1
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
2
|
La Noce M, Nicoletti GF, Papaccio G, Del Vecchio V, Papaccio F. Insulitis in Human Type 1 Diabetic Pancreas: From Stem Cell Grafting to Islet Organoids for a Successful Cell-Based Therapy. Cells 2022; 11:3941. [PMID: 36497199 PMCID: PMC9740394 DOI: 10.3390/cells11233941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease with immune cells' islet infiltration (called "insulitis"), which leads to beta cell loss. Despite being the critical element of T1D occurrence and pathogenesis, insulitis is often present in a limited percentage of islets, also at diagnosis. Therefore, it is needed to define reproducible methods to detect insulitis and beta-cell decline, to allow accurate and early diagnosis and to monitor therapy. However, this goal is still far due to the morphological aspect of islet microvasculature, which is rather dense and rich, and is considerably rearranged during insulitis. More studies on microvasculature are required to understand if contrast-enhanced ultrasound sonography measurements of pancreatic blood-flow dynamics may provide a clinically deployable predictive marker to predict disease progression and therapeutic reversal in pre-symptomatic T1D patients. Therefore, it is needed to clarify the relation between insulitis and the dynamics of β cell loss and with coexisting mechanisms of dysfunction, according to clinical stage, as well as the micro vessels' dynamics and microvasculature reorganization. Moreover, the ideal cell-based therapy of T1D should start from an early diagnosis allowing a sufficient isolation of specific Procr+ progenitors, followed by the generation and expansion of islet organoids, which could be transplanted coupled to an immune-regulatory therapy which will permit the maintenance of pancreatic islets and an effective and long-lasting insulitis reversal.
Collapse
Affiliation(s)
- Marcella La Noce
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “L. Vanvitelli”, Via L. de Crecchio 6, 80138 Naples, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy
| | - Vitale Del Vecchio
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy
| | - Federica Papaccio
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
| |
Collapse
|
3
|
Angie T, Sofie I, Åsa M, Oskar S, Olle K. A decisive bridge between innate immunity and the pathognomonic morphological characteristics of type 1 diabetes demonstrated by instillation of heat-inactivated bacteria in the pancreatic duct of rats. Acta Diabetol 2022; 59:1011-1018. [PMID: 35461380 PMCID: PMC9242896 DOI: 10.1007/s00592-022-01881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/09/2022] [Indexed: 11/01/2022]
Abstract
AIMS Periductal inflammation and accumulation of granulocytes and monocytes in the periislet area and in the exocrine pancreas is observed within hours after instillation of heat-inactivated bacteria in the ductal compartment of the pancreas in healthy rats. The present investigation was undertaken to study how the acute inflammation developed over time. METHODS Immunohistochemical evaluation of the immune response triggered by instillation of heat-inactivated bacteria in the ductal compartment in rats. RESULTS After three weeks, the triggered inflammation had vanished and pancreases showed normal morphology. However, a distinct accumulation of both CD4+ and CD8+ T cells within and adjacent to affected islets was found in one-third of the rats instilled with heat-inactivated E. faecalis, mimicking the insulitis seen at onset of human T1D. As in T1D, this insulitis affected a minority of islets and only certain lobes of the pancreases. Notably, a fraction of the T cells expressed the CD103 antigen, mirroring the recently reported presence of tissue resident memory T cells in the insulitis in humans with recent onset T1D. CONCLUSIONS The results presented unravel a previously unknown interplay between innate and acquired immunity in the formation of immunopathological events indistinguishable from those described in humans with recent onset T1D.
Collapse
Affiliation(s)
- Tegehall Angie
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden.
| | - Ingvast Sofie
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Melhus Åsa
- Department of Medical Sciences, Section of Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Skog Oskar
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Korsgren Olle
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden.
| |
Collapse
|
4
|
Espes D, Carlsson PO, Selvaraju RK, Rosestedt M, Cheung P, Ahlström H, Korsgren O, Eriksson O. Longitudinal Assessment of 11C-5-Hydroxytryptophan Uptake in Pancreas After Debut of Type 1 Diabetes. Diabetes 2021; 70:966-975. [PMID: 33479059 DOI: 10.2337/db20-0776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022]
Abstract
The longitudinal alterations of the pancreatic β-cell and islet mass in the progression of type 1 diabetes (T1D) are still poorly understood. The objective of this study was to repeatedly assess the endocrine volume and the morphology of the pancreas for up to 24 months after T1D diagnosis (n = 16), by 11C-5-hydroxytryptophan (11C-5-HTP) positron emission tomography (PET) and MRI. Study participants were examined four times by PET/MRI: at recruitment and then after 6, 12, and 24 months. Clinical examinations and assessment of β-cell function by a mixed-meal tolerance test and fasting blood samples were performed in connection with the imaging examination. Pancreas volume has a tendency to decrease from 50.2 ± 10.3 mL at T1D debut to 42.2 ± 14.6 mL after 24 months (P < 0.098). Pancreas uptake of 11C-5-HTP (e.g., the volume of the endocrine pancreas) did not decrease from T1D diagnosis (0.23 ± 0.10 % of injected dose) to 24-month follow-up, 0.21 ± 0.14% of injected dose, and exhibited low interindividual changes. Pancreas perfusion was unchanged from diagnosis to 24-month follow-up. The pancreas uptake of 11C-5-HTP correlated with the long-term metabolic control as estimated by HbA1c (P < 0.05). Our findings argue against a major destruction of β-cell or islet mass in the 2-year period after diagnosis of T1D.
Collapse
Affiliation(s)
- Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ram Kumar Selvaraju
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Maria Rosestedt
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Pierre Cheung
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, Mölndal, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Kaur KD, Wong CK, Baggio LL, Beaudry JL, Fuchs S, Panaro BL, Matthews D, Cao X, Drucker DJ. TCF7 is not essential for glucose homeostasis in mice. Mol Metab 2021; 48:101213. [PMID: 33741532 PMCID: PMC8086146 DOI: 10.1016/j.molmet.2021.101213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/15/2022] Open
Abstract
Objective Glucose-dependent insulinotropic polypeptide (GIP) and Glucagon-like peptide-1 (GLP-1) are incretin hormones that exert overlapping yet distinct actions on islet β-cells. We recently observed that GIP, but not GLP-1, upregulated islet expression of Transcription Factor 7 (TCF7), a gene expressed in immune cells and associated with the risk of developing type 1 diabetes. TCF7 has also been associated with glucose homeostasis control in the liver. Herein we studied the relative metabolic importance of TCF7 expression in hepatocytes vs. islet β-cells in mice. Methods Tcf7 expression was selectively inactivated in adult mouse hepatocytes using adenoviral Cre expression and targeted in β-cells using two different lines of insulin promoter-Cre mice. Glucose homeostasis, plasma insulin and triglyceride responses, islet histology, hepatic and islet gene expression, and body weight gain were evaluated in mice fed regular chow or high fat diets. Tcf7 expression within pancreatic islets and immune cells was evaluated using published single cell RNA-seq (scRNA-seq) data, and in islet RNA from immunodeficient Rag2−/−Il2rg−/− mice. Results Reduction of hepatocyte Tcf7 expression did not impair glucose homeostasis, lipid tolerance or hepatic gene expression profiles linked to control of metabolic or immune pathways. Similarly, oral and intraperitoneal glucose tolerance, plasma insulin responses, islet histology, body weight gain, and insulin tolerance were not different in mice with targeted recombination of Tcf7 in insulin-positive β-cells. Surprisingly, islet Tcf7 mRNA transcripts were not reduced in total islet RNA containing endocrine and associated non-endocrine cell types from Tcf7βcell−/− mice, despite Cre-mediated recombination of islet genomic DNA. Furthermore, glucose tolerance was normal in whole body Tcf7−/− mice. Analysis of scRNA-seq datasets localized pancreatic Tcf7 expression to islet progenitors during development, and immune cells, but not within differentiated islet β-cells or endocrine lineages within mature islets. Moreover, the expression of Tcf7 was extremely low in islet RNA from Rag2−/−Il2rg−/− mice and, consistent with expression within immune cells, Tcf7 was highly correlated with levels of Cd3g mRNA transcripts in RNA from wild type mouse islets. Conclusions These findings demonstrate that Tcf7 expression is not a critical determinant of glucose homeostasis in mice. Moreover, the detection of Tcf7 expression within islet mRNA is attributable to the expression of Tcf7 RNA in islet-associated murine immune cells, and not in islet β-cells. •Reduction of hepatocyte Tcf7 does not impair glucose homeostasis. •Targeting beta cell Tcf7 using insulin-promoter-Cre does not reduce islet Tcf7 expression. •RNA-seq localizes pancreatic Tcf7 to islet progenitors and lymphocytes. •Tcf7 expression is markedly reduced in islet RNA from Rag2−/−Il2rg−/− mice.
Collapse
Affiliation(s)
- Kiran Deep Kaur
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, M5G1X5, Canada
| | - Chi Kin Wong
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, M5G1X5, Canada
| | - Laurie L Baggio
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, M5G1X5, Canada
| | - Jacqueline L Beaudry
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, M5G1X5, Canada
| | - Shai Fuchs
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, M5G1X5, Canada
| | - Brandon L Panaro
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, M5G1X5, Canada
| | - Dianne Matthews
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, M5G1X5, Canada
| | - Xiemin Cao
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, M5G1X5, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, M5G1X5, Canada.
| |
Collapse
|
6
|
Seiron P, Wiberg A, Kuric E, Krogvold L, Jahnsen FL, Dahl-Jørgensen K, Skog O, Korsgren O. Characterisation of the endocrine pancreas in type 1 diabetes: islet size is maintained but islet number is markedly reduced. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2019; 5:248-255. [PMID: 31493350 PMCID: PMC6817830 DOI: 10.1002/cjp2.140] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/09/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
Abstract
Insulin deficiency in type 1 diabetes (T1D) is generally considered a consequence of immune‐mediated specific beta‐cell loss. Since healthy pancreatic islets consist of ~65% beta cells, this would lead to reduced islet size, while the number of islets per pancreas volume (islet density) would not be affected. In this study, we compared the islet density, size, and size distribution in biopsies from subjects with recent‐onset or long‐standing T1D, with that in matched non‐diabetic subjects. The results presented show preserved islet size and islet size distribution, but a marked reduction in islet density in subjects with recent onset T1D compared with non‐diabetic subjects. No further reduction in islet density occurred with increased disease duration. Insulin‐negative islets in T1D subjects were dominated by glucagon‐positive cells that often had lost the alpha‐cell transcription factor ARX while instead expressing PDX1, normally only expressed in beta cells within the islets. Based on our findings, we propose that failure to establish a sufficient islet number to reach the beta‐cell mass needed to cope with episodes of increased insulin demand contributes to T1D susceptibility. Exhaustion induced by relative lack of beta cells could then potentially drive beta‐cell dedifferentiation to alpha‐cells, explaining the preserved islet size observed in T1D compared to controls.
Collapse
Affiliation(s)
- Peter Seiron
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anna Wiberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Enida Kuric
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Frode L Jahnsen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, Institute of Biomedicine, Gothenburg, Sweden
| |
Collapse
|
7
|
Reddy S, Krogvold L, Martin C, Holland R, Choi J, Woo H, Wu F, Dahl-Jørgensen K. Distribution of IL-1β immunoreactive cells in pancreatic biopsies from living volunteers with new-onset type 1 diabetes: comparison with donors without diabetes and with longer duration of disease. Diabetologia 2018; 61:1362-1373. [PMID: 29589071 DOI: 10.1007/s00125-018-4600-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/14/2018] [Indexed: 10/17/2022]
Abstract
AIMS/HYPOTHESIS Although IL-1β is considered a key mediator of beta cell destruction, its cellular expression in islets during early type 1 diabetes remains unclear. We compared its expression in rare pancreatic biopsies from new-onset living volunteers with its expression in cadaveric pancreas sections from non-diabetic autoantibody-positive and -negative individuals and those with long-standing disease. METHODS Pancreatic biopsy sections from six new-onset living volunteers (group 1) and cadaveric sections from 13 non-diabetic autoantibody-negative donors (group 2), four non-diabetic autoantibody-positive donors (group 3) and nine donors with diabetes of longer duration (0.25-12 years of disease; group 4) were triple-immunostained for IL-1β, insulin and glucagon. Intra- and peri-islet IL-1β-positive cells in insulin-positive and -negative islets and in random exocrine fields were enumerated. RESULTS The mean number of IL-1β-positive cells per islet from each donor in peri- and intra-islet regions was <1.25 and <0.5, respectively. In all study groups, the percentage of islets with IL-1β cells in peri- and/or intra-islet regions was highly variable and ranged from 4.48% to 17.59% in group 1, 1.42% to 44.26% in group 2, 7.93% to 17.53% in group 3 and 3.85% to 42.86% in group 4, except in a single case where the value was 75%. In 25/32 donors, a higher percentage of islets showed IL-1β-positive cells in peri-islet than in intra-islet regions. In sections from diabetic donors (groups 1 and 4), a higher mean number of IL-1β-positive cells occurred in insulin-positive islets than in insulin-negative islets. In group 2, 70-90% of islets in 3/13 sections had weak-to-moderate IL-1β staining in alpha cells but staining was virtually absent or substantially reduced in the remaining groups. The mean number of exocrine IL-1β-positive cells in group 1 was lower than in the other groups. CONCLUSIONS/INTERPRETATION At onset of type 1 diabetes, the low number of islet-associated IL-1β-positive cells may be insufficient to elicit beta cell destruction. The variable expression in alpha cells in groups 2-4 suggests their cellular heterogeneity and probable physiological role. The significance of a higher but variable number of exocrine IL-1β-positive cells seen in non-diabetic individuals and those with long-term type 1 diabetes remains unclear.
Collapse
Affiliation(s)
- Shiva Reddy
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Charlton Martin
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Rebecca Holland
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jaimin Choi
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Hannah Woo
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Fiona Wu
- Diabetes Unit, Auckland District Health Board, Auckland, New Zealand
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Skog O, Korsgren O. Aetiology of type 1 diabetes: Physiological growth in children affects disease progression. Diabetes Obes Metab 2018; 20:775-785. [PMID: 29083510 DOI: 10.1111/dom.13144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/06/2017] [Accepted: 10/25/2017] [Indexed: 12/16/2022]
Abstract
The prevailing view is that type 1 diabetes (T1D) develops as a consequence of a severe decline in β-cell mass resulting from T-cell-mediated autoimmunity; however, progression from islet autoantibody seroconversion to overt diabetes and finally to total loss of C-peptide production occurs in most affected individuals only slowly over many years or even decades. This slow disease progression should be viewed in relation to the total β-cell mass of only 0.2 to 1.5 g in adults without diabetes. Focal lesions of acute pancreatitis with accumulation of leukocytes, often located around the ducts, are frequently observed in people with recent-onset T1D, and most patients display extensive periductal fibrosis, the end stage of inflammation. An injurious inflammatory adverse event, occurring within the periductal area, may have negative implications for islet neogenesis, dependent on stem cells residing within or adjacent to the ductal epithelium. This could in part prevent the 30-fold increase in β-cell mass that would normally occur during the first 20 years of life. This increase occurs in order to maintain glucose metabolism during the physiological increases in insulin production that are required to balance the 20-fold increase in body weight during childhood and increased insulin resistance during puberty. Failure to expand β-cell mass during childhood would lead to clinically overt T1D and could help to explain the apparently more aggressive form of T1D occurring in growing children when compared with that observed in affected adults.
Collapse
Affiliation(s)
- Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Buchwald P, Tamayo-Garcia A, Ramamoorthy S, Garcia-Contreras M, Mendez AJ, Ricordi C. Comprehensive Metabolomics Study To Assess Longitudinal Biochemical Changes and Potential Early Biomarkers in Nonobese Diabetic Mice That Progress to Diabetes. J Proteome Res 2017; 16:3873-3890. [PMID: 28799767 DOI: 10.1021/acs.jproteome.7b00512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A global nontargeted longitudinal metabolomics study was carried out in male and female NOD mice to characterize the time-profile of the changes in the metabolic signature caused by onset of type 1 diabetes (T1D) and identify possible early biomarkers in T1D progressors. Metabolomics profiling of samples collected at five different time-points identified 676 and 706 biochemicals in blood and feces, respectively. Several metabolites were expressed at significantly different levels in progressors at all time-points, and their proportion increased strongly following onset of hyperglycemia. At the last time-point, when all progressors were diabetic, a large percentage of metabolites had significantly different levels: 57.8% in blood and 27.8% in feces. Metabolic pathways most strongly affected included the carbohydrate, lipid, branched-chain amino acid, and oxidative ones. Several biochemicals showed considerable (>4×) change. Maltose, 3-hydroxybutyric acid, and kojibiose increased, while 1,5-anhydroglucitol decreased more than 10-fold. At the earliest time-point (6-week), differences between the metabolic signatures of progressors and nonprogressors were relatively modest. Nevertheless, several compounds had significantly different levels and show promise as possible early T1D biomarkers. They include fatty acid phosphocholine derivatives from the phosphatidylcholine subpathway (elevated in both blood and feces) as well as serotonin, ribose, and arabinose (increased) in blood plus 13-HODE, tocopherol (increased), diaminopimelate, valerate, hydroxymethylpyrimidine, and dulcitol (decreased) in feces. A combined metabolic signature based on these compounds might serve as an early predictor of T1D-progressors.
Collapse
|
10
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that causes severe loss of pancreatic β cells. Autoreactive T cells are key mediators of β cell destruction. Studies of organ donors with T1D that have examined T cells in pancreas, the diabetogenic insulitis lesion, and lymphoid tissues have revealed a broad repertoire of target antigens and T cell receptor (TCR) usage, with initial evidence of public TCR sequences that are shared by individuals with T1D. Neoepitopes derived from post-translational modifications of native antigens are emerging as novel targets that are more likely to evade self-tolerance. Further studies will determine whether T cell responses to neoepitopes are major disease drivers that could impact prediction, prevention, and therapy. This Review provides an overview of recent progress in our knowledge of autoreactive T cells that has emerged from experimental and clinical research as well as pathology investigations.
Collapse
|
11
|
Lundberg M, Seiron P, Ingvast S, Korsgren O, Skog O. Re-addressing the 2013 consensus guidelines for the diagnosis of insulitis in human type 1 diabetes: is change necessary? Reply to Campbell-Thompson ML, Atkinson MA, Butler AE et al [letter]. Diabetologia 2017; 60:756-757. [PMID: 28111711 DOI: 10.1007/s00125-017-4212-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/06/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Marcus Lundberg
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory C11, Clinical Immunology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden.
| | - Peter Seiron
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory C11, Clinical Immunology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Sofie Ingvast
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory C11, Clinical Immunology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory C11, Clinical Immunology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory C11, Clinical Immunology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| |
Collapse
|
12
|
An immunohistochemical study of nitrotyrosine expression in pancreatic islets of cases with increasing duration of type 1 diabetes and without diabetes. Histochem Cell Biol 2017; 147:605-623. [PMID: 28154952 DOI: 10.1007/s00418-016-1533-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2016] [Indexed: 12/16/2022]
Abstract
Peroxynitrite-induced nitration of cellular proteins has been shown to associate with various human pathologies. The expression of pancreatic nitrotyrosine and its cellular source relative to insulitis were analysed in cases with increasing duration of type 1 diabetes and compared with non-diabetic autoantibody-negative and -positive cases. Pancreatic tail sections from non-diabetic autoantibody-negative cases (Group 1; n = 7), non-diabetic autoantibody-positive cases (Group 2; n = 6), recently diagnosed cases (Group 3; n = 6), 0.25-5 years of diabetes (Group 4; n = 8) and 7-12 years of diabetes (Group 5; n = 6) were immunostained sequentially for nitrotyrosine, insulin and leucocytes. Nitrotyrosine expression was observed in selective beta cells only. In group 1, the percentage of insulin-positive islets with nitrotyrosine ranged from 7.6 to 58.8%. In group 2, it was minimally expressed in 2 cases and was present in 4.7-19.3% of insulin-positive islets in 3 cases and in all islets in 1 case. In group 3, it was absent in 1 case and in the remaining 5 cases, the values were 17.4-85.7%. In group 4, nitrotyrosine was absent in 6 cases and positive in 1.8 and 22.2% of insulin-positive islets in 2 cases. In group 5, the values were 60% (1 case) and 100% (2 cases), being absent in 3 cases, consistent with insulin-negativity. This case analysis shows that nitrotyrosine immunostaining is independent of the presence and severity of insulitis. Variable nitrotyrosine expression is present in some non-diabetic cases. Its increased expression in beta cells of recent-onset and long-standing disease requires further studies to determine whether beta cell nitration plays a pathogenic role during T1D.
Collapse
|
13
|
Lundberg M, Seiron P, Ingvast S, Korsgren O, Skog O. Insulitis in human diabetes: a histological evaluation of donor pancreases. Diabetologia 2017; 60:346-353. [PMID: 27796420 PMCID: PMC6518093 DOI: 10.1007/s00125-016-4140-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/27/2016] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS According to the consensus criteria developed for type 1 diabetes, an individual can be diagnosed with insulitis when ≥ 15 CD45+ cells are found within the parenchyma or in the islet-exocrine interface in ≥ 3 islets. The aim of this study was to determine the frequency of individuals with type 2 diabetes fulfilling these criteria with reference to non-diabetic and type 1 diabetic individuals. METHODS Insulitis was determined by examining CD45+ cells in the pancreases of 50, 13 and 44 organ donors with type 2 diabetes, type 1 diabetes and no diabetes, respectively. CD3+ cells (T cells) infiltrating the islets were evaluated in insulitic donors. In insulitic donors with type 2 diabetes, the pancreases were characterised according to the presence of CD68 (macrophages), myeloperoxidase (MPO; neutrophils), CD3, CD20 (B cells) and HLA class I hyperstained islets. In all type 2 diabetic donors, potential correlations of insulitis with dynamic glucose-stimulated insulin secretion in vitro or age, BMI, HbA1c or autoantibody positivity were examined. RESULTS Overall, 28% of the type 2 diabetic donors fulfilled the consensus criteria for insulitis developed for type 1 diabetes. Of the type 1 diabetic donors, 31% fulfilled the criteria. None of the non-diabetic donors met the criteria. Only type 1 diabetic donors had ≥ 15 CD3+ cells in ≥ 3 islets. Type 2 diabetic donors with insulitis also had a substantial number of CD45+ cells in the exocrine parenchyma. Macrophages constituted the largest fraction of CD45+ cells, followed by neutrophils and T cells. Of type 2 diabetic pancreases with insulitis, 36% contained islets that hyperstained for HLA class I. Isolated islets from type 2 diabetic donors secreted less insulin than controls, although with preserved dynamics. Insulitis in the type 2 diabetic donors did not correlate with glucose-stimulated insulin secretion, the presence of autoantibodies, BMI or HbA1c. CONCLUSIONS/INTERPRETATION The current definition of insulitis cannot be used to distinguish pancreases retrieved from individuals with type 1 diabetes from those with type 2 diabetes. On the basis of our findings, we propose a revised definition of insulitis, with a positive diagnosis when ≥ 15 CD3+ cells, not CD45+ cells, are found in ≥ 3 islets.
Collapse
Affiliation(s)
- Marcus Lundberg
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory C11, Clinical Immunology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden.
| | - Peter Seiron
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory C11, Clinical Immunology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Sofie Ingvast
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory C11, Clinical Immunology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory C11, Clinical Immunology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory C11, Clinical Immunology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| |
Collapse
|
14
|
Radenkovic M, Uvebrant K, Skog O, Sarmiento L, Avartsson J, Storm P, Vickman P, Bertilsson PA, Fex M, Korgsgren O, Cilio CM. Characterization of resident lymphocytes in human pancreatic islets. Clin Exp Immunol 2016; 187:418-427. [PMID: 27783386 DOI: 10.1111/cei.12892] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 12/25/2022] Open
Abstract
The current view of type 1 diabetes (T1D) is that it is an immune-mediated disease where lymphocytes infiltrate the pancreatic islets, promote killing of beta cells and cause overt diabetes. Although tissue resident immune cells have been demonstrated in several organs, the composition of lymphocytes in human healthy pancreatic islets have been scarcely studied. Here we aimed to investigate the phenotype of immune cells associated with human islets of non-diabetic organ donors. A flow cytometry analysis of isolated islets from perfused pancreases (n = 38) was employed to identify alpha, beta, T, natural killer (NK) and B cells. Moreover, the expression of insulin and glucagon transcripts was evaluated by RNA sequencing. Up to 80% of the lymphocytes were CD3+ T cells with a remarkable bias towards CD8+ cells. Central memory and effector memory phenotypes dominated within the CD8+ and CD4+ T cells and most CD8+ T cells were positive for CD69 and up to 50-70% for CD103, both markers of resident memory cells. The frequency of B and NK cells was low in most islet preparations (12 and 3% of CD45+ cells, respectively), and the frequency of alpha and beta cells varied between donors and correlated clearly with insulin and glucagon mRNA expression. In conclusion, we demonstrated the predominance of canonical tissue resident memory CD8+ T cells associated with human islets. We believe that these results are important to understand more clearly the immunobiology of human islets and the disease-related phenotypes observed in diabetes.
Collapse
Affiliation(s)
- M Radenkovic
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - K Uvebrant
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - O Skog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University Hospital, Uppsala, Sweden
| | - L Sarmiento
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - J Avartsson
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - P Storm
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - P Vickman
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - P-A Bertilsson
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - M Fex
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - O Korgsgren
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University Hospital, Uppsala, Sweden
| | - C M Cilio
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| |
Collapse
|
15
|
Lundberg M, Krogvold L, Kuric E, Dahl-Jørgensen K, Skog O. Expression of Interferon-Stimulated Genes in Insulitic Pancreatic Islets of Patients Recently Diagnosed With Type 1 Diabetes. Diabetes 2016; 65:3104-10. [PMID: 27422384 DOI: 10.2337/db16-0616] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/08/2016] [Indexed: 11/13/2022]
Abstract
A primary insult to the pancreatic islets of Langerhans, leading to the activation of innate immunity, has been suggested as an important step in the inflammatory process in type 1 diabetes (T1D). The aim of this study was to examine whether interferon (IFN)-stimulated genes (ISGs) are overexpressed in human T1D islets affected with insulitis. By using laser capture microdissection and a quantitative PCR array, 23 of 84 examined ISGs were found to be overexpressed by at least fivefold in insulitic islets from living patients with recent-onset T1D, participating in the Diabetes Virus Detection (DiViD) study, compared with islets from organ donors without diabetes. Most of the overexpressed ISGs, including GBP1, TLR3, OAS1, EIF2AK2, HLA-E, IFI6, and STAT1, showed higher expression in the islet core compared with the peri-islet area containing the surrounding immune cells. In contrast, the T-cell attractant chemokine CXCL10 showed an almost 10-fold higher expression in the peri-islet area than in the islet, possibly partly explaining the localization of T cells mainly to this region. In conclusion, insulitic islets from recent-onset T1D subjects show overexpression of ISGs, with an expression pattern similar to that seen in islets infected with virus or exposed to IFN-γ/interleukin-1β or IFN-α.
Collapse
Affiliation(s)
- Marcus Lundberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Enida Kuric
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Pugliese A. Insulitis in the pathogenesis of type 1 diabetes. Pediatr Diabetes 2016; 17 Suppl 22:31-6. [PMID: 27411434 PMCID: PMC4948864 DOI: 10.1111/pedi.12388] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease in which autoreactive T-cells and inflammation cause severe loss of pancreatic beta cells. Insulitis, the pathologic hallmark of T1D, is an inflammatory lesion consisting of immune cell infiltrates around and within the islets. New research initiatives and methodologies are advancing our understanding of pancreas pathology. Studies have revealed the predominant cellular types that infiltrate the islets, novel molecular aspects associated with insulitis, and the coexistence of additional pathological abnormalities. While insulitis is a critical element of T1D pathology and pathogenesis, it is typically present only in a modest proportion of islets at any given time, even at diagnosis, with overall limited relation to disease duration. Thus, the relative importance of insulitis as a determining factor of diabetes symptoms at disease onset appears to have been overestimated; growing evidence also shows that beta cell loss at diagnosis is more modest than previously thought. Thus, the sole targeting of the immune system may not afford full therapeutic efficacy if dysfunction affects beta cells that are not under immune attack and this is a key contributor to symptoms. Combination therapies that promote both immunoregulation and address beta cell dysfunction should be more effective in treating this chronic disease process. It remains a major goal to clarify the relation of insulitis with the dynamics of beta cell loss and coexisting mechanisms of dysfunction, according to clinical stage; such improved understanding is key to design therapeutic strategies that target multiple pathogenic mechanisms.
Collapse
Affiliation(s)
- Alberto Pugliese
- Diabetes Research InstituteUniversity of Miami Miller School of MedicineMiamiFLUSA
| |
Collapse
|
17
|
Krogvold L, Wiberg A, Edwin B, Buanes T, Jahnsen FL, Hanssen KF, Larsson E, Korsgren O, Skog O, Dahl-Jørgensen K. Insulitis and characterisation of infiltrating T cells in surgical pancreatic tail resections from patients at onset of type 1 diabetes. Diabetologia 2016; 59:492-501. [PMID: 26602422 DOI: 10.1007/s00125-015-3820-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/03/2015] [Indexed: 02/05/2023]
Abstract
AIMS/HYPOTHESIS It is thought that T cells play a major role in the immune-mediated destruction of beta cells in type 1 diabetes, causing inflammation of the islets of Langerhans (insulitis). The significance of insulitis at the onset of type 1 diabetes is debated, and the role of the T cells poorly understood. METHODS In the Diabetes Virus Detection (DiViD) study, pancreatic tissue from six living patients with recent-onset type 1 diabetes was collected. The insulitis was characterised quantitatively by counting CD3(+) T cells, and qualitatively by transcriptome analysis targeting 84 T and B lymphocyte genes of laser-captured microdissected islets. The findings were compared with gene expression in T cells collected from kidney biopsies from allografts with ongoing cellular rejection. Cytokine and chemokine release from isolated islets was characterised and compared with that from islets from non-diabetic organ donors. RESULTS All six patients fulfilled the criteria for insulitis (5-58% of the insulin-containing islets in the six patients had ≥ 15 T cells/islet). Of all the islets, 36% contained insulin, with several resembling completely normal islets. The majority (61-83%) of T cells were found as peri-insulitis rather than within the islet parenchyma. The expression pattern of T cell genes was found to be markedly different in islets compared with the rejected kidneys. The islet-infiltrating T cells showed only background levels of cytokine/chemokine release in vitro. CONCLUSIONS/INTERPRETATION Insulitis and a significant reserve reservoir for insulin production were present in all six cases of recent-onset type 1 diabetes. Furthermore, the expression patterns and levels of cytokines argue for a different role of the T cells in type 1 diabetes when compared with allograft rejection.
Collapse
Affiliation(s)
- Lars Krogvold
- Paediatric Department, Oslo University Hospital HF, PO Box 4950, Nydalen, N-0424, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Anna Wiberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bjørn Edwin
- Faculty of Medicine, University of Oslo, Oslo, Norway
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Trond Buanes
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Surgery, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Frode Lars Jahnsen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Kristian F Hanssen
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Erik Larsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Knut Dahl-Jørgensen
- Paediatric Department, Oslo University Hospital HF, PO Box 4950, Nydalen, N-0424, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Martino L, Masini M, Bugliani M, Marselli L, Suleiman M, Boggi U, Nogueira TC, Filipponi F, Occhipinti M, Campani D, Dotta F, Syed F, Eizirik DL, Marchetti P, De Tata V. Mast cells infiltrate pancreatic islets in human type 1 diabetes. Diabetologia 2015; 58:2554-62. [PMID: 26276263 DOI: 10.1007/s00125-015-3734-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Beta cell destruction in human type 1 diabetes occurs through the interplay of genetic and environmental factors, and is mediated by immune cell infiltration of pancreatic islets. In this study, we explored the role of mast cells as an additional agent in the pathogenesis of type 1 diabetes insulitis. METHODS Pancreatic tissue from donors without diabetes and with type 1 and 2 diabetes was studied using different microscopy techniques to identify islet-infiltrating cells. The direct effects of histamine exposure on isolated human islets and INS-1E cells were assessed using cell-survival studies and molecular mechanisms. RESULTS A larger number of mast cells were found to infiltrate pancreatic islets in samples from donors with type 1 diabetes, compared with those from donors without diabetes or with type 2 diabetes. Evidence of mast cell degranulation was observed, and the extent of the infiltration correlated with beta cell damage. Histamine, an amine that is found at high levels in mast cells, directly contributed to beta cell death in isolated human islets and INS-1E cells via a caspase-independent pathway. CONCLUSIONS/INTERPRETATION These findings suggest that mast cells might be responsible, at least in part, for immune-mediated beta cell alterations in human type 1 diabetes. If this is the case, inhibition of mast cell activation and degranulation might act to protect beta cells in individuals with type 1 diabetes.
Collapse
Affiliation(s)
- Luisa Martino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Matilde Masini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ugo Boggi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Tatiane C Nogueira
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Franco Filipponi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | | | - Daniela Campani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Francesco Dotta
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Farooq Syed
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vincenzo De Tata
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|
19
|
Heinonen MT, Moulder R, Lahesmaa R. New Insights and Biomarkers for Type 1 Diabetes: Review for Scandinavian Journal of Immunology. Scand J Immunol 2015; 82:244-53. [DOI: 10.1111/sji.12338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- M. T. Heinonen
- Turku Centre for Biotechnology; University of Turku; Åbo Akademi University; Turku Finland
| | - R. Moulder
- Turku Centre for Biotechnology; University of Turku; Åbo Akademi University; Turku Finland
| | - R. Lahesmaa
- Turku Centre for Biotechnology; University of Turku; Åbo Akademi University; Turku Finland
| |
Collapse
|
20
|
Campbell-Thompson M. Organ donor specimens: What can they tell us about type 1 diabetes? Pediatr Diabetes 2015; 16:320-30. [PMID: 25998576 PMCID: PMC4718555 DOI: 10.1111/pedi.12286] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/04/2015] [Accepted: 05/01/2015] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic disease resulting from the destruction of pancreatic beta cells, due to a poorly understood combination of genetic, environmental, and immune factors. The JDRF Network for Pancreatic Organ donors with Diabetes (nPOD) program recovers transplantation quality pancreas from organ donors throughout the USA. In addition to recovery of donors with T1D, non-diabetic donors include those with islet autoantibodies. Donors with type 2 diabetes and other conditions are also recovered to aid investigations directed at the full spectrum of pathophysiological mechanisms affecting beta cells. One central processing laboratory conducts standardized procedures for sample processing, storage, and distribution, intended for current and future cutting edge investigations. Baseline histology characterizations are performed on the pancreatic samples, with images of the staining results provided though whole-slide digital scans. Uniquely, these high-grade biospecimens are provided without expense to investigators, working worldwide, seeking methods for disease prevention and reversal strategies. Collaborative working groups are highly encouraged, bringing together multiple investigators with different expertise to foster collaborations in several areas of critical need. This mini-review will provide some key histopathological findings emanating from the nPOD collection, including the heterogeneity of beta cell loss and islet inflammation (insulitis), beta cell mass, insulin-producing beta cells in chronic T1D, and pancreas weight reductions at disease onset. Analysis of variations in histopathology observed from these organ donors could provide for mechanistic differences related to etiological agents and serve an important function in terms of identifying the heterogeneity of T1D.
Collapse
Affiliation(s)
- Martha Campbell-Thompson
- The Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, College of Medicine, Gainesville, FL, USA
| |
Collapse
|
21
|
Reddy S, Zeng N, Al-Diery H, Jung D, Yeu C, Joret MO, Merrilees MJ, Wu F. Analysis of peri-islet CD45-positive leucocytic infiltrates in long-standing type 1 diabetic patients: additional data regarding cause of death. Diabetologia 2015; 58:1959. [PMID: 26026654 DOI: 10.1007/s00125-015-3649-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 11/24/2022]
Affiliation(s)
- Shiva Reddy
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand,
| | | | | | | | | | | | | | | |
Collapse
|