetic, isolate donor islets, and transplant the islets into two different sites. Finally, we discuss how to assess the outcome of the transplantation in order to determine whether the experimental intervention has been beneficial.
Collapse
Affiliation(s)
- Aileen J F King
- Diabetes Research Group, School of Life Course Sciences, King's College London, London, UK.
| | - Chloe L Rackham
- Diabetes Research Group, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|
7
|
Pereira MJ, Eriksson JW, Svensson MK. A case report of improved metabolic control after conversion from everolimus to cyclosporin A: role of adipose tissue mechanisms? Transplant Proc 2014; 46:2377-80. [PMID: 25242791 DOI: 10.1016/j.transproceed.2014.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/27/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND New-onset diabetes after transplantation is associated with an increase in risk of graft failure, cardiovascular disease, and mortality. Therefore, it compromises the overall beneficial outcome of organ transplantation. CASE REPORT A patient with new-onset diabetes after renal transplantation showed glucose and lipid metabolism improvements after switching immunosuppressant from everolimus to cyclosporin A. A subcutaneous adipose tissue biopsy displayed changes in gene and protein expression that could contribute to the clinical improvement of hyperglycemia and dyslipidemia.
Collapse
Affiliation(s)
- M J Pereira
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - J W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - M K Svensson
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
8
|
PTBP1 is required for glucose-stimulated cap-independent translation of insulin granule proteins and Coxsackieviruses in beta cells. Mol Metab 2014; 3:518-30. [PMID: 25061557 PMCID: PMC4099505 DOI: 10.1016/j.molmet.2014.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 12/15/2022] Open
Abstract
Glucose and GLP-1 stimulate not only insulin secretion, but also the post-transcriptional induction of insulin granule biogenesis. This process involves the nucleocytoplasmic translocation of the RNA binding protein PTBP1. Binding of PTBP1 to the 3'-UTRs of mRNAs for insulin and other cargoes of beta cell granules increases their stability. Here we show that glucose enhances also the binding of PTBP1 to the 5'-UTRs of these transcripts, which display IRES activity, and their translation exclusively in a cap-independent fashion. Accordingly, glucose-induced biosynthesis of granule cargoes was unaffected by pharmacological, genetic or Coxsackievirus-mediated inhibition of cap-dependent translation. Infection with Coxsackieviruses, which also depend on PTBP1 for their own cap-independent translation, reduced instead granule stores and insulin release. These findings provide insight into the mechanism for glucose-induction of insulin granule production and on how Coxsackieviruses, which have been implicated in the pathogenesis of type 1 diabetes, can foster beta cell failure.
Collapse
Key Words
- Beta cells
- CV, Coxsackievirus
- Diabetes
- ER, endoplasmic reticulum
- EV, Enterovirus
- F, Faulkner
- FL, firefly luciferase
- IRES, internal ribosomal entry site
- ITAF, IRES-trans-acting factor
- Insulin
- MCA, MIN6 cell adapted
- PABP, poly(A)-binding protein
- PC, prohormone convertase
- PTBP1, polypyrimidine tract-binding protein 1
- Polypyrimidine tract-binding protein
- S6K1, p70S6 Kinase 1
- Secretory granules
- T1D, type 1 diabetes
- Translation
- UTR, untranslated region
- Virus
- eIF4E-V5, eIF4E tagged at its C-terminus with a V5-epitope
- mTORC1, mammalian Target Of Rapamycin Complex 1
Collapse
|
9
|
Shivaswamy V, Bennett RG, Clure CC, Ottemann B, Davis JS, Larsen JL, Hamel FG. Tacrolimus and sirolimus have distinct effects on insulin signaling in male and female rats. Transl Res 2014; 163:221-31. [PMID: 24361102 DOI: 10.1016/j.trsl.2013.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/14/2013] [Accepted: 12/01/2013] [Indexed: 10/25/2022]
Abstract
Although the contribution of the immunosuppressants tacrolimus (TAC) and sirolimus (SIR) to the development of posttransplant diabetes mellitus (PTDM) are being increasingly recognized, the mechanisms of immunosuppressant-induced hyperglycemia are unclear. SIR induces insulin resistance predominantly, but is associated with β-cell dysfunction in rodents. TAC affects islet function but is associated with worsening insulin sensitivity in a few, and improvement in some, clinical studies. We sought to clarify the contributions of TAC and SIR to insulin resistance and islet function. Four groups of male and female Sprague-Dawley rats received TAC, SIR, TAC and SIR, or control for 2 weeks. All rats were administered an oral glucose challenge at the end of treatment. Half the groups were sacrificed 10 minutes after administration of regular insulin whereas the other half did not receive insulin before sacrifice. Liver, pancreas, fat, and muscle were harvested subsequently. Quantification of Western blots revealed that SIR and TAC plus SIR suppressed the phospho-Akt (pAkt)-to-Akt ratios in liver, muscle, and fat compared with control, regardless of sex. TAC alone did not impair the pAkt-to-Akt ratios in any of the tissues in male and female rats. β-Cell mass was reduced significantly after TAC treatment in male rats. SIR did not affect β-cell mass, regardless of sex. Our study demonstrated very clearly that SIR impairs insulin signaling, without any effect on β-cell mass, and TAC does not impair insulin signaling but reduces β-cell mass. Our efforts are key to understanding the mechanisms of immunosuppressant-induced hyperglycemia and to tailoring treatments for PTDM.
Collapse
Affiliation(s)
- Vijay Shivaswamy
- VA Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, Neb; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb.
| | - Robert G Bennett
- VA Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, Neb; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb; Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Neb
| | - Cara C Clure
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb
| | - Brendan Ottemann
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb
| | - John S Davis
- VA Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, Neb; Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Neb; Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Neb
| | - Jennifer L Larsen
- VA Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, Neb; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb
| | - Frederick G Hamel
- VA Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, Neb; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb
| |
Collapse
|