1
|
Geng XQ, Chen SF, Wang FY, Yang HJ, Zhao YL, Xu ZR, Yang Y. Correlation between key indicators of continuous glucose monitoring and the risk of diabetic foot. World J Diabetes 2025; 16:99277. [PMID: 40093283 PMCID: PMC11885981 DOI: 10.4239/wjd.v16.i3.99277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/09/2024] [Accepted: 12/23/2024] [Indexed: 01/21/2025] Open
Abstract
BACKGROUND Continuous glucose monitoring (CGM) metrics, such as time in range (TIR) and glycemic risk index (GRI), have been linked to various diabetes-related complications, including diabetic foot (DF). AIM To investigate the association between CGM-derived indicators and the risk of DF in individuals with type 2 diabetes mellitus (T2DM). METHODS A total of 591 individuals with T2DM (297 with DF and 294 without DF) were enrolled. Relevant clinical data, complications, comorbidities, hematological parameters, and 72-hour CGM data were collected. Logistic regression analysis was employed to examine the relationship between these measurements and the risk of DF. RESULTS Individuals with DF exhibited higher mean blood glucose (MBG) levels and increased proportions of time above range (TAR), TAR level 1, and TAR level 2, but lower TIR (all P < 0.001). Patients with DF had significantly lower rates of achieving target ranges for TIR, TAR, and TAR level 2 than those without DF (all P < 0.05). Logistic regression analysis revealed that GRI, MBG, and TAR level 1 were positively associated with DF risk, while TIR was inversely correlated (all P < 0.05). Achieving TIR and TAR was inversely correlated with white blood cell count and glycated hemoglobin A1c levels (P < 0.05). Additionally, achieving TAR was influenced by fasting plasma glucose, body mass index, diabetes duration, and antidiabetic medication use. CONCLUSION CGM metrics, particularly TIR and GRI, are significantly associated with the risk of DF in T2DM, emphasizing the importance of improved glucose control.
Collapse
Affiliation(s)
- Xin-Qian Geng
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Second People’s Hospital of Yunnan Province, Kunming 650021, Yunnan Province, China
| | - Shun-Fang Chen
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Second People’s Hospital of Yunnan Province, Kunming 650021, Yunnan Province, China
| | - Fei-Ying Wang
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Second People’s Hospital of Yunnan Province, Kunming 650021, Yunnan Province, China
| | - Hui-Jun Yang
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Second People’s Hospital of Yunnan Province, Kunming 650021, Yunnan Province, China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan University, Kunming 650500, Yunnan Province, China
| | - Zhang-Rong Xu
- The Diabetic Center of PLA, The Ninth Medical Center of PLA General Hospital (306th Hosp PLA), Beijing 100101, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Yunnan University, Second People’s Hospital of Yunnan Province, Kunming 650021, Yunnan Province, China
| |
Collapse
|
2
|
Imaoka S, Kudou G, Shigefuji H, Koujina S, Matsuki K, Terou T, Minata S. Effect of Early Postoperative Physical Therapy and Educational Program on Wound Recurrence in Diabetic Foot Ulcers: A Randomized Controlled Trial. J Clin Med 2025; 14:421. [PMID: 39860423 PMCID: PMC11765881 DOI: 10.3390/jcm14020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Objective: This study aimed to examine the impact of early postoperative physical therapy combined with an educational program on wound recurrence and quality of life in patients with foot ulcers. Methods: Forty-eight postoperative patients with diabetic foot ulcers were randomly assigned to either an intervention group, which received both physical therapy and an educational program (n = 25), or a control group, which received physical therapy only (n = 23). Each intervention was initiated on the day after surgery in both groups. The intervention group participated in physical therapy sessions, followed by a 15 min disease education program conducted five times per week. The primary endpoint was the rate of wound recurrence six months after hospital discharge. Secondary endpoints included ankle dorsiflexion range of motion, knee extension strength, gait functional independence measure scores, problem areas in diabetes scores, and EuroQol-5 dimensions-5 levels scores. Results: The intervention group demonstrated a significantly lower rate of wound recurrence within six months after discharge (10.5%) compared with the control group (27.7%). Conclusions: The combined use of early postoperative physical therapy and educational programs was an effective intervention strategy, contributing to reduced wound recurrence rates in patients with diabetic foot ulcers.
Collapse
Affiliation(s)
- Shinsuke Imaoka
- Department of Rehabilitation, Oita Oka Hospital, Oita 870-0105, Japan
| | | | | | | | | | | | | |
Collapse
|
3
|
Thorsted A, Lehn SF, Kofoed‐Enevoldsen A, Andersen A, Heltberg A, Michelsen SI, Thygesen LC. The risk of type 2-diabetes among persons with intellectual disability: a Danish population-based matched cohort study. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2025; 69:90-102. [PMID: 39359008 PMCID: PMC11621590 DOI: 10.1111/jir.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Previous research shows that obesity, unhealthy eating, physical inactivity and a high use of psychotropic medications are prevalent among persons with intellectual disability (ID), which might increase the risk of type 2-diabetes (T2DM). This study aims to investigate: (1) whether persons with ID have an increased risk of T2DM compared with an age- and sex-matched reference group and (2) differences in T2DM risk by sex, birth year, ID inclusion diagnosis and ID severity. METHODS This study is a nationwide cohort study, including 65 293 persons with ID and 659 723 persons in an age- and sex-matched reference group without ID. Incidence rates for T2DM were calculated and Cox proportional regression models were used to estimate adjusted hazard ratios (aHRs) for the association between ID and T2DM. Follow-up began from the 1 January 1977 (when T2DM data were available), participants' 22nd birthday or from the date the participants immigrated to Denmark, whichever came last and continued until the onset of T2DM, emigration, death or end of follow-up (31 December 2021), whichever came first. RESULTS Persons with ID had more than double risk of T2DM compared with the reference group [aHR = 2.15, 95% confidence interval (CI): 2.09-2.20]. The strongest associations were found among women, persons born between 1980 and 1999 and among persons with mild ID. CONCLUSIONS Persons with ID have an increased risk of T2DM. This knowledge is important in relation to the development and prioritising of preventive initiatives among persons with ID in the healthcare sector. Future research should focus on the underlying mechanisms that can explain the possible association between ID and T2DM as it allows a more targeted prevention strategy.
Collapse
Affiliation(s)
- A. Thorsted
- National Institute of Public HealthUniversity of Southern DenmarkCopenhagenDenmark
| | - S. F. Lehn
- National Institute of Public HealthUniversity of Southern DenmarkCopenhagenDenmark
- Steno Diabetes Center SjaellandHolbækDenmark
- PROgrezNæstved, Slagelse and Ringsted HospitalsSlagelseDenmark
| | - A. Kofoed‐Enevoldsen
- Steno Diabetes Center SjaellandHolbækDenmark
- Department of EndocrinologyNykøbing Falster Hospital, Nykøbing FalsterDenmark
| | - A. Andersen
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| | - A. Heltberg
- Centre for General Practice, The Research Unit for General Practice in Region Zealand and Copenhagen, Section for General Practice, Department of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - S. I. Michelsen
- National Institute of Public HealthUniversity of Southern DenmarkCopenhagenDenmark
| | - L. C. Thygesen
- National Institute of Public HealthUniversity of Southern DenmarkCopenhagenDenmark
| |
Collapse
|
4
|
Stachowiak L, Kraczkowska W, Świercz A, Jagodziński PP. Circulating non-coding RNA in type 1 diabetes mellitus as a source of potential biomarkers - An emerging role of sex difference. Biochem Biophys Res Commun 2024; 736:150482. [PMID: 39121670 DOI: 10.1016/j.bbrc.2024.150482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Non-coding RNAs (ncRNAs), such as microRNA, long non-coding RNA, and circular RNA, are considered essential regulatory molecules mediating many cellular processes. Moreover, an increasing number of studies have investigated the role of ncRNAs in cancers and various metabolic disorders, including diabetes mellitus. Interestingly, some circulating ncRNA detected in body fluids may serve as novel biomarkers. There is still a lack of conventional biomarkers that detect the early stage of type 1 diabetes mellitus. Many circulating microRNA, long non-coding RNA, and circular RNA show aberrant expression in type 1 diabetes patients compared to healthy individuals. However, most studies have focused on circulating microRNA rather than long non-coding RNA or circular RNA. In addition, a few studies have evaluated sex differences in ncRNA biomarkers. Therefore, this article summarises current knowledge about circulating ncRNAs as potential biomarkers for type 1 diabetes and explores the effects of sex on such biomarkers.
Collapse
Affiliation(s)
- Lucyna Stachowiak
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 street, 60-781, Poznań, Poland.
| | - Weronika Kraczkowska
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 street, 60-781, Poznań, Poland.
| | - Aleksandra Świercz
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2 street, 60-965, Poznań, Poland; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 street, 61-704, Poznań, Poland.
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 street, 60-781, Poznań, Poland.
| |
Collapse
|
5
|
Imaoka S, Kudou G, Tsugiyama K, Minata S, Teroh T, Ootsuka M, Furukawa M, Higashi T, Okita M. Efficacy of Belt Electrode Skeletal Muscle Electrical Stimulation in the Postoperative Rest Period in Patients with Diabetes who Have Undergone minor Amputations: A Randomized Controlled Trial. INT J LOW EXTR WOUND 2024; 23:560-567. [PMID: 35102749 DOI: 10.1177/15347346221077491] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to investigate whether belt electrode skeletal muscle electrical stimulation (B-SES) would improve postoperative lower limb function and walking ability in patients with diabetes who have undergone minor amputations. Diabetic patients who had undergone minor amputations were assigned randomly to a B-SES or control group. The B-SES group underwent conventional physical therapy for 20 min and B-SES for 20 min. The control group underwent only the 20-min conventional physical therapy. In both groups, rehabilitation was introduced by the physical therapists for 14 days from postoperative day 1. The outcome measures were range of motion in the ankle joint, knee extension muscle strength, ambulation status, and quality of life score. All these were evaluated before the intervention and 2 and 4 weeks after the intervention. From the 84 patients initially assessed, 32 were assigned to either the B-SES (N = 16) or control (N = 16) group. Preoperatively, there were no significant differences in all endpoints. The B-SES group showed significant improvement in the ankle dorsiflexion angle at 2 weeks postoperatively and knee joint extension strength at 4 weeks postoperatively. Postoperative B-SES with standard physical therapy might improve the range of motion of dorsiflexion of the ankle joint and extensor strength of the knee joint in patients with diabetes who have undergone minor amputations. B-SES is a useful tool to improve postoperative physical function in diabetic patients who have undergone minor amputations. A multicenter study is needed to determine the effective B-SES combined with regular physiotherapy for minor amputation.
Collapse
Affiliation(s)
- Shinsuke Imaoka
- Department of Physical Therapy, Oita Oka Hospital, Oita City, Oita Prefecture
| | - Genki Kudou
- Department of Physical Therapy, Oita Oka Hospital, Oita City, Oita Prefecture
| | - Kohei Tsugiyama
- Department of Physical Therapy, Oita Oka Hospital, Oita City, Oita Prefecture
| | - Shohei Minata
- Department of Physical Therapy, Oita Oka Hospital, Oita City, Oita Prefecture
| | - Taisuke Teroh
- Department of Physical Therapy, Oita Oka Hospital, Oita City, Oita Prefecture
| | - Mikiko Ootsuka
- Department of Physical Therapy, Oita Oka Hospital, Oita City, Oita Prefecture
| | - Masahide Furukawa
- Department of Plastic Surgery, Oita Oka Hospital, Oita City, Oita Prefecture
| | - Toshio Higashi
- Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki Prefecture, Japan
| | - Minoru Okita
- Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki Prefecture, Japan
| |
Collapse
|
6
|
Rui Y, Zhang X, Xie H, Qi H, Liu R, Zeng N. Association of the dietary inflammatory index with complicated diabetic kidney disease in people with diabetes mellitus: evidence from NHANES 2009-2018. Acta Diabetol 2024; 61:1375-1384. [PMID: 38847922 DOI: 10.1007/s00592-024-02288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/14/2024] [Indexed: 11/03/2024]
Abstract
AIMS Diabetic kidney disease (DKD) significantly impairs quality of life in individuals with diabetes mellitus (DM). The influence of the Dietary Inflammatory Index (DII) on DKD, which is associated with adverse health outcomes, is not well-understood. METHODS We analyzed 2712 subjects from the National Health and Nutrition Examination Survey (NHANES) spanning 2011-2018, aiming to elucidate the relationship between DII and DKD. RESULTS DKD was diagnosed in 1016 participants (37.46%). Elevated DII levels were significantly associated with an increased DKD risk, as evidenced by multivariate logistic regression (Odds Ratio [OR] = 1.40, 95% Confidence Interval [CI] 1.12-1.75, P < 0.05). Further analysis after adjusting for covariates highlighted a notable non-linear correlation between DII and DKD risk, at DII values below 0.45, the risk of DKD increases with higher DII levels, whereas it stabilizes beyond this point. Subgroup analysis additionally revealed that diabetic men have a significantly higher DKD risk compared to women (P < 0.05). CONCLUSION Our study indicates a pronounced link between higher DII scores and increased risk of DKD among DM patients. These findings underscore the paramount importance of dietary management in DM treatment, stressing the need for interventions focused on reducing dietary inflammation to decelerate DKD progression.
Collapse
Affiliation(s)
- Yixin Rui
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Xiumeng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hongxiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
7
|
Munkhjargal U, Fukuda D, Maeda J, Hara T, Okamoto S, Bavuu O, Yamamoto T, Sata M. LCZ696, an Angiotensin Receptor-Neprilysin Inhibitor, Ameliorates Endothelial Dysfunction in Diabetic C57BL/6 Mice. J Atheroscler Thromb 2024; 31:1333-1340. [PMID: 38616113 PMCID: PMC11374559 DOI: 10.5551/jat.64468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/18/2024] [Indexed: 04/16/2024] Open
Abstract
AIMS LCZ696 (sacubitril/valsartan) exerts cardioprotective effects. Recent studies have suggested that it improves the endothelial function; however, the underlying mechanisms have not been thoroughly investigated. We investigated whether LCZ696 ameliorates diabetes-induced endothelial dysfunction. METHODS Diabetes was induced using streptozotocin in 8-week-old male C57BL/6 mice. Diabetic mice were randomly assigned to receive LCZ696 (100 mg/kg/day), valsartan (50 mg/kg/day), or a vehicle for three weeks. The endothelium-dependent and endothelium-independent vascular responses of the aortic segments were determined based on the response to acetylcholine and sodium nitroprusside, respectively. Human umbilical vein endothelial cells (HUVEC) and aortic segments obtained from C57BL/6 mice were used to perform in vitro and ex vivo experiments, respectively. RESULTS LCZ696 and valsartan reduced the blood pressure in diabetic mice (P<0.05). The administration of LCZ696 (P<0.001) and valsartan (P<0.01) ameliorated endothelium-dependent vascular relaxation, but not endothelium-independent vascular relaxation, under diabetic conditions. LCZ696, but not valsartan, increased eNOSSer1177 (P=0.06) and Akt (P<0.05) phosphorylation in the aorta. In HUVEC, methylglyoxal (MGO), a major precursor of advanced glycation end products, decreased eNOSSer1177 phosphorylation (P<0.05) and increased eNOSThr495 phosphorylation (P<0.001). However, atrial natriuretic peptide (ANP) reversed these effects. ANP also ameliorated the MGO-induced impairment of endothelium-dependent vascular relaxation in the aortic segments (P<0.05), although L-NAME completely blocked this effect (P<0.001). CONCLUSION LCZ696 ameliorated diabetes-induced endothelial dysfunction by increasing the bioavailability of ANP. Our findings suggest that LCZ696 has a vascular protective effect in a diabetic model and highlight that it may be more effective than valsartan.
Collapse
Affiliation(s)
- Uugantsetseg Munkhjargal
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Juri Maeda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tomoya Hara
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shintaro Okamoto
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Oyunbileg Bavuu
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takayuki Yamamoto
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
8
|
Takamizawa R, Hotta K, Fujii Y, Ikegami R, Hitosugi N, Inoue T, Tamiya H, Tsubaki A. Transcapillary PO 2 Gradients in Contracting Muscles of Type I Diabetic Rats. Microcirculation 2024; 31:e12870. [PMID: 38805591 DOI: 10.1111/micc.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVE This study aimed to clarify the effect of Type I diabetes (DIA) on transcapillary PO2 gradients, which are oxygen-driving factors between the blood and the interstitium, in the contracting muscle of rats. METHODS Wistar male rats were divided into the diabetic (streptozocin i.p.) and sham groups. Microvascular and interstitial PO2 were measured in the extensor digitorum longus muscle during electrical stimulation-induced muscle contraction, using the phosphorescence quenching method. Transcapillary PO2 gradient, ΔPO2, was calculated as microvascular minus interstitial PO2. RESULTS Resting microvascular PO2 was higher in the diabetic group than in the sham group (6.3 ± 1.7 vs. 4.7 ± 0.9 mmHg, p < 0.05) and remained for 180 s. Interstitial PO2 from rest to muscle contraction did not differ between the groups. The ΔPO2 was higher in the diabetic group than in the sham group at rest and during muscle contraction (4.03 ± 1.42 vs. 2.46 ± 0.90 mmHg at rest; 3.67 ± 1.51 vs. 2.22 ± 0.65 mmHg during muscle contraction, p < 0.05). Marked muscle atrophy was observed in the diabetic group. CONCLUSION DIA increased microvascular and transcapillary PO2 gradients in the skeletal muscle. The enhanced PO2 gradients were maintained from rest to muscle contraction in diabetic muscle.
Collapse
Affiliation(s)
- Ren Takamizawa
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Niigata, Japan
| | - Kazuki Hotta
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa, Japan
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Yutaka Fujii
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Niigata, Japan
| | - Ryo Ikegami
- Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Naoki Hitosugi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Niigata, Japan
| | - Tatsuro Inoue
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Niigata, Japan
| | - Hajime Tamiya
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Niigata, Japan
| | - Atsuhiro Tsubaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Niigata, Japan
| |
Collapse
|
9
|
Elwakiel A, Mathew A, Isermann B. The role of endoplasmic reticulum-mitochondria-associated membranes in diabetic kidney disease. Cardiovasc Res 2024; 119:2875-2883. [PMID: 38367274 DOI: 10.1093/cvr/cvad190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 02/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. The pathomechanisms of DKD are multifactorial, yet haemodynamic and metabolic changes in the early stages of the disease appear to predispose towards irreversible functional loss and histopathological changes. Recent studies highlight the importance of endoplasmic reticulum-mitochondria-associated membranes (ER-MAMs), structures conveying important cellular homeostatic and metabolic effects, in the pathology of DKD. Disruption of ER-MAM integrity in diabetic kidneys is associated with DKD progression, but the regulation of ER-MAMs and their pathogenic contribution remain largely unknown. Exploring the cell-specific components and dynamic changes of ER-MAMs in diabetic kidneys may lead to the identification of new approaches to detect and stratify diabetic patients with DKD. In addition, these insights may lead to novel therapeutic approaches to target and/or reverse disease progression. In this review, we discuss the association of ER-MAMs with key pathomechanisms driving DKD such as insulin resistance, dyslipidaemia, ER stress, and inflammasome activation and the importance of further exploration of ER-MAMs as diagnostic and therapeutic targets in DKD.
Collapse
Affiliation(s)
- Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Wang JM, Miao MY, Jia YP, Wang XW, Wu XB, Wan ZX, Zheng Y, Qin LQ, Li FR, Chen GC. Effects of intensive glycemic control on microvascular outcomes in type 2 diabetes mellitus are modified by long-term HbA 1c variability: A post hoc analysis of the ACCORD trial. Diabetes Res Clin Pract 2024; 208:111100. [PMID: 38246509 DOI: 10.1016/j.diabres.2024.111100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
AIMS To assess the impact of long-term visit-to-visit variability in HbA1c on microvascular outcomes in type 2 diabetes mellitus (T2DM), and its influence on the effects of intensive glycemic control. METHODS Included were participants with T2DM enrolled in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) who had at least three measurements of HbA1c prior to new-onset microvascular outcomes, namely nephropathy, retinopathy and neuropathy. Variability in HbA1c was defined as the coefficient of variation (CV) across HbA1c measurements obtained from enrollment to the transition from intensive to standard glycemic therapy. RESULTS During a median of 22,005, 23,121, and 13,080 person-years of follow-up, 2,905 nephropathy, 2,655 retinopathy, and 1,974 neuropathy cases were recorded, respectively. Median CV (IQR) was 7.91 % (5.66 %-10.76 %) in the standard treatment group and 9.79 % (7.32 %-13.35 %) in the intensive treatment group. In the standard treatment group, lower HbA1c-CV (the first versus the second quartile) was associated with a higher risk of all microvascular outcomes, while higher HbA1c-CV (the fourth quartile) was associated with a higher risk of nephropathy only. In the intensive treatment group, only higher HbA1c-CV was associated with a higher risk of developing the microvascular outcomes. Intensive therapy reduced all microvascular outcomes among individuals with lower HbA1c-CV, but increased the risk among those with the highest HbA1c-CV (all P values for interaction < 0.0001). For example, hazard ratios (95 % CI) of retinopathy comparing intensive with standard treatments were 0.65 (0.56-0.75), 0.84 (0.71-0.98), 0.97 (0.82-1.14) and 1.28 (1.08-1.53) across the lowest to the highest quartiles of HbA1c variability. CONCLUSIONS The effects of intensive glycemic control on microvascular outcomes in T2DM appear to be modified by the variability of HbA1c during the treatment process, suggesting the significance of dynamic monitoring of HbA1c levels and timely adjustments to the therapeutic strategy among individuals with a high HbA1c variability.
Collapse
Affiliation(s)
- Jia-Min Wang
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Meng-Yuan Miao
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yi-Ping Jia
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiao-Wen Wang
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing, China
| | - Xian-Bo Wu
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, China
| | - Zhong-Xiao Wan
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Fu-Rong Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China.
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Khalil UA, Mohamed OE, Abdullah AA, Fawzy MS, Rashad NM, Samir GM. Do Serum Nesfatin-1 Levels have A Predictive Role in Type-2 Diabetes Mellitus and its Microvascular Complications? A Case-Control Study. Cureus 2024; 16:e53007. [PMID: 38406171 PMCID: PMC10894677 DOI: 10.7759/cureus.53007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/06/2023] [Indexed: 02/27/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a chronic disease with macrovascular and microvascular complications. Nesfatin-1 is a neuropeptide that develops from a more substantial intermediate compound known as nucleobindin 2 (NUCB2). Nesfatin-1 is known to play a role in regulating various physiological processes related to appetite, energy balance, and body weight. The purpose of the current study was to investigate the serum levels of nesfatin-1 in Egyptian patients with type 2 diabetes mellitus (T2DM) in comparison to healthy subjects and to assess the association of serum nesfatin-1 levels with the occurrence of diabetic microvascular complications in those patients. Methods This matched case-control study was conducted on 90 subjects 40-80 years old, with normal hepatic, cardiac, and respiratory functions, and 60 of them had T2DM. The included participants were divided into two groups: group 1, which was the control group and included 30 healthy subjects, and group 2, which included 60 subjects with T2DM. Group 2 was subdivided according to the presence or absence of microvascular complications into group 2a, which included 30 patients having T2DM with no microvascular complications, and group 2b, which included 30 patients having T2DM with one or more microvascular complications. Results T2DM patients had significantly lower serum nesfatin-1 levels (5.07±1.78 versus 9.05±2.1 mmol/L, <0.001) compared to healthy controls. Also, T2DM patients with microvascular complications had lower serum nesfatin-1 levels (4.32±1.72 versus 5.83±1.51 mmol/L, <0.001) compared to T2DM patients without microvascular complications. Serum nesfatin-1 level at a cutoff value of <8.09 mmol/L can be a marker for the detection of diabetes mellitus (DM) with the area under the curve (AUC) of 94.3%, 95% sensitivity, 74.3% specificity, 77.9% positive predictive value (PPV), and 65.7% negative predictive value (NPV), and at a cutoff value of <5.87 mmol/L can be a marker for the detection of microvascular complications of diabetes mellitus at AUC of 75.5%, 76.7% sensitivity, 67.3% specificity, 77.1% PPV, and 62.9% NPV. Conclusions Serum Nesfatin-1 may play a potential protective role in diabetes mellitus (DM) and its microvascular complications, as it decreases in individuals with diabetes and those with diabetic microvascular complications compared to controls. Additionally, serum Nesfatin-1 levels may have predictive value for the early detection of Type 2 diabetes mellitus (T2DM) patients, diabetic microvascular complications, and diabetic kidney disease (DKD) at cut-off values of < 8.09 (mmol/L), < 5.87 (mmol/L), and < 5.46 (mmol/L), respectively. Therefore, targeted Nesfatin-1 drug therapy may be tried to reduce morbidity and mortality caused by microvascular complications of diabetes.
Collapse
Affiliation(s)
- Usama A Khalil
- Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, EGY
| | - Osama E Mohamed
- Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, EGY
- Medical Research Group of Egypt, Negida Academy, Arlington, MA, USA
| | | | - Mohamed S Fawzy
- Clinical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, EGY
| | - Nearmeen M Rashad
- Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, EGY
| | - Ghada M Samir
- Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, EGY
| |
Collapse
|
12
|
Lin J, Ren Q, Zhang F, Gui J, Xiang X, Wan Q. D-β-Hydroxybutyrate Dehydrogenase Mitigates Diabetes-Induced Atherosclerosis through the Activation of Nrf2. Thromb Haemost 2023; 123:1003-1015. [PMID: 37399841 DOI: 10.1055/s-0043-1770985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
BACKGROUND We aimed to investigate the role and mechanism of β-hydroxybutyrate dehydrogenase 1 (Bdh1) in regulating macrophage oxidative stress in diabetes-induced atherosclerosis (AS). METHODS We performed immunohistochemical analysis of femoral artery sections to determine differences in Bdh1 expression between normal participants, AS patients, and patients with diabetes-induced AS. Diabetic Apoe-/- mice and high-glucose (HG)-treated Raw264.7 macrophages were used to replicate the diabetes-induced AS model. The role of Bdh1 in this disease model was determined by adeno-associated virus (AAV)-mediated overexpression of Bdh1 or overexpression or silencing of Bdh1. RESULTS We observed reduced expression of Bdh1 in patients with diabetes-induced AS, HG-treated macrophages, and diabetic Apoe-/- mice. AAV-mediated Bdh1 overexpression attenuated aortic plaque formation in diabetic Apoe-/- mice. Silencing of Bdh1 resulted in increased reactive oxygen species (ROS) production and an inflammatory response in macrophages, which were reversed by the ROS scavenger N-acetylcysteine. Overexpression of Bdh1 protected Raw264.7 cells from HG-induced cytotoxicity by inhibiting ROS overproduction. In addition, Bdh1 induced oxidative stress through nuclear factor erythroid-related factor 2 (Nrf2) activation by fumarate acid. CONCLUSION Bdh1 attenuates AS in Apoe-/- mice with type 2 diabetes, accelerates lipid degradation, and reduces lipid levels by promoting ketone body metabolism. Moreover, it activates the Nrf2 pathway of Raw264.7 by regulating the metabolic flux of fumarate, which inhibits oxidative stress and leads to a decrease in ROS and inflammatory factor production.
Collapse
Affiliation(s)
- Jie Lin
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Fanjie Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Jing Gui
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Xin Xiang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Qin Wan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| |
Collapse
|
13
|
Phillips NE, Collet TH, Naef F. Uncovering personalized glucose responses and circadian rhythms from multiple wearable biosensors with Bayesian dynamical modeling. CELL REPORTS METHODS 2023; 3:100545. [PMID: 37671030 PMCID: PMC10475794 DOI: 10.1016/j.crmeth.2023.100545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/13/2023] [Accepted: 07/06/2023] [Indexed: 09/07/2023]
Abstract
Wearable biosensors and smartphone applications can measure physiological variables over multiple days in free-living conditions. We measure food and drink ingestion, glucose dynamics, physical activity, heart rate (HR), and heart rate variability (HRV) in 25 healthy participants over 14 days. We develop a Bayesian inference framework to learn personal parameters that quantify circadian rhythms and physiological responses to external stressors. Modeling the effects of ingestion events on glucose levels reveals that slower glucose decay kinetics elicit larger postprandial glucose spikes, and we uncover a circadian baseline rhythm for glucose with high amplitudes in some individuals. Physical activity and circadian rhythms explain as much as 40%-65% of the HR variance, whereas the variance explained for HRV is more heterogeneous across individuals. A more complex model incorporating activity, HR, and HRV explains up to 15% of additional glucose variability, highlighting the relevance of integrating multiple biosensors to better predict glucose dynamics.
Collapse
Affiliation(s)
- Nicholas E. Phillips
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Nutrition Unit, Service of Endocrinology, Diabetology, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals (HUG), 1211 Geneva, Switzerland
| | - Tinh-Hai Collet
- Nutrition Unit, Service of Endocrinology, Diabetology, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals (HUG), 1211 Geneva, Switzerland
- Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Gan Y, Chen M, Kong L, Wu J, Pu Y, Wang X, Zhou J, Fan X, Xiong Z, Qi H. A study of factors influencing long-term glycemic variability in patients with type 2 diabetes: a structural equation modeling approach. Front Endocrinol (Lausanne) 2023; 14:1216897. [PMID: 37588983 PMCID: PMC10425538 DOI: 10.3389/fendo.2023.1216897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
Aim The present study aims to utilize structural equation modeling (SEM) to investigate the factors impacting long-term glycemic variability among patients afflicted with type 2 diabetes. Method The present investigation is a retrospective cohort study that involved the collection of data on patients with type 2 diabetes mellitus who received care at a hospital located in Chengdu, Sichuan Province, over a period spanning from January 1, 2013, to October 30, 2022. Inclusion criteria required patients to have had at least three laboratory test results available. Pertinent patient-related information encompassing general demographic characteristics and biochemical indicators was gathered. Variability in the dataset was defined by standard deviation (SD) and coefficient of variation (CV), with glycosylated hemoglobin variation also considering variability score (HVS). Linear regression analysis was employed to establish the structural equation models for statistically significant influences on long-term glycemic variability. Structural equation modeling was employed to analyze effects and pathways. Results Diabetes outpatient special disease management, uric acid variability, mean triglyceride levels, mean total cholesterol levels, total cholesterol variability, LDL variability, baseline glycated hemoglobin, and recent glycated hemoglobin were identified as significant factors influencing long-term glycemic variability. The overall fit of the structural equation model was found to be satisfactory and it was able to capture the relationship between outpatient special disease management, biochemical indicators, and glycated hemoglobin variability. According to the total effect statistics, baseline glycated hemoglobin and total cholesterol levels exhibited the strongest impact on glycated hemoglobin variability. Conclusion The factors that have a significant impact on the variation of glycosylated hemoglobin include glycosylated hemoglobin itself, lipids, uric acid, and outpatient special disease management for diabetes. The identification and management of these associated factors can potentially mitigate long-term glycemic variability, thereby delaying the onset of complications and enhancing patients' quality of life.
Collapse
Affiliation(s)
- Yuqin Gan
- School of Nursing, Chengdu Medical College, Chengdu, China
- Clinical Medical College of Chengdu Medical College, First Affiliated Hospital, Chengdu, China
| | - Mengjie Chen
- School of Nursing, Chengdu Medical College, Chengdu, China
| | - Laixi Kong
- School of Nursing, Chengdu Medical College, Chengdu, China
| | - Juan Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ying Pu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoxia Wang
- School of Nursing, Chengdu Medical College, Chengdu, China
| | - Jian Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xinxin Fan
- School of Nursing, Chengdu Medical College, Chengdu, China
| | - Zhenzhen Xiong
- School of Nursing, Chengdu Medical College, Chengdu, China
| | - Hong Qi
- School of Nursing, Chengdu Medical College, Chengdu, China
- Clinical Medical College of Chengdu Medical College, First Affiliated Hospital, Chengdu, China
| |
Collapse
|
15
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Vascular nitric oxide resistance in type 2 diabetes. Cell Death Dis 2023; 14:410. [PMID: 37433795 PMCID: PMC10336063 DOI: 10.1038/s41419-023-05935-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
Vascular nitric oxide (NO•) resistance, manifested by an impaired vasodilator function of NO• in both the macro- and microvessels, is a common state in type 2 diabetes (T2D) associated with developing cardiovascular events and death. Here, we summarize experimental and human evidence of vascular NO• resistance in T2D and discuss its underlying mechanisms. Human studies indicate a ~ 13-94% decrease in the endothelium (ET)-dependent vascular smooth muscle (VSM) relaxation and a 6-42% reduced response to NO• donors, i.e., sodium nitroprusside (SNP) and glyceryl trinitrate (GTN), in patients with T2D. A decreased vascular NO• production, NO• inactivation, and impaired responsiveness of VSM to NO• [occurred due to quenching NO• activity, desensitization of its receptor soluble guanylate cyclase (sGC), and/or impairment of its downstream pathway, cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG)] are the known mechanisms underlying the vascular NO• resistance in T2D. Hyperglycemia-induced overproduction of reactive oxygen species (ROS) and vascular insulin resistance are key players in this state. Therefore, upregulating vascular NO• availability, re-sensitizing or bypassing the non-responsive pathways to NO•, and targeting key vascular sources of ROS production may be clinically relevant pharmacological approaches to circumvent T2D-induced vascular NO• resistance.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Kordowski A, Tetzlaff-Lelleck VV, Speckmann B, Loh G, Künstner A, Schulz F, Schröder T, Smollich M, Sina C, tom Dieck H. A nutritional supplement based on a synbiotic combination of Bacillus subtilis DSM 32315 and L-alanyl-L-glutamine improves glucose metabolism in healthy prediabetic subjects - A real-life post-marketing study. Front Nutr 2022; 9:1001419. [PMID: 36570155 PMCID: PMC9773202 DOI: 10.3389/fnut.2022.1001419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Impaired glucose homeostasis is a significant risk factor for cardiometabolic diseases, whereas the efficacy of available standard therapies is limited, mainly because of poor adherence. This post-marketing study assessed the glucose-lowering potential of a synbiotic-based formulation. Methods One hundred ninety-two participants were enrolled in a digital nutrition program with continuous glucose monitoring (CGM) and received a study product comprising Bacillus subtilis DSM 32315 and L-alanyl-L-glutamine. Participants underwent a first sensor phase without supplementation, followed by a 14-day supplementation phase without sensor, and completed by a second sensor phase while continuing supplementation. Fasting glucose levels were determined before and after supplementation by CGM. In addition, the postprandial glycemic response to an oral glucose challenge, body weight, HbA1c concentrations, and BMI was analyzed. Subgroup analyses of subjects with elevated glucose and HbA1c levels vs. normoglycemic subjects were performed. Results Supplementation with the study product resulted in significant improvements in glucose parameters (delta values: fasting glucose -2,13% ± 8.86; iAUC0-120 -4.91% ± 78.87; HbA1c: -1.20% ± 4.72) accompanied by a significant weight reduction (-1.07 kg ± 2.30) in the study population. Subgroup analyses revealed that the improvements were mainly attributed to a prediabetic subgroup with elevated fasting glucose and HbA1c values before supplementation (delta values: fasting glucose -6.10% 4± 7.89; iAUC0-120 -6.28% ± 115.85; HbA1c -3.31% ± 4.36; weight: -1.47 kg ± 2.82). Conclusion This study indicates that the synbiotic composition is an effective and convenient approach to counteract hyperglycemia. Further placebo-controlled studies are warranted to test its efficacy in the treatment of cardiometabolic diseases.
Collapse
Affiliation(s)
- Anna Kordowski
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | | | | | - Gunnar Loh
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | - Axel Künstner
- Perfood GmbH, Research and Development, Lübeck, Germany
| | | | - Torsten Schröder
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
- Perfood GmbH, Research and Development, Lübeck, Germany
| | - Martin Smollich
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
17
|
Protective Effect of High-Intensity Interval Training (HIIT) and Moderate-Intensity Continuous Training (MICT) against Vascular Dysfunction in Hyperglycemic Rats. J Nutr Metab 2022; 2022:5631488. [PMID: 36510592 PMCID: PMC9741543 DOI: 10.1155/2022/5631488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hyperglycemia is a major risk factor for endothelial dysfunction. Endothelial dysfunction is associated with the inability of endothelial cells to maintain homeostasis of the cardiovascular system. Regular exercise may be considered as an effective and low-cost nonpharmacological tool for improving vascular function, though there is no agreement on the best type of exercise. Objectives To determine how high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) may prevent endothelial dysfunction under hyperglycemic conditions, and to compare these two interventions. Method Twenty-four eight-week-old male Wistar rats were randomly assigned into four groups: healthy nonexercising control (C), hyperglycemic control (HG-C), hyperglycemic + HIIT (HG-IT), and hyperglycemic + MICT (HG-CT). Hyperglycemia was induced by a single injection of streptozotocin. Hyperglycemic animals were subjected to HIIT or MICT protocols six days a week for six weeks. Decapitation was performed the day after the exercise protocols were completed. The ascending aorta (until the abdominal artery) was examined. An enzyme-linked immunosorbent assay (ELISA) was used to measure the glucagon-likepeptide-1 (GLP-1), endothelial nitric oxide synthase (eNOS), and tumor necrosis factor-alpha (TNFα) levels. A colorimetric assay was used to measure superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels. Quantitative real-time polymerase chain reaction (PCR) was used to measure the expression of the receptor for advanced glycation end-products (RAGE) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Hematoxylin and eosin (H&E) staining was used to histologically analyze the aortas. Results There was a significantly higher level of GLP-1 and lower expression of RAGE, NF-κB, and TNFα in the HG-IT and HG-CT group compared to the HG-C group. Microscopic examination of aortic tissue showed a better tissue arrangement in both treatment groups than in the HG-C group. Except for the MDA level, there were no significant differences in any of the measured parameters between the HG-IT and HG-CT groups. Conclusion Under hyperglycemic conditions, both HIIT and MICT have a protective role against endothelial dysfunction.
Collapse
|
18
|
Takashi Y, Maeda Y, Toyokawa K, Oda N, Yoshioka R, Sekiguchi D, Minami M, Kawanami D. Fibroblast growth factor 23 and kidney function in patients with type 1 diabetes. PLoS One 2022; 17:e0274182. [PMID: 36084108 PMCID: PMC9462763 DOI: 10.1371/journal.pone.0274182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic kidney disease (DKD) is a key determinant of morbidity and mortality in patients with type 1 diabetes (T1D). Identifying factors associated with early glomerular filtration rate (GFR) decline in T1D is important in prevention or early intervention for DKD. This study investigated whether phosphate metabolism, including fibroblast growth factor 23 (FGF23) is associated with the kidney function of patients with T1D. We randomly recruited 118 patients with T1D with a normal or mildly impaired kidney function [chronic kidney disease (CKD) stages of G1/G2, A1/A2], and measured their serum FGF23 levels. Serum FGF23 was significantly negatively associated with the estimated GFR (eGFR) (r = -0.292, P = 0.0016), but not urinary albumin creatinine ratio (UACR), and positively associated with serum phosphate (Pi; r = 0.273, P = 0.0027). Serum FGF23 increased with decreasing eGFR quartiles (P for linear trend = 0.0371), while FGF23 was modestly higher in the higher quartiles of UACR (not statistically significant). The multiple linear regression analysis also showed a significant inverse association between FGF23 and eGFR (Model 1: β = -0.149, P = 0.0429; Model 2: β = -0.141, P = 0.0370). The association remained significant after adjustment for Pi. We identified that FGF23 was inversely associated with the eGFR in T1D patients with a normal or mildly impaired kidney function.
Collapse
Affiliation(s)
- Yuichi Takashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
- * E-mail: (YT); (DK)
| | - Yasutaka Maeda
- MINAMI Diabetes Clinical Research Center, Clinic Masae Minami, Fukuoka, Japan
| | - Kyoko Toyokawa
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Naoki Oda
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Rie Yoshioka
- MINAMI Diabetes Clinical Research Center, Clinic Masae Minami, Fukuoka, Japan
| | - Dan Sekiguchi
- MINAMI Diabetes Clinical Research Center, Clinic Masae Minami, Fukuoka, Japan
| | - Masae Minami
- MINAMI Diabetes Clinical Research Center, Clinic Masae Minami, Fukuoka, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
- * E-mail: (YT); (DK)
| |
Collapse
|
19
|
Bailey J, Coucha M, Bolduc DR, Burnett FN, Barrett AC, Ghaly M, Abdelsaid M. GLP-1 receptor nitration contributes to loss of brain pericyte function in a mouse model of diabetes. Diabetologia 2022; 65:1541-1554. [PMID: 35687178 PMCID: PMC11973880 DOI: 10.1007/s00125-022-05730-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS We have previously shown that diabetes causes pericyte dysfunction, leading to loss of vascular integrity and vascular cognitive impairment and dementia (VCID). Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs), used in managing type 2 diabetes mellitus, improve the cognitive function of diabetic individuals beyond glycaemic control, yet the mechanism is not fully understood. In the present study, we hypothesise that GLP-1 RAs improve VCID by preventing diabetes-induced pericyte dysfunction. METHODS Mice with streptozotocin-induced diabetes and non-diabetic control mice received either saline (NaCl 154 mmol/l) or exendin-4, a GLP-1 RA, through an osmotic pump over 28 days. Vascular integrity was assessed by measuring cerebrovascular neovascularisation indices (vascular density, tortuosity and branching density). Cognitive function was evaluated with Barnes maze and Morris water maze. Human brain microvascular pericytes (HBMPCs), were grown in high glucose (25 mmol/l) and sodium palmitate (200 μmol/l) to mimic diabetic conditions. HBMPCs were treated with/without exendin-4 and assessed for nitrative and oxidative stress, and angiogenic and blood-brain barrier functions. RESULTS Diabetic mice treated with exendin-4 showed a significant reduction in all cerebral pathological neovascularisation indices and an improved blood-brain barrier (p<0.05). The vascular protective effects were accompanied by significant improvement in the learning and memory functions of diabetic mice compared with control mice (p<0.05). Our results showed that HBMPCs expressed the GLP-1 receptor. Diabetes increased GLP-1 receptor expression and receptor nitration in HBMPCs. Stimulation of HBMPCs with exendin-4 under diabetic conditions decreased diabetes-induced vascular inflammation and oxidative stress, and restored pericyte function (p<0.05). CONCLUSIONS/INTERPRETATION This study provides novel evidence that brain pericytes express the GLP-1 receptor, which is nitrated under diabetic conditions. GLP-1 receptor activation improves brain pericyte function resulting in restoration of vascular integrity and BBB functions in diabetes. Furthermore, the GLP-1 RA exendin-4 alleviates diabetes-induced cognitive impairment in mice. Restoration of pericyte function in diabetes represents a novel therapeutic target for diabetes-induced cerebrovascular microangiopathy and VCID.
Collapse
Affiliation(s)
- Joseph Bailey
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Maha Coucha
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, Savannah, GA, USA
| | - Deanna R Bolduc
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Faith N Burnett
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Amy C Barrett
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Mark Ghaly
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Mohammed Abdelsaid
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA.
| |
Collapse
|
20
|
Kordowski A, Künstner A, Schweitzer L, Theis S, Schröder T, Busch H, Sina C, Smollich M. PalatinoseTM (Isomaltulose) and Prebiotic Inulin-Type Fructans Have Beneficial Effects on Glycemic Response and Gut Microbiota Composition in Healthy Volunteers—A Real-Life, Retrospective Study of a Cohort That Participated in a Digital Nutrition Program. Front Nutr 2022; 9:829933. [PMID: 35340549 PMCID: PMC8948463 DOI: 10.3389/fnut.2022.829933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
It is well-appreciated that the diet is a crucial tool to counteract cardiometabolic disturbances due to its impact on blood glucose concentration and gut microbiome. This retrospective analysis aimed to examine whether the inclusion of isomaltulose and prebiotic inulin-type fructans (ITF) into the habitual diet has an impact on glycemic control and gut microbiota. Furthermore, we examined interindividual differences in glycemic response to sugar replacement with isomaltulose. We retrospectively analyzed data of 117 individuals who participated in a digital nutrition program including a 14-day continuous glucose measurement. Participants underwent six test days with sweetened drinks (isomaltulose vs. sucrose) consumed with their usual breakfasts and lunches. Dinner was supplemented with ITF for 11 days. Postprandial glycemia and 24 h-glycemic variability were determined following test meals and days, respectively. Fecal microbiota was analyzed by 16S rRNA sequencing before and after test phase. Meals with isomaltulose-sweetened drinks compared to meals with sucrose-sweetened drinks induced lower postprandial glycemia. Moreover, glucose oscillations over 24 h were lower on isomaltulose when compared to sucrose test days and improved further during ITF supplementation. Furthermore, ITF modulated gut microbiota composition beneficially. Responder analysis revealed that 72% of participants benefited from the sugar replacement with isomaltulose and that their gut microbiota differed from the low responders. Taken together, the incorporation of isomaltulose and ITF into the habitual diet was shown to be an effective strategy to improve glucose control and beneficially modulate gut microbiota, and thereby aid to maintain metabolic health. Data indicate interindividual differences in glycemic response to ingredients and suggest that gut microbiota might be somehow related to it.
Collapse
Affiliation(s)
- Anna Kordowski
- Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein, Campus Lübeck and University of Lübeck, Lübeck, Germany
| | - Axel Künstner
- Group of Medical Systems Biology, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | | | | | - Torsten Schröder
- Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein, Campus Lübeck and University of Lübeck, Lübeck, Germany
- Perfood GmbH, Lübeck, Germany
| | - Hauke Busch
- Group of Medical Systems Biology, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein, Campus Lübeck and University of Lübeck, Lübeck, Germany
| | - Martin Smollich
- Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein, Campus Lübeck and University of Lübeck, Lübeck, Germany
- *Correspondence: Martin Smollich
| |
Collapse
|
21
|
Zhang L, Xu Y, Jiang X, Wu J, Liu F, Fan L, Li X, Yin G, Yang L. Impact of flash glucose monitoring on glycemic control varies with the age and residual β-cell function of patients with type 1 diabetes mellitus. J Diabetes Investig 2022; 13:552-559. [PMID: 34637185 PMCID: PMC8902407 DOI: 10.1111/jdi.13693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022] Open
Abstract
AIMS/INTRODUCTION We aimed to explore the clinical factors associated with glycemic variability (GV) assessed with flash glucose monitoring (FGM), and investigate the impact of FGM on glycemic control among Chinese type 1 diabetes mellitus patients in a real-life clinical setting. MATERIALS AND METHODS A total of 171 patients were included. GV was assessed from FGM data. A total of 110 patients wore FGM continuously for 6 months (longitudinal cohort). Hemoglobin A1c (HbA1c), fasting and 2-h postprandial C-peptide, and glucose profiles were collected. Changes in HbA1c and glycemic parameters were assessed during a 6-month FGM period. RESULTS Individuals with high residual C-peptide (HRCP; 2-h postprandial C-peptide >200 pmol/L) had less GV than patients with low residual C-peptide ( 2-h postprandial C-peptide ≤200 pmol/L; P < 0.001). In the longitudinal cohort (n = 110), HbA1c and mean glucose decreased, time in range (TIR) increased during the follow-up period (P < 0.05). The 110 patients were further divided into age and residual C-peptide subgroups: (i) HbA1c and mean glucose were reduced significantly only in the subgroup aged ≤14 years during the follow-up period, whereas time below range also increased in this subgroup at 3 months (P = 0.047); and (ii) HbA1c improved in the HRCP subgroup at 3 and 6 months (P < 0.05). The mean glucose decreased and TIR improved significantly in the low residual C-peptide subgroup; however, TIR was still lower and time below range was higher than those of the HRCP subgroup at all time points (P < 0.05). CONCLUSIONS HRCP was associated with less GV. FGM wearing significantly reduced HbA1c, especially in pediatric patients and those with HRCP. Additionally, the mean glucose and TIR were also found to improve.
Collapse
Affiliation(s)
- Liyin Zhang
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Yaling Xu
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Xiaofang Jiang
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jieru Wu
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Fang Liu
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Li Fan
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Xia Li
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Guangming Yin
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Lin Yang
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
22
|
Wei J, Tian J, Tang C, Fang X, Miao R, Wu H, Wang X, Tong X. The Influence of Different Types of Diabetes on Vascular Complications. J Diabetes Res 2022; 2022:3448618. [PMID: 35242879 PMCID: PMC8888068 DOI: 10.1155/2022/3448618] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
The final outcome of diabetes is chronic complications, of which vascular complications are the most serious, which is the main cause of death for diabetic patients and the direct cause of the increase in the cost of diabetes. Type 1 and type 2 diabetes are the main types of diabetes, and their pathogenesis is completely different. Type 1 diabetes is caused by genetics and immunity to destroy a large number of β cells, and insulin secretion is absolutely insufficient, which is more prone to microvascular complications. Type 2 diabetes is dominated by insulin resistance, leading to atherosclerosis, which is more likely to progress to macrovascular complications. This article explores the pathogenesis of two types of diabetes, analyzes the pathogenesis of different vascular complications, and tries to explain the different trends in the progression of different types of diabetes to vascular complications, in order to better prevent diabetes and its vascular complications.
Collapse
Affiliation(s)
- Jiahua Wei
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiaxing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Cheng Tang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xinyi Fang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Runyu Miao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Haoran Wu
- Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xiuge Wang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Xiaolin Tong
- Changchun University of Chinese Medicine, Changchun 130117, China
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
23
|
Xie P, Deng B, Zhang X, Li Y, Du C, Rui S, Deng W, Boey J, Armstrong DG, Ma Y, Deng W. Time in range in relation to amputation and all-cause mortality in hospitalised patients with diabetic foot ulcers. Diabetes Metab Res Rev 2022; 38:e3498. [PMID: 34587332 DOI: 10.1002/dmrr.3498] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
AIMS The aim of this study was to evaluate the association of time in range (TIR) with amputation and all-cause mortality in hospitalised patients with diabetic foot ulcers (DFUs). MATERIALS AND METHODS A retrospective analysis was performed on 303 hospitalised patients with DFUs. During hospitalisation, TIR, mean blood glucose (MBG), coefficient of variation (CV), time above range (TAR) and time below range (TBR) of patients were determined from seven-point blood glucose profiles. Participants were grouped based on their clinical outcomes (i.e., amputation and death). Logistic regression was employed to analyse the association of TIR with amputation and all-cause mortality of inpatients with DFUs. RESULTS Among the 303 enrolled patients, 50 (16.5%) had undergone amputation whereas seven (2.3%) were deceased. Blood glucose was determined in 41,012 samples obtained from all participants. Patients who underwent amputation had significantly lower TIR and higher MBG, CV, level 2 TAR and level 1 TBR whereas deceased patients had significantly lower TIR and higher MBG and level 2 TAR. Both amputation and all-cause mortality rate declined with an increase in TIR quartiles. Logistic regression showed association of TIR with amputation (p = 0.034) and all-cause mortality (p = 0.013) after controlling for 15 confounders. This association was similarly significant in all-cause mortality after further adjustment for CV (p = 0.022) and level 1 TBR (p = 0.021), respectively. CONCLUSIONS TIR is inversely associated with amputation and all-cause mortality of hospitalised patients with DFUs. Further prospective studies are warranted to establish a causal relationship between TIR and clinical outcomes in patients with DFUs.
Collapse
Affiliation(s)
- Puguang Xie
- Department of Endocrinology, College of Medicine, College of Bioengineering, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Bo Deng
- Department of Endocrinology, College of Medicine, College of Bioengineering, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Xi Zhang
- Department of Endocrinology, College of Medicine, College of Bioengineering, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Yuyao Li
- Department of Endocrinology, College of Medicine, College of Bioengineering, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Chenzhen Du
- Department of Endocrinology, College of Medicine, College of Bioengineering, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Shunli Rui
- Department of Endocrinology, College of Medicine, College of Bioengineering, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Wu Deng
- College of Electronic Information and Automation, Civil Aviation University of China, Tianjin, China
| | - Johnson Boey
- Department of Podiatry, National University Hospital, Singapore
| | - David G Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Yu Ma
- Department of Endocrinology, College of Medicine, College of Bioengineering, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Wuquan Deng
- Department of Endocrinology, College of Medicine, College of Bioengineering, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
24
|
LCZ696 Protects against Diabetic Cardiomyopathy-Induced Myocardial Inflammation, ER Stress, and Apoptosis through Inhibiting AGEs/NF-κB and PERK/CHOP Signaling Pathways. Int J Mol Sci 2022; 23:ijms23031288. [PMID: 35163209 PMCID: PMC8836005 DOI: 10.3390/ijms23031288] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
The present study is designed to determine the effect of LCZ696 on DCM in rats and investigate the underlying mechanism involved. Diabetes was induced by feeding rats with a high-fat diet for six weeks following a single injection of STZ (30 mg/kg). Diabetic rats were divided into three groups (n = 10). LCZ696 and valsartan treatment was started two weeks after diabetic induction and continued for eight weeks. At the end of the treatment, serum and cardiac tissues were analyzed by RT-PCR, Western blot, and ELISA kits. LCZ696 and valsartan ameliorated DCM progression by inhibiting AGEs formation at activity levels; pro-apoptotic markers (BAX/Bcl2 ratio and caspase-3) in mRNA and protein expressions, the NF-κB at mRNA; and protein levels associated with the restoration of elevated proinflammatory cytokines such as the TNF-α, IL-6, and IL-1β at the activity level. Furthermore, LCZ696 and valsartan contribute to restoring the induction of ER stress parameters (GRP78, PERK, eIF2a, ATF4, and CHOP) at mRNA and protein levels. LCZ696 and valsartan attenuated DCM by inhibiting the myocardial inflammation, ER stress, and apoptosis through AGEs/NF-κB and PERK/CHOP signaling cascades. Collectively, the present results reveal that LCZ696 had a more protective solid effect against DCM than valsartan.
Collapse
|
25
|
Huang D, Huang YQ, Zhang QY, Cui Y, Mu TY, Huang Y. Association Between Long-Term Visit-to-Visit Hemoglobin A1c and Cardiovascular Risk in Type 2 Diabetes: The ACCORD Trial. Front Cardiovasc Med 2021; 8:777233. [PMID: 34901237 PMCID: PMC8652081 DOI: 10.3389/fcvm.2021.777233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022] Open
Abstract
Background: To explore the association between visit-to-visit variability of glycated hemoglobin (HbA1c) and cardiovascular outcomes in the patients with type 2 diabetes mellitus (T2DM) of the Action to Control Cardiovascular Risk in Diabetes (ACCORD) study. Methods: We conducted a post-hoc analysis on the ACCORD population including 9,544 participants with T2DM. Visit-to-visit variability of HbA1c was defined as the individual SD, coefficient of variation (CV), and variability independent of the mean (VIM) across HbA1c measurements. The clinical measurements included primary outcome [the first occurrence of non-fatal myocardial infarction (MI), non-fatal stroke or cardiovascular death], total mortality, cardiovascular death, non-fatal MI event, non-fatal stroke, total stroke, heart failure, macrovascular events, and major coronary events (CHD). Results: Over a median follow-up of 4.85 years, 594 and 268 participants experienced all-cause mortality and cardiovascular mortality, respectively. After adjusting for baseline HbA1c levels and confounding factors, the adjusted hazard ratio (HR) comparing patients in the highest vs. the lowest quartile CV of HbA1c variability was 1.61 (95% CI 1.29–2.00) for the primary outcome. Similar trends for secondary outcome were also observed. There was no association between HbA1c fluctuation and non-fatal stroke. Noticeably, there was 66% greater risk for the all-cause mortality among patients in the highest vs. the lowest quartile (HR 1.66, 95% CI 1.27–2.17). Conclusions: Greater variability of HbA1c is associated with higher risk for cardiovascular complications and all-cause death in T2DM. Our study stresses the significance of well-controlled glycemic levels for improving cardiovascular outcomes. Further randomized clinical trials are required to confirm these findings.
Collapse
Affiliation(s)
- Dan Huang
- Emergency Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yong-Quan Huang
- Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Qun-Ying Zhang
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yan Cui
- Emergency Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tian-Yi Mu
- Emergency Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yin Huang
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
26
|
Fotheringham AK, Solon-Biet SM, Bielefeldt-Ohmann H, McCarthy DA, McMahon AC, Ruohonen K, Li I, Sullivan MA, Whiddett RO, Borg DJ, Cogger VC, Ballard WO, Turner N, Melvin RG, Raubenheimer D, Le Couteur DG, Simpson SJ, Forbes JM. Kidney disease risk factors do not explain impacts of low dietary protein on kidney function and structure. iScience 2021; 24:103308. [PMID: 34820603 PMCID: PMC8602032 DOI: 10.1016/j.isci.2021.103308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/29/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
The kidneys balance many byproducts of the metabolism of dietary components. Previous studies examining dietary effects on kidney health are generally of short duration and manipulate a single macronutrient. Here, kidney function and structure were examined in C57BL/6J mice randomized to consume one of a spectrum of macronutrient combinations (protein [5%–60%], carbohydrate [20%–75%], and fat [20%–75%]) from weaning to late-middle age (15 months). Individual and interactive impacts of macronutrients on kidney health were modeled. Dietary protein had the greatest influence on kidney function, where chronic low protein intake decreased glomerular filtration rates and kidney mass, whereas it increased kidney immune infiltration and structural injury. Kidney outcomes did not align with cardiometabolic risk factors including glucose intolerance, overweight/obesity, dyslipidemia, and hypertension in mice with chronic low protein consumption. This study highlights that protein intake over a lifespan is an important determinant of kidney function independent of cardiometabolic changes. Chronic high macronutrient intake from any source increases kidney function (GFR) Low protein intake led to greater kidney tubular structural injury and inflammation Lower protein intake decreased kidney mass and glomerular filtration capacity Kidney outcomes did not align with longevity or cardiometabolic outcomes
Collapse
Affiliation(s)
- Amelia K Fotheringham
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,School of Medical Sciences, University of Sydney, Sydney 2006, NSW, Australia
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, University of Queensland, Gatton Campus, Gatton 4343, QLD, Australia.,School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane 4067, QLD, Australia
| | - Domenica A McCarthy
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia
| | - Aisling C McMahon
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,Centre for Education and Research on Aging, and Aging and Alzheimer's Institute, Concord Hospital, Sydney 2139, NSW, Australia.,ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, NSW, Australia
| | - Kari Ruohonen
- Animal Nutrition and Health, Cargill, Sandnes, Norway
| | - Isaac Li
- Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia
| | - Mitchell A Sullivan
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia
| | - Rani O Whiddett
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia
| | - Danielle J Borg
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,Centre for Education and Research on Aging, and Aging and Alzheimer's Institute, Concord Hospital, Sydney 2139, NSW, Australia.,ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, NSW, Australia
| | - William O Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, NSW, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, NSW 2052, Australia
| | - Richard G Melvin
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth 55812, MN, USA
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,Centre for Education and Research on Aging, and Aging and Alzheimer's Institute, Concord Hospital, Sydney 2139, NSW, Australia.,ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Josephine M Forbes
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia.,Department of Medicine, University of Melbourne, Heidelberg, VIC 3084, Australia
| |
Collapse
|
27
|
Darenskaya MA, Chugunova EV, Kolesnikov SI, Grebenkina LA, Semenova NV, Nikitina OA, Kolesnikova LI. Content of Carbonyl Compounds and Parameters of Glutathione Metabolism in Men with Type 1 Diabetes Mellitus at Preclinical Stages of Diabetic Nephropathy. Bull Exp Biol Med 2021; 171:592-595. [PMID: 34617170 PMCID: PMC8494601 DOI: 10.1007/s10517-021-05275-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 12/22/2022]
Abstract
The content of carbonyl compounds (methylglyoxal and TBA-reactive substances) and components of the glutathione system (activities of glutathione-dependent enzymes, content of oxidized and reduced glutathione) and their interrelationships were studied in men of young reproductive age with type 1 diabetes mellitus at the stages of normo- and microalbuminuria. In patients with normoalbuminuria, the level of methylglyoxal, reduced and oxidized glutathione, and glutathione reductase activity were increased and the content of TBA-reactive substances was decreased. In the group with microalbuminuria, an increase in content of methylglyoxal and activity of glutathione-dependent enzymes relative to the control values were observed; the content of TBA-reactive substances was increased and glutathione reductase activity was decreased relative to the group with normoalbuminuria. In patients with microalbuminuria, a strong correlation between the mean glomerular filtration rate and the blood level of methylglyoxal was revealed.
Collapse
Affiliation(s)
- M A Darenskaya
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia.
| | - E V Chugunova
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - S I Kolesnikov
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - L A Grebenkina
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - N V Semenova
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - O A Nikitina
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - L I Kolesnikova
- Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| |
Collapse
|
28
|
Normalizing HIF-1α Signaling Improves Cellular Glucose Metabolism and Blocks the Pathological Pathways of Hyperglycemic Damage. Biomedicines 2021; 9:biomedicines9091139. [PMID: 34572324 PMCID: PMC8471680 DOI: 10.3390/biomedicines9091139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
Intracellular metabolism of excess glucose induces mitochondrial dysfunction and diversion of glycolytic intermediates into branch pathways, leading to cell injury and inflammation. Hyperglycemia-driven overproduction of mitochondrial superoxide was thought to be the initiator of these biochemical changes, but accumulating evidence indicates that mitochondrial superoxide generation is dispensable for diabetic complications development. Here we tested the hypothesis that hypoxia inducible factor (HIF)-1α and related bioenergetic changes (Warburg effect) play an initiating role in glucotoxicity. By using human endothelial cells and macrophages, we demonstrate that high glucose (HG) induces HIF-1α activity and a switch from oxidative metabolism to glycolysis and its principal branches. HIF1-α silencing, the carbonyl-trapping and anti-glycating agent ʟ-carnosine, and the glyoxalase-1 inducer trans-resveratrol reversed HG-induced bioenergetics/biochemical changes and endothelial-monocyte cell inflammation, pointing to methylglyoxal (MGO) as the non-hypoxic stimulus for HIF1-α induction. Consistently, MGO mimicked the effects of HG on HIF-1α induction and was able to induce a switch from oxidative metabolism to glycolysis. Mechanistically, methylglyoxal causes HIF1-α stabilization by inhibiting prolyl 4-hydroxylase domain 2 enzyme activity through post-translational glycation. These findings introduce a paradigm shift in the pathogenesis and prevention of diabetic complications by identifying HIF-1α as essential mediator of glucotoxicity, targetable with carbonyl-trapping agents and glyoxalase-1 inducers.
Collapse
|
29
|
Marcovecchio ML. Importance of Identifying Novel Biomarkers of Microvascular Damage in Type 1 Diabetes. Mol Diagn Ther 2021; 24:507-515. [PMID: 32613289 DOI: 10.1007/s40291-020-00483-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Microvascular complications of type 1 diabetes, which primarily include diabetic kidney disease, retinopathy, and neuropathy, are characterized by damage to the microvasculature of the kidney, retina, and neurons. The pathogenesis of these complications is multifactorial, and several pathways are implicated. These complications are often silent during their early stages, and once symptoms develop, there might be little to be done to cure them. Thus, there is a strong need for novel biomarkers to identify individuals at risk of microvascular complications at an early stage and guide the implementation of new therapeutic options for preventing their development and progression. Recent advancements in proteomics, metabolomics, and other 'omics' have led to the identification of several potential biomarkers of microvascular complications. However, biomarker discovery has met several challenges and, up to now, there are no new biomarkers that have been implemented into clinical practice. This highlights the need for further work in this area to move towards better diagnostic and prognostic approaches.
Collapse
Affiliation(s)
- M Loredana Marcovecchio
- Department of Paediatrics, University of Cambridge, Level 8, Box 116, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
30
|
Forbes JM, McCarthy DA, Kassianos AJ, Baskerville T, Fotheringham AK, Giuliani KTK, Grivei A, Murphy AJ, Flynn MC, Sullivan MA, Chandrashekar P, Whiddett R, Radford KJ, Flemming N, Beard SS, D'Silva N, Nisbet J, Morton A, Teasdale S, Russell A, Isbel N, Jones T, Couper J, Healy H, Harris M, Donaghue K, Johnson DW, Cotterill A, Barrett HL, O'Moore-Sullivan T. T-Cell Expression and Release of Kidney Injury Molecule-1 in Response to Glucose Variations Initiates Kidney Injury in Early Diabetes. Diabetes 2021; 70:1754-1766. [PMID: 34285121 PMCID: PMC8385614 DOI: 10.2337/db20-1081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/09/2021] [Indexed: 11/13/2022]
Abstract
Half of the mortality in diabetes is seen in individuals <50 years of age and commonly predicted by the early onset of diabetic kidney disease (DKD). In type 1 diabetes, increased urinary albumin-to-creatinine ratio (uACR) during adolescence defines this risk, but the pathological factors responsible remain unknown. We postulated that early in diabetes, glucose variations contribute to kidney injury molecule-1 (KIM-1) release from circulating T cells, elevating uACR and DKD risk. DKD risk was assigned in youth with type 1 diabetes (n = 100; 20.0 ± 2.8 years; males/females, 54:46; HbA1c 66.1 [12.3] mmol/mol; diabetes duration 10.7 ± 5.2 years; and BMI 24.5 [5.3] kg/m2) and 10-year historical uACR, HbA1c, and random blood glucose concentrations collected retrospectively. Glucose fluctuations in the absence of diabetes were also compared with streptozotocin diabetes in apolipoprotein E -/- mice. Kidney biopsies were used to examine infiltration of KIM-1-expressing T cells in DKD and compared with other chronic kidney disease. Individuals at high risk for DKD had persistent elevations in uACR defined by area under the curve (AUC; uACRAUC0-10yrs, 29.7 ± 8.8 vs. 4.5 ± 0.5; P < 0.01 vs. low risk) and early kidney dysfunction, including ∼8.3 mL/min/1.73 m2 higher estimated glomerular filtration rates (modified Schwartz equation; Padj < 0.031 vs. low risk) and plasma KIM-1 concentrations (∼15% higher vs. low risk; P < 0.034). High-risk individuals had greater glycemic variability and increased peripheral blood T-cell KIM-1 expression, particularly on CD8+ T cells. These findings were confirmed in a murine model of glycemic variability both in the presence and absence of diabetes. KIM-1+ T cells were also infiltrating kidney biopsies from individuals with DKD. Healthy primary human proximal tubule epithelial cells exposed to plasma from high-risk youth with diabetes showed elevated collagen IV and sodium-glucose cotransporter 2 expression, alleviated with KIM-1 blockade. Taken together, these studies suggest that glycemic variations confer risk for DKD in diabetes via increased CD8+ T-cell production of KIM-1.
Collapse
Affiliation(s)
- Josephine M Forbes
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Domenica A McCarthy
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Andrew J Kassianos
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston, Queensland, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Tracey Baskerville
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
| | - Amelia K Fotheringham
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Kurt T K Giuliani
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston, Queensland, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Anca Grivei
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston, Queensland, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michelle C Flynn
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Mitchell A Sullivan
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Preeti Chandrashekar
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Rani Whiddett
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Kristen J Radford
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Nicole Flemming
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Sam S Beard
- Institute for Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
| | - Neisha D'Silva
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
| | - Janelle Nisbet
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
| | - Adam Morton
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
| | - Stephanie Teasdale
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
| | - Anthony Russell
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Diabetes and Endocrinology, Metro South Health, Brisbane, Queensland, Australia
| | - Nicole Isbel
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Metro South Integrated Nephrology and Transplant Service, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Timothy Jones
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Jennifer Couper
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Helen Healy
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston, Queensland, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Mark Harris
- Children's Health Queensland, South Brisbane, Queensland, Australia
| | - Kim Donaghue
- The Children's Hospital at Westmead and University of Sydney, Sydney, New South Wales, Australia
| | - David W Johnson
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Metro South Integrated Nephrology and Transplant Service, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Andrew Cotterill
- Children's Health Queensland, South Brisbane, Queensland, Australia
| | - Helen L Barrett
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Trisha O'Moore-Sullivan
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
31
|
Li L, Xu H, Zhou J, Yu J, Copeland L, Wang S. Mechanisms Underlying the Effect of Tea Extracts on In Vitro Digestion of Wheat Starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8227-8235. [PMID: 34251195 DOI: 10.1021/acs.jafc.1c02526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The effect of extracts from four types of tea made from Camelia sinensis (green, white, black, and oolong) on in vitro amylolysis of gelatinized starch and the underlying mechanisms were studied. Of the four extracts, black tea extract (BTE) gave the strongest inhibition of starch digestion and on α-amylase activity. Fluorescence quenching and surface plasmon resonance (SPR) showed compounds in BTE bound to α-amylase more strongly than those in the green, white, and oolong tea extracts. Individual testing of five phenolic compounds abundant in tea extracts showed that theaflavins had a greater inhibitory effect than catechins on α-amylase. SPR showed that theaflavins had much lower equilibrium dissociation constants and therefore bound more tightly to α-amylase than catechins. We conclude that BTE had a stronger inhibitory effect on in vitro enzymatic starch digestion than the other tea extracts, mainly due to the higher content of theaflavins causing stronger inhibition of α-amylase.
Collapse
Affiliation(s)
- Liujing Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hanbin Xu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiaping Zhou
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
32
|
Forbes JM, Le Bagge S, Righi S, Fotheringham AK, Gallo LA, McCarthy DA, Leung S, Baskerville T, Nisbett J, Morton A, Teasdale S, D'Silva N, Barrett H, Jones T, Couper J, Donaghue K, Isbel N, Johnson DW, Donnellan L, Deo P, Akison LK, Moritz KM, O'Moore-Sullivan T. Advanced glycation end products as predictors of renal function in youth with type 1 diabetes. Sci Rep 2021; 11:9422. [PMID: 33941808 PMCID: PMC8093271 DOI: 10.1038/s41598-021-88786-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
To examine if skin autofluorescence (sAF) differed in early adulthood between individuals with type 1 diabetes and age-matched controls and to ascertain if sAF aligned with risk for kidney disease. Young adults with type 1 diabetes (N = 100; 20.0 ± 2.8 years; M:F 54:46; FBG-11.6 ± 4.9 mmol/mol; diabetes duration 10.7 ± 5.2 years; BMI 24.5(5.3) kg/m2) and healthy controls (N = 299; 20.3 ± 1.8 years; M:F-83:116; FBG 5.2 ± 0.8 mmol/L; BMI 22.5(3.3) kg/m2) were recruited. Skin autofluorescence (sAF) and circulating AGEs were measured. In a subset of both groups, kidney function was estimated by GFRCKD-EPI CysC and uACR, and DKD risk defined by uACR tertiles. Youth with type 1 diabetes had higher sAF and BMI, and were taller than controls. For sAF, 13.6% of variance was explained by diabetes duration, height and BMI (Pmodel = 1.5 × 10-12). In the sub-set examining kidney function, eGFR and sAF were higher in type 1 diabetes versus controls. eGFR and sAF predicted 24.5% of variance in DKD risk (Pmodel = 2.2 × 10-9), which increased with diabetes duration (51%; Pmodel < 2.2 × 10-16) and random blood glucose concentrations (56%; Pmodel < 2.2 × 10-16). HbA1C and circulating fructosamine albumin were higher in individuals with type 1 diabetes at high versus low DKD risk. eGFR was independently associated with DKD risk in all models. Higher eGFR and longer diabetes duration are associated with DKD risk in youth with type 1 diabetes. sAF, circulating AGEs, and urinary AGEs were not independent predictors of DKD risk. Changes in eGFR should be monitored early, in addition to uACR, for determining DKD risk in type 1 diabetes.
Collapse
Affiliation(s)
- Josephine M Forbes
- Mater Research Institute, The University of Queensland, TRI, 37 Kent Street, Brisbane, QLD, 4102, Australia. .,School of Biomedical Science and Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia. .,Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia.
| | - Selena Le Bagge
- Mater Research Institute, The University of Queensland, TRI, 37 Kent Street, Brisbane, QLD, 4102, Australia.,School of Biomedical Science and Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Samuel Righi
- Mater Research Institute, The University of Queensland, TRI, 37 Kent Street, Brisbane, QLD, 4102, Australia
| | - Amelia K Fotheringham
- Mater Research Institute, The University of Queensland, TRI, 37 Kent Street, Brisbane, QLD, 4102, Australia.,School of Biomedical Science and Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Linda A Gallo
- Mater Research Institute, The University of Queensland, TRI, 37 Kent Street, Brisbane, QLD, 4102, Australia.,School of Biomedical Science and Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Domenica A McCarthy
- Mater Research Institute, The University of Queensland, TRI, 37 Kent Street, Brisbane, QLD, 4102, Australia
| | - Sherman Leung
- Mater Research Institute, The University of Queensland, TRI, 37 Kent Street, Brisbane, QLD, 4102, Australia.,School of Biomedical Science and Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Tracey Baskerville
- Mater Research Institute, The University of Queensland, TRI, 37 Kent Street, Brisbane, QLD, 4102, Australia.,Mater Young Adults Health Centre, Mater Health Service, Brisbane, QLD, Australia
| | - Janelle Nisbett
- Mater Young Adults Health Centre, Mater Health Service, Brisbane, QLD, Australia
| | - Adam Morton
- Mater Young Adults Health Centre, Mater Health Service, Brisbane, QLD, Australia
| | - Stephanie Teasdale
- Mater Young Adults Health Centre, Mater Health Service, Brisbane, QLD, Australia
| | - Neisha D'Silva
- Mater Young Adults Health Centre, Mater Health Service, Brisbane, QLD, Australia
| | - Helen Barrett
- Mater Research Institute, The University of Queensland, TRI, 37 Kent Street, Brisbane, QLD, 4102, Australia.,Mater Young Adults Health Centre, Mater Health Service, Brisbane, QLD, Australia
| | | | - Jennifer Couper
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Kim Donaghue
- Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Nicole Isbel
- School of Biomedical Science and Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia.,The Metro South and Ipswich Nephrology and Transplant Service (MINTS), Brisbane, QLD, Australia
| | - David W Johnson
- School of Biomedical Science and Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia.,The Metro South and Ipswich Nephrology and Transplant Service (MINTS), Brisbane, QLD, Australia
| | - Leigh Donnellan
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Lisa K Akison
- School of Biomedical Science and Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia.,Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | - Karen M Moritz
- School of Biomedical Science and Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia.,Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | - Trisha O'Moore-Sullivan
- Mater Research Institute, The University of Queensland, TRI, 37 Kent Street, Brisbane, QLD, 4102, Australia.,Mater Young Adults Health Centre, Mater Health Service, Brisbane, QLD, Australia
| |
Collapse
|
33
|
Li X, Li Y, Liang Y, Hu R, Xu W, Liu Y. Plasma Targeted Metabolomics Analysis for Amino Acids and Acylcarnitines in Patients with Prediabetes, Type 2 Diabetes Mellitus, and Diabetic Vascular Complications. Diabetes Metab J 2021; 45:195-208. [PMID: 33685035 PMCID: PMC8024149 DOI: 10.4093/dmj.2019.0209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/26/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND We hypothesized that specific amino acids or acylcarnitines would have benefits for the differential diagnosis of diabetes. Thus, a targeted metabolomics for amino acids and acylcarnitines in patients with diabetes and its complications was carried out. METHODS A cohort of 54 normal individuals and 156 patients with type 2 diabetes mellitus and/or diabetic complications enrolled from the First Affiliated Hospital of Jinzhou Medical University was studied. The subjects were divided into five main groups: normal individuals, impaired fasting glucose, overt diabetes, diabetic microvascular complications, and diabetic peripheral vascular disease. The technique of tandem mass spectrometry was applied to obtain the plasma metabolite profiles. Metabolomics multivariate statistics were applied for the metabolic data analysis and the differential metabolites determination. RESULTS A total of 10 cross-comparisons within diabetes and its complications were designed to explore the differential metabolites. The results demonstrated that eight comparisons existed and yielded significant metabolic differences. A total number of 24 differential metabolites were determined from six selected comparisons, including up-regulated amino acids, down-regulated medium-chain and long-chain acylcarnitines. Altered differential metabolites provided six panels of biomarkers, which were helpful in distinguishing diabetic patients. CONCLUSION Our results demonstrated that the biomarker panels consisted of specific amino acids and acylcarnitines which could reflect the metabolic variations among the different stages of diabetes and might be useful for the differential diagnosis of prediabetes, overt diabetes and diabetic complications.
Collapse
Affiliation(s)
- Xin Li
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Yancheng Li
- Department of Biostatistics, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuanhao Liang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Ruixue Hu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Wenli Xu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Yufeng Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
- Natural Products Pharmaceutical Engineering Technology Research Center of Liaoning Province, Shenyang, China
- Corresponding author: Yufeng Liu https://orcid.org/0000-0001-7972-8771 School of Pharmaceutical Sciences, Liaoning University, Zheli Rd, Huanggu District, Shenyang 110036, China E-mail:
| |
Collapse
|
34
|
Dai Q, Fan X, Meng X, Sun S, Su Y, Ling X, Chen X, Wang K, Dai X, Zhang C, Da S, Zhang G, Gu C, Chen H, He J, Hu H, Yu L, Pan X, Tan Y, Yan X. FGF21 promotes ischaemic angiogenesis and endothelial progenitor cells function under diabetic conditions in an AMPK/NAD+-dependent manner. J Cell Mol Med 2021; 25:3091-3102. [PMID: 33599110 PMCID: PMC7957202 DOI: 10.1111/jcmm.16369] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic vascular complications are closely associated with long‐term vascular dysfunction and poor neovascularization. Endothelial progenitor cells (EPCs) play pivotal roles in maintaining vascular homeostasis and triggering angiogenesis, and EPC dysfunction contributes to defective angiogenesis and resultant diabetic vascular complications. Fibroblast growth factor 21 (FGF21) has received substantial attention as a potential therapeutic agent for diabetes via regulating glucose and lipid metabolism. However, the effects of FGF21 on diabetic vascular complications remain unclear. In the present study, the in vivo results showed that FGF21 efficiently improved blood perfusion and ischaemic angiogenesis in both type 1 and type 2 diabetic mice, and these effects were accompanied by enhanced EPC mobilization and infiltration into ischaemic muscle tissues and increases in plasma stromal cell–derived factor‐1 concentration. The in vitro results revealed that FGF21 directly prevented EPC damage induced by high glucose, and the mechanistic studies demonstrated that nicotinamide adenine dinucleotide (NAD+) was dramatically decreased in EPCs challenged with high glucose, whereas FGF21 treatment significantly increased NAD+ content in an AMPK‐dependent manner, resulting in improved angiogenic capability of EPCs. These results indicate that FGF21 promotes ischaemic angiogenesis and the angiogenic ability of EPCs under diabetic conditions by activating the AMPK/NAD+ pathway.
Collapse
Affiliation(s)
- Qiaoxia Dai
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Xia Fan
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Xue Meng
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Shiyue Sun
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yue Su
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiao Ling
- Department of Pharmacy, The People's Hospital of YuHuan, Taizhou, China
| | - Xiangjuan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozhen Dai
- School of Biomedicine, Chengdu Medical College, Chengdu, China
| | - Chi Zhang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sun Da
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Guigui Zhang
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chunjie Gu
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Hui Chen
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Junhong He
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Haiqi Hu
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, China
| | - Lechu Yu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaohong Pan
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
Flors-Sidro JJ, Househ M, Abd-Alrazaq A, Vidal-Alaball J, Fernandez-Luque L, Sanchez-Bocanegra CL. Analysis of Diabetes Apps to Assess Privacy-Related Permissions: Systematic Search of Apps. JMIR Diabetes 2021; 6:e16146. [PMID: 33439129 PMCID: PMC7840294 DOI: 10.2196/16146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/03/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Background Mobile health has become a major vehicle of support for people living with diabetes. Accordingly, the availability of mobile apps for diabetes has been steadily increasing. Most of the previous reviews of diabetes apps have focused on the apps’ features and their alignment with clinical guidelines. However, there is a lack of knowledge on the actual compliance of diabetes apps with privacy and data security guidelines. Objective The aim of this study was to assess the levels of privacy of mobile apps for diabetes to contribute to the raising of awareness of privacy issues for app users, developers, and governmental data protection regulators. Methods We developed a semiautomatic app search module capable of retrieving Android apps’ privacy-related information, particularly the dangerous permissions required by apps, with the aim of analyzing privacy aspects related to diabetes apps. Following the research selection criteria, the original 882 apps were narrowed down to 497 apps that were included in the analysis. Results Approximately 60% of the analyzed diabetes apps requested potentially dangerous permissions, which pose a significant risk to users’ data privacy. In addition, 28.4% (141/497) of the apps did not provide a website for their privacy policy. Moreover, it was found that 40.0% (199/497) of the apps contained advertising, and some apps that claimed not to contain advertisements actually did. Ninety-five percent of the apps were free, and those belonging to the “medical” and “health and fitness” categories were the most popular. However, app users do not always realize that the free apps’ business model is largely based on advertising and, consequently, on sharing or selling their private data, either directly or indirectly, to unknown third parties. Conclusions The aforementioned findings confirm the necessity of educating patients and health care providers and raising their awareness regarding the privacy aspects of diabetes apps. Therefore, this research recommends properly and comprehensively training users, ensuring that governments and regulatory bodies enforce strict data protection laws, devising much tougher security policies and protocols in Android and in the Google Play Store, and implicating and supervising all stakeholders in the apps’ development process.
Collapse
Affiliation(s)
- José Javier Flors-Sidro
- Information Systems Department, Consorci Hospitalari Provincial de Castelló, Castelló de la Plana, Spain
| | - Mowafa Househ
- Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Alaa Abd-Alrazaq
- Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Josep Vidal-Alaball
- Health Promotion in Rural Areas Research Group, Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain.,Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
| | | | | |
Collapse
|
36
|
Li J, Yu J, Huang N, Ye H, Wang D, Peng Y, Guo X, Yi C, Yang X, Yu X. Prevalence, risk factors and impact on outcomes of 30-day unexpected rehospitalization in incident peritoneal dialysis patients. BMC Nephrol 2021; 22:4. [PMID: 33407231 PMCID: PMC7786918 DOI: 10.1186/s12882-020-02201-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 12/03/2020] [Indexed: 01/25/2023] Open
Abstract
Background Rehospitalization is a major problem for end stage renal disease (ESRD) populations. However, researches on 30-day unexpected rehospitalzation of incident peritoneal dialysis (PD) patients were limited. This study aimed to investigate the prevalence, risk factors and impact on outcomes of 30-day unexpected rehospitalization in incident PD patients. Methods This was a retrospective cohort study. Patients who accepted PD catheter implantation in our centre from Jan 1, 2006 to Dec 31, 2013 and regular follow-up were included. The demographic characteristics, laboratory parameters, and rehospitalization data were collected and analyzed. The primary outcome was all-cause mortality, and the secondary outcomes included cardiovascular disease (CVD) mortality and technical failure. Results Totally 1632 patients (46.9 ± 15.3 years old, 60.1% male, 25.6% with diabetes) were included. Among them, 149 (9.1%) had a 30-day unexpected rehospitalization after discharge. PD-related peritonitis (n = 48, 32.2%), catheter malfunction (n = 30, 20.1%) and severe fluid overload (n = 19, 12.8%) were the top three causes for the rehospitalization. Multivariate logistic regression analysis showed that length of index hospital stays [Odds ratio (OR) =1.02, 95% confidence interval (CI) 1.00–1.03, P = 0.036) and hyponatremia (OR = 1.85, 95% CI 1.06–3.24, P = 0.031) were independently associated with the rehospitalization. Multivariate Cox regression analysis indicated that 30-day rehospitalization was an independent risk factor for all-cause mortality [Hazard ratio (HR) =1.52, 95% CI 1.07–2.16, P = 0.019) and CVD mortality (HR = 1.73, 95% CI 1.03–2.90, P = 0.038). Conclusions The prevalence of 30-day unexpected rehospitalization for incident PD patients in our centre was 9.1%. The top three causes for the rehospitalization were PD-related peritonitis, catheter malfunction and severe fluid overload. Thirty-day unexpected rehospitalization increased the risk of all-cause mortality and CVD mortality for PD patients.
Collapse
Affiliation(s)
- Jianbo Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, 510080, Guangdong, China
| | - Jing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, 510080, Guangdong, China
| | - Naya Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, 510080, Guangdong, China
| | - Hongjian Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, 510080, Guangdong, China
| | - Dan Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, 510080, Guangdong, China
| | - Yuan Peng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, 510080, Guangdong, China
| | - Xiaobo Guo
- Department of Statistical Science, School of Mathematics, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Chunyan Yi
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, 510080, Guangdong, China
| | - Xiao Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, 510080, Guangdong, China
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial People's Hospital, Guangzhou, 510080, Guangdong, China. .,School of Medicine, South China University of Technology, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
37
|
Chiesa ST, Marcovecchio ML. Preventing Cardiovascular Complications in Type 1 Diabetes: The Need for a Lifetime Approach. Front Pediatr 2021; 9:696499. [PMID: 34178905 PMCID: PMC8219852 DOI: 10.3389/fped.2021.696499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/17/2021] [Indexed: 01/29/2023] Open
Abstract
Cardiovascular disease (CVD) remains the main cause of morbidity and mortality in individuals with type 1 diabetes (T1D). Adolescence appears to be a critical time for the development of early subclinical manifestations of CVD, with these changes likely driven by a deterioration in glycemic control during the progression through puberty, combined with the emergence of numerous other traditional cardiometabolic risk factors (e.g., hypertension, dyslipidemia, smoking, alcohol use, obesity, etc.) which emerge at this age. Although hemoglobin A1C has long been the primary focus of screening and treatment strategies, glycemic control remains poor in youth with T1D. Furthermore, screening for cardiovascular risk factors-which are often elevated in youth with T1D-is suboptimal, and use of pharmacological interventions for hypertension and dyslipidemia remains low. As such, there is a clear need not only for better screening strategies for CVD risk factors in youth, but also early interventions to reduce these, if future CVD events have to be prevented. Accumulating evidence has recently suggested that early increases in urinary albumin excretion, even within the normal range, may identify adolescents with T1D who are at an increased risk of complications, and results from pharmacological intervention with statins and ACE inhibitors in these individuals have been encouraging. These data join a growing evidence highlighting the need for a whole-life approach to prevention starting from childhood if efforts to improve CVD outcomes and related mortality in T1D are to be maintained.
Collapse
Affiliation(s)
- Scott T Chiesa
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | | |
Collapse
|
38
|
Grover A, Sharma K, Gautam S, Gautam S, Gulati M, Singh SK. Diabetes and Its Complications: Therapies Available, Anticipated and Aspired. Curr Diabetes Rev 2021; 17:397-420. [PMID: 33143627 DOI: 10.2174/1573399816666201103144231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/26/2020] [Accepted: 09/12/2020] [Indexed: 11/22/2022]
Abstract
Worldwide, diabetes ranks among the ten leading causes of mortality. Prevalence of diabetes is growing rapidly in low and middle income countries. It is a progressive disease leading to serious co-morbidities, which results in increased cost of treatment and over-all health system of the country. Pathophysiological alterations in Type 2 Diabetes (T2D) progressed from a simple disturbance in the functioning of the pancreas to triumvirate to ominous octet to egregious eleven to dirty dozen model. Due to complex interplay of multiple hormones in T2D, there may be multifaceted approach in its management. The 'long-term secondary complications' in uncontrolled diabetes may affect almost every organ of the body, and finally may lead to multi-organ dysfunction. Available therapies are inconsistent in maintaining long term glycemic control and their long term use may be associated with adverse effects. There is need for newer drugs, not only for glycemic control but also for prevention or mitigation of secondary microvascular and macrovascular complications. Increased knowledge of the pathophysiology of diabetes has contributed to the development of novel treatments. Several new agents like Glucagon Like Peptide - 1 (GLP-1) agonists, Dipeptidyl Peptidase IV (DPP-4) inhibitors, amylin analogues, Sodium-Glucose transport -2 (SGLT- 2) inhibitors and dual Peroxisome Proliferator-Activated Receptor (PPAR) agonists are available or will be available soon, thus extending the range of therapy for T2D, thereby preventing its long term complications. The article discusses the pathophysiology of diabetes along with its comorbidities, with a focus on existing and novel upcoming antidiabetic drugs which are under investigation. It also dives deep to deliberate upon the novel therapies that are in various stages of development. Adding new options with new mechanisms of action to the treatment armamentarium of diabetes may eventually help improve outcomes and reduce its economic burden.
Collapse
Affiliation(s)
- Anu Grover
- Ipca Laboratories, Mumbai - 400063, India
| | - Komal Sharma
- Bhupal Nobles' Institute of Pharmaceutical Sciences, Udaipur, India
| | - Suresh Gautam
- Department of Biochemistry, Pacific Institute of Medical Sciences, Udaipur, India
| | - Srishti Gautam
- Ravinder Nath Tagore Medical College and Maharana Bhupal Govt. Hospital, Udaipur, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab- 144411, India
| |
Collapse
|
39
|
Du H, Zhao Y, Yin Z, Wang DW, Chen C. The role of miR-320 in glucose and lipid metabolism disorder-associated diseases. Int J Biol Sci 2021; 17:402-416. [PMID: 33613101 PMCID: PMC7893589 DOI: 10.7150/ijbs.53419] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose and lipids are important nutrients that provide the majority of energy for each organ to maintain homeostasis of the body. With the continuous improvement in living standards, the incidence of metabolic disorder-associated diseases, such as diabetes, hyperlipidemia, and atherosclerosis, is increasing worldwide. Among them, diabetes, which could be induced by both glucose and lipid metabolic disorders, is one of the five diseases with the highest incidence and mortality worldwide. However, the detailed molecular mechanisms underlying glucose and lipid metabolism disorders and target-organ damage are still not fully defined. MicroRNAs (miRNAs) are small, non-coding, single-stranded RNAs, which usually affect their target mRNAs in the cytoplasm by post-transcriptional regulation. Previously, we have found that miR-320 contributed to glucose and lipid metabolism via different signaling pathways. Most importantly, we identified that nuclear miR-320 mediated diabetes-induced cardiac dysfunction by activating the transcription of fatty acid metabolic genes to cause lipotoxicity in the heart. Here, we reviewed the roles of miR-320 in glucose and lipid metabolism and target-organ damage.
Collapse
Affiliation(s)
| | | | | | | | - Chen Chen
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
40
|
Hypoxia as a Driving Force of Pluripotent Stem Cell Reprogramming and Differentiation to Endothelial Cells. Biomolecules 2020; 10:biom10121614. [PMID: 33260307 PMCID: PMC7759989 DOI: 10.3390/biom10121614] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Inadequate supply of oxygen (O2) is a hallmark of many diseases, in particular those related to the cardiovascular system. On the other hand, tissue hypoxia is an important factor regulating (normal) embryogenesis and differentiation of stem cells at the early stages of embryonic development. In culture, hypoxic conditions may facilitate the derivation of embryonic stem cells (ESCs) and the generation of induced pluripotent stem cells (iPSCs), which may serve as a valuable tool for disease modeling. Endothelial cells (ECs), multifunctional components of vascular structures, may be obtained from iPSCs and subsequently used in various (hypoxia-related) disease models to investigate vascular dysfunctions. Although iPSC-ECs demonstrated functionality in vitro and in vivo, ongoing studies are conducted to increase the efficiency of differentiation and to establish the most productive protocols for the application of patient-derived cells in clinics. In this review, we highlight recent discoveries on the role of hypoxia in the derivation of ESCs and the generation of iPSCs. We also summarize the existing protocols of hypoxia-driven differentiation of iPSCs toward ECs and discuss their possible applications in disease modeling and treatment of hypoxia-related disorders.
Collapse
|
41
|
Dastgheib SA, Najafi F, Shajari A, Bahrami R, Asadian F, Sadeghizadeh-Yazdi J, Akbarian E, Emarati SA, Neamatzadeh H. Association of plasminogen activator inhibitor-1 4G5G Polymorphism with risk of diabetic nephropathy and retinopathy: a systematic review and meta-analysis. J Diabetes Metab Disord 2020; 19:2005-2016. [PMID: 33520873 DOI: 10.1007/s40200-020-00675-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022]
Abstract
Background The 4G5G polymorphism of Plasminogen activator inhibitor-1 (PAI-1) gene is reported to be associated with diabetes nephropathy and retinopathy (DNR) risk. However, the findings are conflicting. Herein, we conducted a case-control and meta-analysis study to explore the association of PAI-1 4G5G polymorphism with risk of DNR. Methods We retrieved PubMed, EMBASE, Web of Knowledge, and CNKI databases and screened eligible studies up to August 15, 2020. The strength of associations was assessed by odd ratio (OR) and the corresponding 95% confidence interval (95% CI). Results A total of 27 case-control studies including 16 studies with 1,825 cases case and 1,731 controls on DN and eleven studies with 1,397 cases and 1,545 controls on DR were selected. Pooled data showed that the PAI-1 4G5G polymorphism was significantly associated with DN (allele model: OR = 0.674, 95% CI 0.524-0.865, p = 0.002; homozygote model: OR = 0.536, 95% CI 0.351-0.817, p = 0.004; heterozygote model: OR = 0.621, 95% CI 0.427-0.903, p = 0.013; dominant model: OR = 0.575, 95% CI 0.399-0.831, p = 0.003; and recessive model: OR = 0.711, 95% CI 0.515-0.981, p = 0.038) and DR (homozygote model: OR = 0.770, 95% CI 0.621-0.955, p = 0.0.017) risk. Stratified analyses by ethnicity indicated that PAI-1 4G5G polymorphism was associated with DN and DR risk in Asians and Caucasians, respectively. Conclusions The present meta-analysis revealed that the PAI-1 4G5G polymorphism was associated with increased risk of DN and DR risk. However, well-designed large-scale clinical studies are required to further validate our results.
Collapse
Affiliation(s)
- Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Najafi
- Department of Internal Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Shajari
- Department of Pediatrics, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Reza Bahrami
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Asadian
- Department of Medical Laboratory Sciences, School of Paramedical Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jalal Sadeghizadeh-Yazdi
- Department of Food Science and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elahe Akbarian
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Alireza Emarati
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
42
|
Marcovecchio ML, Colombo M, Dalton RN, McKeigue PM, Benitez-Aguirre P, Cameron FJ, Chiesa ST, Couper JJ, Craig ME, Daneman D, Davis EA, Deanfield JE, Donaghue KC, Jones TW, Mahmud FH, Marshall SM, Neil A, Colhoun HM, Dunger DB. Biomarkers associated with early stages of kidney disease in adolescents with type 1 diabetes. Pediatr Diabetes 2020; 21:1322-1332. [PMID: 32783254 DOI: 10.1111/pedi.13095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/18/2020] [Accepted: 07/17/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES To identify biomarkers of renal disease in adolescents with type 1 diabetes (T1D) and to compare findings in adults with T1D. METHODS Twenty-five serum biomarkers were measured, using a Luminex platform, in 553 adolescents (median [interquartile range] age: 13.9 [12.6, 15.2] years), recruited to the Adolescent Type 1 Diabetes Cardio-Renal Intervention Trial. Associations with baseline and final estimated glomerular filtration rate (eGFR), rapid decliner and rapid increaser phenotypes (eGFR slopes <-3 and > 3 mL/min/1.73m2 /year, respectively), and albumin-creatinine ratio (ACR) were assessed. Results were also compared with those obtained in 859 adults (age: 55.5 [46.1, 64.4) years) from the Scottish Diabetes Research Network Type 1 Bioresource. RESULTS In the adolescent cohort, baseline eGFR was negatively associated with trefoil factor-3, cystatin C, and beta-2 microglobulin (B2M) (B coefficient[95%CI]: -0.19 [-0.27, -0.12], P = 7.0 × 10-7 ; -0.18 [-0.26, -0.11], P = 5.1 × 10-6 ; -0.12 [-0.20, -0.05], P = 1.6 × 10-3 ), in addition to clinical covariates. Final eGFR was negatively associated with osteopontin (-0.21 [-0.28, -0.14], P = 2.3 × 10-8 ) and cystatin C (-0.16 [-0.22, -0.09], P = 1.6 × 10-6 ). Rapid decliner phenotype was associated with osteopontin (OR: 1.83 [1.42, 2.41], P = 7.3 × 10-6 ), whereas rapid increaser phenotype was associated with fibroblast growth factor-23 (FGF-23) (1.59 [1.23, 2.04], P = 2.6 × 10-4 ). ACR was not associated with any of the biomarkers. In the adult cohort similar associations with eGFR were found; however, several additional biomarkers were associated with eGFR and ACR. CONCLUSIONS In this young population with T1D and high rates of hyperfiltration, osteopontin was the most consistent biomarker associated with prospective changes in eGFR. FGF-23 was associated with eGFR increases, whereas trefoil factor-3, cystatin C, and B2M were associated with baseline eGFR.
Collapse
Affiliation(s)
| | - Marco Colombo
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Raymond Neil Dalton
- Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Paul M McKeigue
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Paul Benitez-Aguirre
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | - Fergus J Cameron
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Scott T Chiesa
- Institute of Cardiovascular Science, University College London, London, UK
| | - Jennifer J Couper
- Departments of Endocrinology and Diabetes and Medical Imaging, Women's and Children's Hospital, Adelaide, Australia
| | - Maria E Craig
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | - Denis Daneman
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth A Davis
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - John E Deanfield
- Institute of Cardiovascular Science, University College London, London, UK
| | - Kim C Donaghue
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | - Timothy W Jones
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Farid H Mahmud
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Sally M Marshall
- Institute of Cellular Medicine (Diabetes), Faculty of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Neil
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Helen M Colhoun
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - David B Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, UK.,Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Individuals with type 1 diabetes (T1D) have excess cardiovascular risk and reduced life expectancy. Adolescence is the time when the first signs of vascular complications appear and a critical window for interventions. This article reviews recent evidence on cardiometabolic risk factors and their management in youth with T1D. RECENT FINDINGS Adolescents with T1D show early signs of vascular complications, as a result of several cardiometabolic risk factors. Poor glycemic control is one of the main risk factors and the main target of treatment. However, only a minority of adolescents with T1D reaches recommended targets for glycemic control. Hypertension, dyslipidemia, smoking, alcohol use, obesity and insulin resistance are other common cardiometabolic risk factors in this age group. Recent data confirm that screening for these risk factors is suboptimal and use of pharmacological interventions for hypertension and dyslipidemia remains low. Data on adjunctive noninsulin agents to improve glycemic control and other cardiometabolic risk factors are still lacking in this age group. SUMMARY Vascular complications and the associated mortality remain a major issue for youth with T1D. Better screening strategies for cardiometabolic risk factors and interventions are required to improve the long-term prognosis of youth with T1D.
Collapse
|
44
|
AMPK, Mitochondrial Function, and Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21144987. [PMID: 32679729 PMCID: PMC7404275 DOI: 10.3390/ijms21144987] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is in charge of numerous catabolic and anabolic signaling pathways to sustain appropriate intracellular adenosine triphosphate levels in response to energetic and/or cellular stress. In addition to its conventional roles as an intracellular energy switch or fuel gauge, emerging research has shown that AMPK is also a redox sensor and modulator, playing pivotal roles in maintaining cardiovascular processes and inhibiting disease progression. Pharmacological reagents, including statins, metformin, berberine, polyphenol, and resveratrol, all of which are widely used therapeutics for cardiovascular disorders, appear to deliver their protective/therapeutic effects partially via AMPK signaling modulation. The functions of AMPK during health and disease are far from clear. Accumulating studies have demonstrated crosstalk between AMPK and mitochondria, such as AMPK regulation of mitochondrial homeostasis and mitochondrial dysfunction causing abnormal AMPK activity. In this review, we begin with the description of AMPK structure and regulation, and then focus on the recent advances toward understanding how mitochondrial dysfunction controls AMPK and how AMPK, as a central mediator of the cellular response to energetic stress, maintains mitochondrial homeostasis. Finally, we systemically review how dysfunctional AMPK contributes to the initiation and progression of cardiovascular diseases via the impact on mitochondrial function.
Collapse
|
45
|
Menini S, Iacobini C, Fantauzzi CB, Pugliese G. L-carnosine and its Derivatives as New Therapeutic Agents for the Prevention and Treatment of Vascular Complications of Diabetes. Curr Med Chem 2020; 27:1744-1763. [PMID: 31296153 DOI: 10.2174/0929867326666190711102718] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 02/01/2023]
Abstract
Vascular complications are among the most serious manifestations of diabetes. Atherosclerosis is the main cause of reduced life quality and expectancy in diabetics, whereas diabetic nephropathy and retinopathy are the most common causes of end-stage renal disease and blindness. An effective therapeutic approach to prevent vascular complications should counteract the mechanisms of injury. Among them, the toxic effects of Advanced Glycation (AGEs) and Lipoxidation (ALEs) end-products are well-recognized contributors to these sequelae. L-carnosine (β-alanyl-Lhistidine) acts as a quencher of the AGE/ALE precursors Reactive Carbonyl Species (RCS), which are highly reactive aldehydes derived from oxidative and non-oxidative modifications of sugars and lipids. Consistently, L-carnosine was found to be effective in several disease models in which glyco/lipoxidation plays a central pathogenic role. Unfortunately, in humans, L-carnosine is rapidly inactivated by serum carnosinase. Therefore, the search for carnosinase-resistant derivatives of Lcarnosine represents a suitable strategy against carbonyl stress-dependent disorders, particularly diabetic vascular complications. In this review, we present and discuss available data on the efficacy of L-carnosine and its derivatives in preventing vascular complications in rodent models of diabetes and metabolic syndrome. We also discuss genetic findings providing evidence for the involvement of the carnosinase/L-carnosine system in the risk of developing diabetic nephropathy and for preferring the use of carnosinase-resistant compounds in human disease. The availability of therapeutic strategies capable to prevent both long-term glucose toxicity, resulting from insufficient glucoselowering therapy, and lipotoxicity may help reduce the clinical and economic burden of vascular complications of diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Stefano Menini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | - Carla Iacobini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | | | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| |
Collapse
|
46
|
Na Nakorn P, Pannengpetch S, Isarankura-Na-Ayudhya P, Thippakorn C, Lawung R, Sathirapongsasuti N, Kitiyakara C, Sritara P, Vathesatogkit P, Isarankura-Na-Ayudhya C. Roles of kininogen-1, basement membrane specific heparan sulfate proteoglycan core protein, and roundabout homolog 4 as potential urinary protein biomarkers in diabetic nephropathy. EXCLI JOURNAL 2020; 19:872-891. [PMID: 32665774 PMCID: PMC7355151 DOI: 10.17179/excli2020-1396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
Abstract
Diabetic nephropathy, a major complication of diabetes mellitus (DM), is increasing worldwide and the large majority of patients have type 2 DM. Microalbuminuria has been used as a diagnostic marker of diabetic nephropathy. But owing to its insufficient sensitivity and specificity, other biomarkers are being sought. In addition, the pathophysiology of diabetic nephropathy is not fully understood and declines in renal function occur even without microalbuminuria. In this study, we investigated urinary proteins from three study groups (controls, and type 2 diabetic subjects with or without microalbuminuria). Non-targeted label-free Nano-LC QTOF analysis was conducted to discover underlying mechanisms and protein networks, and targeted label-free Nano-LC QTOF with SWATH was performed to qualify discovered protein candidates. Twenty-eight proteins were identified as candidates and functionally analyzed via String DB, gene ontology and pathway analysis. Four predictive mechanisms were analyzed: i) response to stimulus, ii) platelet activation, signaling and aggregation, iii) ECM-receptor interaction, and iv) angiogenesis. These mechanisms can provoke kidney dysfunction in type 2 diabetic patients via endothelial cell damage and glomerulus structural alteration. Based on these analyses, three proteins (kininogen-1, basement membrane-specific heparan sulfate proteoglycan core protein, and roundabout homolog 4) were proposed for further study as potential biomarkers. Our findings provide insights that may improve methods for both prevention and diagnosis of diabetic nephropathy.
Collapse
Affiliation(s)
- Piyada Na Nakorn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Supitcha Pannengpetch
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakornpathom, Thailand
| | | | - Chadinee Thippakorn
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakornpathom, Thailand
| | - Ratana Lawung
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Nuankanya Sathirapongsasuti
- Section for Translational Medicine, Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chagriya Kitiyakara
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Piyamitr Sritara
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prin Vathesatogkit
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
47
|
Jung CH, Mok JO. Recent Updates on Vascular Complications in Patients with Type 2 Diabetes Mellitus. Endocrinol Metab (Seoul) 2020; 35:260-271. [PMID: 32615710 PMCID: PMC7386121 DOI: 10.3803/enm.2020.35.2.260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
It is well known that patients with type 2 diabetes mellitus (T2DM) are at an increased risk of morbidity and mortality from atherosclerotic cardiovascular (CV) complications. Previously, the concept that diabetes mellitus (DM) is a "coronary artery disease (CAD) risk equivalent" was widely accepted, implying that all DM patients should receive intensive management. However, considerable evidence exist for wide heterogeneity in the risk of CV events among T2DM patients and the concept of a "CAD risk equivalent" has changed. Recent guidelines recommend further CV risk stratification in T2DM patients, with treatment tailored to the risk level. Although imaging modalities for atherosclerotic cardiovascular disease (ASCVD) have been used to improve risk prediction, there is currently no evidence that imaging-oriented therapy improves clinical outcomes. Therefore, controversy remains whether we should screen for CVD in asymptomatic T2DM. The coexistence of T2DM and heart failure (HF) is common. Based on recent CV outcome trials, sodium glucose cotransporter-2 inhibitors and glucagon like peptide-1 receptor agonists are recommended who have established ASCVD, indicators of high risk, or HF because of their demonstrated benefits for CVD. These circumstances have led to an increasing emphasis on ASCVD and HF in T2DM patients. In this review, we examine the literature published within the last 5 years on the risk assessment of CVD in asymptomatic T2DM patients. In particular, we review recent guidelines regarding screening for CVD and research focusing on the role of coronary artery calcium, coronary computed tomography angiography, and carotid intima-media thickness in asymptomatic T2DM patients.
Collapse
Affiliation(s)
- Chan-Hee Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Ji-Oh Mok
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| |
Collapse
|
48
|
Doumas M, Imprialos K, Stavropoulos K, Athyros VG. Pharmacological Management of Type 2 Diabetes Complications. Curr Vasc Pharmacol 2020; 18:101-103. [PMID: 32013814 DOI: 10.2174/157016111802200101155519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Michael Doumas
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece.,George Washington University, Washington, DC, United States
| | - Konstantinos Imprialos
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Konstantinos Stavropoulos
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Vasilios G Athyros
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| |
Collapse
|
49
|
Wan H, Zhu H, Wang Y, Zhang K, Chen Y, Fang S, Xia F, Wang N, Zhang W, Lu Y. Associations between different bilirubin subtypes and diabetic microvascular complications in middle-aged and elderly individuals. Ther Adv Endocrinol Metab 2020; 11:2042018820937897. [PMID: 32699586 PMCID: PMC7357000 DOI: 10.1177/2042018820937897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
AIMS Some studies have reported associations between bilirubin and diabetic microvascular complications. However, these studies focused only on total bilirubin (TBIL) without distinguishing different bilirubin subtypes. In this study, we aimed to investigate the associations of TBIL, direct bilirubin (DBIL) and indirect bilirubin (IBIL) levels with albuminuria/creatinine ratio (ACR) and the prevalence of diabetic retinopathy (DR) among diabetic adults. METHODS We analyzed 4368 individuals out of 4813 diabetic participants enrolled from seven communities in 2018 in a cross-sectional study. Participants underwent several checkups, including the measurement of anthropometric parameters, blood pressure, glucose, lipid profile, TBIL, DBIL, IBIL and ACR. DR was detected by high-quality fundus photographs and was remotely read by ophthalmologists. RESULTS Compared with the first quartile of DBIL, participants in the fourth quartile had a lower prevalence of high ACR (odds ratio (OR) 0.76; 95% confidence interval (CI) 0.59, 0.99) (p for trend < 0.05). Neither TBIL nor IBIL was associated with the prevalence of high ACR. In DR, higher DBIL and TBIL by one standard deviation was associated with a 19% (OR 0.81; 95% CI 0.69, 0.94) and a 12% (OR 0.88; 95% CI 0.78, 0.99) lower frequency of DR, respectively (both p for trend < 0.05). However, IBIL was not associated with the prevalence of DR. These associations were adjusted for potential confounding factors. CONCLUSION DBIL had a stronger association with high ACR and DR than TBIL or IBIL did in diabetic adults. The effect of DBIL on diabetic complications should be noted and investigated in further studies.
Collapse
Affiliation(s)
| | | | | | - Kun Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | | |
Collapse
|
50
|
Ren L, Han F, Xuan L, Lv Y, Gong L, Yan Y, Wan Z, Guo L, Liu H, Xu B, Sun Y, Yang S, Liu L. Clusterin ameliorates endothelial dysfunction in diabetes by suppressing mitochondrial fragmentation. Free Radic Biol Med 2019; 145:357-373. [PMID: 31614179 DOI: 10.1016/j.freeradbiomed.2019.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Clusterin (CLU) is a stress-responding protein associated with cytoprotection in a broad range of pathological processes. However, clusterin's function in diabetes-induced endothelial dysfunction has not been defined. Herein, using two diabetes models, we investigated the role of clusterin in endothelial dysfunction triggered by diabetes and the molecular mechanisms involved. The results revealed that clusterin overexpression inhibited ICAM-1/VCAM-1 expression in aortas and improved endothelium-dependent vasodilatation in db/db diabetic mice and streptozotocin (STZ)-induced diabetes models. Consistently, in vitro, adenoviral clusterin overexpression reduced the expression of a range of pro-inflammatory cytokines and suppressed monocyte adhesion to endothelial cells subjected to high glucose and high palmitate. Further study indicated that clusterin overexpression mitigated mitochondrial excessive fission and reduced mitochondrial ROS production. Conversely, silencing clusterin aggravated mitochondrial fission and endothelial inflammatory activation in high glucose-exposed endothelial cells. Accumulating evidence indicates that impaired mitochondrial dynamics plays a considerable role in promoting endothelial dysfunction in diabetic subjects. Therefore, treatments targeting mitochondrial undue fission may be promising measures to prevent vascular complications of diabetes. Furthermore, AMP-activated protein kinase (AMPK) activation contributed to the modulation of mitochondrial dynamics executed by clusterin. Mechanistically, clusterin promoted the phosphorylation of AMPKα and its downstream target acetyl-CoA carboxylase (ACC), while the inhibition of AMPKα negated the improvement in mitochondrial dynamics provided by clusterin overexpression. Over all, these findings suggest that clusterin exerts beneficial effects in endothelial cells under diabetic conditions via inhibiting mitochondrial fragmentation mediated by AMPK.
Collapse
Affiliation(s)
- Lulu Ren
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Feifei Han
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lingling Xuan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yali Lv
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lili Gong
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yan Yan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zirui Wan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lifang Guo
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - He Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Benshan Xu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuan Sun
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Song Yang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lihong Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|