1
|
Wang KY, Gao MX, Qi HB, An WT, Lin JY, Ning SL, Yang F, Xiao P, Cheng J, Pan W, Cheng QX, Wang J, Fang L, Sun JP, Yu X. Differential contributions of G protein- or arrestin subtype-mediated signalling underlie urocortin 3-induced somatostatin secretion in pancreatic δ cells. Br J Pharmacol 2024; 181:2600-2621. [PMID: 38613153 DOI: 10.1111/bph.16351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND AND PURPOSE Pancreatic islets are modulated by cross-talk among different cell types and paracrine signalling plays important roles in maintaining glucose homeostasis. Urocortin 3 (UCN3) secreted by pancreatic β cells activates the CRF2 receptor (CRF2R) and downstream pathways mediated by different G protein or arrestin subtypes in δ cells to cause somatostatin (SST) secretion, and constitutes an important feedback circuit for glucose homeostasis. EXPERIMENTAL APPROACH Here, we used Arrb1-/-, Arrb2-/-, Gsfl/fl and Gqfl/fl knockout mice, the G11-shRNA-GFPfl/fl lentivirus, as well as functional assays and pharmacological characterization to study how the coupling of Gs, G11 and β-arrestin1 to CRF2R contributed to UCN3-induced SST secretion in pancreatic δ cells. KEY RESULTS Our study showed that CRF2R coupled to a panel of G protein and arrestin subtypes in response to UCN3 engagement. While RyR3 phosphorylation by PKA at the S156, S2706 and S4697 sites may underlie the Gs-mediated UCN3- CRF2R axis for SST secretion, the interaction of SYT1 with β-arrestin1 is also essential for efficient SST secretion downstream of CRF2R. The specific expression of the transcription factor Stat6 may contribute to G11 expression in pancreatic δ cells. Furthermore, we found that different UCN3 concentrations may have distinct effects on glucose homeostasis, and these effects may depend on different CRF2R downstream effectors. CONCLUSIONS AND IMPLICATIONS Collectively, our results provide a landscape view of signalling mediated by different G protein or arrestin subtypes downstream of paracrine UCN3- CRF2R signalling in pancreatic β-δ-cell circuits, which may facilitate the understanding of fine-tuned glucose homeostasis networks.
Collapse
Affiliation(s)
- Kai-Yu Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ming-Xin Gao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hai-Bo Qi
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wen-Tao An
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing-Yu Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shang-Lei Ning
- Department of Hepatobiliary Surgery, General surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Fan Yang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jie Cheng
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Pan
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Qiu-Xia Cheng
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Le Fang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jin-Peng Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
2
|
Du YQ, Sha XY, Cheng J, Wang J, Lin JY, An WT, Pan W, Zhang LJ, Tao XN, Xu YF, Jia YL, Yang Z, Xiao P, Liu M, Sun JP, Yu X. Endogenous Lipid-GPR120 Signaling Modulates Pancreatic Islet Homeostasis to Different Extents. Diabetes 2022; 71:1454-1471. [PMID: 35472681 DOI: 10.2337/db21-0794] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022]
Abstract
Long-chain fatty acids (LCFAs) are not only energy sources but also serve as signaling molecules. GPR120, an LCFA receptor, plays key roles in maintaining metabolic homeostasis. However, whether endogenous ligand-GPR120 circuits exist and how such circuits function in pancreatic islets are unclear. Here, we found that endogenous GPR120 activity in pancreatic δ-cells modulated islet functions. At least two unsaturated LCFAs, oleic acid (OA) and linoleic acid (LA), were identified as GPR120 agonists within pancreatic islets. These two LCFAs promoted insulin secretion by inhibiting somatostatin secretion and showed bias activation of GPR120 in a model system. Compared with OA, LA exerted higher potency in promoting insulin secretion, which is dependent on β-arrestin2 function. Moreover, GPR120 signaling was impaired in the diabetic db/db model, and replenishing OA and LA improved islet function in both the db/db and streptozotocin-treated diabetic models. Consistently, the administration of LA improved glucose metabolism in db/db mice. Collectively, our results reveal that endogenous LCFA-GPR120 circuits exist and modulate homeostasis in pancreatic islets. The contributions of phenotype differences caused by different LCFA-GPR120 circuits within islets highlight the roles of fine-tuned ligand-receptor signaling networks in maintaining islet homeostasis.
Collapse
Affiliation(s)
- Ya-Qin Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xue-Ying Sha
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jie Cheng
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jing-Yu Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Wen-Tao An
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Wei Pan
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Li-Jun Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiao-Na Tao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yun-Fei Xu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ying-Li Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zhao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Peng Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Jin-Peng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Gong L, Odilov B, Han F, Liu F, Sun Y, Zhang N, Zuo X, Yang J, Wang S, Hou X, Ren J. Identification a novel de novo RUNX2 frameshift mutation associated with cleidocranial dysplasia. Genes Genomics 2022; 44:683-690. [PMID: 35235174 PMCID: PMC9120113 DOI: 10.1007/s13258-022-01229-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cleidocranial dysplasia (CCD) is a rare genetic disorder affecting bone and cartilage development. Clinical features of CCD comprise short stature, delayed ossification of craniofacial structures with numerous Wormian bones, underdeveloped or aplastic clavicles and multiple dental anomalies. Several studies have revealed that CCD development is strongly linked with different mutations in runt-related transcription factor 2 (RUNX2) gene. OBJECTIVE Identification and functional characterization of RUNX2 mutation associated with CCD. METHODS We performed genetic testing of a patient with CCD using whole exome sequencing and found a novel RUNX2 frameshift mutation: c.1550delT in a sporadic case. We also compared the functional activity of the mutant and wild-type RUNX2 through immunofluorescence microscopy and osteocalcin promoter luciferase assay. RESULTS We found a novel RUNX2 frameshift mutation, c.1550delT (p.Trp518Glyfs*60). Both mutant RUNX2 and wild-type RUNX2 protein were similarly confined in the nuclei. The novel mutation caused abrogative transactivation activity of RUNX2 on osteocalcin promoter. CONCLUSIONS We explored a novel RUNX2 deletion/frameshift mutation in a sporadic CCD patient. This finding suggests that the VWRPY domain may play a key role in RUNX2 transactivation ability.
Collapse
Affiliation(s)
- Lei Gong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, China
| | - Bekzod Odilov
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, China
| | - Feng Han
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, China.,Department of Endocrinology, Zhangqiu District People's Hospital, Jinan, 250200, China
| | - Fuqiang Liu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, China
| | - Yujing Sun
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, China
| | - Ningxin Zhang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, China
| | - Xiaolin Zuo
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, China
| | - Jiaojiao Yang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, China
| | - Shouyu Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, China.,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, China
| | - Jianmin Ren
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. .,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China. .,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, China. .,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, China.
| |
Collapse
|
4
|
Wang MW, Yang Z, Chen X, Zhou SH, Huang GL, Sun JN, Jiang H, Xu WM, Lin HC, Yu X, Sun JP. Activation of PTH1R alleviates epididymitis and orchitis through Gq and β-arrestin-1 pathways. Proc Natl Acad Sci U S A 2021; 118:e2107363118. [PMID: 34740971 PMCID: PMC8609314 DOI: 10.1073/pnas.2107363118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation in the epididymis and testis contributes significantly to male infertility. Alternative therapeutic avenues treating epididymitis and orchitis are expected since current therapies using antibiotics have limitations associated to side effects and are commonly ineffective for inflammation due to nonbacterial causes. Here, we demonstrated that type 1 parathyroid hormone receptor (PTH1R) and its endogenous agonists, parathyroid hormone (PTH) and PTH-related protein (PTHrP), were mainly expressed in the Leydig cells of testis as well as epididymal epithelial cells. Screening the secretin family G protein-coupled receptor identified that PTH1R in the epididymis and testis was down-regulated in mumps virus (MuV)- or lipopolysaccharide (LPS)-induced inflammation. Remarkably, activation of PTH1R by abaloparatide (ABL), a Food and Drug Administration-approved treatment for postmenopausal osteoporosis, alleviated MuV- or LPS-induced inflammatory responses in both testis and epididymis and significantly improved sperm functions in both mouse model and human samples. The anti-inflammatory effects of ABL were shown to be regulated mainly through the Gq and β-arrestin-1 pathway downstream of PTH1R as supported by the application of ABL in Gnaq± and Arrb1-/- mouse models. Taken together, our results identified an important immunoregulatory role for PTH1R signaling in the epididymis and testis. Targeting to PTH1R might have a therapeutic effect for the treatment of epididymitis and orchitis or other inflammatory disease in the male reproductive system.
Collapse
Affiliation(s)
- Ming-Wei Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Shandong 250012, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Shandong 250012, China
| | - Xu Chen
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Shandong 250012, China
| | - Shu-Hua Zhou
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Shandong 250012, China
| | - Ge-Lin Huang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jian-Ning Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Shandong 250012, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Wen-Ming Xu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
| | - Hao-Cheng Lin
- Department of Urology, Peking University Third Hospital, Beijing 100191, China;
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Shandong 250012, China;
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Shandong 250012, China;
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100091, China
| |
Collapse
|
5
|
Lin JY, Yang Z, Yang C, Du JX, Yang F, Cheng J, Pan W, Zhang SJ, Yan X, Wang J, Wang J, Tie L, Yu X, Chen X, Sun JP. An ionic lock and a hydrophobic zipper mediate the coupling between an insect pheromone receptor BmOR3 and downstream effectors. J Biol Chem 2021; 297:101160. [PMID: 34480896 PMCID: PMC8477192 DOI: 10.1016/j.jbc.2021.101160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 01/14/2023] Open
Abstract
Pheromone receptors (PRs) recognize specific pheromone compounds to guide the behavioral outputs of insects, which are the most diverse group of animals on earth. The activation of PRs is known to couple to the calcium permeability of their coreceptor (Orco) or putatively with G proteins; however, the underlying mechanisms of this process are not yet fully understood. Moreover, whether this transverse seven transmembrane domain (7TM)-containing receptor is able to couple to arrestin, a common effector for many conventional 7TM receptors, is unknown. Herein, using the PR BmOR3 from the silk moth Bombyx mori and its coreceptor BmOrco as a template, we revealed that an agonist-induced conformational change of BmOR3 was transmitted to BmOrco through transmembrane segment 7 from both receptors, resulting in the activation of BmOrco. Key interactions, including an ionic lock and a hydrophobic zipper, are essential in mediating the functional coupling between BmOR3 and BmOrco. BmOR3 also selectively coupled with Gi proteins, which was dispensable for BmOrco coupling. Moreover, we demonstrated that trans-7TM BmOR3 recruited arrestin in an agonist-dependent manner, which indicates an important role for BmOR3–BmOrco complex formation in ionotropic functions. Collectively, our study identified the coupling of G protein and arrestin to a prototype trans-7TM PR, BmOR3, and provided important mechanistic insights into the coupling of active PRs to their downstream effectors, including coreceptors, G proteins, and arrestin.
Collapse
Affiliation(s)
- Jing-Yu Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Chan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ji-Xiang Du
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jie Cheng
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wei Pan
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shi-Jie Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xu Yan
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jia Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Xin Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, China.
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| |
Collapse
|
6
|
Qu C, Mao C, Xiao P, Shen Q, Zhong YN, Yang F, Shen DD, Tao X, Zhang H, Yan X, Zhao RJ, He J, Guan Y, Zhang C, Hou G, Zhang PJ, Hou G, Li Z, Yu X, Chai RJ, Guan YF, Sun JP, Zhang Y. Ligand recognition, unconventional activation, and G protein coupling of the prostaglandin E 2 receptor EP2 subtype. SCIENCE ADVANCES 2021; 7:eabf1268. [PMID: 33811074 PMCID: PMC11057787 DOI: 10.1126/sciadv.abf1268] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/12/2021] [Indexed: 05/25/2023]
Abstract
Selective modulation of the heterotrimeric G protein α S subunit-coupled prostaglandin E2 (PGE2) receptor EP2 subtype is a promising therapeutic strategy for osteoporosis, ocular hypertension, neurodegenerative diseases, and cardiovascular disorders. Here, we report the cryo-electron microscopy structure of the EP2-Gs complex with its endogenous agonist PGE2 and two synthesized agonists, taprenepag and evatanepag (CP-533536). These structures revealed distinct features of EP2 within the EP receptor family in terms of its unconventional receptor activation and G protein coupling mechanisms, including activation in the absence of a typical W6.48 "toggle switch" and coupling to Gs via helix 8. Moreover, inspection of the agonist-bound EP2 structures uncovered key motifs governing ligand selectivity. Our study provides important knowledge for agonist recognition and activation mechanisms of EP2 and will facilitate the rational design of drugs targeting the PGE2 signaling system.
Collapse
Affiliation(s)
- Changxiu Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chunyou Mao
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qingya Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Ya-Ni Zhong
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Xiaona Tao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Xu Yan
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ru-Jia Zhao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Junyan He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ying Guan
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chao Zhang
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guihua Hou
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peng-Ju Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Research, Beijing 100191, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ren-Jie Chai
- State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, School of Life Sciences and Technology, Southeast University, Nanjing 210096, China.
| | - You-Fei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jin-Peng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou 310058, China
| |
Collapse
|
7
|
Sun Y, Zhang D, Ma ML, Lin H, Song Y, Wang J, Ma C, Yu K, An W, Guo S, He D, Yang Z, Xiao P, Hou G, Yu X, Sun JP. Optimization of a peptide ligand for the adhesion GPCR ADGRG2 provides a potent tool to explore receptor biology. J Biol Chem 2020; 296:100174. [PMID: 33303626 PMCID: PMC7948503 DOI: 10.1074/jbc.ra120.014726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
The adhesion GPCR ADGRG2, also known as GPR64, is a critical regulator of male fertility that maintains ion/pH homeostasis and CFTR coupling. The molecular basis of ADGRG2 function is poorly understood, in part because no endogenous ligands for ADGRG2 have been reported, thus limiting the tools available to interrogate ADGRG2 activity. It has been shown that ADGRG2 can be activated by a peptide, termed p15, derived from its own N-terminal region known as the Stachel sequence. However, the low affinity of p15 limits its utility for ADGRG2 characterization. In the current study, we used alanine scanning mutagenesis to examine the critical residues responsible for p15-induced ADGRG2 activity. We next designed systematic strategies to optimize the peptide agonist of ADGRG2, using natural and unnatural amino acid substitutions. We obtained an optimized ADGRG2 Stachel peptide T1V/F3Phe(4-Me) (VPM-p15) that activated ADGRG2 with significantly improved (>2 orders of magnitude) affinity. We then characterized the residues in ADGRG2 that were important for ADGRG2 activation in response to VPM-p15 engagement, finding that the toggle switch W6.53 and residues of the ECL2 region of ADGRG2 are key determinants for VPM-p15 interactions and VPM-p15-induced Gs or arrestin signaling. Our study not only provides a useful tool to investigate the function of ADGRG2 but also offers new insights to guide further optimization of Stachel peptides to activate adhesion GPCR members.
Collapse
Affiliation(s)
- Yujing Sun
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China; Department of Endocrinology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Daolai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Ming-Liang Ma
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Hui Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Youchen Song
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Junyan Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Chuanshun Ma
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Ke Yu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Wentao An
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Shengchao Guo
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Dongfang He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| | - Jin-Peng Sun
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China; Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China.
| |
Collapse
|
8
|
Wang P, Wang Z, Yan Y, Xiao L, Tian W, Qu M, Meng A, Sun F, Li G, Dong J. Psychological Stress Up-Regulates CD147 Expression Through Beta-Arrestin1/ERK to Promote Proliferation and Invasiveness of Glioma Cells. Front Oncol 2020; 10:571181. [PMID: 33178600 PMCID: PMC7593686 DOI: 10.3389/fonc.2020.571181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Psychological stress is closely related to the occurrence and prognosis of various malignant tumors, but the underlying mechanisms are not well studied. CD147 has been reported to be expressed in glioma and other malignant tumors. CD147 not only participates in lactic acid transport, but it also plays an important role in the invasion and metastasis of malignant tumor cells by stimulating the production of numerous matrix metalloproteinases (MMPs) and vascular endothelial growth factor by fibroblasts, and could also act as an autocrine factor stimulating MMPs production in metastatic tumor cells. Here, we found that silencing CD147 in chronically stressed nude mice not only inhibited the proliferation of xenografts but also decreased matrix metalloproteinase-2, 9 expression and lactic acid content in tumor tissues. Furthermore, norepinephrine (NE) was significantly increased in the serum of nude mice in glioma stress model. To determine the underlying cellular mechanism, we added exogenous NE into LN229 and U87 cells to simulate the stress environment in vitro. The invasiveness of the glioma cells was subsequently examined using a Matrigel invasion assay. We demonstrated that knockdown of CD147 inhibited glioma invasiveness and metastasis with norepinephrine stimulation. Luciferase reporter gene experiments further demonstrated that the expression of CD147 is up-regulated primarily by norepinephrine via the β-Adrenalin receptor (βAR)-β-arrestin1-ERK1/2-Sp1 pathway. High expression of CD147 promoted the secretion of MMP-2 and the increment of lactic acid, which accelerated the augmented invasion and metastasis of glioma induced by psychological stress. Taken together, these results suggest that psychological stress promotes glioma proliferation and invasiveness by up-regulating CD147 expression. Thus, CD147 might be a potential target site in the treatment of glioma progression induced by chronic psychological stress.
Collapse
Affiliation(s)
- Ping Wang
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Zhenming Wang
- Department of Clinical Laboratory, Weifang City People's Hospital, Weifang, China
| | - Yizhi Yan
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Lin Xiao
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Wenxiu Tian
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China.,Central of Translation Medicine, Zibo Central Hospital, Zibo, China
| | - Meihua Qu
- Translational Medical Center, Weifang Second People's Hospital, Weifang, China
| | - Aixia Meng
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Fengxiang Sun
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Guizhi Li
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Junhong Dong
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
9
|
Liu Q, He QT, Lyu X, Yang F, Zhu ZL, Xiao P, Yang Z, Zhang F, Yang ZY, Wang XY, Sun P, Wang QW, Qu CX, Gong Z, Lin JY, Xu Z, Song SL, Huang SM, Guo SC, Han MJ, Zhu KK, Chen X, Kahsai AW, Xiao KH, Kong W, Li FH, Ruan K, Li ZJ, Yu X, Niu XG, Jin CW, Wang J, Sun JP. DeSiphering receptor core-induced and ligand-dependent conformational changes in arrestin via genetic encoded trimethylsilyl 1H-NMR probe. Nat Commun 2020; 11:4857. [PMID: 32978402 PMCID: PMC7519161 DOI: 10.1038/s41467-020-18433-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/12/2020] [Indexed: 01/11/2023] Open
Abstract
Characterization of the dynamic conformational changes in membrane protein signaling complexes by nuclear magnetic resonance (NMR) spectroscopy remains challenging. Here we report the site-specific incorporation of 4-trimethylsilyl phenylalanine (TMSiPhe) into proteins, through genetic code expansion. Crystallographic analysis revealed structural changes that reshaped the TMSiPhe-specific amino-acyl tRNA synthetase active site to selectively accommodate the trimethylsilyl (TMSi) group. The unique up-field 1H-NMR chemical shift and the highly efficient incorporation of TMSiPhe enabled the characterization of multiple conformational states of a phospho-β2 adrenergic receptor/β-arrestin-1(β-arr1) membrane protein signaling complex, using only 5 μM protein and 20 min of spectrum accumulation time. We further showed that extracellular ligands induced conformational changes located in the polar core or ERK interaction site of β-arr1 via direct receptor transmembrane core interactions. These observations provided direct delineation and key mechanism insights that multiple receptor ligands were able to induce distinct functionally relevant conformational changes of arrestin.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Qing-Tao He
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xiaoxuan Lyu
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Zhong-Liang Zhu
- School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Feng Zhang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
| | - Zhao-Ya Yang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xiao-Yan Wang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
| | - Peng Sun
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 30 Xiaohongshan Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Qian-Wen Wang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 30 Xiaohongshan Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Chang-Xiu Qu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Zheng Gong
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Jing-Yu Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Zhen Xu
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
| | - Shao-le Song
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
| | - Shen-Ming Huang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Sheng-Chao Guo
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Ming-Jie Han
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqi Road, Airport Economic Zone, Dongli District, Tianjin, 300308, China
| | - Kong-Kai Zhu
- School of Biological Science and Technology, University of Jinan, 336 Nanxinzhuangxi Road, Shizhong District, Jinan, 250022, China
| | - Xin Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Alem W Kahsai
- Duke University, School of Medicine, Durham, NC, 27705, USA
| | - Kun-Hong Xiao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Wei Kong
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Fa-Hui Li
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China
| | - Ke Ruan
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui, 230027, China
| | - Zi-Jian Li
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Xiao-Gang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, School of Life Sciences, Peking University, Beijing, 100084, China
| | - Chang-Wen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, School of Life Sciences, Peking University, Beijing, 100084, China
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang district, Beijing, 100101, China.
- College of Life Sciences and School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, 15 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
10
|
Ampofo E, Nalbach L, Menger MD, Laschke MW. Regulatory Mechanisms of Somatostatin Expression. Int J Mol Sci 2020; 21:ijms21114170. [PMID: 32545257 PMCID: PMC7312888 DOI: 10.3390/ijms21114170] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Somatostatin is a peptide hormone, which most commonly is produced by endocrine cells and the central nervous system. In mammals, somatostatin originates from pre-prosomatostatin and is processed to a shorter form, i.e., somatostatin-14, and a longer form, i.e., somatostatin-28. The two peptides repress growth hormone secretion and are involved in the regulation of glucagon and insulin synthesis in the pancreas. In recent years, the processing and secretion of somatostatin have been studied intensively. However, little attention has been paid to the regulatory mechanisms that control its expression. This review provides an up-to-date overview of these mechanisms. In particular, it focuses on the role of enhancers and silencers within the promoter region as well as on the binding of modulatory transcription factors to these elements. Moreover, it addresses extracellular factors, which trigger key signaling pathways, leading to an enhanced somatostatin expression in health and disease.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Correspondence: ; Tel.: +49-6841-162-6561; Fax: +49-6841-162-6553
| | | | | | | |
Collapse
|
11
|
Lin JY, Cheng J, Du YQ, Pan W, Zhang Z, Wang J, An J, Yang F, Xu YF, Lin H, An WT, Wang J, Yang Z, Chai RJ, Sha XY, Hu HL, Sun JP, Yu X. In vitro expansion of pancreatic islet clusters facilitated by hormones and chemicals. Cell Discov 2020; 6:20. [PMID: 32284878 PMCID: PMC7136205 DOI: 10.1038/s41421-020-0159-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/08/2020] [Indexed: 01/04/2023] Open
Abstract
Tissue regeneration, such as pancreatic islet tissue propagation in vitro, could serve as a promising strategy for diabetes therapy and personalised drug testing. However, such a strategy has not been realised yet. Propagation could be divided into two steps, in vitro expansion and repeated passaging. Even the first step of the in vitro islet expansion has not been achieved to date. Here, we describe a method that enables the expansion of islet clusters isolated from pregnant mice or wild-type rats by employing a combination of specific regeneration factors and chemical compounds in vitro. The expanded islet clusters expressed insulin, glucagon and somatostatin, which are markers corresponding to pancreatic β cells, α cells and δ cells, respectively. These different types of cells grouped together, were spatially organised and functioned similarly to primary islets. Further mechanistic analysis revealed that forskolin in our recipe contributed to renewal and regeneration, whereas exendin-4 was essential for preserving islet cell identity. Our results provide a novel method for the in vitro expansion of islet clusters, which is an important step forward in developing future protocols and media used for islet tissue propagation in vitro. Such method is important for future regenerative diabetes therapies and personalised medicines using large amounts of pancreatic islets derived from the same person.
Collapse
Affiliation(s)
- Jing-Yu Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Jie Cheng
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Ya-Qin Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 100191 Beijing, China
| | - Wei Pan
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Zhong Zhang
- Key Laboratory for Developmental Genes and Human Disease of the Ministry of Education, School of Life Science and Technology, Southeast University, 210096 Nanjing, Jiangsu China
| | - Jin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Jie An
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Fan Yang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Yun-Fei Xu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 250012 Jinan, Shandong China
| | - Hui Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Wen-Tao An
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Jia Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Ren-Jie Chai
- Key Laboratory for Developmental Genes and Human Disease of the Ministry of Education, School of Life Science and Technology, Southeast University, 210096 Nanjing, Jiangsu China
| | - Xue-Ying Sha
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 100191 Beijing, China
| | - Hui-Li Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Genetics, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Jin-Peng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 100191 Beijing, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, Shandong China
| |
Collapse
|
12
|
Cell active and functionally-relevant small-molecule agonists of calcitonin receptor. Bioorg Chem 2020; 96:103596. [PMID: 32004895 DOI: 10.1016/j.bioorg.2020.103596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 12/15/2022]
Abstract
The natural calcitonin (CT) receptor and its peptide agonists are considered validated targets for drug discovery. A small molecule agonist, SUN-B8155, has previously been shown to efficiently activate cellular CTR. Herein, we report the synthesis of a series of compounds (S8155 1-9) derived from SUN-B8155, and investigate the structural-functional relationship, bias properties and their cellular activity profile. We discover that the N-hydroxyl group from the pyridone ring is required for G protein activity and its affinity to the CT receptor. Among the compounds studied, S8155-7 exhibits improved G protein activity while S8155-4 displays a significant β-arrestin-2 signaling bias. Finally, we show that both S8155-4 and S8155-7 inhibit tumour cell invasion through CTR activation. These two compounds are anticipated to find extensive applications in chemical biology research as well drug development efforts targeting CT receptor.
Collapse
|
13
|
Park JY, Qu CX, Li RR, Yang F, Yu X, Tian ZM, Shen YM, Cai BY, Yun Y, Sun JP, Chung KY. Structural Mechanism of the Arrestin-3/JNK3 Interaction. Structure 2019; 27:1162-1170.e3. [PMID: 31080119 DOI: 10.1016/j.str.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/25/2019] [Accepted: 04/03/2019] [Indexed: 01/14/2023]
Abstract
Arrestins, in addition to desensitizing GPCR-induced G protein activation, also mediate G protein-independent signaling by interacting with various signaling proteins. Among these, arrestins regulate MAPK signal transduction by scaffolding mitogen-activated protein kinase (MAPK) signaling components such as MAPKKK, MAPKK, and MAPK. In this study, we investigated the binding mode and interfaces between arrestin-3 and JNK3 using hydrogen/deuterium exchange mass spectrometry, 19F-NMR, and tryptophan-induced Atto 655 fluorescence-quenching techniques. Results suggested that the β1 strand of arrestin-3 is the major and potentially only interaction site with JNK3. The results also suggested that C-lobe regions near the activation loop of JNK3 form the potential binding interface, which is variable depending on the ATP binding status. Because the β1 strand of arrestin-3 is buried by the C-terminal strand in its basal state, C-terminal truncation (i.e., pre-activation) of arrestin-3 facilitates the arrestin-3/JNK3 interaction.
Collapse
Affiliation(s)
- Ji Young Park
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Chang-Xiu Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Rui-Rui Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Fan Yang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Zhao-Mei Tian
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Yue-Mao Shen
- Key Laboratory of Chemical Biology, (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong 250012, China
| | - Bo-Yang Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Youngjoo Yun
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jin-Peng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China.
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
14
|
Ahmed Abdalhamid Osman M, Sun YJ, Li RJ, Lin H, Zeng DM, Chen XY, He D, Feng HW, Yang Z, Wang J, Wu C, Cui M, Sun JP, Huo Y, Yu X. Deletion of pancreatic β-cell adenosine kinase improves glucose homeostasis in young mice and ameliorates streptozotocin-induced hyperglycaemia. J Cell Mol Med 2019; 23:4653-4665. [PMID: 31044530 PMCID: PMC6584724 DOI: 10.1111/jcmm.14216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/12/2022] Open
Abstract
Severe reduction in the β‐cell number (collectively known as the β‐cell mass) contributes to the development of both type 1 and type 2 diabetes. Recent pharmacological studies have suggested that increased pancreatic β‐cell proliferation could be due to specific inhibition of adenosine kinase (ADK). However, genetic evidence for the function of pancreatic β‐cell ADK under physiological conditions or in a pathological context is still lacking. In this study, we crossed mice carrying LoxP‐flanked Adk gene with Ins2‐Cre mice to acquire pancreatic β ‐cell ADK deficiency (Ins2‐Cre±Adkfl/fl) mice. Our results revealed that Ins2‐Cre+/‐Adkfl/fl mice showed improved glucose metabolism and β‐cell mass in younger mice, but showed normal activity in adult mice. Moreover, Ins2‐Cre±Adkfl/fl mice were more resistant to streptozotocin (STZ) induced hyperglycaemia and pancreatic β‐cell damage in adult mice. In conclusion, we found that ADK negatively regulates β‐cell replication in young mice as well as under pathological conditions, such as STZ induced pancreatic β‐cell damage. Our study provided genetic evidence that specific inhibition of pancreatic β‐cell ADK has potential for anti‐diabetic therapy.
Collapse
Affiliation(s)
- Makawi Ahmed Abdalhamid Osman
- Department of Physiology and Pathophysiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China.,Department of Physiology, Faculty of Medicine and Health Sciences, University of Dongola, Dongola, Sudan
| | - Yu-Jing Sun
- Department of Physiology and Pathophysiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China.,Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Rui-Jia Li
- Department of Physiology and Pathophysiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China.,Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Hui Lin
- Department of Physiology and Pathophysiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Dong-Mei Zeng
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Xin-Yu Chen
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Dongfang He
- Department of Physiology and Pathophysiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China.,Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Hui-Wei Feng
- The Second Hospital of Shangdong University, Jinan, Shandong, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Jin Wang
- Department of Pharmacology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Min Cui
- Department of Physiology and Pathophysiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China.,Department of Biochemistry, School of Medicine, Duke University, Durham, North Carolina
| | - Yuqing Huo
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Xiao Yu
- Department of Physiology and Pathophysiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
15
|
Guo Y, Zhao M, Bo T, Ma S, Yuan Z, Chen W, He Z, Hou X, Liu J, Zhang Z, Zhu Q, Wang Q, Lin X, Yang Z, Cui M, Liu L, Li Y, Yu C, Qi X, Wang Q, Zhang H, Guan Q, Zhao L, Xuan S, Yan H, Lin Y, Wang L, Li Q, Song Y, Gao L, Zhao J. Blocking FSH inhibits hepatic cholesterol biosynthesis and reduces serum cholesterol. Cell Res 2019; 29:151-166. [PMID: 30559440 PMCID: PMC6355920 DOI: 10.1038/s41422-018-0123-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Menopause is associated with dyslipidemia and an increased risk of cardio-cerebrovascular disease. The classic view assumes that the underlying mechanism of dyslipidemia is attributed to an insufficiency of estrogen. In addition to a decrease in estrogen, circulating follicle-stimulating hormone (FSH) levels become elevated at menopause. In this study, we find that blocking FSH reduces serum cholesterol via inhibiting hepatic cholesterol biosynthesis. First, epidemiological results show that the serum FSH levels are positively correlated with the serum total cholesterol levels, even after adjustment by considering the effects of serum estrogen. In addition, the prevalence of hypercholesterolemia is significantly higher in peri-menopausal women than that in pre-menopausal women. Furthermore, we generated a mouse model of FSH elevation by intraperitoneally injecting exogenous FSH into ovariectomized (OVX) mice, in which a normal level of estrogen (E2) was maintained by exogenous supplementation. Consistently, the results indicate that FSH, independent of estrogen, increases the serum cholesterol level in this mouse model. Moreover, blocking FSH signaling by anti-FSHβ antibody or ablating the FSH receptor (FSHR) gene could effectively prevent hypercholesterolemia induced by FSH injection or high-cholesterol diet feeding. Mechanistically, FSH, via binding to hepatic FSHRs, activates the Gi2α/β-arrestin-2/Akt pathway and subsequently inhibits the binding of FoxO1 with the SREBP-2 promoter, thus preventing FoxO1 from repressing SREBP-2 gene transcription. This effect, in turn, results in the upregulation of SREBP-2, which drives HMGCR nascent transcription and de novo cholesterol biosynthesis, leading to the increase of cholesterol accumulation. This study uncovers that blocking FSH signaling might be a new strategy for treating hypercholesterolemia during menopause, particularly for women in peri-menopause characterized by FSH elevation only.
Collapse
Affiliation(s)
- Yanjing Guo
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Meng Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Shizhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Shandong University, 250012, Jinan, Shandong, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Zhao He
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Xu Hou
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Jun Liu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Zhenhai Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Qiang Zhu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Qiangxiu Wang
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Zhongli Yang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Min Cui
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Lu Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Yujie Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Xiaoyi Qi
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Qian Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Lifang Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Shimeng Xuan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Huili Yan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Yanliang Lin
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
| | - Li Wang
- Department of Physiology and Neurobiology, and Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Qihang Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China.
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China.
- Department of Physiology and Neurobiology, and Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
| | - Ling Gao
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China.
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China.
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 250021, Jinan, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, 250021, Jinan, Shandong, China.
- Institute of Endocrinology and metabolism, Shandong Academy of Clinical Medicine, 250021, Jinan, Shandong, China.
| |
Collapse
|
16
|
Tse LH, Wong YH. GPCRs in Autocrine and Paracrine Regulations. Front Endocrinol (Lausanne) 2019; 10:428. [PMID: 31354618 PMCID: PMC6639758 DOI: 10.3389/fendo.2019.00428] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest superfamily of integral membrane protein receptors. As signal detectors, the several 100 known GPCRs are responsible for sensing the plethora of endogenous ligands that are critical for the functioning of our endocrine system. Although GPCRs are typically considered as detectors for first messengers in classical signal transduction pathways, they seldom operate in isolation in complex biological systems. Intercellular communication between identical or different cell types is often mediated by autocrine or paracrine signals that are generated upon activation of specific GPCRs. In the context of energy homeostasis, the distinct complement of GPCRs in each cell type bridges the autocrine and paracrine communication within an organ, and the various downstream signaling mechanisms regulated by GPCRs can be integrated in a cell to produce an ultimate output. GPCRs thus act as gatekeepers that coordinate and fine-tune a response. By examining the role of GPCRs in activating and receiving autocrine and paracrine signals, one may have a better understanding of endocrine diseases that are associated with GPCR mutations, thereby providing new insights for treatment regimes.
Collapse
Affiliation(s)
- Lap Hang Tse
- Division of Life Science, Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Yung Hou Wong
- Division of Life Science, Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
- State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
- *Correspondence: Yung Hou Wong
| |
Collapse
|
17
|
Li N, Yang Z, Li Q, Yu Z, Chen X, Li JC, Li B, Ning SL, Cui M, Sun JP, Yu X. Ablation of somatostatin cells leads to impaired pancreatic islet function and neonatal death in rodents. Cell Death Dis 2018; 9:682. [PMID: 29880854 PMCID: PMC5992210 DOI: 10.1038/s41419-018-0741-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
Abstract
The somatostatin (SST)-secreting cells were mainly distributed in the pancreatic islets, brain, stomach and intestine in mammals and have many physiological functions. In particular, the SST-secreting δ cell is the third most common cell type in the islets of Langerhans. Recent studies have suggested that dysregulation of paracrine interaction between the pancreatic δ cells and β cells results in impaired glucose homeostasis and contributes to diabetes development. However, direct evidence of the functional importance of SST cells in glucose homeostasis control is still lacking. In the present study, we specifically ablated SST-secreting cells by crossing Sst-cre transgenic mice with R26 DTA mice (Sst Cre R26 DTA ). The Sst Cre R26 DTA mice exhibited neonatal death. The life spans of these mice with severe hypoglycemia were extended by glucose supplementation. Moreover, we observed that SST cells deficiency led to increased insulin content and excessive insulin release, which might contribute to the observed hypoglycemia. Unexpectedly, although SST is critical for the regulation of insulin content, factors other than SST that are produced by pancreatic δ cells via their endogenous corticotropin-releasing hormone receptor 2 (CRHR2) activity play the main roles in maintaining normal insulin release, as well as neonatal glucose homeostasis in the resting state. Taken together, our results identified that the SST cells in neonatal mouse played critical role in control of insulin release and normal islet function. Moreover, we provided direct in vivo evidence of the functional importance of the SST cells, which are essential for neonatal survival and the maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Zhao Yang
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Qing Li
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Zhen Yu
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Xu Chen
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Jia-Cheng Li
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Bo Li
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Shang-Lei Ning
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, 250012, China
| | - Min Cui
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Jin-Peng Sun
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China.,School of Medicine, Duke University, Durham, North Carolina, 27705, USA
| | - Xiao Yu
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, 250012, China.
| |
Collapse
|
18
|
Zhang DL, Sun YJ, Ma ML, Wang YJ, Lin H, Li RR, Liang ZL, Gao Y, Yang Z, He DF, Lin A, Mo H, Lu YJ, Li MJ, Kong W, Chung KY, Yi F, Li JY, Qin YY, Li J, Thomsen ARB, Kahsai AW, Chen ZJ, Xu ZG, Liu M, Li D, Yu X, Sun JP. Gq activity- and β-arrestin-1 scaffolding-mediated ADGRG2/CFTR coupling are required for male fertility. eLife 2018; 7:e33432. [PMID: 29393851 PMCID: PMC5839696 DOI: 10.7554/elife.33432] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/30/2018] [Indexed: 12/23/2022] Open
Abstract
Luminal fluid reabsorption plays a fundamental role in male fertility. We demonstrated that the ubiquitous GPCR signaling proteins Gq and β-arrestin-1 are essential for fluid reabsorption because they mediate coupling between an orphan receptor ADGRG2 (GPR64) and the ion channel CFTR. A reduction in protein level or deficiency of ADGRG2, Gq or β-arrestin-1 in a mouse model led to an imbalance in pH homeostasis in the efferent ductules due to decreased constitutive CFTR currents. Efferent ductule dysfunction was rescued by the specific activation of another GPCR, AGTR2. Further mechanistic analysis revealed that β-arrestin-1 acts as a scaffold for ADGRG2/CFTR complex formation in apical membranes, whereas specific residues of ADGRG2 confer coupling specificity for different G protein subtypes, this specificity is critical for male fertility. Therefore, manipulation of the signaling components of the ADGRG2-Gq/β-arrestin-1/CFTR complex by small molecules may be an effective therapeutic strategy for male infertility.
Collapse
Affiliation(s)
- Dao-Lai Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Yu-Jing Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Ming-Liang Ma
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Yi-jing Wang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Hui Lin
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Rui-Rui Li
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Zong-Lai Liang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Yuan Gao
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Dong-Fang He
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Amy Lin
- Department of BiochemistrySchool of Medicine, Duke UniversityDurhamUnited States
| | - Hui Mo
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Yu-Jing Lu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Meng-Jing Li
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Wei Kong
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and PathophysiologySchool of Basic Medical Sciences, Peking UniversityBeijingChina
| | | | - Fan Yi
- Department of PharmacologyShandong University School of MedicineJinanChina
| | - Jian-Yuan Li
- Key Laboratory of Male Reproductive Health, National Research Institute for Family PlanningNational Health and Family Planning CommissionBeijingChina
| | - Ying-Ying Qin
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanChina
| | - Jingxin Li
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Alex R B Thomsen
- Department of BiochemistrySchool of Medicine, Duke UniversityDurhamUnited States
| | - Alem W Kahsai
- Department of BiochemistrySchool of Medicine, Duke UniversityDurhamUnited States
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanChina
| | - Zhi-Gang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental BiologyShandong University School of Life SciencesJinanChina
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life SciencesInstitute of Biomedical Sciences, East China Normal UniversityShanghaiChina
- Department of Molecular and Cellular Medicine, Institute of Biosciences and TechnologyTexas A&M University Health Science CenterHoustonUnited States
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life SciencesInstitute of Biomedical Sciences, East China Normal UniversityShanghaiChina
| | - Xiao Yu
- Department of PhysiologyShandong University School of MedicineJinanChina
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinanChina
- Department of BiochemistrySchool of Medicine, Duke UniversityDurhamUnited States
| |
Collapse
|
19
|
Niu S, Li H, Chen W, Zhao J, Gao L, Bo T. Beta-Arrestin 1 Mediates Liver Thyrotropin Regulation of Cholesterol Conversion Metabolism via the Akt-Dependent Pathway. Int J Endocrinol 2018; 2018:4371396. [PMID: 29853881 PMCID: PMC5954953 DOI: 10.1155/2018/4371396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/18/2018] [Accepted: 03/31/2018] [Indexed: 11/18/2022] Open
Abstract
After activation, G protein-coupled receptors (GPCRs) are desensitized by β-arrestins (ARRBs). Moreover, ARRBs can initiate a second wave of signaling independent of G proteins. Thyroid-stimulating hormone receptor (TSHR) is one of the GPCR members. In our previous study, TSHR was identified in the liver; the major role of TSHR in cholesterol metabolism was illustrated, as TSH could regulate hepatic cholesterol metabolism via cAMP/PKA/CREB/HMGCR and SREBP2/HNF4α/CYP7A1 pathways. It has been reported that ARRB2 predominates over ARRB1 in TSHR internalization. However, the significance of ARRBs in TSH-initiated cholesterol metabolism has not been illustrated. In our study, the effects of ARRBs on TSH-regulated cholesterol metabolism are investigated. ARRB1/2 was genetically inactivated in C57BL/6 mice and HepG2 cell line, respectively. Cholesterol levels in arrestin-knockout mice and arrestin-knockdown cells were measured. Molecules participating in cholesterol metabolism were analyzed. It turned out that deficiencies in ARRB1 led to decreased cholesterol levels and decreased TSH-stimulated AKT phosphorylation. Subsequently, the inhibitory effect on CYP7A1 by SREBP2 was reduced due to lowered mature SREBP2 level. Other than the failures of TSH in ARRB-knockdown cells, the AKT activator SC79 could enhance AKT phosphorylation and mature SREBP2 level. Our results demonstrate that ARRBs, especially ARRB1, are involved in TSH-regulated cholesterol metabolism through the AKT pathway.
Collapse
Affiliation(s)
- Shaona Niu
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
- Department of Endocrinology, Lin Yi People's Hospital Affiliated to Shandong University, Linyi, Shandong 276003, China
| | - Hui Li
- Medical College, Shandong University, Jinan, Shandong 250012, China
| | - Wenbin Chen
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Jiajun Zhao
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Ling Gao
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Tao Bo
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| |
Collapse
|
20
|
Xu H, Li Q, Liu J, Zhu J, Li L, Wang Z, Zhang Y, Sun Y, Sun J, Wang R, Yi F. β-Arrestin-1 deficiency ameliorates renal interstitial fibrosis by blocking Wnt1/β-catenin signaling in mice. J Mol Med (Berl) 2017; 96:97-109. [DOI: 10.1007/s00109-017-1606-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/13/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022]
|
21
|
Li Z. A Chinese Perspective on Receptors and Receptor Regulation. Mol Pharmacol 2017; 92:185-187. [PMID: 28765267 DOI: 10.1124/mol.117.109587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 11/22/2022] Open
Abstract
A receptor is a protein molecule that receives chemical signals from outside a cell, which enables the cell to respond to the signal molecule. Receptors mediate numerous important physiologic effects upon binding extracellular agonists. However, sustained activation of the receptor may lead to pathologic effects. Cells can regulate the number and function of receptors to alter their sensitivity to different molecules by a feedback mechanism, such as change in the receptor conformation, uncoupling of the receptor effector molecules, receptor sequestration, etc. In this special issue, some Chinese scientists were invited to contribute impactful discoveries and insightful reviews in the field of molecular pharmacology, especially receptor and receptor regulation.
Collapse
Affiliation(s)
- Zijian Li
- Institute of Vascular Medicine, Cardiology Department, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| |
Collapse
|
22
|
Yang Z, Yang F, Zhang D, Liu Z, Lin A, Liu C, Xiao P, Yu X, Sun JP. Phosphorylation of G Protein-Coupled Receptors: From the Barcode Hypothesis to the Flute Model. Mol Pharmacol 2017; 92:201-210. [PMID: 28246190 DOI: 10.1124/mol.116.107839] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/23/2017] [Indexed: 02/14/2025] Open
Abstract
Seven transmembrane G protein-coupled receptors (GPCRs) are often phosphorylated at the C terminus and on intracellular loops in response to various extracellular stimuli. Phosphorylation of GPCRs by GPCR kinases and certain other kinases can promote the recruitment of arrestin molecules. The arrestins critically regulate GPCR functions not only by mediating receptor desensitization and internalization, but also by redirecting signaling to G protein-independent pathways via interactions with numerous downstream effector molecules. Accumulating evidence over the past decade has given rise to the phospho-barcode hypothesis, which states that ligand-specific phosphorylation patterns of a receptor direct its distinct functional outcomes. Our recent work using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy led to the flute model, which provides preliminary insight into the receptor phospho-coding mechanism, by which receptor phosphorylation patterns are recognized by an array of phosphate-binding pockets on arrestin and are translated into distinct conformations. These selective conformations are recognized by various effector molecules downstream of arrestin. The phospho-barcoding mechanism enables arrestin to recognize a wide range of phosphorylation patterns of GPCRs, contributing to their diverse functions.
Collapse
Affiliation(s)
- Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology (Z.Y., Z.L., C.L., P.X., J.-P.S.), Department of Physiology (F.Y., X.Y.), Shandong University School of Medicine, Jinan, Shandong, People's Republic of China; School of Pharmacy, Binzhou Medical University, Yantai, Shandong, People's Republic of China (D.Z.); School of Medicine, Duke University, Durham, North Carolina (A.L., J.-P.S.)
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology (Z.Y., Z.L., C.L., P.X., J.-P.S.), Department of Physiology (F.Y., X.Y.), Shandong University School of Medicine, Jinan, Shandong, People's Republic of China; School of Pharmacy, Binzhou Medical University, Yantai, Shandong, People's Republic of China (D.Z.); School of Medicine, Duke University, Durham, North Carolina (A.L., J.-P.S.)
| | - Daolai Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology (Z.Y., Z.L., C.L., P.X., J.-P.S.), Department of Physiology (F.Y., X.Y.), Shandong University School of Medicine, Jinan, Shandong, People's Republic of China; School of Pharmacy, Binzhou Medical University, Yantai, Shandong, People's Republic of China (D.Z.); School of Medicine, Duke University, Durham, North Carolina (A.L., J.-P.S.)
| | - Zhixin Liu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology (Z.Y., Z.L., C.L., P.X., J.-P.S.), Department of Physiology (F.Y., X.Y.), Shandong University School of Medicine, Jinan, Shandong, People's Republic of China; School of Pharmacy, Binzhou Medical University, Yantai, Shandong, People's Republic of China (D.Z.); School of Medicine, Duke University, Durham, North Carolina (A.L., J.-P.S.)
| | - Amy Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology (Z.Y., Z.L., C.L., P.X., J.-P.S.), Department of Physiology (F.Y., X.Y.), Shandong University School of Medicine, Jinan, Shandong, People's Republic of China; School of Pharmacy, Binzhou Medical University, Yantai, Shandong, People's Republic of China (D.Z.); School of Medicine, Duke University, Durham, North Carolina (A.L., J.-P.S.)
| | - Chuan Liu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology (Z.Y., Z.L., C.L., P.X., J.-P.S.), Department of Physiology (F.Y., X.Y.), Shandong University School of Medicine, Jinan, Shandong, People's Republic of China; School of Pharmacy, Binzhou Medical University, Yantai, Shandong, People's Republic of China (D.Z.); School of Medicine, Duke University, Durham, North Carolina (A.L., J.-P.S.)
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology (Z.Y., Z.L., C.L., P.X., J.-P.S.), Department of Physiology (F.Y., X.Y.), Shandong University School of Medicine, Jinan, Shandong, People's Republic of China; School of Pharmacy, Binzhou Medical University, Yantai, Shandong, People's Republic of China (D.Z.); School of Medicine, Duke University, Durham, North Carolina (A.L., J.-P.S.)
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology (Z.Y., Z.L., C.L., P.X., J.-P.S.), Department of Physiology (F.Y., X.Y.), Shandong University School of Medicine, Jinan, Shandong, People's Republic of China; School of Pharmacy, Binzhou Medical University, Yantai, Shandong, People's Republic of China (D.Z.); School of Medicine, Duke University, Durham, North Carolina (A.L., J.-P.S.)
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology (Z.Y., Z.L., C.L., P.X., J.-P.S.), Department of Physiology (F.Y., X.Y.), Shandong University School of Medicine, Jinan, Shandong, People's Republic of China; School of Pharmacy, Binzhou Medical University, Yantai, Shandong, People's Republic of China (D.Z.); School of Medicine, Duke University, Durham, North Carolina (A.L., J.-P.S.)
| |
Collapse
|
23
|
Li Q, Cui M, Yang F, Li N, Jiang B, Yu Z, Zhang D, Wang Y, Zhu X, Hu H, Li PS, Ning SL, Wang S, Qi H, Song H, He D, Lin A, Zhang J, Liu F, Zhao J, Gao L, Yi F, Xue T, Sun JP, Gong Y, Yu X. A cullin 4B-RING E3 ligase complex fine-tunes pancreatic δ cell paracrine interactions. J Clin Invest 2017; 127:2631-2646. [PMID: 28604389 DOI: 10.1172/jci91348] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/20/2017] [Indexed: 12/24/2022] Open
Abstract
Somatostatin secreted by pancreatic δ cells mediates important paracrine interactions in Langerhans islets, including maintenance of glucose metabolism through the control of reciprocal insulin and glucagon secretion. Disruption of this circuit contributes to the development of diabetes. However, the precise mechanisms that control somatostatin secretion from islets remain elusive. Here, we found that a super-complex comprising the cullin 4B-RING E3 ligase (CRL4B) and polycomb repressive complex 2 (PRC2) epigenetically regulates somatostatin secretion in islets. Constitutive ablation of CUL4B, the core component of the CRL4B-PRC2 complex, in δ cells impaired glucose tolerance and decreased insulin secretion through enhanced somatostatin release. Moreover, mechanistic studies showed that the CRL4B-PRC2 complex, under the control of the δ cell-specific transcription factor hematopoietically expressed homeobox (HHEX), determines the levels of intracellular calcium and cAMP through histone posttranslational modifications, thereby altering expression of the Cav1.2 calcium channel and adenylyl cyclase 6 (AC6) and modulating somatostatin secretion. In response to high glucose levels or urocortin 3 (UCN3) stimulation, increased expression of cullin 4B (CUL4B) and the PRC2 subunit histone-lysine N-methyltransferase EZH2 and reciprocal decreases in Cav1.2 and AC6 expression were found to regulate somatostatin secretion. Our results reveal an epigenetic regulatory mechanism of δ cell paracrine interactions in which CRL4B-PRC2 complexes, Cav1.2, and AC6 expression fine-tune somatostatin secretion and facilitate glucose homeostasis in pancreatic islets.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Min Cui
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Na Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Baichun Jiang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Genetics, and
| | - Zhen Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Daolai Zhang
- Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yijing Wang
- Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xibin Zhu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Huili Hu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Genetics, and
| | - Pei-Shan Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Genetics, and
| | - Shang-Lei Ning
- Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Si Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Haibo Qi
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Hechen Song
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| | - Dongfang He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology.,Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China
| | - Amy Lin
- Duke University, School of Medicine, Durham, North Carolina, USA
| | - Jingjing Zhang
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Liu
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Tian Xue
- Hefei National Laboratory for Physical Science at Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jin-Peng Sun
- Department of Biochemistry, Shandong University School of Medicine, Jinan, Shandong, China.,Duke University, School of Medicine, Durham, North Carolina, USA
| | - Yaoqin Gong
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Genetics, and
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology
| |
Collapse
|
24
|
Dong JH, Wang YJ, Cui M, Wang XJ, Zheng WS, Ma ML, Yang F, He DF, Hu QX, Zhang DL, Ning SL, Liu CH, Wang C, Wang Y, Li XY, Yi F, Lin A, Kahsai AW, Cahill TJ, Chen ZY, Yu X, Sun JP. Adaptive Activation of a Stress Response Pathway Improves Learning and Memory Through Gs and β-Arrestin-1-Regulated Lactate Metabolism. Biol Psychiatry 2017; 81:654-670. [PMID: 27916196 PMCID: PMC6088385 DOI: 10.1016/j.biopsych.2016.09.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Stress is a conserved physiological response in mammals. Whereas moderate stress strengthens memory to improve reactions to previously experienced difficult situations, too much stress is harmful. METHODS We used specific β-adrenergic agonists, as well as β2-adrenergic receptor (β2AR) and arrestin knockout models, to study the effects of adaptive β2AR activation on cognitive function using Morris water maze and object recognition experiments. We used molecular and cell biological approaches to elucidate the signaling subnetworks. RESULTS We observed that the duration of the adaptive β2AR activation determines its consequences on learning and memory. Short-term formoterol treatment, for 3 to 5 days, improved cognitive function; however, prolonged β2AR activation, for more than 6 days, produced harmful effects. We identified the activation of several signaling networks downstream of β2AR, as well as an essential role for arrestin and lactate metabolism in promoting cognitive ability. Whereas Gs-protein kinase A-cyclic adenosine monophosphate response element binding protein signaling modulated monocarboxylate transporter 1 expression, β-arrestin-1 controlled expression levels of monocarboxylate transporter 4 and lactate dehydrogenase A through the formation of a β-arrestin-1/phospho-mitogen-activated protein kinase/hypoxia-inducible factor-1α ternary complex to upregulate lactate metabolism in astrocyte-derived U251 cells. Conversely, long-term treatment with formoterol led to the desensitization of β2ARs, which was responsible for its decreased beneficial effects. CONCLUSIONS Our results not only revealed that β-arrestin-1 regulated lactate metabolism to contribute to β2AR functions in improved memory formation, but also indicated that the appropriate management of one specific stress pathway, such as through the clinical drug formoterol, may exert beneficial effects on cognitive abilities.
Collapse
Affiliation(s)
- Jun-Hong Dong
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China
| | - Yi-Jing Wang
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China
| | - Min Cui
- Physiology, Shandong University School of Medicine, China
| | - Xiao-Jing Wang
- Cell Biology, Shandong University School of Medicine, China
| | | | - Ming-Liang Ma
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China
| | - Dong-Fang He
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China; Physiology, Shandong University School of Medicine, China
| | - Qiao-Xia Hu
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China
| | - Dao-Lai Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China; Physiology, Shandong University School of Medicine, China
| | - Shang-Lei Ning
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China; Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Chun-Hua Liu
- Physiology, Shandong University School of Medicine, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yue Wang
- Neurobiology, Shandong University School of Medicine, China
| | - Xiang-Yao Li
- Zhejiang University, Institute of Neuroscience, China
| | - Fan Yi
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China
| | - Amy Lin
- Duke University, School of Medicine, Durham, North Carolina
| | - Alem W. Kahsai
- Duke University, School of Medicine, Durham, North Carolina
| | | | - Zhe-Yu Chen
- Neurobiology, Shandong University School of Medicine, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China; Duke University, School of Medicine, Durham, North Carolina.
| |
Collapse
|
25
|
Liu CH, Gong Z, Liang ZL, Liu ZX, Yang F, Sun YJ, Ma ML, Wang YJ, Ji CR, Wang YH, Wang MJ, Cui FA, Lin A, Zheng WS, He DF, Qu CX, Xiao P, Liu CY, Thomsen ARB, Joseph Cahill T, Kahsai AW, Yi F, Xiao KH, Xue T, Zhou Z, Yu X, Sun JP. Arrestin-biased AT1R agonism induces acute catecholamine secretion through TRPC3 coupling. Nat Commun 2017; 8:14335. [PMID: 28181498 PMCID: PMC5309860 DOI: 10.1038/ncomms14335] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022] Open
Abstract
Acute hormone secretion triggered by G protein-coupled receptor (GPCR) activation underlies many fundamental physiological processes. GPCR signalling is negatively regulated by β-arrestins, adaptor molecules that also activate different intracellular signalling pathways. Here we reveal that TRV120027, a β-arrestin-1-biased agonist of the angiotensin II receptor type 1 (AT1R), stimulates acute catecholamine secretion through coupling with the transient receptor potential cation channel subfamily C 3 (TRPC3). We show that TRV120027 promotes the recruitment of TRPC3 or phosphoinositide-specific phospholipase C (PLCγ) to the AT1R-β-arrestin-1 signalling complex. Replacing the C-terminal region of β-arrestin-1 with its counterpart on β-arrestin-2 or using a specific TAT-P1 peptide to block the interaction between β-arrestin-1 and PLCγ abolishes TRV120027-induced TRPC3 activation. Taken together, our results show that the GPCR-arrestin complex initiates non-desensitized signalling at the plasma membrane by coupling with ion channels. This fast communication pathway might be a common mechanism of several cellular processes.
Collapse
Affiliation(s)
- Chun-Hua Liu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
- Department of Physiology, Taishan Medical University, Taian, Shandong 271000, China
| | - Zheng Gong
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Zong-Lai Liang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Zhi-Xin Liu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Fan Yang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Yu-Jing Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Ming-Liang Ma
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Yi-Jing Wang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Chao-Ran Ji
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Yu-Hong Wang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Mei-Jie Wang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Fu-Ai Cui
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Amy Lin
- Duke University, School of Medicine, Durham, North Carolina 27705, USA
| | - Wen-Shuai Zheng
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Dong-Fang He
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Chang-xiu Qu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Chuan-Yong Liu
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | | | | | - Alem W. Kahsai
- Duke University, School of Medicine, Durham, North Carolina 27705, USA
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Kun-Hong Xiao
- Duke University, School of Medicine, Durham, North Carolina 27705, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Tian Xue
- Hefei National Laboratory for Physical Science at Microscale, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhuan Zhou
- Laboratory of Cellular Biophysics and Neurodegeneration, Ying-Jie Conference Center, Peking University, Beijing 100871, China
| | - Xiao Yu
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| |
Collapse
|
26
|
Liu J, Li QX, Wang XJ, Zhang C, Duan YQ, Wang ZY, Zhang Y, Yu X, Li NJ, Sun JP, Yi F. β-Arrestins promote podocyte injury by inhibition of autophagy in diabetic nephropathy. Cell Death Dis 2016; 7:e2183. [PMID: 27054338 PMCID: PMC4855668 DOI: 10.1038/cddis.2016.89] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 11/16/2022]
Abstract
β-Arrestins are multifunctional proteins originally identified as negative adaptors of G protein-coupled receptors (GPCRs). Emerging evidence has also indicated that β-arrestins can activate signaling pathways independent of GPCR activation. This study was to elucidate the role of β-arrestins in diabetic nephropathy (DN) and hypothesized that β-arrestins contribute to diabetic renal injury by mediating podocyte autophagic process. We first found that both β-arrestin-1 and β-arrestin-2 were upregulated in the kidney from streptozotocin-induced diabetic mice, diabetic db/db mice and kidney biopsies from diabetic patients. We further revealed that either β-arrestin-1 or β-arrestin-2 deficiency (Arrb1−/− or Arrb2−/−) ameliorated renal injury in diabetic mice. In vitro, we observed that podocytes increased both β-arrestin-1 and β-arrestin-2 expression levels under hyperglycemia condition and further demonstrated that β-arrestin-1 and β-arrestin-2 shared common mechanisms to suppress podocyte autophagy by negative regulation of ATG12–ATG5 conjugation. Collectively, this study for the first time demonstrates that β-arrestin-1 and β-arrestin-2 mediate podocyte autophagic activity, indicating that β-arrestins are critical components of signal transduction pathways that link renal injury to reduce autophagy in DN. Modulation of these pathways may be an innovative therapeutic strategy for treating patients with DN.
Collapse
Affiliation(s)
- J Liu
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Q X Li
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - X J Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - C Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Y Q Duan
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Z Y Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Y Zhang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - X Yu
- Department of Physiology, Shandong University School of Medicine, Jinan 250012, China
| | - N J Li
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J P Sun
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China
| | - F Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China.,Institute of Nephrology, Shandong University, Jinan 250012, China
| |
Collapse
|
27
|
Discovery of novel FFA4 (GPR120) receptor agonists with β-arrestin2-biased characteristics. Future Med Chem 2015; 7:2429-37. [PMID: 26653412 DOI: 10.4155/fmc.15.160] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Free fatty acid 4 (FFA4) (GPR120) receptor functions as a receptor for unsaturated long-chain free fatty acids by regulating the secretion of glucagon-like peptide-1 and suppressing the inflammatory process, in which these two distinct biological functions are modulated by two signaling pathways, Gq and β-arrestin2, respectively. RESULTS By using pharmacophore modeling and virtual screening methods, several compounds are found with excellent activities for agonizing FFA4 receptor. It needs to be noted that among them, some molecules demonstrate appealing β-arrestin2-biased properties for the FFA4 receptor. CONCLUSION These compounds may serve as the useful toolkits for detecting differential biased mechanism and developing new candidate therapeutic agents of the FFA4 receptor.
Collapse
|
28
|
Ning SL, Zheng WS, Su J, Liang N, Li H, Zhang DL, Liu CH, Dong JH, Zhang ZK, Cui M, Hu QX, Chen CC, Liu CH, Wang C, Pang Q, Chen YX, Yu X, Sun JP. Different downstream signalling of CCK1 receptors regulates distinct functions of CCK in pancreatic beta cells. Br J Pharmacol 2015; 172:5050-67. [PMID: 26248680 DOI: 10.1111/bph.13271] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 07/18/2015] [Accepted: 07/26/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Cholecystokinin (CCK) is secreted by intestinal I cells and regulates important metabolic functions. In pancreatic islets, CCK controls beta cell functions primarily through CCK1 receptors, but the signalling pathways downstream of these receptors in pancreatic beta cells are not well defined. EXPERIMENTAL APPROACH Apoptosis in pancreatic beta cell apoptosis was evaluated using Hoechst-33342 staining, TUNEL assays and Annexin-V-FITC/PI staining. Insulin secretion and second messenger production were monitored using ELISAs. Protein and phospho-protein levels were determined by Western blotting. A glucose tolerance test was carried out to examine the functions of CCK-8s in streptozotocin-induced diabetic mice. KEY RESULTS The sulfated carboxy-terminal octapeptide CCK26-33 amide (CCK-8s) activated CCK1 receptors and induced accumulation of both IP3 and cAMP. Whereas Gq -PLC-IP3 signalling was required for the CCK-8s-induced insulin secretion under low-glucose conditions, Gs -PKA/Epac signalling contributed more strongly to the CCK-8s-mediated insulin secretion in high-glucose conditions. CCK-8s also promoted formation of the CCK1 receptor/β-arrestin-1 complex in pancreatic beta cells. Using β-arrestin-1 knockout mice, we demonstrated that β-arrestin-1 is a key mediator of both CCK-8s-mediated insulin secretion and of its the protective effect against apoptosis in pancreatic beta cells. The anti-apoptotic effects of β-arrestin-1 occurred through cytoplasmic late-phase ERK activation, which activates the 90-kDa ribosomal S6 kinase-phospho-Bcl-2-family protein pathway. CONCLUSIONS AND IMPLICATIONS Knowledge of different CCK1 receptor-activated downstream signalling pathways in the regulation of distinct functions of pancreatic beta cells could be used to identify biased CCK1 receptor ligands for the development of new anti-diabetic drugs.
Collapse
Affiliation(s)
- Shang-lei Ning
- Department of Biochemistry and Molecular Biology and Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, China.,Qilu Hospital, Shandong University, Jinan, Shandong, China.,Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Wen-shuai Zheng
- Shandong Provincial School Key laboratory for Protein Science of Chronic degenerative diseases, Jinan, Shandong, China.,Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Jing Su
- Shandong Provincial School Key laboratory for Protein Science of Chronic degenerative diseases, Jinan, Shandong, China.,Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Nan Liang
- Department of Biochemistry and Molecular Biology and Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, China.,Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Hui Li
- Shandong Provincial School Key laboratory for Protein Science of Chronic degenerative diseases, Jinan, Shandong, China.,Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Dao-lai Zhang
- Department of Biochemistry and Molecular Biology and Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic degenerative diseases, Jinan, Shandong, China
| | - Chun-hua Liu
- Shandong Provincial School Key laboratory for Protein Science of Chronic degenerative diseases, Jinan, Shandong, China.,Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Jun-hong Dong
- Department of Biochemistry and Molecular Biology and Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, China.,Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Zheng-kui Zhang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Min Cui
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qiao-Xia Hu
- Department of Biochemistry and Molecular Biology and Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, China.,Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Chao-chao Chen
- Shandong Provincial School Key laboratory for Protein Science of Chronic degenerative diseases, Jinan, Shandong, China.,Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Chang-hong Liu
- Shandong Provincial Qianfoshan, Shandong University, Jinan, Shandong, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Pang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yu-xin Chen
- Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiao Yu
- Department of Biochemistry and Molecular Biology and Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, China.,Qilu Hospital, Shandong University, Jinan, Shandong, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic degenerative diseases, Jinan, Shandong, China.,Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Jin-peng Sun
- Department of Biochemistry and Molecular Biology and Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, China.,Shandong Provincial School Key laboratory for Protein Science of Chronic degenerative diseases, Jinan, Shandong, China.,Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
29
|
Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR. Nat Commun 2015; 6:8202. [PMID: 26347956 PMCID: PMC4569848 DOI: 10.1038/ncomms9202] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/28/2015] [Indexed: 12/25/2022] Open
Abstract
Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many G-protein-coupled receptors (GPCRs). Here, using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy, we demonstrate that distinct receptor phospho-barcodes are translated to specific β-arrestin-1 conformations and direct selective signalling. With its phosphate-binding concave surface, β-arrestin-1 ‘reads' the message in the receptor phospho-C-tails and distinct phospho-interaction patterns are revealed by 19F-NMR. Whereas all functional phosphopeptides interact with a common phosphate binding site and induce the movements of finger and middle loops, different phospho-interaction patterns induce distinct structural states of β-arrestin-1 that are coupled to distinct arrestin functions. Only clathrin recognizes and stabilizes GRK2-specific β-arrestin-1 conformations. The identified receptor-phospho-selective mechanism for arrestin conformation and the spacing of the multiple phosphate-binding sites in the arrestin enable arrestin to recognize plethora phosphorylation states of numerous GPCRs, contributing to the functional diversity of receptors. G-protein-coupled receptors (GPCRs) signal via G proteins or arrestin-mediated pathways; the plasticity of arrestin proteins is thought to underlie their function. Here, the authors use NMR to examine how β-arrestin-1 recognizes different GPCR phospho-barcodes, and how this triggers structural rearrangements to fulfill selective functions.
Collapse
|
30
|
FFA4 receptor (GPR120): A hot target for the development of anti-diabetic therapies. Eur J Pharmacol 2015; 763:160-8. [DOI: 10.1016/j.ejphar.2015.06.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/14/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022]
|
31
|
Peschke E, Bähr I, Mühlbauer E. Experimental and clinical aspects of melatonin and clock genes in diabetes. J Pineal Res 2015; 59:1-23. [PMID: 25904189 DOI: 10.1111/jpi.12240] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022]
Abstract
The pineal hormone melatonin influences insulin secretion, as well as glucagon and somatostatin secretion, both in vivo and in vitro. These effects are mediated by two specific, high-affinity, seven transmembrane, pertussis toxin-sensitive, Gi-protein-coupled melatonin receptors, MT1 and MT2. Both isoforms are expressed in the β-cells, α-cells as well as δ-cells of the pancreatic islets of Langerhans and are involved in the modulation of insulin secretion, leading to inhibition of the adenylate cyclase-dependent cyclic adenosine monophosphate as well as cyclic guanosine monophosphate formation in pancreatic β-cells by inhibiting the soluble guanylate cyclase, probably via MT2 receptors. In this way, melatonin also likely inhibits insulin secretion, whereas using the inositol triphosphate pathway after previous blocking of Gi-proteins by pertussis toxin, melatonin increases insulin secretion. Desynchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genomewide association studies pinpointing variances of the MT2 receptor as a risk factor for this rapidly spreading metabolic disturbance. As melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. Observations of the circadian expression of clock genes (Clock, Bmal1, Per1,2,3, and Cry1,2) in pancreatic islets, as well as in INS1 rat insulinoma cells, may indicate that circadian rhythms are generated in the β-cells themselves. The circadian secretion of insulin from pancreatic islets is clock-driven. Disruption of circadian rhythms and clock function leads to metabolic disturbances, for example, type 2 diabetes. The study of melatonin-insulin interactions in diabetic rat models has revealed an inverse relationship between these two hormones. Both type 2 diabetic rats and patients exhibit decreased melatonin levels and slightly increased insulin levels, whereas type 1 diabetic rats show extremely reduced levels or the absence of insulin, but statistically significant increases in melatonin levels. Briefly, an increase in melatonin levels leads to a decrease in stimulated insulin secretion and vice versa. Melatonin levels in blood plasma, as well as the activity of the key enzyme of melatonin synthesis, AA-NAT (arylalkylamine-N-acetyltransferase) in pineal, are lower in type 2 diabetic rats compared to controls. In contrast, melatonin and pineal AA-NAT mRNA are increased and insulin receptor mRNA is decreased in type 1 diabetic rats, which also indicates a close relationship between insulin and melatonin. As an explanation, it was hypothesized that catecholamines, which reduce insulin levels and stimulate melatonin synthesis, control insulin-melatonin interactions. This conviction stems from the observation that catecholamines are increased in type 1 but are diminished in type 2 diabetes. In this context, another important line of inquiry involves the fact that melatonin protects β-cells against functional overcharge and, consequently, hinders the development of type 2 diabetes.
Collapse
Affiliation(s)
| | - Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
32
|
Zibolka J, Mühlbauer E, Peschke E. Melatonin influences somatostatin secretion from human pancreatic δ-cells via MT1 and MT2 receptors. J Pineal Res 2015; 58:198-209. [PMID: 25585597 DOI: 10.1111/jpi.12206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/09/2015] [Indexed: 12/20/2022]
Abstract
Melatonin is an effector of the diurnal clock on pancreatic islets. The membrane receptor-transmitted inhibitory influence of melatonin on insulin secretion is well established and contrasts with the reported stimulation of glucagon release from α-cells. Virtually, nothing is known concerning the melatonin-mediated effects on islet δ-cells. Analysis of a human pancreatic δ-cell model, the cell line QGP-1, and the use of a somatostatin-specific radioimmunoassay showed that melatonin primarily has an inhibitory effect on somatostatin secretion in the physiological concentration range. In the pharmacological range, melatonin elicited slightly increased somatostatin release from δ-cells. Cyclic adenosine monophosphate (cAMP) is the major second messenger dose-dependently stimulating somatostatin secretion, in experiments employing the membrane-permeable 8-Br-cAMP. 8-Br-cyclic guanosine monophosphate proved to be of only minor relevance to somatostatin release. As the inhibitory effect of 1 nm melatonin was reversed after incubation of QGP-1 cells with the nonselective melatonin receptor antagonist luzindole, but not with the MT2-selective antagonist 4-P-PDOT (4-phenyl-2-propionamidotetraline), an involvement of the MT1 receptor can be assumed. Somatostatin release from the δ-cells at low glucose concentrations was significantly inhibited during co-incubation with 1 nm melatonin, an effect which was less pronounced at higher glucose levels. Transient expression experiments, overexpressing MT1, MT2, or a deletion variant as a control, indicated that the MT1 and not the MT2 receptor was the major transmitter of the inhibitory melatonin effect. These data point to a significant influence of melatonin on pancreatic δ-cells and on somatostatin release.
Collapse
Affiliation(s)
- Juliane Zibolka
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
33
|
Wang XJ, Zhang DL, Xu ZG, Ma ML, Wang WB, Li LL, Han XL, Huo Y, Yu X, Sun JP. Understanding cadherin EGF LAG seven-pass G-type receptors. J Neurochem 2014; 131:699-711. [PMID: 25280249 DOI: 10.1111/jnc.12955] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/05/2014] [Accepted: 09/22/2014] [Indexed: 12/21/2022]
Abstract
The cadherin epidermal growth factor (EGF) laminin G (LAG) seven-pass G-type receptors (CELSRs) are a special subgroup of adhesion G protein-coupled receptors, which are pivotal regulators of many biologic processes such as neuronal/endocrine cell differentiation, vessel valve formation, and the control of planar cell polarity during embryonic development. All three members of the CELSR family (CELSR1-3) have large ecto-domains that form homophilic interactions and encompass more than 2000 amino acids. Mutations in the ecto-domain or other gene locations of CELSRs are associated with neural tube defects and other diseases in humans. Celsr knockout (KO) animals have many developmental defects. Therefore, specific agonists or antagonists of CELSR members may have therapeutic potential. Although significant progress has been made regarding the functions and biochemical properties of CELSRs, our knowledge of these receptors is still lacking, especially considering that they are broadly distributed but have few characterized functions in a limited number of tissues. The dynamic activation and inactivation of CELSRs and the presence of endogenous ligands beyond homophilic interactions remain elusive, as do the regulatory mechanisms and downstream signaling of these receptors. Given this motivation, future studies with more advanced cell biology or biochemical tools, such as conditional KO mice, may provide further insights into the mechanisms underlying CELSR function, laying the foundation for the design of new CELSR-targeted therapeutic reagents. The cadherin EGF LAG seven-pass G-type receptors (CELSRs) are a special subgroup of adhesion G protein-coupled receptors (GPCRs), which have large ecto-domains that form homophilic interactions and encompass more than 2000 amino acids. Recent studies have revealed that CELSRs are pivotal regulators of many biological processes, such as neuronal/endocrine cell differentiation, vessel valve formation and the control of planar cell polarity during embryonic development.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China; Department of Cell Biology, Shandong University School of Medicine, Jinan, Shandong, China; Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|