1
|
Murakami T, Nakamura T, Fujimoto H, Fujikura J, Shimizu Y, Miyake KK, Otani D, Sakaki K, Kiyobayashi S, Anazawa T, Nakamoto Y, Inagaki N. Noninvasive evaluation of donor and native pancreases following simultaneous pancreas-kidney transplantation using positron emission tomography/computed tomography. J Diabetes Investig 2023; 14:1187-1191. [PMID: 37377043 PMCID: PMC10512903 DOI: 10.1111/jdi.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
It is crucial to develop practical and noninvasive methods to assess the functional beta-cell mass in a donor pancreas, in which monitoring and precise evaluation is challenging. A patient with type 1 diabetes underwent noninvasive imaging following simultaneous kidney-pancreas transplantation with positron emission tomography/computed tomography (PET/CT) using an exendin-based probe, [18 F]FB(ePEG12)12-exendin-4. Following transplantation, PET imaging with [18 F]FB(ePEG12)12-exendin-4 revealed simultaneous and distinct accumulations in the donor and native pancreases. The pancreases were outlined at a reasonable distance from the surrounding organs using [18 F]FB(ePEG12)12-exendin-4 whole-body maximum intensity projection and axial PET images. At 1 and 2 h after [18 F]FB(ePEG12)12-exendin-4 administration, the mean standardized uptake values were 2.96 and 3.08, respectively, in the donor pancreas and 1.97 and 2.25, respectively, in the native pancreas. [18 F]FB(ePEG12)12-exendin-4 positron emission tomography imaging allowed repeatable and quantitative assessment of beta-cell mass following simultaneous kidney-pancreas transplantation.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Toshihiro Nakamura
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency for Health, Safety and EnvironmentKyoto UniversityKyotoJapan
| | - Junji Fujikura
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yoichi Shimizu
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kanae K. Miyake
- Department of Advanced Medical Imaging Research, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Daisuke Otani
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kentaro Sakaki
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Sakura Kiyobayashi
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takayuki Anazawa
- Division of Hepato‐Biliary‐Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
- Medical Research Institute Kitano Hospital, PIIF Tazuke‐kofukaiOsakaJapan
| |
Collapse
|
2
|
Botagarova A, Murakami T, Fujimoto H, Fauzi M, Kiyobayashi S, Otani D, Fujimoto N, Inagaki N. Noninvasive quantitative evaluation of viable islet grafts using 111 In-exendin-4 SPECT/CT. FASEB J 2023; 37:e22859. [PMID: 36906290 PMCID: PMC11977520 DOI: 10.1096/fj.202201787rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/13/2023]
Abstract
Islet transplantation (IT) is an effective β-cell replacement therapy for patients with type 1 diabetes; however, the lack of methods to detect islet grafts and evaluate their β-cell mass (BCM) has limited the further optimization of IT protocols. Therefore, the development of noninvasive β-cell imaging is required. In this study, we investigated the utility of the 111 Indium-labeled exendin-4 probe {[Lys12(111In-BnDTPA-Ahx)] exendin-4} (111 In exendin-4) to evaluate islet graft BCM after intraportal IT. The probe was cultured with various numbers of isolated islets. Streptozotocin-induced diabetic mice were intraportally transplanted with 150 or 400 syngeneic islets. After a 6-week observation following IT, the ex-vivo liver graft uptake of 111 In-exendin-4 was compared with the liver insulin content. In addition, the in-vivo liver graft uptake of 111 In exendin-4 using SPECT/CT was compared with that of liver graft BCM measured by a histological method. As a result, probe accumulation was significantly correlated with islet numbers. The ex-vivo liver graft uptake in the 400-islet-transplanted group was significantly higher than that in the control and the 150-islet-transplanted groups, consistent with glycemic control and liver insulin content. In conclusion, in-vivo SPECT/CT displayed liver islet grafts, and uptakes were corroborated by histological liver BCM. 111 In-exendin-4 SPECT/CT can be used to visualize and evaluate liver islet grafts noninvasively after intraportal IT.
Collapse
Affiliation(s)
- Ainur Botagarova
- Department of Diabetes, Endocrinology and NutritionGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology and NutritionGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency for Health, Safety and EnvironmentKyoto UniversityKyotoJapan
| | - Muhammad Fauzi
- Department of Diabetes, Endocrinology and NutritionGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Sakura Kiyobayashi
- Department of Diabetes, Endocrinology and NutritionGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Daisuke Otani
- Department of Diabetes, Endocrinology and NutritionGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Nanae Fujimoto
- Department of Regeneration Science and Engineering Laboratory of Experimental ImmunologyInstitute for Life and Medical Sciences, Kyoto UniversityKyotoJapan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and NutritionGraduate School of Medicine, Kyoto UniversityKyotoJapan
- Medical Research Institute KITANO HOSPITAL, PIIF Tazuke‐kofukaiOsakaJapan
| |
Collapse
|
3
|
Fauzi M, Murakami T, Fujimoto H, Botagarova A, Sakaki K, Kiyobayashi S, Ogura M, Inagaki N. Preservation effect of imeglimin on pancreatic β-cell mass: Noninvasive evaluation using 111In-exendin-4 SPECT/CT imaging and the perspective of mitochondrial involvements. Front Endocrinol (Lausanne) 2022; 13:1010825. [PMID: 36246910 PMCID: PMC9559817 DOI: 10.3389/fendo.2022.1010825] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022] Open
Abstract
Progressive loss of β-cell mass (BCM) has a pernicious influence on type 2 diabetes mellitus (T2DM); evaluation of BCM has conventionally required an invasive method that provides only cross-sectional data. However, a noninvasive approach to longitudinal assessment of BCM in living subjects using an indium 111-labeled exendin-4 derivative ([Lys12(111In-BnDTPA-Ahx)]exendin-4) (111In-exendin-4) has been developed recently. Imeglimin is a novel antidiabetic agent that is reported to improve glycemic control and glucose-stimulated insulin secretion (GSIS) via augmentation of mitochondrial function. However, the influence of imeglimin on BCM is not fully understood. We have investigated the effects of imeglimin on BCM in vivo in prediabetic db/db mice using a noninvasive 111In-exendin-4 single-photon emission computed tomography/computed tomography (SPECT/CT) technique. During the 5-week study period, imeglimin treatment attenuated the progression of glucose intolerance, and imeglimin-treated mice retained greater BCM than control, which was consistent with the results of 111In-exendin-4 SPECT/CT scans. Furthermore, immunohistochemical analysis revealed reduced β-cell apoptosis in the imeglimin-treated db/db mice, and also lowered release of cytosolic cytochrome c protein in the β cells. Furthermore, electron microscopy observation and membrane potential measurement revealed improved structural integrity and membrane potential of the mitochondria of imeglimin-treated islets, respectively. These results demonstrate attenuation of progression of BCM loss in prediabetic db/db mice partly via inhibition of mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Muhammad Fauzi
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety, and Environment, Kyoto University, Kyoto, Japan
| | - Ainur Botagarova
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kentaro Sakaki
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sakura Kiyobayashi
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahito Ogura
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- *Correspondence: Nobuya Inagaki,
| |
Collapse
|
4
|
Burden HJ, Adams S, Kulatea B, Wright-McNaughton M, Sword D, Ormsbee JJ, Watene-O'Sullivan C, Merriman TR, Knopp JL, Chase JG, Krebs JD, Hall RM, Plank LD, Murphy R, Shepherd PR, Merry TL. The CREBRF diabetes-protective rs373863828-A allele is associated with enhanced early insulin release in men of Māori and Pacific ancestry. Diabetologia 2021; 64:2779-2789. [PMID: 34417843 DOI: 10.1007/s00125-021-05552-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS The minor A allele of rs373863828 (CREBRF p.Arg457Gln) is associated with increased BMI, but reduced risk of type 2 and gestational diabetes in Polynesian (Pacific peoples and Aotearoa New Zealand Māori) populations. This study investigates the effect of the A allele on insulin release and sensitivity in overweight/obese men without diabetes. METHODS A mixed meal tolerance test was completed by 172 men (56 with the A allele) of Māori or Pacific ancestry, and 44 (24 with the A allele) had a frequently sampled IVGTT and hyperinsulinaemic-euglycaemic clamp. Mixed linear models with covariates age, ancestry and BMI were used to analyse the association between the A allele of rs373863828 and markers of insulin release and blood glucose regulation. RESULTS The A allele of rs373863828 is associated with a greater increase in plasma insulin 30 min following a meal challenge without affecting the elevation in plasma glucose or incretins glucagon-like polypeptide-1 or gastric inhibitory polypeptide. Consistent with this point, following an i.v. infusion of a glucose bolus, participants with an A allele had higher early (p < 0.05 at 2 and 4 min) plasma insulin and C-peptide concentrations for a similar elevation in blood glucose as those homozygous for the major (G) allele. Despite increased plasma insulin, rs373863828 genotype was not associated with a significant difference (p > 0.05) in insulin sensitivity index or glucose disposal during hyperinsulinaemic-euglycaemic clamp. CONCLUSIONS/INTERPRETATION rs373863828-A allele associates with increased glucose-stimulated insulin release without affecting insulin sensitivity, suggesting that CREBRF p.Arg457Gln may increase insulin release to reduce the risk of type 2 diabetes.
Collapse
Affiliation(s)
- Hannah J Burden
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Shannon Adams
- Discipline of Nutrition, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Braydon Kulatea
- Discipline of Nutrition, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Danielle Sword
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - Jennifer J Ormsbee
- Centre for Bioengineering, Department of Mechanical Bioengineering, University of Canterbury, Christchurch, New Zealand
| | - Conor Watene-O'Sullivan
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Moko Foundation, Kaitaia, New Zealand
- Waharoa Ki Te Toi Research Centre, Kaitaia, New Zealand
| | - Tony R Merriman
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer L Knopp
- Centre for Bioengineering, Department of Mechanical Bioengineering, University of Canterbury, Christchurch, New Zealand
| | - J Geoffrey Chase
- Centre for Bioengineering, Department of Mechanical Bioengineering, University of Canterbury, Christchurch, New Zealand
| | - Jeremy D Krebs
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - Rosemary M Hall
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - Lindsay D Plank
- Department of Surgery, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Rinki Murphy
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Department of Medicine, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Troy L Merry
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
- Discipline of Nutrition, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
5
|
Fujimoto H, Fujita N, Hamamatsu K, Murakami T, Nakamoto Y, Saga T, Ishimori T, Shimizu Y, Watanabe H, Sano K, Harada N, Nakamura H, Toyoda K, Kimura H, Nakagawa S, Hirai M, Murakami A, Ono M, Togashi K, Saji H, Inagaki N. First-in-Human Evaluation of Positron Emission Tomography/Computed Tomography With [ 18F]FB(ePEG12)12-Exendin-4: A Phase 1 Clinical Study Targeting GLP-1 Receptor Expression Cells in Pancreas. Front Endocrinol (Lausanne) 2021; 12:717101. [PMID: 34489868 PMCID: PMC8417326 DOI: 10.3389/fendo.2021.717101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/27/2021] [Indexed: 01/09/2023] Open
Abstract
Pancreatic β-cell mass (BCM) has a central importance in the pathophysiology of diabetes mellitus. Recently, pancreatic β-cell-specific imaging, especially positron emission tomography (PET) with exendin-based probes, has emerged for non-invasive evaluation of BCM. We developed a novel exendin-based probe labeled with fluorine-18, [18F]FB(ePEG12)12-exendin-4 (18F-Ex4) for PET imaging. We subsequently conducted a first-in-human phase 1 study of 18F-Ex4 PET/computed tomography (CT) and investigated the safety and utility for visualizing the pancreas. Six healthy male subjects were enrolled in this study. A low dose (37.0 MBq) of 18F-Ex4 PET/CT was administered (first cohort: n = 2), and subsequently a higher dose (74.0 MBq) was administered (second cohort: n = 4). In the first and second cohorts, 38.6 ± 4.8 and 71.1 ± 4.8 MBq of 18F-Ex4 were administered, respectively. No serious adverse events were observed in both groups. Only one participant in the first cohort showed transient hypoglycemia during the PET scans. 18F-Ex4 PET/CT successfully visualized the pancreas in all participants. The mean standardized uptake value of the pancreas was found to be higher than that in the surrounding organs, except for the bladder and kidney, during the observation. Dosimetry analyses revealed the effective systemic doses of 18F-Ex4 as 0.0164 ± 0.0019 mSv/MBq (first cohort) and 0.0173 ± 0.0020 mSv/MBq (second cohort). 18F-Ex4 PET/CT demonstrated the safety and utility for non-invasive visualization of the pancreas in healthy male subjects. 18F-Ex4 is promising for clinical PET imaging targeting pancreatic β cells.
Collapse
Affiliation(s)
- Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety and Environment, Kyoto University, Kyoto, Japan
| | - Naotaka Fujita
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keita Hamamatsu
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuneo Saga
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayoshi Ishimori
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoichi Shimizu
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kohei Sano
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Kentaro Toyoda
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Kimura
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Mitsuharu Hirai
- Research and Development Division, Arkray, Inc., Kyoto, Japan
| | | | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- *Correspondence: Nobuya Inagaki,
| |
Collapse
|
6
|
Murakami T, Fujimoto H, Inagaki N. Non-invasive Beta-cell Imaging: Visualization, Quantification, and Beyond. Front Endocrinol (Lausanne) 2021; 12:714348. [PMID: 34248856 PMCID: PMC8270651 DOI: 10.3389/fendo.2021.714348] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Pancreatic beta (β)-cell dysfunction and reduced mass play a central role in the development and progression of diabetes mellitus. Conventional histological β-cell mass (BCM) analysis is invasive and limited to cross-sectional observations in a restricted sampling area. However, the non-invasive evaluation of BCM remains elusive, and practical in vivo and clinical techniques for β-cell-specific imaging are yet to be established. The lack of such techniques hampers a deeper understanding of the pathophysiological role of BCM in diabetes, the implementation of personalized BCM-based diabetes management, and the development of antidiabetic therapies targeting BCM preservation and restoration. Nuclear medical techniques have recently triggered a major leap in this field. In particular, radioisotope-labeled probes using exendin peptides that include glucagon-like peptide-1 receptor (GLP-1R) agonist and antagonist have been employed in positron emission tomography and single-photon emission computed tomography. These probes have demonstrated high specificity to β cells and provide clear images accurately showing uptake in the pancreas and transplanted islets in preclinical in vivo and clinical studies. One of these probes, 111indium-labeled exendin-4 derivative ([Lys12(111In-BnDTPA-Ahx)]exendin-4), has captured the longitudinal changes in BCM during the development and progression of diabetes and under antidiabetic therapies in various mouse models of type 1 and type 2 diabetes mellitus. GLP-1R-targeted imaging is therefore a promising tool for non-invasive BCM evaluation. This review focuses on recent advances in non-invasive in vivo β-cell imaging for BCM evaluation in the field of diabetes; in particular, the exendin-based GLP-1R-targeted nuclear medicine techniques.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety and Environment, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- *Correspondence: Nobuya Inagaki,
| |
Collapse
|
7
|
Watanabe H, Kawano K, Shimizu Y, Iikuni S, Nakamoto Y, Togashi K, Ono M. Development of Novel PET Imaging Probes for Detection of Amylin Aggregates in the Pancreas. Mol Pharm 2020; 17:1293-1299. [PMID: 32202808 DOI: 10.1021/acs.molpharmaceut.9b01309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The deposition of islet amyloid is associated with β-cell mass dysfunction in type 2 diabetes mellitus (T2DM). Since the amylin aggregate is the main component of islet amyloid, in vivo imaging of amylin may be useful for diagnosis and elucidation of the pathogenic mechanism of T2DM. In the present study, we newly designed, synthesized, and evaluated two 18F labeled compounds ([18F]DANIR-F 2b and [18F]DANIR-F 2c) as positron emission tomography (PET) probes targeting amylin aggregates. In an in vitro binding study, DANIR-F 2b and DANIR-F 2c showed binding affinity for amylin aggregates (Ki = 160 and 29 nM, respectively). In addition, [18F]DANIR-F 2b and [18F]DANIR-F 2c clearly labeled islet amyloids in in vitro autoradiography of T2DM pancreatic sections. In the biodistribution study using normal mice, [18F]DANIR-F 2b and [18F]DANIR-F 2c displayed favorable pharamacokinetics in the pancreas and some organs located near the pancreas. Furthermore, in an ex vivo autoradiographic study, [18F]DANIR-F 2c also bound to amylin aggregates in the pancreas of the amylin transplanted mice. The results of this study suggest that [18F]DANIR-F 2c shows fundamental properties as a PET imaging probe targeting amylin aggregates in the T2DM pancreas.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kiyoshiro Kawano
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoichi Shimizu
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Murakami T, Fujimoto H, Fujita N, Hamamatsu K, Matsumoto K, Inagaki N. Noninvasive Evaluation of GPR119 Agonist Effects on β-Cell Mass in Diabetic Male Mice Using 111In-Exendin-4 SPECT/CT. Endocrinology 2019; 160:2959-2968. [PMID: 31613319 DOI: 10.1210/en.2019-00556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/07/2019] [Indexed: 01/09/2023]
Abstract
Longitudinal observation of pancreatic β-cell mass (BCM) remains challenging because noninvasive techniques for determining BCM in vivo have not been established. Such observations would be useful for the monitoring of type 2 diabetes mellitus, a progressive disease involving loss of pancreatic BCM and function. An indium 111 (111In)-labeled exendin-4 derivative ([Lys12(111In-BnDTPA-Ahx)]exendin-4) targeting the glucagon-like peptide-1 receptor has been developed recently as a promising probe for quantifying the BCM noninvasively. In the present study, we used the 111In-exendin-4 single-photon emission CT/CT (SPECT/CT) technique to investigate the efficacy of DS-8500a, a novel G protein-coupled receptor-119 agonist currently under investigation for type 2 diabetes mellitus treatment in prediabetic db/db mice under dietary restriction. During the 8-week study, the treatment of mice with DS-8500a delayed and attenuated the progression of glucose intolerance compared with mice under dietary restriction alone. 111In-exendin-4 SPECT/CT of db/db mice revealed continuously decreasing radioactive isotope (RI) intensity in the pancreas during the 8-week intervention. DS-8500a attenuated this decrease and preserved pancreatic RI accumulation compared with dietary restriction alone at the end of the observation period. This result was corroborated not only by ex vivo pancreatic analysis using the [Lys12(111In-BnDTPA-Ahx)]exendin-4 probe but also by conventional histological BCM analysis. These results indicate that DS-8500a attenuates the progression of BCM loss beyond that of dietary restriction alone in prediabetic db/db mice. These results have shown that 111In-exendin-4 SPECT/CT will be useful for noninvasive longitudinal investigation of BCM in vivo.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety, and Environment, Kyoto University, Kyoto, Japan
| | - Naotaka Fujita
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keita Hamamatsu
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Matsumoto
- End-Organ Disease Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Zhu JS, Stiers KM, Winter SM, Garcia AD, Versini AF, Beamer LJ, Jakeman DL. Synthesis, Derivatization, and Structural Analysis of Phosphorylated Mono-, Di-, and Trifluorinated d-Gluco-heptuloses by Glucokinase: Tunable Phosphoglucomutase Inhibition. ACS OMEGA 2019; 4:7029-7037. [PMID: 31179410 PMCID: PMC6547622 DOI: 10.1021/acsomega.9b00008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/08/2019] [Indexed: 05/16/2023]
Abstract
Glucokinase phosphorylated a series of C-1 fluorinated α-d-gluco-heptuloses. These phosphorylated products were discovered to be inhibitors of α-phosphomannomutase/phosphoglucomutase (αPMM/PGM) and β-phosphoglucomutase (βPGM). Inhibition potency with both mutases inversely correlated to the degree of fluorination. Structural analysis with αPMM demonstrated the inhibitor binding to the active site, with the phosphate in the phosphate binding site and the anomeric hydroxyl directed to the catalytic site.
Collapse
Affiliation(s)
- Jian-She Zhu
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle M. Stiers
- Biochemistry
Department, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Sherany M. Winter
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Chemistry, Hogeschool Leiden (UAS Leiden), Zernikedreef 11, CK Leiden 2333, The Netherlands
| | - Anthony D. Garcia
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- École
Nationale Supérieure de Chimie de Rennes, 11 Allée de Beaulieu, CS 50837, Rennes Cedex 7 35708, France
| | - Antoine F. Versini
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- École
Supérieure de Physique et de Chimie Industrielles de la Ville
de Paris, 10 rue Vauquelin, Paris 75005, France
| | - Lesa J. Beamer
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- E-mail: (L.J.B.)
| | - David L. Jakeman
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- E-mail: (D.L.J.)
| |
Collapse
|
10
|
van der Kroon I, Woliner-van der Weg W, Brom M, Joosten L, Frielink C, Konijnenberg MW, Visser EP, Gotthardt M. Whole organ and islet of Langerhans dosimetry for calculation of absorbed doses resulting from imaging with radiolabeled exendin. Sci Rep 2017; 7:39800. [PMID: 28067253 PMCID: PMC5220322 DOI: 10.1038/srep39800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/07/2016] [Indexed: 12/26/2022] Open
Abstract
Radiolabeled exendin is used for non-invasive quantification of beta cells in the islets of Langerhans in vivo. High accumulation of radiolabeled exendin in the islets raised concerns about possible radiation-induced damage to these islets in man. In this work, islet absorbed doses resulting from exendin-imaging were calculated by combining whole organ dosimetry with small scale dosimetry for the islets. Our model contains the tissues with high accumulation of radiolabeled exendin: kidneys, pancreas and islets. As input for the model, data from a clinical study (radiolabeled exendin distribution in the human body) and from a preclinical study with Biobreeding Diabetes Prone (BBDP) rats (islet-to-exocrine uptake ratio, beta cell mass) were used. We simulated 111In-exendin and 68Ga-exendin absorbed doses in patients with differences in gender, islet size, beta cell mass and radiopharmaceutical uptake in the kidneys. In all simulated cases the islet absorbed dose was small, maximum 1.38 mGy for 68Ga and 66.0 mGy for 111In. The two sources mainly contributing to the islet absorbed dose are the kidneys (33-61%) and the islet self-dose (7.5-57%). In conclusion, all islet absorbed doses are low (<70 mGy), so even repeated imaging will hardly increase the risk on diabetes.
Collapse
Affiliation(s)
- Inge van der Kroon
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lieke Joosten
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cathelijne Frielink
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark W Konijnenberg
- Department of Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Eric P Visser
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
11
|
van der Kroon I, Joosten L, Nock BA, Maina T, Boerman OC, Brom M, Gotthardt M. Improved Quantification of the Beta Cell Mass after Pancreas Visualization with 99mTc-demobesin-4 and Beta Cell Imaging with 111In-exendin-3 in Rodents. Mol Pharm 2016; 13:3478-3483. [PMID: 27537699 DOI: 10.1021/acs.molpharmaceut.6b00495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Accurate assessment of the 111In-exendin-3 uptake within the pancreas requires exact delineation of the pancreas, which is highly challenging by MRI and CT in rodents. In this study, the pancreatic tracer 99mTc-demobesin-4 was evaluated for accurate delineation of the pancreas to be able to accurately quantify 111In-exendin-3 uptake within the pancreas. METHODS Healthy and alloxan-induced diabetic Brown Norway rats were injected with the pancreatic tracer 99mTc-demobesin-4 ([99mTc-N4-Pro1,Tyr4,Nle14]bombesin) and the beta cell tracer 111In-exendin-3 ([111In-DTPA-Lys40]exendin-3). After dual isotope acquisition of SPECT images, 99mTc-demobesin-4 was used to define a volume of interest for the pancreas in SPECT images subsequently the 111In-exendin-3 uptake within this region was quantified. Furthermore, biodistribution and autoradiography were performed in order to gain insight in the distribution of both tracers in the animals. RESULTS 99mTc-demobesin-4 showed high accumulation in the pancreas. The uptake was highly homogeneous throughout the pancreas, independent of diabetic status, as demonstrated by autoradiography, whereas 111In-exendin-3 only accumulates in the islets of Langerhans. Quantification of both ex vivo and in vivo SPECT images resulted in an excellent linear correlation between the pancreatic uptake, determined with ex vivo counting and 111In-exendin-3 uptake, determined from the quantitative analysis of the SPECT images (Pearson r = 0.97, Pearson r = 0.92). CONCLUSION 99mTc-demobesin-4 shows high accumulation in the pancreas of rats. It is a suitable tracer for accurate delineation of the pancreas and can be conveniently used for simultaneous acquisition with 111In labeled exendin-3. This method provides a straightforward, reliable, and objective method for preclinical beta cell mass (BCM) quantification with 111In-exendin-3.
Collapse
Affiliation(s)
- Inge van der Kroon
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Berthold A Nock
- Molecular Radiopharmacy, INRASTES, NCSR Demokritos, GR-153 10 Agia Paraskevi, Attikis, Athens, Greece
| | - Theodosia Maina
- Molecular Radiopharmacy, INRASTES, NCSR Demokritos, GR-153 10 Agia Paraskevi, Attikis, Athens, Greece
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
12
|
Chon S, Gautier JF. An Update on the Effect of Incretin-Based Therapies on β-Cell Function and Mass. Diabetes Metab J 2016; 40:99-114. [PMID: 27126881 PMCID: PMC4853229 DOI: 10.4093/dmj.2016.40.2.99] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/30/2016] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial disease with a complex and progressive pathogenesis. The two primary mechanisms of T2DM pathogenesis are pancreatic β-cell dysfunction and insulin resistance. Pancreatic β-cell dysfunction is recognized to be a prerequisite for the development of T2DM. Therapeutic modalities that improve β-cell function are considered critical to T2DM management; however, blood glucose control remains a challenge for many patients due to suboptimal treatment efficacy and the progressive nature of T2DM. Incretin-based therapies are now the most frequently prescribed antidiabetic drugs in Korea. Incretin-based therapies are a favorable class of drugs due to their ability to reduce blood glucose by targeting the incretin hormone system and, most notably, their potential to improve pancreatic β-cell function. This review outlines the current understanding of the incretin hormone system in T2DM and summarizes recent updates on the effect of incretin-based therapies on β-cell function and β-cell mass in animals and humans.
Collapse
Affiliation(s)
- Suk Chon
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Jean François Gautier
- Department of Diabetes and Endocrinology, DHU FIRE, Lariboisière Hospital, University Paris-Diderot Paris-7, Paris, France.
- Clinical Investigation Center, INSERM-CIC9504, Saint-Louis University Hospital, University Paris-Diderot Paris-7, Paris, France
- INSERM UMRS 1138, Cordeliers Research Center, University Pierre et Marie Curie Paris-6, Paris, France
| |
Collapse
|
13
|
Mi B, Xu Y, Pan D, Wang L, Yang R, Yu C, Wan W, Wu Y, Yang M. Non-invasive glucagon-like peptide-1 receptor imaging in pancreas with 18F-Al labeled Cys39-exendin-4. Biochem Biophys Res Commun 2016; 471:47-51. [DOI: 10.1016/j.bbrc.2016.01.184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/31/2016] [Indexed: 12/16/2022]
|
14
|
Saisho Y. β-cell dysfunction: Its critical role in prevention and management of type 2 diabetes. World J Diabetes 2015; 6:109-124. [PMID: 25685282 PMCID: PMC4317303 DOI: 10.4239/wjd.v6.i1.109] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/17/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes (T2DM) is characterized by insulin resistance and β-cell dysfunction. Although, in contrast to type 1 diabetes, insulin resistance is assumed to be a major pathophysiological feature of T2DM, T2DM never develops unless β-cells fail to compensate insulin resistance. Recent studies have revealed that a deficit of β-cell functional mass is an essential component of the pathophysiology of T2DM, implying that β-cell deficit is a common feature of both type 1 and type 2 diabetes. β-cell dysfunction is present at the diagnosis of T2DM and progressively worsens with disease duration. β-cell dysfunction is associated with worsening of glycemic control and treatment failure; thus, it is important to preserve or recover β-cell functional mass in the management of T2DM. Since β-cell regenerative capacity appears somewhat limited in humans, reducing β-cell workload appears to be the most effective way to preserve β-cell functional mass to date, underpinning the importance of lifestyle modification and weight loss for the treatment and prevention of T2DM. This review summarizes the current knowledge on β-cell functional mass in T2DM and discusses the treatment strategy for T2DM.
Collapse
|
15
|
Meibom SK. Detection of a Small Insulinoma Using a Novel Glucagon-Like Peptide-1 Receptor Ligand. AACE Clin Case Rep 2015. [DOI: 10.4158/ep14599.co] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|