1
|
Li L, Yang X, Ren JS, Huang MZ, Zhao QW. Immunosuppressive agents in diabetes treatment: Hope or despair? World J Diabetes 2025; 16:100590. [DOI: 10.4239/wjd.v16.i5.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/19/2025] [Accepted: 03/05/2025] [Indexed: 04/25/2025] Open
Abstract
Exploration of immunosuppressive agents for the treatment of diabetes is a burgeoning field that has captured the attention of the medical community. The innovative approach of using these agents to combat diabetes is driven by their diverse capabilities to regulate the immune system, which is pivotal for disease pathogenesis. The primary objective is to enhance the management of blood glucose levels, which is a critical factor in the daily life of diabetic patients. This comprehensive review delves into the therapeutic horizons opened by immunosuppressive agents, particularly their potential impact on type 1 and type 2 diabetes mellitus, and their utility in the transplantation process. The complex etiology of diabetes, which involves a delicate interplay of genetic, environmental, and immunological factors, presents a multifaceted target landscape for these therapies. The agents discussed in the review, including CD3 inhibitors, cytotoxic T-lymphocyte-associated protein 4-immunoglobulin G, Janus kinase inhibitors, anti-thymocyte globulin, tumor necrosis factor-α inhibitors, CD20 inhibitors, alefacept, and alemtuzumab, each bring a unique mechanism to the table, offering a tailored approach to immune modulation. As research progresses, emphasis is being placed on evaluating the long-term efficacy and safety of these agents to pave the way for more personalized and effective diabetes management strategies.
Collapse
Affiliation(s)
- Lu Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xi Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jin-Shuai Ren
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ming-Zhu Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qing-Wei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
2
|
Mittal R, McKenna K, Lemos JRN, Juneja S, Mittal M, Hirani K. Therapeutic potential of anti-thymocyte globulin in type 1 diabetes: A systematic review. PLoS One 2025; 20:e0323642. [PMID: 40359439 PMCID: PMC12074605 DOI: 10.1371/journal.pone.0323642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/13/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune condition characterized by the destruction of insulin-producing beta cells in the pancreas. Anti-Thymocyte Globulin (ATG) has emerged as a promising immunomodulatory therapy aimed at preserving beta-cell function and altering the disease course. This systematic review synthesizes current evidence from the clinical trials evaluating the efficacy and safety of low-dose ATG in individuals with T1D. METHODS We conducted a comprehensive literature search of electronic databases, including PubMed (MEDLINE), Science Direct, Scopus, EMBASE, and ClinicalTrials.gov, to identify studies investigating ATG in T1D in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. The Joanna Briggs Institute (JBI) Critical Appraisal Tools for randomized clinical trials and case-control studies were used to assess the quality and evaluate the risk of bias in the eligible studies. RESULTS The primary outcomes assessed were preservation of C-peptide levels, glycemic control, and adverse events. Results indicated that ATG showed potential in preserving beta-cell function and improving clinical outcomes in recent-onset T1D. However, the incidence of adverse events, such as cytokine release syndrome and lymphopenia, necessitated careful monitoring and management. CONCLUSION Low-dose ATG presents a promising therapeutic approach for modifying the progression of T1D. While early-phase trials demonstrate potential benefits in preserving beta-cell function, further large-scale, long-term studies are essential to establish optimal dosing regimens, long-term efficacy, and safety profiles. This review highlights the importance of continued research to fully elucidate the role of ATG in T1D management.
Collapse
Affiliation(s)
- Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Keelin McKenna
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Joana R. N. Lemos
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Shreya Juneja
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mannat Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
3
|
Foster TP, Bruggeman BS, Haller MJ. Emerging Immunotherapies for Disease Modification of Type 1 Diabetes. Drugs 2025; 85:457-473. [PMID: 39873914 PMCID: PMC11949705 DOI: 10.1007/s40265-025-02150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by the progressive, autoimmune-mediated destruction of β cells. As such, restoring immunoregulation early in the disease course is sought to retain endogenous insulin production. Nevertheless, in the more than 100 years since the discovery of insulin, treatment of T1DM has focused primarily on hormone replacement and glucose monitoring. That said, immunotherapies are widely used to interdict autoimmune and autoinflammatory diseases and are emerging as potential therapeutics seeking the preservation of β-cell function among those with T1DM. In the past 4 decades of diabetes research, several immunomodulatory therapies have been explored, culminating with the US Food and Drug Administration approval of teplizumab to delay stage 3 (clinical) onset of T1DM. Clinical trials seeking to prevent or reverse T1DM by repurposing immunotherapies approved for other autoimmune conditions and by exploring new therapeutics are ongoing. Collectively, these efforts have the potential to transform the future of diabetes care. We encapsulate the past 40 years of immunotherapy trials, take stock of our successes and failures, and chart paths forward in this new age of clinically available immune therapies for T1DM.
Collapse
Affiliation(s)
- Timothy P Foster
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA.
| | - Brittany S Bruggeman
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA
| | - Michael J Haller
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
den Hollander NHM, Jansen DTSL, Roep BO. Batch-to-Batch Variation and Patient Heterogeneity in Thymoglobulin Binding and Specificity: One Size Does Not Fit All. J Clin Med 2025; 14:422. [PMID: 39860427 PMCID: PMC11765605 DOI: 10.3390/jcm14020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Thymoglobulin is used to prevent allograft rejection and is being explored at low doses as intervention immunotherapy in type 1 diabetes. Thymoglobulin consists of a diverse pool of rabbit antibodies directed against many different targets on human thymocytes that can also be expressed by other leukocytes. Since Thymoglobulin is generated by injecting rabbits with human thymocytes, this conceivably leads to differences between Thymoglobulin batches. Methods: We compared different batches for antibody composition and variation between individuals in binding to PBMC and T cell subsets, and induction of cytokines. Four different batches of Thymoglobulin were directly conjugated with Alexa-Fluor 647. Blood was collected from five healthy donors, and PBMCs were isolated and stained with Thymoglobulin followed or preceded by a panel of fluorescent antibodies to identify PBMC and T cell subsets. In addition, whole blood was incubated with unlabeled Thymoglobulin to measure cytokine induction. Results: Cluster analysis of flow cytometry data shows that Thymoglobulin bound to all PBMC subpopulations including regulatory T cells. However, Thymoglobulin binding was highly variable between donors and to a lesser extent between batches. Cytokines related to cytokine release syndrome were highly, but variably, increased by all Thymoglobulin batches, with strong differences between donors and moderate differences between batches. Discussion: The variation in Thymoglobulin binding and action between donors regarding PBMC recognition and cytokine response may underlie the different clinical responses to Thymoglobulin therapy and require personalized dose adjustment to maximize efficacy and minimize adverse side effects.
Collapse
Affiliation(s)
| | | | - Bart O. Roep
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.H.M.d.H.); (D.T.S.L.J.)
| |
Collapse
|
5
|
Casas R, Tompa A, Åkesson K, Teixeira PF, Lindqvist A, Ludvigsson J. Redosing with Intralymphatic GAD-Alum in the Treatment of Type 1 Diabetes: The DIAGNODE-B Pilot Trial. Int J Mol Sci 2025; 26:374. [PMID: 39796229 PMCID: PMC11720063 DOI: 10.3390/ijms26010374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Immunotherapies aimed at preserving residual beta cell function in type 1 diabetes have been successful, although the effect has been limited, or raised safety concerns. Transient effects often observed may necessitate redosing to prolong the effect, although this is not always feasible or safe. Treatment with intralymphatic GAD-alum has been shown to be tolerable and safe in persons with type 1 diabetes and has shown significant efficacy to preserve C-peptide with associated clinical benefit in individuals with the human leukocyte antigen DR3DQ2 haplotype. To further explore the feasibility and advantages of redosing with intralymphatic GAD-alum, six participants who had previously received active treatment with intralymphatic GAD-alum and carried HLA DR3-DQ2 received one additional intralymphatic dose of 4 μg GAD-alum in the pilot trial DIAGNODE-B. The participants also received 2000 U/day vitamin D (Calciferol) supplementation for two months, starting one month prior to the GAD-alum injection. During the 12-month follow-up, residual beta cell function was estimated with Mixed-Meal Tolerance Tests, and clinical and immune responses were observed. C-peptide decreased minimally, and most patients showed stable HbA1c and IDAA1c. The mean % TIR increased while the mean daily insulin dose decreased at month 12 compared to the baseline. Redosing with GAD-alum seems to be safe and tolerable, and may prolong the disease modification elicited by the original GAD-alum treatment.
Collapse
Affiliation(s)
- Rosaura Casas
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, 581 83 Linköping, Sweden;
| | - Andrea Tompa
- Department of Clinical Diagnostics, School of Health and Welfare, Jönköping University, 551 11 Jönköping, Sweden;
- Division of Medical Diagnostics, Department of Laboratory Medicine, Ryhov County Hospital, 551 85 Jönköping, Sweden
| | - Karin Åkesson
- Department of Pediatrics, Ryhov County Hospital, 551 85 Jönköping, Sweden;
| | | | - Anton Lindqvist
- Diamyd Medical AB, 111 56 Stockholm, Sweden; (P.F.T.); (A.L.)
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, 581 83 Linköping, Sweden;
- Crown Princess Victoria Children’s Hospital, Linköping University, 581 85 Linköping, Sweden
| |
Collapse
|
6
|
Higdon LE, Cooney LA, Serti E, Suwannasaen D, Muir VS, Wiedeman AE, Harris KM, Pardo J, Anderson MS, Speake C, Nepom GT, Linsley PS, Sanda S, Long SA. Early expansion of TIGIT+PD1+ effector memory CD4 T cells via agonistic effect of alefacept in new-onset type 1 diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:12-22. [PMID: 40073269 PMCID: PMC11844141 DOI: 10.1093/jimmun/vkae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/28/2024] [Indexed: 03/14/2025]
Abstract
The CD2-depleting drug alefacept (LFA3-Ig) preserved beta cell function in new-onset type 1 diabetes (T1D) patients. The most promising biomarkers of response were late expansion of exhausted CD8 T cells and rare baseline inflammatory islet-reactive CD4 T cells, neither of which can be used to measure responses to drug in the weeks after treatment. Thus, we investigated whether early changes in T cell immunophenotypes could serve as biomarkers of drug activity. We characterized T cell responses by flow cytometry and identified an exhausted-like population of CD2low CD4 effector memory T cells coexpressing TIGIT and PD1 that expanded by 11 wk after the start of treatment. This population was not entirely spared from alefacept-mediated depletion in vivo or in vitro but recovered through homeostatic proliferation of CD2low cells in vivo. Proliferation of TIGIT+PD1+ effector memory CD4 T cells increased with treatment, with a concomitant reduction of proinflammatory cytokine production. The persistent increase of TIGIT+PD1+ effector memory CD4 T cells was specific to alefacept treatment; 2 other T cell depleting therapies, teplizumab and anti-thymocyte globulin, induced only a transient increase in this CD4 population. Our data suggest that the expanding TIGIT+PD1+ effector memory CD4 T cell population represents a promising biomarker of early treatment effects of alefacept. The nondepleting effects on proliferation and cytokine production also suggest agonistic activity by this CD2 targeted therapy.
Collapse
Affiliation(s)
- Lauren E Higdon
- Biomarker and Discovery Research, Immune Tolerance Network, San Francisco, CA, United States
| | - Laura A Cooney
- Biomarker and Discovery Research, Immune Tolerance Network, San Francisco, CA, United States
| | - Elisavet Serti
- Biomarker and Discovery Research, Immune Tolerance Network, San Francisco, CA, United States
| | - Duangchan Suwannasaen
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, United States
| | - Virginia S Muir
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, United States
| | - Alice E Wiedeman
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, United States
| | - Kristina M Harris
- Biomarker and Discovery Research, Immune Tolerance Network, San Francisco, CA, United States
| | - Jorge Pardo
- Biomarker and Discovery Research, Immune Tolerance Network, San Francisco, CA, United States
| | - Mark S Anderson
- Biomarker and Discovery Research, Immune Tolerance Network, San Francisco, CA, United States
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - Cate Speake
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, United States
| | - Gerald T Nepom
- Biomarker and Discovery Research, Immune Tolerance Network, San Francisco, CA, United States
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, United States
| | - Peter S Linsley
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, United States
| | - Srinath Sanda
- Biomarker and Discovery Research, Immune Tolerance Network, San Francisco, CA, United States
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, United States
| |
Collapse
|
7
|
Linsley PS, Nakayama M, Balmas E, Chen J, Barahmand-Pour-Whitman F, Bansal S, Bottorff T, Serti E, Speake C, Pugliese A, Cerosaletti K. Germline-like TCR-α chains shared between autoreactive T cells in blood and pancreas. Nat Commun 2024; 15:4971. [PMID: 38871688 PMCID: PMC11176301 DOI: 10.1038/s41467-024-48833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Human type 1 diabetes (T1D) is caused by autoimmune attack on the insulin-producing pancreatic beta cells by islet antigen-reactive T cells. How human islet antigen-reactive (IAR) CD4+ memory T cells from peripheral blood affect T1D progression in the pancreas is poorly understood. Here, we aim to determine if IAR T cells in blood could be detected in pancreas. We identify paired αβ (TRA/TRB) T cell receptors (TCRs) in IAR T cells from the blood of healthy, at-risk, new-onset, and established T1D donors, and measured sequence overlap with TCRs in pancreata from healthy, at risk and T1D organ donors. We report extensive TRA junction sharing between IAR T cells and pancreas-infiltrating T cells (PIT), with perfect-match or single-mismatch TRA junction amino acid sequences comprising ~29% total unique IAR TRA junctions (942/3,264). PIT-matched TRA junctions were largely public and enriched for TRAV41 usage, showing significant nucleotide sequence convergence, increased use of germline-encoded versus non-templated residues in epitope engagement, and a potential for cross-reactivity. Our findings thus link T cells with distinctive germline-like TRA chains in the peripheral blood with T cells in the pancreas.
Collapse
Affiliation(s)
- Peter S Linsley
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Elisa Balmas
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Janice Chen
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | | | - Shubham Bansal
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Ty Bottorff
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | | | - Cate Speake
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Alberto Pugliese
- Department of Diabetes Immunology & The Wanek Family Project for Type 1 Diabetes, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | | |
Collapse
|
8
|
Lin C, Hu S, Cai X, Lv F, Yang W, Liu G, Yang X, Ji L. The opportunities and challenges of the disease-modifying immunotherapy for type 1 diabetes: A systematic review and meta-analysis. Pharmacol Res 2024; 203:107157. [PMID: 38531504 DOI: 10.1016/j.phrs.2024.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
There are multiple disease-modifying immunotherapies showing the potential of preventing or delaying the progression of type 1 diabetes (T1D). We designed and performed this systematic review and meta-analysis to gain an overview of what a role immunotherapy plays in the treatment of T1D. We searched PubMed, Embase and Cochrane Central Register of Controlled Trials (CENTRAL) from inception to December 2023. We included clinical trials of immunotherapy conducted in patients with T1D that reported the incidence of hypoglycemia or changes from baseline in at least one of following outcomes: 2 h and 4 h mixed-meal-stimulated C-peptide area under the curve (AUC), fasting C-peptide, daily insulin dosage, glycated hemoglobin (HbA1c) and fasting plasma glucose (FPG). The results were computed as the weighted mean differences (WMDs) or odds ratios (ORs) and 95% confidence intervals (CIs) in random-effect model. In all, 34 clinical trials were included. When compared with control groups, 2 h C-peptide AUC was marginally higher in patient treated with nonantigen-based immunotherapies (WMD, 0.04nmol/L, 95% CI, 0.00-0.09 nmol/L, P=0.05), which was mainly driven by the effects of T cell-targeted therapy. A greater preservation in 4 h C-peptide AUC was observed in patients with nonantigen-based immunotherapies (WMD, 0.10nmol/L, 95% CI, 0.04-0.16 nmol/L, P=0.0007), which was mainly driven by the effects of tumor necrosis factor α (TNF-α) inhibitor and T cell-targeted therapy. After excluding small-sample trials, less daily insulin dosage was observed in patient treated with nonantigen-based immunotherapies when compared with control groups (WMD, -0.07units/kg/day, 95% CI, -0.11 to -0.03units/kg/day, P=0.0004). The use of antigen-based immunotherapies was also associated with a lower daily insulin dosage versus control groups (WMD, -0.11units/kg/day, 95% CI, -0.23 to -0.00units/kg/day, P=0.05). However, changes of HbA1c or FPG were comparable between nonantigen-based immunotherapies or antigen-based immunotherapies and control groups. The risk of hypoglycemia was not increased in patients treated with nonantigen-based immunotherapies or patients treated with antigen-based immunotherapies when compared with control groups. In conclusion, nonantigen-based immunotherapies were associated with a preservation of 2 h and 4 h C-peptide AUC in patients with T1D when compared with the controls, which was mainly driven by the effects of TNF-a inhibitor and T cell-targeted therapy. Both nonantigen-based immunotherapies and antigen-based immunotherapies tended to reduce the daily insulin dosage in patients with T1D when compared with the controls. However, they did not contribute to a substantial improvement in HbA1c or FPG. Both nonantigen-based immunotherapies and antigen-based immunotherapies were well tolerated with not increased risk of hypoglycemia in patients with T1D.
Collapse
Affiliation(s)
- Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Suiyuan Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China.
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Geling Liu
- Department of Endocrinology (Section I), Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Xiaolin Yang
- Department of Endocrinology (Section I), Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
9
|
Simmons KM, Sims EK. Screening and Prevention of Type 1 Diabetes: Where Are We? J Clin Endocrinol Metab 2023; 108:3067-3079. [PMID: 37290044 PMCID: PMC11491628 DOI: 10.1210/clinem/dgad328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/10/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
A diagnosis of type 1 diabetes (T1D) and the subsequent requirement for exogenous insulin treatment is associated with considerable acute and chronic morbidity and a substantial effect on patient quality of life. Importantly, a large body of work suggests that early identification of presymptomatic T1D can accurately predict clinical disease, and when paired with education and monitoring, can yield improved health outcomes. Furthermore, a growing cadre of effective disease-modifying therapies provides the potential to alter the natural history of early stages of T1D. In this mini review, we highlight prior work that has led to the current landscape of T1D screening and prevention, as well as challenges and next steps moving into the future of these rapidly evolving areas of patient care.
Collapse
Affiliation(s)
- Kimber M Simmons
- Barbara Davis Center for Diabetes, Division of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Emily K Sims
- Division of Pediatric Endocrinology and Diabetology, Herman B Wells Center for Pediatric Research; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Ylescupidez A, Bahnson HT, O'Rourke C, Lord S, Speake C, Greenbaum CJ. A standardized metric to enhance clinical trial design and outcome interpretation in type 1 diabetes. Nat Commun 2023; 14:7214. [PMID: 37940642 PMCID: PMC10632453 DOI: 10.1038/s41467-023-42581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
The use of a standardized outcome metric enhances clinical trial interpretation and cross-trial comparison. If a disease course is predictable, comparing modeled predictions with outcome data affords the precision and confidence needed to accelerate precision medicine. We demonstrate this approach in type 1 diabetes (T1D) trials aiming to preserve endogenous insulin secretion measured by C-peptide. C-peptide is predictable given an individual's age and baseline value; quantitative response (QR) adjusts for these variables and represents the difference between the observed and predicted outcome. Validated across 13 trials, the QR metric reduces each trial's variance and increases statistical power. As smaller studies are especially subject to random sampling variability, using QR as the outcome introduces alternative interpretations of previous clinical trial results. QR can provide model-based estimates that quantify whether individuals or groups did better or worse than expected. QR also provides a purer metric to associate with biomarker measurements. Using data from more than 1300 participants, we demonstrate the value of QR in advancing disease-modifying therapy in T1D. QR applies to any disease where outcome is predictable by pre-specified baseline covariates, rendering it useful for defining responders to therapy, comparing therapeutic efficacy, and understanding causal pathways in disease.
Collapse
Affiliation(s)
- Alyssa Ylescupidez
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Henry T Bahnson
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Colin O'Rourke
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Sandra Lord
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - Carla J Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| |
Collapse
|
11
|
Linsley P, Nakayama M, Balmas E, Chen J, Pour F, Bansal S, Serti E, Speake C, Pugliese A, Cerosaletti K. Self-reactive germline-like TCR alpha chains shared between blood and pancreas. RESEARCH SQUARE 2023:rs.3.rs-3446917. [PMID: 37886513 PMCID: PMC10602137 DOI: 10.21203/rs.3.rs-3446917/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Human islet antigen reactive CD4 + memory T cells (IAR T cells) from peripheral blood have been studied extensively for their role in the pathogenesis of autoimmune type 1 diabetes (T1D). However, IAR T cells are rare, and it remains poorly understood how they affect T1D progression in the pancreas. Using single cell RNA-sequencing coupled with a multiplexed activation induced marker (AIM) enrichment assay, we identified paired TCR alpha/beta (TRA/TRB) T cell receptors (TCRs) in IAR T cells from the blood of healthy, at-risk, new onset, and established T1D donors. Using TCR sequences as barcodes, we measured infiltration of IAR T cells from blood into pancreas of organ donors with and without T1D. We detected extensive TCR sharing between IAR T cells from peripheral blood and pancreatic infiltrating T cells (PIT), with perfectly matched or single mismatched TRA junctions and J gene regions, comprising ~ 34% of unique IAR TCRs. PIT-matching IAR T cells had public TRA chains that showed increased use of germline-encoded residues in epitope engagement and a propensity for cross-reactivity. The link with T cells in the pancreas implicates autoreactive IAR T cells with shared TRA junctions and increased levels in blood with the prediabetic and new onset phases of T1D progression.
Collapse
|
12
|
Felton JL, Griffin KJ, Oram RA, Speake C, Long SA, Onengut-Gumuscu S, Rich SS, Monaco GSF, Evans-Molina C, DiMeglio LA, Ismail HM, Steck AK, Dabelea D, Johnson RK, Urazbayeva M, Gitelman S, Wentworth JM, Redondo MJ, Sims EK. Disease-modifying therapies and features linked to treatment response in type 1 diabetes prevention: a systematic review. COMMUNICATIONS MEDICINE 2023; 3:130. [PMID: 37794169 PMCID: PMC10550983 DOI: 10.1038/s43856-023-00357-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) results from immune-mediated destruction of insulin-producing beta cells. Prevention efforts have focused on immune modulation and supporting beta cell health before or around diagnosis; however, heterogeneity in disease progression and therapy response has limited translation to clinical practice, highlighting the need for precision medicine approaches to T1D disease modification. METHODS To understand the state of knowledge in this area, we performed a systematic review of randomized-controlled trials with ≥50 participants cataloged in PubMed or Embase from the past 25 years testing T1D disease-modifying therapies and/or identifying features linked to treatment response, analyzing bias using a Cochrane-risk-of-bias instrument. RESULTS We identify and summarize 75 manuscripts, 15 describing 11 prevention trials for individuals with increased risk for T1D, and 60 describing treatments aimed at preventing beta cell loss at disease onset. Seventeen interventions, mostly immunotherapies, show benefit compared to placebo (only two prior to T1D onset). Fifty-seven studies employ precision analyses to assess features linked to treatment response. Age, beta cell function measures, and immune phenotypes are most frequently tested. However, analyses are typically not prespecified, with inconsistent methods of reporting, and tend to report positive findings. CONCLUSIONS While the quality of prevention and intervention trials is overall high, the low quality of precision analyses makes it difficult to draw meaningful conclusions that inform clinical practice. To facilitate precision medicine approaches to T1D prevention, considerations for future precision studies include the incorporation of uniform outcome measures, reproducible biomarkers, and prespecified, fully powered precision analyses into future trial design.
Collapse
Affiliation(s)
- Jamie L Felton
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kurt J Griffin
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
- Sanford Research, Sioux Falls, SD, USA
| | - Richard A Oram
- NIHR Exeter Biomedical Research Centre (BRC), Academic Kidney Unit, University of Exeter, Devon, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, Devon, UK
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, Devon, UK
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Gabriela S F Monaco
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Richard L. Roudebush VAMC, Indianapolis, IN, USA
| | - Linda A DiMeglio
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heba M Ismail
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
| | | | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
| | - Randi K Johnson
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | | | - Stephen Gitelman
- Department of Pediatrics, Diabetes Center; University of California at San Francisco, San Francisco, CA, USA
| | - John M Wentworth
- Royal Melbourne Hospital Department of Diabetes and Endocrinology, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne Department of Medicine, Parkville, VIC, Australia
| | - Maria J Redondo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Houston, TX, USA
| | - Emily K Sims
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
13
|
Sharma P, Joshi RV, Pritchard R, Xu K, Eicher MA. Therapeutic Antibodies in Medicine. Molecules 2023; 28:6438. [PMID: 37764213 PMCID: PMC10535987 DOI: 10.3390/molecules28186438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Antibody engineering has developed into a wide-reaching field, impacting a multitude of industries, most notably healthcare and diagnostics. The seminal work on developing the first monoclonal antibody four decades ago has witnessed exponential growth in the last 10-15 years, where regulators have approved monoclonal antibodies as therapeutics and for several diagnostic applications, including the remarkable attention it garnered during the pandemic. In recent years, antibodies have become the fastest-growing class of biological drugs approved for the treatment of a wide range of diseases, from cancer to autoimmune conditions. This review discusses the field of therapeutic antibodies as it stands today. It summarizes and outlines the clinical relevance and application of therapeutic antibodies in treating a landscape of diseases in different disciplines of medicine. It discusses the nomenclature, various approaches to antibody therapies, and the evolution of antibody therapeutics. It also discusses the risk profile and adverse immune reactions associated with the antibodies and sheds light on future applications and perspectives in antibody drug discovery.
Collapse
Affiliation(s)
- Prerna Sharma
- Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA
| | | | | | | | | |
Collapse
|
14
|
Jacobsen LM, Diggins K, Blanchfield L, McNichols J, Perry DJ, Brant J, Dong X, Bacher R, Gersuk VH, Schatz DA, Atkinson MA, Mathews CE, Haller MJ, Long SA, Linsley PS, Brusko TM. Responders to low-dose ATG induce CD4+ T cell exhaustion in type 1 diabetes. JCI Insight 2023; 8:e161812. [PMID: 37432736 PMCID: PMC10543726 DOI: 10.1172/jci.insight.161812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUNDLow-dose anti-thymocyte globulin (ATG) transiently preserves C-peptide and lowers HbA1c in individuals with recent-onset type 1 diabetes (T1D); however, the mechanisms of action and features of the response remain unclear. Here, we characterized the post hoc immunological outcomes of ATG administration and their potential use as biomarkers of metabolic response to therapy (i.e., improved preservation of endogenous insulin production).METHODSWe assessed gene and protein expression, targeted gene methylation, and cytokine concentrations in peripheral blood following treatment with ATG (n = 29), ATG plus granulocyte colony-stimulating factor (ATG/G-CSF, n = 28), or placebo (n = 31).RESULTSTreatment with low-dose ATG preserved regulatory T cells (Tregs), as measured by stable methylation of FOXP3 Treg-specific demethylation region (TSDR) and increased proportions of CD4+FOXP3+ Tregs (P < 0.001) identified by flow cytometry. While treatment effects were consistent across participants, not all maintained C-peptide. Responders exhibited a transient rise in IL-6, IP-10, and TNF-α (P < 0.05 for all) 2 weeks after treatment and a durable CD4+ exhaustion phenotype (increased PD-1+KLRG1+CD57- on CD4+ T cells [P = 0.011] and PD1+CD4+ Temra MFI [P < 0.001] at 12 weeks, following ATG and ATG/G-CSF, respectively). ATG nonresponders displayed higher proportions of senescent T cells (at baseline and after treatment) and increased methylation of EOMES (i.e., less expression of this exhaustion marker).CONCLUSIONAltogether in these exploratory analyses, Th1 inflammation-associated serum and CD4+ exhaustion transcript and cellular phenotyping profiles may be useful for identifying signatures of clinical response to ATG in T1D.TRIAL REGISTRATIONClinicalTrials.gov NCT02215200.FUNDINGThe Leona M. and Harry B. Helmsley Charitable Trust (2019PG-T1D011), the NIH (R01 DK106191 Supplement, K08 DK128628), NIH TrialNet (U01 DK085461), and the NIH NIAID (P01 AI042288).
Collapse
Affiliation(s)
- Laura M. Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Kirsten Diggins
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Lori Blanchfield
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - James McNichols
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Daniel J. Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Jason Brant
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Xiaoru Dong
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Vivian H. Gersuk
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Desmond A. Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mark A. Atkinson
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Clayton E. Mathews
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Michael J. Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - S. Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Peter S. Linsley
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Todd M. Brusko
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| |
Collapse
|
15
|
Krishnamurthy B, Lacorcia M, Kay TWH, Thomas HE, Mannering SI. Monitoring immunomodulation strategies in type 1 diabetes. Front Immunol 2023; 14:1206874. [PMID: 37346035 PMCID: PMC10279879 DOI: 10.3389/fimmu.2023.1206874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease. Short-term treatment with agents targeting T cells, B cells and inflammatory cytokines to modify the disease course resulted in a short-term pause in disease activity. Lessons learnt from these trials will be discussed in this review. It is expected that effective disease-modifying agents will become available for use in earlier stages of T1D. Progress has been made to analyze antigen-specific T cells with standardization of T cell assay and discovery of antigen epitopes but there are many challenges. High-dimensional profiling of gene, protein and TCR expression at single cell level with innovative computational tools should lead to novel biomarker discovery. With this, assays to detect, quantify and characterize the phenotype and function of antigen-specific T cells will continuously evolve. An improved understanding of T cell responses will help researchers and clinicians to better predict disease onset, and progression, and the therapeutic efficacy of interventions to prevent or arrest T1D.
Collapse
Affiliation(s)
- Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Matthew Lacorcia
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
| | - Thomas W. H. Kay
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E. Thomas
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Stuart I. Mannering
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
16
|
Dutta D, Nagendra L, Raizada N, Bhattacharya S, Sharma M. Verapamil improves One-Year C-Peptide Levels in Recent Onset Type-1 Diabetes: A Meta-Analysis. Indian J Endocrinol Metab 2023; 27:192-200. [PMID: 37583402 PMCID: PMC10424102 DOI: 10.4103/ijem.ijem_122_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/22/2023] [Indexed: 08/17/2023] Open
Abstract
Meta-analysis studying the role of verapamil in improving C-peptide in people with recent-onset type-1 diabetes (T1DM) has not been conducted to date. We undertook this meta-analysis to address this knowledge gap. Electronic databases were systematically reviewed for RCTs having individuals with T1DM receiving verapamil in the treatment arm and placebo in the control arm over the standard of care. The primary outcome was to evaluate changes in the C-peptide area under the curve (AUC) at a one-year follow-up. Secondary outcomes were to assess alterations in C-peptide AUC, glycated hemoglobin (HbA1c), blood pressure, heart rate, and side effects at different time intervals over a one-year follow-up. From the initially screened 27 articles, data from two RCTs (112 patients) satisfied the inclusion criteria and were analyzed. Compared to placebo, C-peptide AUC in individuals receiving verapamil was not different at three months [MD 0.17 nmol/L (95%CI: -0.05-0.38); P = 0.13; I2 = 86%] but significantly higher at 1-year [MD 0.27 nmol/L (95%CI: 0.19-0.35); P < 0.01; I2 = 12%]. The verapamil arm showed similar changes in HbA1C at three months [MD 0.23% (95%CI: -0.43-0.90); P = 0.49; I2 = 88%] and 1-year [MD 0.18% (95% CI: -0.74 - 1.10); P = 0.70; I2 = 89%] compared to placebo. Occurrence of treatment-emergent adverse events [Risk ratio (RR) 1.90 (95%CI: 0.52-6.91); P = 0.33; I2 = 63%], serious adverse events [RR 1.40 (95%CI: 0.50-3.93); P = 0.53], constipation [RR4.11 (95%CI: 0.93-18.13); P = 0.06; I2 = 0%], headache [RR0.48 (95%CI: 0.16-1.43); P = 0.19; I2 = 0%], severe hypoglycemia [RR 0.87 (95%CI: 0.06 - 13.51); P = 0.92] were comparable across groups. Verapamil was well tolerated, and its use over one year was associated with significant improvements in C-peptide AUC though the HbA1c remained unchanged.
Collapse
Affiliation(s)
- Deep Dutta
- Department of Endocrinology, Center for Endocrinology Diabetes Arthritis and Rheumatism (CEDAR) Superspeciality Healthcare, Dwarka, New Delhi, India
| | - Lakshmi Nagendra
- Department of Endocrinology, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Nishant Raizada
- Department of Endocrinology, University College of Medical Sciences, New Delhi, India
| | - Saptarshi Bhattacharya
- Department of Endocrinology, Indraprastha Apollo Hospitals, Sarita Vihar, New Delhi, India
| | - Meha Sharma
- Department of Rheumatology, Center for Endocrinology Diabetes Arthritis and Rheumatism (CEDAR) Superspeciality Healthcare, Dwarka, New Delhi, India
| |
Collapse
|
17
|
Felton JL, Griffin KJ, Oram RA, Speake C, Long SA, Onengut-Gumuscu S, Rich SS, Monaco GS, Evans-Molina C, DiMeglio LA, Ismail HM, Steck AK, Dabelea D, Johnson RK, Urazbayeva M, Gitelman S, Wentworth JM, Redondo MJ, Sims EK. Type 1 Diabetes Prevention: a systematic review of studies testing disease-modifying therapies and features linked to treatment response. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.12.23288421. [PMID: 37131690 PMCID: PMC10153317 DOI: 10.1101/2023.04.12.23288421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background Type 1 diabetes (T1D) results from immune-mediated destruction of insulin-producing beta cells. Efforts to prevent T1D have focused on modulating immune responses and supporting beta cell health; however, heterogeneity in disease progression and responses to therapies have made these efforts difficult to translate to clinical practice, highlighting the need for precision medicine approaches to T1D prevention. Methods To understand the current state of knowledge regarding precision approaches to T1D prevention, we performed a systematic review of randomized-controlled trials from the past 25 years testing disease-modifying therapies in T1D and/or identifying features linked to treatment response, analyzing bias using a Cochrane-risk-of-bias instrument. Results We identified 75 manuscripts, 15 describing 11 prevention trials for individuals with increased risk for T1D, and 60 describing treatments aimed at preventing beta cell loss in individuals at disease onset. Seventeen agents tested, mostly immunotherapies, showed benefit compared to placebo (only two prior to T1D onset). Fifty-seven studies employed precision analyses to assess features linked to treatment response. Age, measures of beta cell function and immune phenotypes were most frequently tested. However, analyses were typically not prespecified, with inconsistent methods reporting, and tended to report positive findings. Conclusions While the quality of prevention and intervention trials was overall high, low quality of precision analyses made it difficult to draw meaningful conclusions that inform clinical practice. Thus, prespecified precision analyses should be incorporated into the design of future studies and reported in full to facilitate precision medicine approaches to T1D prevention. Plain Language Summary Type 1 diabetes (T1D) results from the destruction of insulin-producing cells in the pancreas, necessitating lifelong insulin dependence. T1D prevention remains an elusive goal, largely due to immense variability in disease progression. Agents tested to date in clinical trials work in a subset of individuals, highlighting the need for precision medicine approaches to prevention. We systematically reviewed clinical trials of disease-modifying therapy in T1D. While age, measures of beta cell function, and immune phenotypes were most commonly identified as factors that influenced treatment response, the overall quality of these studies was low. This review reveals an important need to proactively design clinical trials with well-defined analyses to ensure that results can be interpreted and applied to clinical practice.
Collapse
|
18
|
Kim YK, Munir KM, Davis SN. Type 1 diabetes: key drug targets and how they could influence future therapeutics. Expert Opin Ther Targets 2023; 27:31-40. [PMID: 36744390 DOI: 10.1080/14728222.2023.2177150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Despite significant strides made in the management of T1DM, standard management is still insulin analog therapy. Some non-insulin therapies traditionally reserved for the treatment of T2DM have been explored in caring for patients with T1DM, and pancreas transplant is an option for few. However, T1DM remains a challenging disease to manage, encouraging development of novel pharmacologic agents. AREAS COVERED We retrieved PubMed, Cochrane Library, Scopus, Google Scholar, and ClinicalTrials.gov records to identify studies and articles focused on new pharmacologic advances to treat T1DM. EXPERT OPINION Recent research has focused on new targets of pharmacologic treatment of T1DM. Beta-cell preservation through immunomodulation or inhibiting inflammation hopes to delay or halt the progression of the disease. Beta cell regeneration through islet cell transplant or modification in transcription pathways aim to reverse the disease effects. Multiple other new targets such as glucagon antagonism and glucokinase activation are also in development as a potential adjunctive therapy. These new therapeutic targets offer the hope of reducing the daily burden of diabetes management with eventual insulin discontinuation for many individuals with T1DM.
Collapse
Affiliation(s)
- Yoon Kook Kim
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, 800 Linden Ave, 8th Floor, 21201, Baltimore, MD, USA
| | - Kashif M Munir
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, 800 Linden Ave, 8th Floor, 21201, Baltimore, MD, USA
| | - Stephen N Davis
- Department of Medicine, University of Maryland School of Medicine, 22 South Greene Street, 21201, Baltimore, MD, USA
| |
Collapse
|
19
|
Besser REJ, Bell KJ, Couper JJ, Ziegler AG, Wherrett DK, Knip M, Speake C, Casteels K, Driscoll KA, Jacobsen L, Craig ME, Haller MJ. ISPAD Clinical Practice Consensus Guidelines 2022: Stages of type 1 diabetes in children and adolescents. Pediatr Diabetes 2022; 23:1175-1187. [PMID: 36177823 DOI: 10.1111/pedi.13410] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/29/2022] Open
Affiliation(s)
- Rachel E J Besser
- Wellcome Centre for Human Genetics, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Kirstine J Bell
- Charles Perkins Centre and Faculty Medicine and Health, University of Sydney, Sydney, Australia
| | - Jenny J Couper
- Department of Pediatrics, University of Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Diane K Wherrett
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mikael Knip
- Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Kristina Casteels
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Kimberly A Driscoll
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Laura Jacobsen
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Maria E Craig
- Department of Pediatrics, The Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | - Michael J Haller
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
Nagy G, Szekely TE, Somogyi A, Herold M, Herold Z. New therapeutic approaches for type 1 diabetes: Disease-modifying therapies. World J Diabetes 2022; 13:835-850. [PMID: 36312000 PMCID: PMC9606789 DOI: 10.4239/wjd.v13.i10.835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/08/2022] [Accepted: 09/15/2022] [Indexed: 02/05/2023] Open
Abstract
It has been 100 years since the first successful clinical use of insulin, yet it remains the only treatment option for type 1 diabetes mellitus (T1DM) patients. Advances in diabetes care, such as insulin analogue therapies and new devices, including continuous glucose monitoring with continuous subcutaneous insulin infusion have improved the quality of life of patients but have no impact on the pathogenesis of the disease. They do not eliminate long-term complications and require several lifestyle sacrifices. A more ideal future therapy for T1DM, instead of supplementing the insufficient hormone production (a consequence of β-cell destruction), would also aim to stop or slow down the destructive autoimmune process. The discovery of the autoimmune nature of type 1 diabetes mellitus has presented several targets by which disease progression may be altered. The goal of disease-modifying therapies is to target autoimmune mechanisms and prevent β-cell destruction. T1DM patients with better β-cell function have better glycemic control, reduced incidence of long-term complications and hypoglycemic episodes. Unfortunately, at the time symptomatic T1DM is diagnosed, most of the insulin secreting β cells are usually lost. Therefore, to maximize the salvageable β-cell mass by disease-modifying therapies, detecting autoimmune markers in an early, optimally presymptomatic phase of T1DM is of great importance. Disease-modifying therapies, such as immuno- and regenerative therapies are expected to take a relevant place in diabetology. The aim of this article was to provide a brief insight into the pathogenesis and course of T1DM and present the current state of disease-modifying therapeutic interventions that may impact future diabetes treatment.
Collapse
Affiliation(s)
- Geza Nagy
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Tekla Evelin Szekely
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Aniko Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Magdolna Herold
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest H-1083, Hungary
| |
Collapse
|
21
|
Nepom GT. Synergistic targeting of immunologic pathways to empower durable tolerance therapies. Front Immunol 2022; 13:962177. [PMID: 36119087 PMCID: PMC9478166 DOI: 10.3389/fimmu.2022.962177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Gerald T. Nepom
- Immune Tolerance Network and Benaroya Research Institute, Seattle, WA, United States
| |
Collapse
|
22
|
Silva IBB, Kimura CH, Colantoni VP, Sogayar MC. Stem cells differentiation into insulin-producing cells (IPCs): recent advances and current challenges. Stem Cell Res Ther 2022; 13:309. [PMID: 35840987 PMCID: PMC9284809 DOI: 10.1186/s13287-022-02977-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/19/2022] [Indexed: 11/10/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) is a chronic disease characterized by an autoimmune destruction of insulin-producing β-pancreatic cells. Although many advances have been achieved in T1D treatment, current therapy strategies are often unable to maintain perfect control of glycemic levels. Several studies are searching for new and improved methodologies for expansion of β-cell cultures in vitro to increase the supply of these cells for pancreatic islets replacement therapy. A promising approach consists of differentiation of stem cells into insulin-producing cells (IPCs) in sufficient number and functional status to be transplanted. Differentiation protocols have been designed using consecutive cytokines or signaling modulator treatments, at specific dosages, to activate or inhibit the main signaling pathways that control the differentiation of induced pluripotent stem cells (iPSCs) into pancreatic β-cells. Here, we provide an overview of the current approaches and achievements in obtaining stem cell-derived β-cells and the numerous challenges, which still need to be overcome to achieve this goal. Clinical translation of stem cells-derived β-cells for efficient maintenance of long-term euglycemia remains a major issue. Therefore, research efforts have been directed to the final steps of in vitro differentiation, aiming at production of functional and mature β-cells and integration of interdisciplinary fields to generate efficient cell therapy strategies capable of reversing the clinical outcome of T1D.
Collapse
Affiliation(s)
- Isaura Beatriz Borges Silva
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil.,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Camila Harumi Kimura
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil
| | - Vitor Prado Colantoni
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil.,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil. .,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
23
|
Nguyen HV, Schatz DA, Mital S, Jacobsen LM, Haller MJ. Cost-Effectiveness of Low-Dose Antithymocyte Globulin Versus Other Immunotherapies for Treatment of New-Onset Type 1 Diabetes. Diabetes Technol Ther 2022; 24:258-267. [PMID: 34704801 DOI: 10.1089/dia.2021.0329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective: Several immunotherapies have shown efficacy in slowing C-peptide decline in new-onset type 1 diabetes. Although most of these biologic drugs are expensive, they offer the opportunity to reduce downstream disease management costs and risk of complications. The objective of this study is to examine the cost-effectiveness of immunotherapies versus no treatment for patients with new-onset type 1 diabetes. Methods: Using Markov microsimulation modeling and efficacy data from immunotherapy trials, we examined the cost-effectiveness of six immunotherapies for new-onset type 1 diabetes, namely, low-dose (2.5 mg/kg) antithymocyte globulin (ATG), high-dose (6.5 mg/kg) ATG, abatacept, alefacept, rituximab, and teplizumab, versus no treatment. Effectiveness was measured by quality-adjusted life-years (QALYs). Costs were estimated from a health system perspective. Results: Low-dose ATG treatment saves US$10,270, on average, over a patient's lifetime and generates 0.09 additional QALYs compared with no treatment. These cost savings arise as low-dose ATG generates downstream savings in disease management costs that more than offset its cost. In contrast, treatment with other immunotherapies yields smaller QALY gains (0.02-0.05 additional QALYs) and increases lifetime costs by US$9500-US$168,380 relative to no treatment, with incremental cost-effectiveness ratios that exceed the willingness-to-pay threshold of US$100,000 per QALY. Conclusions: Low-dose ATG treatment is both less costly and more effective relative to other immunotherapies and no treatment for new-onset type 1 diabetes.
Collapse
Affiliation(s)
- Hai V Nguyen
- School of Pharmacy, Memorial University of Newfoundland, St. John's, Canada
| | - Desmond A Schatz
- Department of Pediatrics, Division of Endocrinology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Shweta Mital
- School of Pharmacy, Memorial University of Newfoundland, St. John's, Canada
| | - Laura M Jacobsen
- Department of Pediatrics, Division of Endocrinology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Michael J Haller
- Department of Pediatrics, Division of Endocrinology, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
24
|
Wilhelm-Benartzi CS, Miller SE, Bruggraber S, Picton D, Wilson M, Gatley K, Chhabra A, Marcovecchio ML, Hendriks AEJ, Morobé H, Chmura PJ, Bond S, Aschemeier-Fuchs B, Knip M, Tree T, Overbergh L, Pall J, Arnaud O, Haller MJ, Nitsche A, Schulte AM, Mathieu C, Mander A, Dunger D. Study protocol: Minimum effective low dose: anti-human thymocyte globulin (MELD-ATG): phase II, dose ranging, efficacy study of antithymocyte globulin (ATG) within 6 weeks of diagnosis of type 1 diabetes. BMJ Open 2021; 11:e053669. [PMID: 34876434 PMCID: PMC8655536 DOI: 10.1136/bmjopen-2021-053669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Type 1 diabetes (T1D) is a chronic autoimmune disease, characterised by progressive destruction of the insulin-producing β cells of the pancreas. One immunosuppressive agent that has recently shown promise in the treatment of new-onset T1D subjects aged 12-45 years is antithymocyte globulin (ATG), Thymoglobuline, encouraging further exploration in lower age groups. METHODS AND ANALYSIS Minimal effective low dose (MELD)-ATG is a phase 2, multicentre, randomised, double-blind, placebo-controlled, multiarm parallel-group trial in participants 5-25 years diagnosed with T1D within 3-9 weeks of planned treatment day 1. A total of 114 participants will be recruited sequentially into seven different cohorts with the first cohort of 30 participants being randomised to placebo, 2.5 mg/kg, 1.5 mg/kg, 0.5 mg/kg and 0.1 mg/kg ATG total dose in a 1:1:1:1:1 allocation ratio. The next six cohorts of 12-15 participants will be randomised to placebo, 2.5 mg/kg, and one or two selected middle ATG total doses in a 1:1:1:1 or 1:1:1 allocation ratio, as dependent on the number of middle doses, given intravenously over two consecutive days. The primary objective will be to determine the changes in stimulated C-peptide response over the first 2 hours of a mixed meal tolerance test at 12 months for 2.5 mg/kg ATG arm vs the placebo. Conditional on finding a significant difference at 2.5 mg/kg, a minimally effective dose will be sought. Secondary objectives include the determination of the effects of a particular ATG treatment dose on (1) stimulated C-peptide, (2) glycated haemoglobin, (3) daily insulin dose, (4) time in range by intermittent continuous glucose monitoring measures, (5) fasting and stimulated dry blood spot (DBS) C-peptide measurements. ETHICS AND DISSEMINATION MELD-ATG received first regulatory and ethical approvals in Belgium in September 2020 and from the German and UK regulators as of February 2021. The publication policy is set in the INNODIA (An innovative approach towards understanding and arresting Type 1 diabetes consortium) grant agreement (www.innodia.eu). TRIAL REGISTRATION NUMBER NCT03936634; Pre-results.
Collapse
Affiliation(s)
| | - Sarah E Miller
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Diane Picton
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Mark Wilson
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Katrina Gatley
- Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anita Chhabra
- Pharmacy, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | - Hilde Morobé
- Katholieke Universiteit Leuven/ Universitaire Ziekenhuizen, Leuven, Belgium
| | - Piotr Jaroslaw Chmura
- Center for Protein Research, Kobenhavns Universitet Sundhedsvidenskabelige Fakultet, Kobenhavn, Denmark
| | - Simon Bond
- Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Bärbel Aschemeier-Fuchs
- Diabetes Centre for Children and Adolescents, Children's Hospital Auf der Bult, Hannover, Germany
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, University of Helsinki Faculty of Medicine, Helsinki, Finland
- Pediatric Research Centre, University of Helsinki Children's Hospital, Helsinki, Finland
| | - Timothy Tree
- Department of Immunobiology, King's College London, London, UK
| | - Lut Overbergh
- Katholieke Universiteit Leuven/ Universitaire Ziekenhuizen, Leuven, Belgium
| | - Jaivier Pall
- INNODIA Patient Advisory Committee, Madrid, Spain
| | | | - Michael J Haller
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | | | | | - Chantal Mathieu
- Katholieke Universiteit Leuven/ Universitaire Ziekenhuizen, Leuven, Belgium
| | - Adrian Mander
- Centre for Trials Research, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - David Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Institute of Metabolic Science, Cambridge University, Cambridge, UK
| |
Collapse
|
25
|
Ramzy A, Thompson DM, Ward-Hartstonge KA, Ivison S, Cook L, Garcia RV, Loyal J, Kim PTW, Warnock GL, Levings MK, Kieffer TJ. Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell 2021; 28:2047-2061.e5. [PMID: 34861146 DOI: 10.1016/j.stem.2021.10.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/29/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022]
Abstract
An open-label, first-in-human phase 1/2 study is being conducted to evaluate the safety and efficacy of pancreatic endoderm cells (PECs) implanted in non-immunoprotective macroencapsulation devices for the treatment of type 1 diabetes. We report an analysis on 1 year of data from the first cohort of 15 patients from a single trial site that received subcutaneous implantation of cell products combined with an immunosuppressive regimen. Implants were well tolerated with no teratoma formation or severe graft-related adverse events. After implantation, patients had increased fasting C-peptide levels and increased glucose-responsive C-peptide levels and developed mixed meal-stimulated C-peptide secretion. There were immunosuppression-related transient increases in circulating regulatory T cells, PD1high T cells, and IL17A+CD4+ T cells. Explanted grafts contained cells with a mature β cell phenotype that were immunoreactive for insulin, islet amyloid polypeptide, and MAFA. These data, and associated findings (Shapiro et al., 2021), are the first reported evidence of meal-regulated insulin secretion by differentiated stem cells in patients.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - David M Thompson
- Division of Endocrinology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kirsten A Ward-Hartstonge
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; BC Children's Hospital Research Institute (BCCHRI), Vancouver, BC V5Z 4H4, Canada
| | - Sabine Ivison
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; BC Children's Hospital Research Institute (BCCHRI), Vancouver, BC V5Z 4H4, Canada
| | - Laura Cook
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; BC Children's Hospital Research Institute (BCCHRI), Vancouver, BC V5Z 4H4, Canada
| | - Rosa V Garcia
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; BC Children's Hospital Research Institute (BCCHRI), Vancouver, BC V5Z 4H4, Canada
| | - Jackson Loyal
- Division of Endocrinology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Peter T W Kim
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Garth L Warnock
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; BC Children's Hospital Research Institute (BCCHRI), Vancouver, BC V5Z 4H4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
26
|
Vallianou NG, Stratigou T, Geladari E, Tessier CM, Mantzoros CS, Dalamaga M. Diabetes type 1: Can it be treated as an autoimmune disorder? Rev Endocr Metab Disord 2021; 22:859-876. [PMID: 33730229 DOI: 10.1007/s11154-021-09642-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Type 1 Diabetes Mellitus (T1DM) is characterized by progressive autoimmune-mediated destruction of the pancreatic beta-cells leading to insulin deficiency and hyperglycemia. It is associated with significant treatment burden and necessitates life-long insulin therapy. The role of immunotherapy in the prevention and management of T1DM is an evolving area of interest which has the potential to alter the natural history of this disease.In this review, we give insight into recent clinical trials related to the use of immunotherapeutic approaches for T1DM, such as proinflammatory cytokine inhibition, cell-depletion and cell-therapy approaches, autoantigen-specific treatments and stem cell therapies. We highlight the timing of intervention, aspects of therapy including adverse effects and the emergence of a novel lymphocyte crucial in T1DM autoimmunity. We also discuss the role of cardiac autoimmunity and its link to excess CVD risk in T1DM.We conclude that significant advances have been made in development of immunotherapeutic targets and agents for the treatment and prevention of T1DM. These immune-based therapies promise preservation of beta-cells and decreasing insulin dependency. In their current state, immunotherapeutic approaches cannot yet halt the progression from a preclinical state to overt T1DM nor can they replace standard insulin therapy in existing T1DM. It remains to be seen whether immunotherapy will ultimately play a key role in the prevention of progression to overt T1DM and whether it may find a place in our therapeutic armamentarium to improve clinical outcomes and quality of life in established T1DM.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology, Diabetes and Metabolic Diseases, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527, Athens, Goudi, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Christopher M Tessier
- Endocrinology Section, VA Boston Healthcare System, 1400 VFW Parkway West Roxbury, Boston, MA, 02132, USA.
| | - Christos S Mantzoros
- Endocrinology Section, VA Boston Healthcare System, 1400 VFW Parkway West Roxbury, Boston, MA, 02132, USA
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527, Athens, Goudi, Greece
| |
Collapse
|
27
|
Huffaker MF, Sanda S, Chandran S, Chung SA, St Clair EW, Nepom GT, Smilek DE. Approaches to Establishing Tolerance in Immune Mediated Diseases. Front Immunol 2021; 12:744804. [PMID: 34616405 PMCID: PMC8488342 DOI: 10.3389/fimmu.2021.744804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/25/2021] [Indexed: 01/06/2023] Open
Abstract
The development of rational approaches to restore immune tolerance requires an iterative approach that builds on past success and utilizes new mechanistic insights into immune-mediated pathologies. This article will review concepts that have evolved from the clinical trial experience of the Immune Tolerance Network, with an emphasis on lessons learned from the innovative mechanistic studies conducted for these trials and new strategies under development for induction of tolerance.
Collapse
Affiliation(s)
- Michelle F Huffaker
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, United States
| | - Srinath Sanda
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, United States
| | - Sindhu Chandran
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, United States
| | - Sharon A Chung
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, United States
| | | | - Gerald T Nepom
- Immune Tolerance Network, Benaroya Research Institute, Seattle, WA, United States
| | - Dawn E Smilek
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
28
|
Bluestone JA, Buckner JH, Herold KC. Immunotherapy: Building a bridge to a cure for type 1 diabetes. Science 2021; 373:510-516. [PMID: 34326232 DOI: 10.1126/science.abh1654] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which T cells attack and destroy the insulin-producing β cells in the pancreatic islets. Genetic and environmental factors increase T1D risk by compromising immune homeostasis. Although the discovery and use of insulin have transformed T1D treatment, insulin therapy does not change the underlying disease or fully prevent complications. Over the past two decades, research has identified multiple immune cell types and soluble factors that destroy insulin-producing β cells. These insights into disease pathogenesis have enabled the development of therapies to prevent and modify T1D. In this review, we highlight the key events that initiate and sustain pancreatic islet inflammation in T1D, the current state of the immunological therapies, and their advantages for the treatment of T1D.
Collapse
Affiliation(s)
- Jeffrey A Bluestone
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute (BRI) at Virginia Mason, Seattle, WA, USA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Kevan C Herold
- Department of Immunobiology and Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
29
|
Encapsulation Strategies for Pancreatic Islet Transplantation without Immune Suppression. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Aktuelle Entwicklungen in der Prävention des Typ-1-Diabetes. DIABETOLOGE 2021. [DOI: 10.1007/s11428-021-00759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Haller MJ, Jacobsen LM, Posgai AL, Schatz DA. How Do We Move Type 1 Diabetes Immunotherapies Forward During the Current COVID-19 Pandemic? Diabetes 2021; 70:1021-1028. [PMID: 33632743 PMCID: PMC8173800 DOI: 10.2337/dbi20-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/03/2021] [Indexed: 12/23/2022]
Abstract
Research-based immunotherapy trials seeking to prevent or reverse a number of autoimmune diseases, including type 1 diabetes, have seen near universal suspension due to the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diabetes and hyperglycemia are now appreciated as significant risk factors for COVID-19 morbidity and mortality; however, the vast majority of studies have reported on adults. Recent data in children and adolescents with type 1 diabetes suggest no increased risk of COVID-19. Even with immense appreciation for COVID-19 morbidity and mortality, we believe compelling arguments exist to carefully and thoughtfully resume certain type 1 diabetes phase 2-3 immunotherapy trials. In this Perspective, we consider the experience of trials that never halted or have resumed in the oncology and rheumatology fields, and advocate for staged type 1 diabetes immunotherapy trial resumption. With this, we present recommendations to achieve equipoise and mitigate risks for SARS-CoV-2 infection in the weeks surrounding infusion. Given the fact that the COVID-19 pandemic is expected to persist for some time, it is in the best interest of our patients that we find ways to safely move our field forward.
Collapse
Affiliation(s)
- Michael J Haller
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL
| | - Laura M Jacobsen
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL
| | - Desmond A Schatz
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL
| |
Collapse
|
32
|
Linsley PS, Greenbaum CJ, Nepom GT. Uncovering Pathways to Personalized Therapies in Type 1 Diabetes. Diabetes 2021; 70:831-841. [PMID: 33741606 PMCID: PMC7980192 DOI: 10.2337/db20-1185] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/26/2021] [Indexed: 12/18/2022]
Abstract
The goal of personalized medicine is to match the right drugs to the right patients at the right time. Personalized medicine has been most successful in cases where there is a clear genetic linkage between a disease and a therapy. This is not the case with type 1 diabetes (T1D), a genetically complex immune-mediated disease of β-cell destruction. Researchers over decades have traced the natural history of disease sufficiently to use autoantibodies as predictive biomarkers for disease risk and to conduct successful clinical trials of disease-modifying therapy. Recent studies, however, have highlighted heterogeneity associated with progression, with nonuniform rate of insulin loss and distinct features of the peri-diagnostic period. Likewise, there is heterogeneity in immune profiles and outcomes in response to therapy. Unexpectedly, from these studies demonstrating perplexing complexity in progression and response to therapy, new biomarker-based principles are emerging for how to achieve personalized therapies for T1D. These include therapy timed to periods of disease activity, use of patient stratification biomarkers to align therapeutic target with disease endotype, pharmacodynamic biomarkers to achieve personalized dosing and appropriate combination therapies, and efficacy biomarkers for "treat-to-target" strategies. These principles provide a template for application of personalized medicine to complex diseases.
Collapse
Affiliation(s)
- Peter S Linsley
- Benaroya Research Institute and Immune Tolerance Network, Seattle, WA
| | - Carla J Greenbaum
- Benaroya Research Institute and Immune Tolerance Network, Seattle, WA
| | - Gerald T Nepom
- Benaroya Research Institute and Immune Tolerance Network, Seattle, WA
| |
Collapse
|
33
|
Tian J, Zhao Y, Wang L, Li L. Role of TLR4/MyD88/NF-κB signaling in heart and liver-related complications in a rat model of type 2 diabetes mellitus. J Int Med Res 2021; 49:300060521997590. [PMID: 33787393 PMCID: PMC8020098 DOI: 10.1177/0300060521997590] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aims To analyze expression of members of the Toll-like receptor (TLR)4/myeloid
differentiation primary response 88 (MyD88)/nuclear factor (NF)-κB signaling
pathway in the heart and liver in a rat model of type 2 diabetes mellitus
(T2DM). Our overall goal was to understand the underlying pathophysiological
mechanisms. Methods We measured fasting blood glucose (FBG) and insulin (FINS) in a rat model of
T2DM. Expression of members of the TLR4/MyD88/NF-κB signaling pathway as
well as downstream cytokines was investigated. Levels of mRNA and protein
were assessed using quantitative real-time polymerase chain reaction and
western blotting, respectively. Protein content of tissue homogenates was
assessed using enzyme-linked immunosorbent assays. Results Diabetic rats had lower body weights, higher FBG, higher FINS, and higher
intraperitoneal glucose tolerance than normal rats. In addition, biochemical
indicators related to heart and liver function were elevated in diabetic
rats compared with normal rats. TLR4 and MyD88 were involved in the
occurrence of T2DM as well as T2DM-related heart and liver complications.
TLR4 caused T2DM-related heart and liver complications through activation of
NF-κB. Conclusions TLR4/MyD88/NF-κB signaling induces production of tumor necrosis factor-α,
interleukin-6, and monocyte chemoattractant protein-1, leading to the heart-
and liver-related complications of T2DM.
Collapse
Affiliation(s)
- Jiajia Tian
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, P.R. China
| | - Yanyan Zhao
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, P.R. China
| | - Lingling Wang
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, P.R. China
| | - Lin Li
- The PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| |
Collapse
|
34
|
Rodriguez-Fernandez S, Almenara-Fuentes L, Perna-Barrull D, Barneda B, Vives-Pi M. A century later, still fighting back: antigen-specific immunotherapies for type 1 diabetes. Immunol Cell Biol 2021; 99:461-474. [PMID: 33483995 DOI: 10.1111/imcb.12439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/11/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) is a chronic metabolic disease caused by the autoimmune destruction of insulin-producing β-cells. Ever since the 1920s, the fate of patients suffering from T1D was dramatically improved owing to the isolation and production of insulin, and the scientific field has largely progressed as a result of the evidence gathered about its underpinnings and mechanisms. The last years have seen this knowledge transformed into actual antigen-specific immunotherapies with potential to restore selectively the breach of tolerance to β-cell autoantigens and halt the autoimmune aggression. However, so far, the results of both prevention and reversion trials in T1D have been rather discouraging, so there is still an urgent need to optimize those immunotherapies and their associated factors, for example, posology and administration patterns, route and timing. In this review, we look back on what has been achieved in the last century and identify the main autoantigens driving the autoimmune attack in T1D. Then, we take a deep dive into the numerous antigen-specific immunotherapies trialed and the ones still at a preclinical phase, ranging from peptides, proteins and agent combinations to gene transfer, nanoparticles, cell-based strategies and novel approaches exploiting naturally occurring tolerogenic processes. Finally, we provide insight into the several features to be considered in a T1D clinical trial, the ideal time point for intervention and the biomarkers needed for monitoring the successful regulatory effect of the antigen-specific immunotherapy. Although further research and optimization remain imperative, the development of a therapeutic armamentarium against T1D autoimmunity is certainly advancing with a confident step.
Collapse
Affiliation(s)
- Silvia Rodriguez-Fernandez
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain.,Ahead Therapeutics SL, Barcelona, Spain
| | - Lidia Almenara-Fuentes
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain.,Ahead Therapeutics SL, Barcelona, Spain
| | - David Perna-Barrull
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | | | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain.,Ahead Therapeutics SL, Barcelona, Spain
| |
Collapse
|
35
|
Diggins KE, Serti E, Muir V, Rosasco M, Lu T, Balmas E, Nepom G, Long SA, Linsley PS. Exhausted-like CD8+ T cell phenotypes linked to C-peptide preservation in alefacept-treated T1D subjects. JCI Insight 2021; 6:142680. [PMID: 33351781 PMCID: PMC7934874 DOI: 10.1172/jci.insight.142680] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Clinical trials of biologic therapies in type 1 diabetes (T1D) aim to mitigate autoimmune destruction of pancreatic β cells through immune perturbation and serve as resources to elucidate immunological mechanisms in health and disease. In the T1DAL trial of alefacept (LFA3-Ig) in recent-onset T1D, endogenous insulin production was preserved in 30% of subjects for 2 years after therapy. Given our previous findings linking exhausted-like CD8+ T cells to beneficial response in T1D trials, we applied unbiased analyses to sorted CD8+ T cells to evaluate their potential role in T1DAL. Using RNA sequencing, we found that greater insulin C-peptide preservation was associated with a module of activation- and exhaustion-associated genes. This signature was dissected into 2 CD8 memory phenotypes through correlation with cytometry data. These cells were hypoproliferative, shared expanded rearranged TCR junctions, and expressed exhaustion-associated markers including TIGIT and KLRG1. The 2 phenotypes could be distinguished by reciprocal expression of CD8+ T and NK cell markers (GZMB, CD57, and inhibitory killer cell immunoglobulin-like receptor [iKIR] genes), versus T cell activation and differentiation markers (PD-1 and CD28). These findings support previous evidence linking exhausted-like CD8+ T cells to successful immune interventions for T1D, while suggesting that multiple inhibitory mechanisms can promote this beneficial cell state.
Collapse
Affiliation(s)
- Kirsten E. Diggins
- Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | - Virginia Muir
- Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Mario Rosasco
- Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - TingTing Lu
- Immune Tolerance Network (ITN), Bethesda, Maryland, USA
| | - Elisa Balmas
- Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Gerald Nepom
- Immune Tolerance Network (ITN), Bethesda, Maryland, USA
| | - S. Alice Long
- Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Peter S. Linsley
- Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| |
Collapse
|
36
|
Pearson JA, McKinney EF, Walker LSK. 100 years post-insulin: immunotherapy as the next frontier in type 1 diabetes. IMMUNOTHERAPY ADVANCES 2021; 1:ltab024. [PMID: 35156097 PMCID: PMC8826223 DOI: 10.1093/immadv/ltab024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 02/03/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterised by T cell-mediated destruction of the insulin-producing β cells in the pancreas. Similar to other autoimmune diseases, the incidence of T1D is increasing globally. The discovery of insulin 100 years ago dramatically changed the outlook for people with T1D, preventing this from being a fatal condition. As we celebrate the centenary of this milestone, therapeutic options for T1D are once more at a turning point. Years of effort directed at developing immunotherapies are finally starting to pay off, with signs of progress in new onset and even preventative settings. Here, we review a selection of immunotherapies that have shown promise in preserving β cell function and highlight future considerations for immunotherapy in the T1D setting.
Collapse
Affiliation(s)
- James A Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Eoin F McKinney
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, England, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, England, UK
- Cambridge Centre for Artificial Intelligence in Medicine, University of Cambridge, Cambridge, England, UK
| | - Lucy S K Walker
- Division of Infection and Immunity, Institute or Immunity and Transplantation, University College London, Royal Free Campus, London, UK
| |
Collapse
|
37
|
Quattrin T, Haller MJ, Steck AK, Felner EI, Li Y, Xia Y, Leu JH, Zoka R, Hedrick JA, Rigby MR, Vercruysse F. Golimumab and Beta-Cell Function in Youth with New-Onset Type 1 Diabetes. N Engl J Med 2020; 383:2007-2017. [PMID: 33207093 DOI: 10.1056/nejmoa2006136] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Type 1 diabetes is an autoimmune disease characterized by progressive loss of pancreatic beta cells. Golimumab is a human monoclonal antibody specific for tumor necrosis factor α that has already been approved for the treatment of several autoimmune conditions in adults and children. Whether golimumab could preserve beta-cell function in youth with newly diagnosed overt (stage 3) type 1 diabetes is unknown. METHODS In this phase 2, multicenter, placebo-controlled, double-blind, parallel-group trial, we randomly assigned, in a 2:1 ratio, children and young adults (age range, 6 to 21 years) with newly diagnosed overt type 1 diabetes to receive subcutaneous golimumab or placebo for 52 weeks. The primary end point was endogenous insulin production, as assessed according to the area under the concentration-time curve for C-peptide level in response to a 4-hour mixed-meal tolerance test (4-hour C-peptide AUC) at week 52. Secondary and additional end points included insulin use, the glycated hemoglobin level, the number of hypoglycemic events, the ratio of fasting proinsulin to C-peptide over time, and response profile. RESULTS A total of 84 participants underwent randomization - 56 were assigned to the golimumab group and 28 to the placebo group. The mean (±SD) 4-hour C-peptide AUC at week 52 differed significantly between the golimumab group and the placebo group (0.64±0.42 pmol per milliliter vs. 0.43±0.39 pmol per milliliter, P<0.001). A treat-to-target approach led to good glycemic control in both groups, and there was no significant difference between the groups in glycated hemoglobin level. Insulin use was lower with golimumab than with placebo. A partial-remission response (defined as an insulin dose-adjusted glycated hemoglobin level score [calculated as the glycated hemoglobin level plus 4 times the insulin dose] of ≤9) was observed in 43% of participants in the golimumab group and in 7% of those in the placebo group (difference, 36 percentage points; 95% CI, 22 to 55). The mean number of hypoglycemic events did not differ between the trial groups. Hypoglycemic events that were recorded as adverse events at the discretion of investigators were reported in 13 participants (23%) in the golimumab group and in 2 (7%) of those in the placebo group. Antibodies to golimumab were detected in 30 participants who received the drug; 29 had antibody titers lower than 1:1000, of whom 12 had positive results for neutralizing antibodies. CONCLUSIONS Among children and young adults with newly diagnosed overt type 1 diabetes, golimumab resulted in better endogenous insulin production and less exogenous insulin use than placebo. (Funded by Janssen Research and Development; T1GER ClinicalTrials.gov number, NCT02846545.).
Collapse
Affiliation(s)
- Teresa Quattrin
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Michael J Haller
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Andrea K Steck
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Eric I Felner
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Yinglei Li
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Yichuan Xia
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Jocelyn H Leu
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Ramineh Zoka
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Joseph A Hedrick
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Mark R Rigby
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Frank Vercruysse
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| |
Collapse
|
38
|
Affiliation(s)
- Jeffrey A Bluestone
- From the Sean N. Parker Autoimmune Research Laboratory (J.A.B.) and the Diabetes Center (J.A.B., M.A.), University of California, San Francisco, San Francisco
| | - Mark Anderson
- From the Sean N. Parker Autoimmune Research Laboratory (J.A.B.) and the Diabetes Center (J.A.B., M.A.), University of California, San Francisco, San Francisco
| |
Collapse
|
39
|
Gurlin RE, Giraldo JA, Latres E. 3D Bioprinting and Translation of Beta Cell Replacement Therapies for Type 1 Diabetes. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:238-252. [PMID: 32907514 DOI: 10.1089/ten.teb.2020.0192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder in which the body's own immune system selectively attacks beta cells within pancreatic islets resulting in insufficient insulin production and loss of the ability to regulate blood glucose (BG) levels. Currently, the standard of care consists of BG level monitoring and insulin administration, which are essential to avoid the consequences of dysglycemia and long-term complications. Although recent advances in continuous glucose monitoring and automated insulin delivery systems have resulted in improved clinical outcomes for users, nearly 80% of people with T1D fail to achieve their target hemoglobin A1c (HbA1c) levels defined by the American Diabetes Association. Intraportal islet transplantation into immunosuppressed individuals with T1D suffering from impaired awareness of hypoglycemia has resulted in lower HbA1c, elimination of severe hypoglycemic events, and insulin independence, demonstrating the unique potential of beta cell replacement therapy (BCRT) in providing optimal glycemic control and a functional cure for T1D. BCRTs need to maximize cell engraftment, long-term survival, and function in the absence of immunosuppression to provide meaningful clinical outcomes to all people living with T1D. One innovative technology that could enable widespread translation of this approach into the clinic is three-dimensional (3D) bioprinting. Herein, we review how bioprinting could facilitate translation of BCRTs as well as the current and forthcoming techniques used for bioprinting of a BCRT product. We discuss the strengths and weaknesses of 3D bioprinting in this context in addition to the road ahead for the development of BCRTs. Impact statement Significant research developments in beta cell replacement therapies show its promise in providing a functional cure for type 1 diabetes (T1D); yet, their widespread clinical use has been difficult to achieve. This review provides a brief overview of the requirements for a beta cell replacement product followed by a discussion on both the promise and limitations of three-dimensional bioprinting in facilitating the fabrication of such products to enable translation into the clinic. Advancements in this area could be a key component to unlocking the safety and effectiveness of beta cell therapy for T1D.
Collapse
Affiliation(s)
- Rachel E Gurlin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
40
|
Beik P, Ciesielska M, Kucza M, Kurczewska A, Kuźmińska J, Maćkowiak B, Niechciał E. Prevention of Type 1 Diabetes: Past Experiences and Future Opportunities. J Clin Med 2020; 9:E2805. [PMID: 32872668 PMCID: PMC7563637 DOI: 10.3390/jcm9092805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing beta-cells in the pancreas, caused by the interplay of genetic and environmental factors. Despite the introduction of advanced technologies for diabetes management, most patients fail to achieve target glycemic control, and T1D still has a high burden of long-term end-organ complications. Over several decades, multiple clinical trials have attempted to find prevention for T1D in at-risk individuals or to stabilize, ultimately reverse, the disease in those with T1D. To date, T1D remains yet incurable condition; however, recently improved understanding of the natural history of the disease may lead to new strategies to preserve or improve beta-cell function in those at increased risk and T1D patients. This publication aims to provide an overview of past experiences and recent findings in the prevention of T1D.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elżbieta Niechciał
- Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, Szpitalna Street 27/33, 60-572 Poznan, Poland; (P.B.); (M.C.); (M.K.); (A.K.); (J.K.); (B.M.)
| |
Collapse
|
41
|
Sánchez‐Fueyo A, Whitehouse G, Grageda N, Cramp ME, Lim TY, Romano M, Thirkell S, Lowe K, Fry L, Heward J, Kerr A, Ali J, Fisher C, Lewis G, Hope A, Kodela E, Lyne M, Farzaneh F, Kordasti S, Rebollo‐Mesa I, Jose Lozano J, Safinia N, Heaton N, Lechler R, Martínez‐Llordella M, Lombardi G. Applicability, safety, and biological activity of regulatory T cell therapy in liver transplantation. Am J Transplant 2020; 20:1125-1136. [PMID: 31715056 PMCID: PMC7154724 DOI: 10.1111/ajt.15700] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/25/2023]
Abstract
Regulatory T cells (Tregs) are a lymphocyte subset with intrinsic immunosuppressive properties that can be expanded in large numbers ex vivo and have been shown to prevent allograft rejection and promote tolerance in animal models. To investigate the safety, applicability, and biological activity of autologous Treg adoptive transfer in humans, we conducted an open-label, dose-escalation, Phase I clinical trial in liver transplantation. Patients were enrolled while awaiting liver transplantation or 6-12 months posttransplant. Circulating Tregs were isolated from blood or leukapheresis, expanded under good manufacturing practices (GMP) conditions, and administered intravenously at either 0.5-1 million Tregs/kg or 3-4.5 million Tregs/kg. The primary endpoint was the rate of dose- limiting toxicities occurring within 4 weeks of infusion. The applicability of the clinical protocol was poor unless patient recruitment was deferred until 6-12 months posttransplant. Thus, only 3 of the 17 patients who consented while awaiting liver transplantation were dosed. In contrast, all six patients who consented 6-12 months posttransplant received the cell infusion. Treg transfer was safe, transiently increased the pool of circulating Tregs and reduced anti-donor T cell responses. Our study opens the door to employing Treg immunotherapy to facilitate the reduction or complete discontinuation of immunosuppression following liver transplantation.
Collapse
Affiliation(s)
- Alberto Sánchez‐Fueyo
- Institute of Liver StudiesMRC Centre for TransplantationDepartment of Inflammation BiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Gavin Whitehouse
- Institute of Liver StudiesMRC Centre for TransplantationDepartment of Inflammation BiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Nathali Grageda
- MRC Centre for TransplantationPeter Gorer Department of ImmunobiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Matthew E. Cramp
- Hepatology Research GroupPlymouth University Peninsula Schools of Medicine and DentistrySouthwest Liver UnitDerriford HospitalPlymouth Hospitals NHS TrustPlymouthUK
| | - Tiong Y. Lim
- Institute of Liver StudiesMRC Centre for TransplantationDepartment of Inflammation BiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Marco Romano
- MRC Centre for TransplantationPeter Gorer Department of ImmunobiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Sarah Thirkell
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Katie Lowe
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Laura Fry
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Julie Heward
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Alex Kerr
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Jakia Ali
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Chris Fisher
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Gillian Lewis
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Andrew Hope
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Elisavet Kodela
- Institute of Liver StudiesMRC Centre for TransplantationDepartment of Inflammation BiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Mike Lyne
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Farzin Farzaneh
- School of Cancer and Pharmaceutical SciencesKing's College LondonLondonUK
| | - Shahram Kordasti
- Systems Cancer Immunology LabComprehensive Cancer CentreKing’s College London, & Haematology Department Guy’s HospitalLondonUK
| | - Irene Rebollo‐Mesa
- BiostatisticsInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Juan Jose Lozano
- Bioinformatic PlatformBiomedical Research Center in Hepatic and Digestive Diseases (CIBEREHD)Instituto de Salud Carlos IIISpain
| | - Niloufar Safinia
- MRC Centre for TransplantationPeter Gorer Department of ImmunobiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Nigel Heaton
- Institute of Liver StudiesMRC Centre for TransplantationDepartment of Inflammation BiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Robert Lechler
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Marc Martínez‐Llordella
- Institute of Liver StudiesMRC Centre for TransplantationDepartment of Inflammation BiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Giovanna Lombardi
- MRC Centre for TransplantationPeter Gorer Department of ImmunobiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| |
Collapse
|
42
|
Greenberg SA. Inclusion body myositis: clinical features and pathogenesis. Nat Rev Rheumatol 2020; 15:257-272. [PMID: 30837708 DOI: 10.1038/s41584-019-0186-x] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inclusion body myositis (IBM) is often viewed as an enigmatic disease with uncertain pathogenic mechanisms and confusion around diagnosis, classification and prospects for treatment. Its clinical features (finger flexor and quadriceps weakness) and pathological features (invasion of myofibres by cytotoxic T cells) are unique among muscle diseases. Although IBM T cell autoimmunity has long been recognized, enormous attention has been focused for decades on several biomarkers of myofibre protein aggregates, which are present in <1% of myofibres in patients with IBM. This focus has given rise, together with the relative treatment refractoriness of IBM, to a competing view that IBM is not an autoimmune disease. Findings from the past decade that implicate autoimmunity in IBM include the identification of a circulating autoantibody (anti-cN1A); the absence of any statistically significant genetic risk factor other than the common autoimmune disease 8.1 MHC haplotype in whole-genome sequencing studies; the presence of a marked cytotoxic T cell signature in gene expression studies; and the identification in muscle and blood of large populations of clonal highly differentiated cytotoxic CD8+ T cells that are resistant to many immunotherapies. Mounting evidence that IBM is an autoimmune T cell-mediated disease provides hope that future therapies directed towards depleting these cells could be effective.
Collapse
Affiliation(s)
- Steven A Greenberg
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA. .,Children's Hospital Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Martinov T, Fife BT. Type 1 diabetes pathogenesis and the role of inhibitory receptors in islet tolerance. Ann N Y Acad Sci 2020; 1461:73-103. [PMID: 31025378 PMCID: PMC6994200 DOI: 10.1111/nyas.14106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes (T1D) affects over a million Americans, and disease incidence is on the rise. Despite decades of research, there is still no cure for this disease. Exciting beta cell replacement strategies are being developed, but in order for such approaches to work, targeted immunotherapies must be designed. To selectively halt the autoimmune response, researchers must first understand how this response is regulated and which tolerance checkpoints fail during T1D development. Herein, we discuss the current understanding of T1D pathogenesis in humans, genetic and environmental risk factors, presumed roles of CD4+ and CD8+ T cells as well as B cells, and implicated autoantigens. We also highlight studies in non-obese diabetic mice that have demonstrated the requirement for CD4+ and CD8+ T cells and B cells in driving T1D pathology. We present an overview of central and peripheral tolerance mechanisms and comment on existing controversies in the field regarding central tolerance. Finally, we discuss T cell- and B cell-intrinsic tolerance mechanisms, with an emphasis on the roles of inhibitory receptors in maintaining islet tolerance in humans and in diabetes-prone mice, and strategies employed to date to harness inhibitory receptor signaling to prevent or reverse T1D.
Collapse
Affiliation(s)
- Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Brian T Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
44
|
Primavera M, Giannini C, Chiarelli F. Prediction and Prevention of Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:248. [PMID: 32670194 PMCID: PMC7326081 DOI: 10.3389/fendo.2020.00248] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
Type 1 Diabetes (T1D) is one of the most common chronic autoimmune diseases in children. The disease is characterized by the destruction of beta cells, leading to hyperglycemia, and to a lifelong insulin-dependent state. Although several studies in the last decades have added relevant insights, the complex pathogenesis of the disease is not yet completely understood. Recent studies have been focused on several factors, including family history and genetic predisposition (HLA and non-HLA genes) as well as environmental and metabolic biomarkers, with the aim of predicting the development and progression of T1D. Once a child becomes symptomatic, beta cell mass has already reached a critical threshold (usually a residual of 20-30% of normal amounts), thus representing only the very late phase of the disease. In particular, this final stage follows two preceding asymptomatic stages, which have been precisely identified. In view of the long natural history and complex pathogenesis of the disease, many strategies may be proposed for primary, secondary, and tertiary prevention. Strategies of primary prevention aim to prevent the onset of autoimmunity against beta cells in asymptomatic individuals at high risk for T1D. In addition, the availability of novel humoral and metabolic biomarkers that are able to characterize subjects at high risk of progression, have stimulated several studies on secondary and tertiary prevention, aimed to preserve residual beta cell destruction and/or to prolong the remission phase after the onset of T1D. This review focuses on the major current knowledge on prediction and prevention of T1D in children.
Collapse
|
45
|
Speake C, Skinner SO, Berel D, Whalen E, Dufort MJ, Young WC, Odegard JM, Pesenacker AM, Gorus FK, James EA, Levings MK, Linsley PS, Akirav EM, Pugliese A, Hessner MJ, Nepom GT, Gottardo R, Long SA. A composite immune signature parallels disease progression across T1D subjects. JCI Insight 2019; 4:126917. [PMID: 31671072 PMCID: PMC6962023 DOI: 10.1172/jci.insight.126917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
At diagnosis, most people with type 1 diabetes (T1D) produce measurable levels of endogenous insulin, but the rate at which insulin secretion declines is heterogeneous. To explain this heterogeneity, we sought to identify a composite signature predictive of insulin secretion, using a collaborative assay evaluation and analysis pipeline that incorporated multiple cellular and serum measures reflecting β cell health and immune system activity. The ability to predict decline in insulin secretion would be useful for patient stratification for clinical trial enrollment or therapeutic selection. Analytes from 12 qualified assays were measured in shared samples from subjects newly diagnosed with T1D. We developed a computational tool (DIFAcTO, Data Integration Flexible to Account for different Types of data and Outcomes) to identify a composite panel associated with decline in insulin secretion over 2 years following diagnosis. DIFAcTO uses multiple filtering steps to reduce data dimensionality, incorporates error estimation techniques including cross-validation and sensitivity analysis, and is flexible to assay type, clinical outcome, and disease setting. Using this novel analytical tool, we identified a panel of immune markers that, in combination, are highly associated with loss of insulin secretion. The methods used here represent a potentially novel process for identifying combined immune signatures that predict outcomes relevant for complex and heterogeneous diseases like T1D.
Collapse
Affiliation(s)
- Cate Speake
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Samuel O. Skinner
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Dror Berel
- Vaccines and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elizabeth Whalen
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Matthew J. Dufort
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - William Chad Young
- Vaccines and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jared M. Odegard
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Anne M. Pesenacker
- University of British Columbia BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Frans K. Gorus
- Diabetes Research Center, Medical School and University Hospital (UZ Brussel), Brussels Free University Vrije Universiteit Brussel, Brussels, Belgium
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Megan K. Levings
- University of British Columbia BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Peter S. Linsley
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Eitan M. Akirav
- Research Institute, Islet Biology, New York University Winthrop Hospital, Mineola, New York, USA
- Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Diabetes Endocrinology and Metabolism, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | - Gerald T. Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
- Immune Tolerance Network, Bethesda, Maryland, USA
| | - Raphael Gottardo
- Vaccines and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - S. Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| |
Collapse
|
46
|
Sneddon JB, Tang Q, Stock P, Bluestone JA, Roy S, Desai T, Hebrok M. Stem Cell Therapies for Treating Diabetes: Progress and Remaining Challenges. Cell Stem Cell 2019; 22:810-823. [PMID: 29859172 DOI: 10.1016/j.stem.2018.05.016] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Restoration of insulin independence and normoglycemia has been the overarching goal in diabetes research and therapy. While whole-organ and islet transplantation have become gold-standard procedures in achieving glucose control in diabetic patients, the profound lack of suitable donor tissues severely hampers the broad application of these therapies. Here, we describe current efforts aimed at generating a sustainable source of functional human stem cell-derived insulin-producing islet cells for cell transplantation and present state-of-the-art efforts to protect such cells via immune modulation and encapsulation strategies.
Collapse
Affiliation(s)
- Julie B Sneddon
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peter Stock
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shuvo Roy
- UCSF-UC Berkeley Joint Ph.D. Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tejal Desai
- UCSF-UC Berkeley Joint Ph.D. Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
47
|
Haque M, Das JK, Xiong X, Song J. Targeting Stem Cell-Derived Tissue-Associated Regulatory T Cells for Type 1 Diabetes Immunotherapy. Curr Diab Rep 2019; 19:89. [PMID: 31471667 PMCID: PMC6830578 DOI: 10.1007/s11892-019-1213-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) is an autoimmune disease in which the immune cells selectively destroy the pancreatic beta (β) cells and results in the deficiency of insulin production. The optimal treatment strategy for T1D should be preventing of β-cell destruction in the pancreas. The purpose of this review is to discuss the immunological therapeutic mechanisms that will help to understand the development and control of β-cell destruction. The review also presents a novel method for development of autoantigen (Ag)-specific regulatory T cells (Tregs) for T1D immunotherapy. RECENT FINDINGS Pancreatic-resident Tregs have the ability to dramatically suppress hyperactive immune cells. Islet cell transplantation is another attractive approach to replace the failed β cells. Due to the limited source of islet cells, research is going on in the use of animal cells and adult stem cells that may be derived from the patient's own body to produce β cells for transplantation. The mechanism behind the pancreatic β-cell destruction is largely unknown. In this review, a novel approach for the generation of tissue-associated Tregs from stem cells is considered. The stem cell-derived tissue-associated Tregs have the ability to home to the damaged pancreas to prevent the destruction. The review also provides new insights on the mechanism on how these suppressive immune cells protect the pancreas from the destruction of autoimmune cells. A novel method to develop functional auto Ag-specific Tregs that are derived from induced pluripotent stem cells (iPSCs), i.e., iPSC-Tregs, is discussed. Adoptive transfer of the iPSC-Tregs can substantially suppress T1D development in a murine model.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 1359 TAMU, 8447 Riverside Pkwy, MREB 2, Bryan, TX, 77807-3260, USA
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 1359 TAMU, 8447 Riverside Pkwy, MREB 2, Bryan, TX, 77807-3260, USA
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 1359 TAMU, 8447 Riverside Pkwy, MREB 2, Bryan, TX, 77807-3260, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 1359 TAMU, 8447 Riverside Pkwy, MREB 2, Bryan, TX, 77807-3260, USA.
| |
Collapse
|
48
|
Greenberg SA, Pinkus JL, Kong SW, Baecher-Allan C, Amato AA, Dorfman DM. Highly differentiated cytotoxic T cells in inclusion body myositis. Brain 2019; 142:2590-2604. [DOI: 10.1093/brain/awz207] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/21/2019] [Accepted: 05/16/2019] [Indexed: 01/12/2023] Open
Abstract
Abstract
Inclusion body myositis is a late onset treatment-refractory autoimmune disease of skeletal muscle associated with a blood autoantibody (anti-cN1A), an HLA autoimmune haplotype, and muscle pathology characterized by cytotoxic CD8+ T cell destruction of myofibres. Here, we report on translational studies of inclusion body myositis patient muscle compared with a diverse set of other muscle disease samples. Using available microarray data on 411 muscle samples from patients with inclusion body myositis (n = 40), other muscle diseases (n = 265), and without neuromuscular disease (normal, n = 106), we identified a signature of T-cell cytotoxicity in inclusion body myositis muscle coupled with a signature of highly differentiated CD8 T-cell effector memory and terminally differentiated effector cells. Further, we examined killer cell lectin-like receptor G1 (KLRG1) as a marker of this population of cells, demonstrated the correlation of KLRG1 gene expression with lymphocyte cytotoxicity across 28 870 human tissue samples, and identified the presence of KLRG1 on pathogenic inclusion body myositis muscle invading T cells and an increase in KLRG1 expressing T cells in inclusion body myositis blood. We examined inclusion body myositis muscle T-cell proliferation by Ki67 immunohistochemistry demonstrating that diseased muscle-invading T cells are minimally or non-proliferative, in accordance with known properties of highly differentiated or terminally differentiated T cells. We found low expression of KLRG1 on infection-protective human lymphoid tissue central memory T cells and autoimmune-protective human blood regulatory T cells. Targeting highly differentiated cytotoxic T cells could be a favourable approach to treatment of inclusion body myositis.
Collapse
Affiliation(s)
- Steven A Greenberg
- Brigham and Women’s Hospital Department of Neurology, Division of Neuromuscular Disease, and Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA
| | - Jack L Pinkus
- Brigham and Women’s Hospital Department of Neurology, Division of Neuromuscular Disease, and Harvard Medical School, Boston, MA, USA
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA
| | - Clare Baecher-Allan
- Brigham and Women’s Hospital Department of Neurology, Division of Neuromuscular Disease, and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Disease, Brigham and Women's Hospital, Boston, MA, USA
| | - Anthony A Amato
- Brigham and Women’s Hospital Department of Neurology, Division of Neuromuscular Disease, and Harvard Medical School, Boston, MA, USA
| | - David M Dorfman
- Brigham and Women’s Hospital Department of Neurology, Division of Neuromuscular Disease, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Le Berre L, Danger R, Mai HL, Amon R, Leviatan Ben-Arye S, Bruneau S, Senage T, Perreault H, Teraiya M, Nguyen TVH, Le Tourneau T, Yu H, Chen X, Galli C, Roussel JC, Manez R, Costa C, Brouard S, Galinanes M, Harris KM, Gitelman S, Cozzi E, Charreau B, Padler-Karavani V, Soulillou JP. Elicited and pre-existing anti-Neu5Gc antibodies differentially affect human endothelial cells transcriptome. Xenotransplantation 2019; 26:e12535. [PMID: 31293002 DOI: 10.1111/xen.12535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Humans cannot synthesize N-glycolylneuraminic acid (Neu5Gc) but dietary Neu5Gc can be absorbed and deposited on endothelial cells (ECs) and diet-induced anti-Neu5Gc antibodies (Abs) develop early in human life. While the interaction of Neu5Gc and diet-induced anti-Neu5Gc Abs occurs in all normal individuals, endothelium activation by elicited anti-Neu5Gc Abs following a challenge with animal-derived materials, such as following xenotransplantation, had been postulated. Ten primary human EC preparations were cultured with affinity-purified anti-Neu5Gc Abs from human sera obtained before or after exposure to Neu5Gc-glycosylated rabbit IgGs (elicited Abs). RNAs of each EC preparation stimulated in various conditions by purified Abs were exhaustively sequenced. EC transcriptomic patterns induced by elicited anti-Neu5Gc Abs, compared with pre-existing ones, were analyzed. qPCR, cytokines/chemokines release, and apoptosis were tested on some EC preparations. The data showed that anti-Neu5Gc Abs induced 967 differentially expressed (DE) genes. Most DE genes are shared following EC activation by pre-existing or anti-human T-cell globulin (ATG)-elicited anti-Neu5Gc Abs. Compared with pre-existing anti-Neu5Gc Abs, which are normal component of ECs environment, elicited anti-Neu5Gc Abs down-regulated 66 genes, including master genes of EC function. Furthermore, elicited anti-Neu5Gc Abs combined with complement-containing serum down-regulated most transcripts mobilized by serum alone. Both types of anti-Neu5Gc Abs-induced a dose- and complement-dependent release of selected cytokines and chemokines. Altogether, these data show that, compared with pre-existing anti-Neu5Gc Abs, ATG-elicited anti-Neu5Gc Abs specifically modulate genes related to cytokine responses, MAPkinase cascades, chemotaxis, and integrins and do not skew the EC transcriptome toward a pro-inflammatory profile in vitro.
Collapse
Affiliation(s)
- Ludmilla Le Berre
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Hoa L Mai
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Ron Amon
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sarah Bruneau
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Thomas Senage
- Service de Chirurgie Cardio-Thoracique, CHU Nantes, Hopital Laennec, Nantes, France
| | - Helene Perreault
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Milan Teraiya
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thi Van Ha Nguyen
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | | | - Hai Yu
- Department of Chemistry, University of California-Davis, Davis, California
| | - Xi Chen
- Department of Chemistry, University of California-Davis, Davis, California
| | - Cesare Galli
- Avantea, Laboratory of Reproductive Technologies and Fondazione Avantea, Cremona, Italy
| | | | - Rafael Manez
- Intensive Care Medicine Department, Hospital Universitario de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.,Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Costa
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Manuel Galinanes
- Department of Cardiac Surgery/Reparative Therapy of the Heart, Vall d'Hebron Research Institute and University Hospital Vall d'Hebron, Barcelona, Spain
| | - Kristina M Harris
- Immune Tolerance Network, Massachusetts General Hospital, Bathesda, Maryland
| | - Stephen Gitelman
- Division of Pediatric Endocrinology and Diabetes, University of California at San Francisco, San Francisco, California
| | - Emanuele Cozzi
- Transplantation Immunology Unit, Padua University Hospital, Padova, Italy
| | - Beatrice Charreau
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
50
|
Haller MJ, Long SA, Blanchfield JL, Schatz DA, Skyler JS, Krischer JP, Bundy BN, Geyer SM, Warnock MV, Miller JL, Atkinson MA, Becker DJ, Baidal DA, DiMeglio LA, Gitelman SE, Goland R, Gottlieb PA, Herold KC, Marks JB, Moran A, Rodriguez H, Russell WE, Wilson DM, Greenbaum CJ. Low-Dose Anti-Thymocyte Globulin Preserves C-Peptide, Reduces HbA 1c, and Increases Regulatory to Conventional T-Cell Ratios in New-Onset Type 1 Diabetes: Two-Year Clinical Trial Data. Diabetes 2019; 68:1267-1276. [PMID: 30967424 PMCID: PMC6610026 DOI: 10.2337/db19-0057] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022]
Abstract
A three-arm, randomized, double-masked, placebo-controlled phase 2b trial performed by the Type 1 Diabetes TrialNet Study Group previously demonstrated that low-dose anti-thymocyte globulin (ATG) (2.5 mg/kg) preserved β-cell function and reduced HbA1c for 1 year in new-onset type 1 diabetes. Subjects (N = 89) were randomized to 1) ATG and pegylated granulocyte colony-stimulating factor (GCSF), 2) ATG alone, or 3) placebo. Herein, we report 2-year area under the curve (AUC) C-peptide and HbA1c, prespecified secondary end points, and potential immunologic correlates. The 2-year mean mixed-meal tolerance test-stimulated AUC C-peptide, analyzed by ANCOVA adjusting for baseline C-peptide, age, and sex (n = 82) with significance defined as one-sided P < 0.025, was significantly higher in subjects treated with ATG versus placebo (P = 0.00005) but not ATG/GCSF versus placebo (P = 0.032). HbA1c was significantly reduced at 2 years in subjects treated with ATG (P = 0.011) and ATG/GCSF (P = 0.022) versus placebo. Flow cytometry analyses demonstrated reduced circulating CD4:CD8 ratio, increased regulatory T-cell:conventional CD4 T-cell ratios, and increased PD-1+CD4+ T cells following low-dose ATG and ATG/GCSF. Low-dose ATG partially preserved β-cell function and reduced HbA1c 2 years after therapy in new-onset type 1 diabetes. Future studies should determine whether low-dose ATG might prevent or delay the onset of type 1 diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | | | | | | | | | | | - Dorothy J Becker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- University of Pittsburgh, Pittsburgh, PA
| | - David A Baidal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | | | | | - Peter A Gottlieb
- University of Colorado Barbara Davis Center for Childhood Diabetes, Aurora, CO
| | | | - Jennifer B Marks
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | | | | | | | | | | |
Collapse
|