1
|
Cho H, Ha SE, Singh R, Kim D, Ro S. microRNAs in Type 1 Diabetes: Roles, Pathological Mechanisms, and Therapeutic Potential. Int J Mol Sci 2025; 26:3301. [PMID: 40244147 PMCID: PMC11990060 DOI: 10.3390/ijms26073301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the progressive destruction of pancreatic β-cells, leading to insulin deficiency. The primary drivers of β-cell destruction in T1D involve autoimmune-mediated processes that trigger chronic inflammation and ultimately β-cell loss. Regulatory microRNAs (miRNAs) play a crucial role in modulating these processes by regulating gene expression through post-transcriptional suppression of target mRNAs. Dysregulated miRNAs have been implicated in T1D pathogenesis, serving as both potential diagnostic biomarkers and therapeutic targets. This review explores the role of miRNAs in T1D, highlighting their involvement in disease mechanisms across both rodent models and human patients. While current antidiabetic therapies manage T1D symptoms, they do not prevent β-cell destruction, leaving patients reliant on lifelong insulin therapy. By summarizing key miRNA expression profiles in diabetic animal models and patients, this review explores the potential of miRNA-based therapies to restore β-cell function and halt or slow the progression of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Seungil Ro
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (H.C.); (S.E.H.); (R.S.); (D.K.)
| |
Collapse
|
2
|
Cabiati M, Federico G, Del Ry S. Importance of Studying Non-Coding RNA in Children and Adolescents with Type 1 Diabetes. Biomedicines 2024; 12:1988. [PMID: 39335501 PMCID: PMC11429055 DOI: 10.3390/biomedicines12091988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Type 1 diabetes (T1D) mellitus is a chronic illness in children and teens, with rising global incidence rates. It stems from an autoimmune attack on pancreatic β cells, leading to insufficient insulin production. Genetic susceptibility and environmental triggers initiate this process. Early detection is possible by identifying multiple autoantibodies, which aids in predicting future T1D development. A new staging system highlights T1D's onset with islet autoimmunity rather than symptoms. Family members of T1D patients face a significantly increased risk of T1D. Italy recently passed a law mandating national T1D screening for pediatric populations. Measurements of β cell function continue to be essential in assessing efficacy, and different models have been proposed, but more appropriate biomarkers are mandatory for both progression studies before the onset of diabetes and during therapeutic monitoring. Biomarkers like microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) play key roles in T1D pathogenesis by regulating gene expression. Understanding their roles offers insights into T1D mechanisms and potential therapeutic targets. In this review, we summarized recent progress in the roles of some non-coding RNAs (ncRNAs) in the pathogenesis of T1D, with particular attention to miRNAs, lncRNAs, and circRNAs.
Collapse
Affiliation(s)
- Manuela Cabiati
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Giovanni Federico
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Del Ry
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| |
Collapse
|
3
|
Sebastiani G, Grieco GE, Bruttini M, Auddino S, Mori A, Toniolli M, Fignani D, Licata G, Aiello E, Nigi L, Formichi C, Fernandez-Tajes J, Pugliese A, Evans-Molina C, Overbergh L, Tree T, Peakman M, Mathieu C, Dotta F. A set of circulating microRNAs belonging to the 14q32 chromosome locus identifies two subgroups of individuals with recent-onset type 1 diabetes. Cell Rep Med 2024; 5:101591. [PMID: 38838677 PMCID: PMC11228666 DOI: 10.1016/j.xcrm.2024.101591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/02/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Circulating microRNAs (miRNAs) are linked to the onset and progression of type 1 diabetes mellitus (T1DM), thus representing potential disease biomarkers. In this study, we employed a multiplatform sequencing approach to analyze circulating miRNAs in an extended cohort of prospectively evaluated recent-onset T1DM individuals from the INNODIA consortium. Our findings reveal that a set of miRNAs located within T1DM susceptibility chromosomal locus 14q32 distinguishes two subgroups of individuals. To validate our results, we conducted additional analyses on a second cohort of T1DM individuals, confirming the identification of these subgroups, which we have named cluster A and cluster B. Remarkably, cluster B T1DM individuals, who exhibit increased expression of a set of 14q32 miRNAs, show better glycemic control and display a different blood immunomics profile. Our findings suggest that this set of circulating miRNAs can identify two different T1DM subgroups with distinct blood immunomics at baseline and clinical outcomes during follow-up.
Collapse
Affiliation(s)
- Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Marco Bruttini
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Stefano Auddino
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Alessia Mori
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Mattia Toniolli
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Elena Aiello
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | | | - Alberto Pugliese
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases and the Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lut Overbergh
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Timothy Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Mark Peakman
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Boston, MA, USA
| | - Chantal Mathieu
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy.
| |
Collapse
|
4
|
Qi H, Han B, Che J. Circ_0099630 knockdown alleviates lipopolysaccharide-induced injuries of human periodontal ligament cells through the inhibition of TLR4 by releasing miR-409-3p. BMC Oral Health 2023; 23:922. [PMID: 38007427 PMCID: PMC10675886 DOI: 10.1186/s12903-023-03622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/04/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Periodontitis triggers tooth loss and affects the health of population worldwide. Emerging evidence hints that circular RNAs (circRNAs) are involved in various diseases, including periodontitis. This study aimed to investigate the role of circ_0099630 in the progression of periodontitis. METHODS Periodontitis cell model was constructed by treating human periodontal ligament cells (HPDLCs) with lipopolysaccharide (LPS). Quantitative real-time PCR was used to analyze the expression of circ_0099630, microRNA-409-3p (miR-409-3p) and toll-like receptor 4 (TLR4) mRNA. Western blot was used for detecting protein levels of TLR4, cleaved-caspase 3, Bcl-2, CyclinD1 and NF-κB signaling markers. For function analyses, cell proliferation was assessed by CCK-8 assay and EdU assay. The releases of pro-inflammation factors were monitored by ELISA kits. The potential relationship between miR-409-3p and circ_0099630 or TLR4 was verified by dual-luciferase reporter assay, RIP assay and pull-down assay. RESULTS The expression of circ_0099630 and TLR4 was elevated in periodontitis patients and LPS-treated HPDLCs. LPS induced HPDLC proliferation inhibition, apoptosis and inflammatory responses, while circ_0099630 knockdown or TLR4 knockdown alleviated these injuries. Besides, TLR4 overexpression reversed the inhibitory effect of circ_0099630 knockdown on LPS-induced HPDLC injuries. Mechanism analysis showed that circ_0099630 positively regulated TLR4 expression by acting as miR-409-3p sponge. MiR-409-3p restoration largely ameliorated LPS-induced HPDLC injuries by depleting TLR4. Moreover, LPS activated the NF-κB signaling pathway, while circ_0099630 knockdown inhibited the activity of NF-κB signaling via the miR-409-3p/TLR4 axis. CONCLUSION Circ_0099630 knockdown relieved LPS-induced HPDLC injury by miR-409-3p/TLR4 axis, suggesting that circ_0099630 might be a potential target for periodontitis treatment.
Collapse
Affiliation(s)
- Hongyan Qi
- Department of Stomatology, First Hospital Affiliated to Lanzhou University, No.1 Donggangxi Rd, Chengguan District, 730000, Lanzhou City, Gansu Province, PR China.
| | - Bing Han
- Department of Health Science Center, Northwest Minzu University, 730000, Lanzhou, Gansu, China
| | - Jin Che
- Department of oral and maxillofacial surgery, Lanzhou Stomatological Hospital, 730000, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Sassi G, Licata G, Ventriglia G, Wouters A, Lemaitre P, Seurinck R, Mori A, Grieco GE, Bissenova S, Ellis D, Caluwaerts S, Rottiers P, Vandamme N, Mathieu C, Dotta F, Gysemans C, Sebastiani G. A Plasma miR-193b-365 Signature Combined With Age and Glycemic Status Predicts Response to Lactococcus lactis-Based Antigen-Specific Immunotherapy in New-Onset Type 1 Diabetes. Diabetes 2023; 72:1470-1482. [PMID: 37494666 PMCID: PMC10545562 DOI: 10.2337/db22-0852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Immunomodulation combined with antigen therapy holds great promise to arrest autoimmune type 1 diabetes, but clinical translation is hampered by a lack of prognostic biomarkers. Low-dose anti-CD3 plus Lactococcus lactis bacteria secreting proinsulin and IL-10 reversed new-onset disease in nonobese diabetic (NOD) mice, yet some mice were resistant to the therapy. Using miRNA profiling, six miRNAs (i.e., miR-34a-5p, miR-125a-3p, miR-193b-3p, miR-328, miR-365-3p, and miR-671-3p) were identified as differentially expressed in plasma of responder versus nonresponder mice before study entry. After validation and stratification in an independent cohort, plasma miR-193b-3p and miR-365-3p, combined with age and glycemic status at study entry, had the best power to predict, with high sensitivity and specificity, poor response to the therapy. These miRNAs were highly abundant in pancreas-infiltrating neutrophils and basophils with a proinflammatory and activated phenotype. Here, a set of miRNAs and disease-associated parameters are presented as a predictive signature for the L. lactis-based immunotherapy outcome in new-onset type 1 diabetes, hence allowing targeted recruitment of trial participants and accelerated trial execution. ARTICLE HIGHLIGHTS Low-dose anti-CD3 combined with oral gavage of genetically modified Lactococcus lactis bacteria secreting human proinsulin and IL-10 holds great promise to arrest autoimmune type 1 diabetes, but the absence of biomarkers predicting therapeutic success hampers clinical translation. A set of cell-free circulation miRNAs together with age and glycemia at baseline predicts a poor response after L. lactis-based immunotherapy in nonobese mice with new-onset diabetes. Pancreas-infiltrating neutrophils and basophils are identified as potential cellular sources of discovered miRNAs. The prognostic signature could guide targeted recruitment of patients with newly diagnosed type 1 diabetes in clinical trials with the L. lactis-based immunotherapy.
Collapse
Affiliation(s)
- Gabriele Sassi
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, Toscana Life Science, Siena, Italy
| | - Giuliana Ventriglia
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, Toscana Life Science, Siena, Italy
| | - Amber Wouters
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Pierre Lemaitre
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Ruth Seurinck
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Alessia Mori
- Tuscany Centre for Precision Medicine, Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, Toscana Life Science, Siena, Italy
| | - Samal Bissenova
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Darcy Ellis
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | | | | | - Niels Vandamme
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- VIB Single Cell Core, Leuven–Ghent, Ghent, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, Toscana Life Science, Siena, Italy
- Tuscany Centre for Precision Medicine, Siena, Italy
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Chrometa, KU Leuven, Leuven, Belgium
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, Toscana Life Science, Siena, Italy
| |
Collapse
|
6
|
Fyvie MJ, Gillespie KM. The importance of biomarker development for monitoring type 1 diabetes progression rate and therapeutic responsiveness. Front Immunol 2023; 14:1158278. [PMID: 37256143 PMCID: PMC10225507 DOI: 10.3389/fimmu.2023.1158278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/28/2023] [Indexed: 06/01/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune condition of children and adults in which immune cells target insulin-producing pancreatic β-cells for destruction. This results in a chronic inability to regulate blood glucose levels. The natural history of T1D is well-characterized in childhood. Evidence of two or more autoantibodies to the islet antigens insulin, GAD, IA-2 or ZnT8 in early childhood is associated with high risk of developing T1D in the future. Prediction of risk is less clear in adults and, overall, the factors controlling the progression rate from multiple islet autoantibody positivity to onset of symptoms are not fully understood. An anti-CD3 antibody, teplizumab, was recently shown to delay clinical progression to T1D in high-risk individuals including adults and older children. This represents an important proof of concept for those at risk of future T1D. Given their role in risk assessment, islet autoantibodies might appear to be the most obvious biomarkers to monitor efficacy. However, monitoring islet autoantibodies in clinical trials has shown only limited effects, although antibodies to the most recently identified autoantigen, tetraspanin-7, have not yet been studied in this context. Measurements of beta cell function remain fundamental to assessing efficacy and different models have been proposed, but improved biomarkers are required for both progression studies before onset of diabetes and in therapeutic monitoring. In this mini-review, we consider some established and emerging predictive and prognostic biomarkers, including markers of pancreatic function that could be integrated with metabolic markers to generate improved strategies to measure outcomes of therapeutic intervention.
Collapse
Affiliation(s)
| | - Kathleen M. Gillespie
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
7
|
Gomez-Muñoz L, Perna-Barrull D, Murillo M, Armengol MP, Alcalde M, Catala M, Rodriguez-Fernandez S, Sunye S, Valls A, Perez J, Corripio R, Vives-Pi M. Immunoregulatory Biomarkers of the Remission Phase in Type 1 Diabetes: miR-30d-5p Modulates PD-1 Expression and Regulatory T Cell Expansion. Noncoding RNA 2023; 9:ncrna9020017. [PMID: 36960962 PMCID: PMC10037622 DOI: 10.3390/ncrna9020017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
The partial remission (PR) phase of type 1 diabetes (T1D) is an underexplored period characterized by endogenous insulin production and downmodulated autoimmunity. To comprehend the mechanisms behind this transitory phase and develop precision medicine strategies, biomarker discovery and patient stratification are unmet needs. MicroRNAs (miRNAs) are small RNA molecules that negatively regulate gene expression and modulate several biological processes, functioning as biomarkers for many diseases. Here, we identify and validate a unique miRNA signature during PR in pediatric patients with T1D by employing small RNA sequencing and RT-qPCR. These miRNAs were mainly related to the immune system, metabolism, stress, and apoptosis pathways. The implication in autoimmunity of the most dysregulated miRNA, miR-30d-5p, was evaluated in vivo in the non-obese diabetic mouse. MiR-30d-5p inhibition resulted in increased regulatory T cell percentages in the pancreatic lymph nodes together with a higher expression of CD200. In the spleen, a decrease in PD-1+ T lymphocytes and reduced PDCD1 expression were observed. Moreover, miR-30d-5p inhibition led to an increased islet leukocytic infiltrate and changes in both effector and memory T lymphocytes. In conclusion, the miRNA signature found during PR shows new putative biomarkers and highlights the immunomodulatory role of miR-30d-5p, elucidating the processes driving this phase.
Collapse
Affiliation(s)
- Laia Gomez-Muñoz
- Immunology Department, Germans Trias i Pujol Research Institute (IGTP), Autonomous University of Barcelona, 08916 Badalona, Spain
| | - David Perna-Barrull
- Immunology Department, Germans Trias i Pujol Research Institute (IGTP), Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Marta Murillo
- Pediatrics Department, Germans Trias i Pujol University Hospital (HGTiP), Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Maria Pilar Armengol
- Translational Genomic Platform, Germans Trias i Pujol Research Institute (IGTP), Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Marta Alcalde
- Physics Department, Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Marti Catala
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX1 2JD, UK
| | - Silvia Rodriguez-Fernandez
- Immunology Department, Germans Trias i Pujol Research Institute (IGTP), Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Sergi Sunye
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Aina Valls
- Pediatrics Department, Germans Trias i Pujol University Hospital (HGTiP), Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Jacobo Perez
- Pediatric Endocrinology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Autonomous University of Barcelona, 08208 Sabadell, Spain
| | - Raquel Corripio
- Pediatric Endocrinology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Autonomous University of Barcelona, 08208 Sabadell, Spain
| | - Marta Vives-Pi
- Immunology Department, Germans Trias i Pujol Research Institute (IGTP), Autonomous University of Barcelona, 08916 Badalona, Spain
| |
Collapse
|
8
|
Zeng Y, Cui Z, Chen J, Tang S. Investigating the Function of MicroRNAs in Human Retinal Microvascular Endothelial Cells of Diabetic Retinopathy. Methods Mol Biol 2023; 2678:199-205. [PMID: 37326716 DOI: 10.1007/978-1-0716-3255-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Diabetic retinopathy (DR) is the main complication of diabetes mellitus (DM). Recent studies have implicated microRNAs dysfunction in human retinal microvascular endothelial cell (HRMEC). In this study, we aim to investigate the apoptotic promotion of miR-29b-3p by blocking SIRT1 in HRMEC for DR situation. To identify the regulating relationship between miR-29b-3p and SIRT1, HRMECs were transfected with miR-29b-3p mimics/inhibitors or their negative controls. Cell viability was assessed with the cell counting kit-8 (CCK-8) assay, and apoptotic cells were stained by one-step TUNEL assay kit. Gene and protein expression were assayed by RT-qPCR and Western blotting separately. Dual-luciferase reporter assay using HEK293T cells was performed to show the direct interaction of miR-29b-3p and the 3'-UTR of SIRT1. HRMECs were identified as >95% positive for CD31 and vWF. Upregulated miR-29b-3p decreased the expression of SIRT1 and increased the ratio of Bax/Bcl-2, while downregulated miR-29b-3p increased the expression of SIRT1 protein and downregulated the ratio of Bax/Bcl-2. Dual-luciferase reporter assay showed the direct interaction of miR-29b-3p and SIRT1. The dysregulation of miR-29b-3p/SIRT1 is a potential mechanism of HRMEC apoptosis in DR. miR-29b-3p/SIRT1 may be a potential therapeutic target for DR.
Collapse
Affiliation(s)
- Yong Zeng
- Aier Eye Institute, Changsha, Hunan Province, People's Republic of China
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Zekai Cui
- Aier Eye Institute, Changsha, Hunan Province, People's Republic of China
| | - Jiansu Chen
- Aier Eye Institute, Changsha, Hunan Province, People's Republic of China.
- Changsha Aier Eye Hospital, Changsha, Hunan Province, People's Republic of China.
| | - Shibo Tang
- Aier Eye Institute, Changsha, Hunan Province, People's Republic of China.
- Changsha Aier Eye Hospital, Changsha, Hunan Province, People's Republic of China.
| |
Collapse
|
9
|
Angelescu MA, Andronic O, Dima SO, Popescu I, Meivar-Levy I, Ferber S, Lixandru D. miRNAs as Biomarkers in Diabetes: Moving towards Precision Medicine. Int J Mol Sci 2022; 23:12843. [PMID: 36361633 PMCID: PMC9655971 DOI: 10.3390/ijms232112843] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 09/08/2023] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disease with many specifically related complications. Early diagnosis of this disease could prevent the progression to overt disease and its related complications. There are several limitations to using existing biomarkers, and between 24% and 62% of people with diabetes remain undiagnosed and untreated, suggesting a large gap in current diagnostic practices. Early detection of the percentage of insulin-producing cells preceding loss of function would allow for effective therapeutic interventions that could delay or slow down the onset of diabetes. MicroRNAs (miRNAs) could be used for early diagnosis, as well as for following the progression and the severity of the disease, due to the fact of their pancreatic specific expression and stability in various body fluids. Thus, many studies have focused on the identification and validation of such groups or "signatures of miRNAs" that may prove useful in diagnosing or treating patients. Here, we summarize the findings on miRNAs as biomarkers in diabetes and those associated with direct cellular reprogramming strategies, as well as the relevance of miRNAs that act as a bidirectional switch for cell therapy of damaged pancreatic tissue and the studies that have measured and tracked miRNAs as biomarkers in insulin resistance are addressed.
Collapse
Affiliation(s)
| | - Octavian Andronic
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Irinel Popescu
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Irit Meivar-Levy
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
- Orgenesis Ltd., Ness Ziona 7414002, Israel
| | - Sarah Ferber
- Academy Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, 040441 Bucharest, Romania
- Orgenesis Ltd., Ness Ziona 7414002, Israel
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniela Lixandru
- Center of Excelence in Translational Medicine (CEMT), Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Biochemistry, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
10
|
Grieco GE, Besharat ZM, Licata G, Fignani D, Brusco N, Nigi L, Formichi C, Po A, Sabato C, Dardano A, Natali A, Dotta F, Sebastiani G, Ferretti E. Circulating microRNAs as clinically useful biomarkers for Type 2 Diabetes Mellitus: miRNomics from bench to bedside. Transl Res 2022; 247:137-157. [PMID: 35351622 DOI: 10.1016/j.trsl.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/21/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes (T2D), a chronic metabolic disease, has attained the status of a global epidemic with steadily increasing incidence worldwide. Improved diagnosis, stratification and prognosis of T2D patients and the development of more effective treatments are needed. In this era of personalized medicine, the discovery and evaluation of innovative circulating biomarkers can be an effective tool for better stratification, prognosis and therapeutic selection/management of T2D patients. MicroRNAs (miRNAs), a class of small non-coding RNAs that modulate gene expression, have been investigated as potential circulating biomarkers in T2D. Several studies have investigated the expression of circulating miRNAs in T2D patients from various biological fluids, including plasma and serum, and have demonstrated their potential as diagnostic and prognostic biomarkers, as well as biomarkers of response to therapy. In this review, we provide an overview of the current state of knowledge, focusing on circulating miRNAs that have been consistently expressed in at least two independent studies, in order to identify a set of consistent biomarker candidates in T2D. The expression levels of miRNAs, correlation with clinical parameters, functional roles of miRNAs and their potential as biomarkers are reported. A systematic literature search and assessment of studies led to the selection and review of 10 miRNAs (miR-126-3p, miR-223-3p, miR-21-5p, miR-15a-5p, miR-24-3p, miR-34a-5p, miR-146a-5p, miR-148a-3p, miR-30d-5p and miR-30c-5p). We also present technical challenges and our thoughts on the potential validation of circulating miRNAs and their application as biomarkers in the context of T2D.
Collapse
Affiliation(s)
- Giuseppina Emanuela Grieco
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy
| | | | - Giada Licata
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy
| | - Daniela Fignani
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy
| | - Noemi Brusco
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy
| | - Laura Nigi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy
| | - Caterina Formichi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Sabato
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Dardano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Dotta
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Guido Sebastiani
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy.
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
11
|
Bahreini F, Rayzan E, Rezaei N. MicroRNAs and Diabetes Mellitus Type 1. Curr Diabetes Rev 2022; 18:e021421191398. [PMID: 33588736 DOI: 10.2174/1573399817666210215111201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes mellitus is a multifactorial, progressive, autoimmune disease with a strong genetic feature that can affect multiple organs, including the kidney, eyes, and nerves. Early detection of type 1 diabetes can help critically to avoid serious damages to these organs. MicroRNAs are small RNA molecules that act in post-transcriptional gene regulation by attaching to the complementary sequence in the 3'-untranslated region of their target genes. Alterations in the expression of microRNA coding genes are extensively reported in several diseases, such as type 1 diabetes. Presenting non-invasive biomarkers for early detection of type 1 diabetes by quantifying microRNAs gene expression level can be a significant step in biotechnology and medicine. This review discusses the area of microRNAs dysregulation in type 1 diabetes and affected molecular mechanisms involved in pancreatic islet cell formation and dysregulation in the expression of inflammatory elements as well as pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Farbod Bahreini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elham Rayzan
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Liu G, Lei Y, Luo S, Huang Z, Chen C, Wang K, Yang P, Huang X. MicroRNA expression profile and identification of novel microRNA biomarkers for metabolic syndrome. Bioengineered 2021; 12:3864-3872. [PMID: 34269146 PMCID: PMC8806888 DOI: 10.1080/21655979.2021.1952817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lack of efficient biomarkers is the main reason for the inaccurate early diagnosis and poor treatment outcomes of patients with metabolic syndrome (MetS). The current study aimed to identify several novel microRNA (miRNA) biomarkers for metabolic syndrome via high-throughput sequencing and comprehensive bioinformatics analysis. Through high-throughput sequencing and differentially expressed miRNA (DEM) analysis, we first identified two upregulated and 36 downregulated DEMs in the plasma samples of patients with MetS compared to the healthy volunteers. Additionally, we also predicted 379 potential target genes and subsequently carried out enrichment analysis and protein–protein interaction network analysis to investigate the signaling pathways and functions of the identified DEMs as well as the interactions between their target genes. Furthermore, we selected two upregulated and top 10 downregulated DEMs with the highest |log2FC| values as the key microRNAs, which may serve as potential biomarkers for MetS. RT-qPCR was performed to validated these result. Finally, hsa-miR-526b-5p, hsa-miR-6516-5p was identified as the novel biomarkers for MetS.
Collapse
Affiliation(s)
- Guanzhi Liu
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yutian Lei
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sen Luo
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuo Huang
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Chen
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kunzheng Wang
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pei Yang
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Huang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Grieco GE, Sebastiani G, Fignani D, Brusco N, Nigi L, Formichi C, Licata G, Bruttini M, D'Aurizio R, Mathieu C, Gysemans C, Dotta F. Protocol to analyze circulating small non-coding RNAs by high-throughput RNA sequencing from human plasma samples. STAR Protoc 2021; 2:100606. [PMID: 34189472 PMCID: PMC8219884 DOI: 10.1016/j.xpro.2021.100606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The identification and validation of circulating small non-coding RNA (sncRNA) as biomarkers for disease diagnosis, staging, and response to novel therapies is still a compelling challenge. Pre-analytical variables, such as storage temperature or blood hemolysis, and different analytical approaches affect sncRNA stability, detection, and expression, resulting in discrepancies among studies. Here, we report a systematic standardized protocol to reproducibly analyze circulating sncRNAs, employing high-throughput sncRNA sequencing and qRT-PCR validation, from 200 μL of human plasma samples. For details on the use and execution of this protocol, please refer to Ventriglia et al. (2020), Sebastiani et al. (2017), and Dotta et al. (2018).
Collapse
Affiliation(s)
- Giuseppina E Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena 53100, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena 53100, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena 53100, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena 53100, Italy.,UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena 53100, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena 53100, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena 53100, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena 53100, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena 53100, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena 53100, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena 53100, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena 53100, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena 53100, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena 53100, Italy
| | - Marco Bruttini
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena 53100, Italy.,Tuscany Centre for Precision Medicine (CReMeP), Siena 53100, Italy
| | - Romina D'Aurizio
- Institute of Informatics and Telematics, National Research Council, 56124 Pisa, Italy
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena 53100, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena 53100, Italy.,Tuscany Centre for Precision Medicine (CReMeP), Siena 53100, Italy
| |
Collapse
|
14
|
Grieco GE, Fignani D, Formichi C, Nigi L, Licata G, Maccora C, Brusco N, Sebastiani G, Dotta F. Extracellular Vesicles in Immune System Regulation and Type 1 Diabetes: Cell-to-Cell Communication Mediators, Disease Biomarkers, and Promising Therapeutic Tools. Front Immunol 2021; 12:682948. [PMID: 34177928 PMCID: PMC8219977 DOI: 10.3389/fimmu.2021.682948] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are generated by cells of origin through complex molecular mechanisms and released into extracellular environment. Hence, the presence of EVs has been described in multiple biological fluids and in most cases their molecular cargo, which includes non-coding RNAs (ncRNA), messenger RNAs (mRNA), and proteins, has been reported to modulate distinct biological processes. EVs release and their molecular cargo have been demonstrated to be altered in multiple diseases, including autoimmune diseases. Notably, numerous evidence showed a relevant crosstalk between immune system and interacting cells through specific EVs release. The crosstalk between insulin-producing pancreatic β cells and immune system through EVs bidirectional trafficking has yet started to be deciphered, thus uncovering an intricate communication network underlying type 1 diabetes (T1D) pathogenesis. EVs can also be found in blood plasma or serum. Indeed, the assessment of circulating EVs cargo has been shown as a promising advance in the detection of reliable biomarkers of disease progression. Of note, multiple studies showed several specific cargo alterations of EVs collected from plasma/serum of subjects affected by autoimmune diseases, including T1D subjects. In this review, we discuss the recent literature reporting evidence of EVs role in autoimmune diseases, specifically focusing on the bidirectional crosstalk between pancreatic β cells and immune system in T1D and highlight the relevant promising role of circulating EVs as disease biomarkers.
Collapse
Affiliation(s)
- Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy.,UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy.,UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Carla Maccora
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy.,UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy.,UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy.,Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| |
Collapse
|
15
|
Sun R, Xue W, Zhao J. Hsa_circ_0054633 mediates apoptosis and insulin secretion in human pancreatic β cells through miR-409-3p/caspase-8 axis. Diabetes Res Clin Pract 2021; 176:108837. [PMID: 33901624 DOI: 10.1016/j.diabres.2021.108837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND CircRNAs are reported to be aberrantly expressed and perform biological functions in diverse processes. This study aimed to investigate the potential involvement of hsa_circ_0054633 in high glucose (HG)‑induced diabetic model and its potential mechanism. METHODS The expression of hsa_circ_0054633, miR-409-3p and caspase-8 was detected by real-time PCR and western blotting. Cell viability, apoptosis and the protein levels of apoptosis-related factors were revealed by CCK-8 colorimetry, flow cytometry and western blotting, respectively. Insulin secretion was determined by enzyme-linked immunosorbent assay (ELISA) and the measurement of insulin-related transcription factors. The target association between miR-409-3p and hsa_circ_0054633 or caspase-8 was confirmed by dual-luciferase reporter assays and biotin-based pulldown assay. RESULTS Hsa_circ_0054633 was highly expressed and the expression of miR-409-3p was downregulated in serum of DM patients and HG-treated human pancreatic β cell line NES2Y. Further investigation indicated that hsa_circ_0054633 suppression promoted cell proliferation, inhibited apoptosis and facilitated insulin secretion in HG-treated NES2Y cells. Mechanical analysis revealed that hsa_circ_0054633 regulated caspase-8 expression via sponging miR-409-3p. Rescue experiments demonstrated that miR-409-3p knockdown or caspase-8 overexpression reversed the effects of hsa_circ_0054633 in HG-stimulated NES2Y cells. CONCLUSION Inhibition of hsa_circ_0054633 protected against HG-induced NES2Y cell apoptosis and impairment of insulin secretion by regulating miR-409-3p/caspase-8 axis.
Collapse
Affiliation(s)
- Rui Sun
- Department of Endocrinology, The People's Hospital of Jiaozuo City, Jiaozuo 454000, China
| | - Wanli Xue
- Department of General Surgery, Jiaozuo Hospital of Traditional Chinese Medicine, Jiaozuo 454000, China.
| | - Juzhen Zhao
- Department of Endocrinology, The People's Hospital of Jiaozuo City, Jiaozuo 454000, China
| |
Collapse
|
16
|
Wang H. MicroRNAs, Parkinson's Disease, and Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22062953. [PMID: 33799467 PMCID: PMC8001823 DOI: 10.3390/ijms22062953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that affects 1% of the population over the age of 60. Diabetes Mellitus (DM) is a metabolic disorder that affects approximately 25% of adults over the age of 60. Recent studies showed that DM increases the risk of developing PD. The link between DM and PD has been discussed in the literature in relation to different mechanisms including mitochondrial dysfunction, oxidative stress, and protein aggregation. In this paper, we review the common microRNA (miRNA) biomarkers of both diseases. miRNAs play an important role in cell differentiation, development, the regulation of the cell cycle, and apoptosis. They are also involved in the pathology of many diseases. miRNAs can mediate the insulin pathway and glucose absorption. miRNAs can also regulate PD-related genes. Therefore, exploring the common miRNA biomarkers of both PD and DM can shed a light on how these two diseases are correlated, and targeting miRNAs is a potential therapeutic opportunity for both diseases.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
17
|
MicroRNA Expression in the Aqueous Humor of Patients with Diabetic Macular Edema. Int J Mol Sci 2020; 21:ijms21197328. [PMID: 33023063 PMCID: PMC7582592 DOI: 10.3390/ijms21197328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
We identified and compared secreted microRNA (miRNA) expression in aqueous humor (AH) and plasma samples among patients with: type 2 diabetes mellitus (T2D) complicated by non-proliferative diabetic retinopathy (DR) associated with diabetic macular edema (DME) (DME group: 12 patients); T2D patients without DR (D group: 8 patients); and non-diabetic patients (CTR group: 10 patients). Individual patient AH samples from five subjects in each group were profiled on TaqMan Low Density MicroRNA Array Cards. Differentially expressed miRNAs identified from profiling were then validated in single assay for all subjects. The miRNAs validated in AH were then evaluated in single assay in plasma. Gene Ontology (GO) analysis was conducted. From AH profiling, 119 mature miRNAs were detected: 86 in the DME group, 113 in the D group and 107 in the CTR group. miRNA underexpression in the DME group was confirmed in single assay for let-7c-5p, miR-200b-3p, miR-199a-3p and miR-365-3p. Of these four, miR-199a-3p and miR-365-3p were downregulated also in the plasma of the DME group. GO highlighted 54 validated target genes of miR-199a-3p, miR-200b-3p and miR-365-3p potentially implied in DME pathogenesis. Although more studies are needed, miR-200b-3p, let-7c-5p, miR-365-3p and miR-199a-3p represent interesting molecules in the study of DME pathogenesis.
Collapse
|
18
|
Mallone R, Eizirik DL. Presumption of innocence for beta cells: why are they vulnerable autoimmune targets in type 1 diabetes? Diabetologia 2020; 63:1999-2006. [PMID: 32894310 DOI: 10.1007/s00125-020-05176-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
It is increasingly appreciated that the pathogenic mechanisms of type 1 diabetes involve both the autoimmune aggressors and their beta cell targets, which engage in a conflicting dialogue within and possibly outside the pancreas. Indeed, autoimmune CD8+ T cells, which are the final mediators of beta cell destruction, circulate at similar frequencies in type 1 diabetic and healthy individuals. Hence a universal state of 'benign' islet autoimmunity exists, and we hypothesise that its progression to type 1 diabetes may at least partially rely on a higher vulnerability of beta cells, which play a key, active role in disease development and/or amplification. We posit that this autoimmune vulnerability is rooted in some features of beta cell biology: the stress imposed by the high rate of production of insulin and other granule proteins, their dense vascularisation and the secretion of their products directly into the bloodstream. Gene variants that may predispose individuals to this vulnerability have been identified, e.g. MDA5, TYK2, PTPN2. They interact with environmental cues, such as viral infections, that may drive this genetic potential towards exacerbated local inflammation and progressive beta cell loss. On top of this, beta cells set up compensatory responses, such as the unfolded protein response, that become deleterious in the long term. The relative contribution of immune and beta cell drivers may vary and phenotypic subtypes (endotypes) are likely to exist. This dual view argues for the use of circulating biomarkers of both autoimmunity and beta cell stress for disease staging, and for the implementation of both immunomodulatory and beta cell-protective therapeutic strategies. Graphical abstract.
Collapse
Affiliation(s)
- Roberto Mallone
- Université de Paris, Institut Cochin, CNRS, INSERM, G.H. Cochin-Port Royal, Cassini building, 123 boulevard de Port Royal, 75014, Paris, France.
- Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires de Paris Centre-Université de Paris, Cochin Hospital, Service de Diabétologie et Immunologie Clinique, 75014, Paris, France.
| | - Decio L Eizirik
- ULB Center for Diabetes Research and WELBIO, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| |
Collapse
|
19
|
Taheri M, Eghtedarian R, Dinger ME, Ghafouri-Fard S. Emerging roles of non-coding RNAs in the pathogenesis of type 1 diabetes mellitus. Biomed Pharmacother 2020; 129:110509. [PMID: 32768981 DOI: 10.1016/j.biopha.2020.110509] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) is a lifelong autoimmune disorder that is increasingly prevalent in populations worldwide. As well as affecting adults, T1D is one of the most prevalent chronic childhood disorders. Several lines of evidence point to dysregulation of both cellular and humoral immune responses in this disorder. Several genetic loci have been associated with risk of T1D, implying the presence of a complex multifactorial pattern of inheritance for this disorder. Moreover, recent studies have reported dysregulation of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in animal models of T1D or clinical samples. Several immune-related molecules and pathways such as NF-κB, PI3K/Akt/FOXO, JAK, MAPK, mTOR and STAT pathways are regulated by non-coding RNAs in the context of T1D. Improved understanding of the role of lncRNAs and miRNAs in the pathogenesis of T1D would facilitate design of preventive therapeutic modalities. In the current review, we summarize the results of animal and human studies that report dysregulation of these transcripts and their function in T1D.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhane Eghtedarian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Zeng Y, Cui Z, Liu J, Chen J, Tang S. MicroRNA-29b-3p Promotes Human Retinal Microvascular Endothelial Cell Apoptosis via Blocking SIRT1 in Diabetic Retinopathy. Front Physiol 2020; 10:1621. [PMID: 32063865 PMCID: PMC7000655 DOI: 10.3389/fphys.2019.01621] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/24/2019] [Indexed: 12/23/2022] Open
Abstract
Background Diabetic retinopathy (DR) is a main complication of diabetes mellitus (DM). Recent studies have implicated microRNAs in human retinal microvascular endothelial cell (HRMEC) dysfunction. In this study, we aim to investigate the apoptotic promotion of miR-29b-3p by blocking SIRT1 in HRMEC for DR situation. Method Blood samples were obtained from DR patients and controls. Dual-luciferase reporter assay using HEK-293T cells was performed to show the direct interaction of miR-29b-3p and the 3′UTR of SIRT1. HRMECs were exposed to 5.5 mmol/L of glucose (normal control), 5.5 mmol/L of glucose and 24.5 mmol/L of mannitol (osmotic pressure control), 30 mmol/L of glucose [hyperglycemia (HG)], 150 μmol/L of CoCl2 (hypoxia), and 30 mmol/L of glucose plus 150 μmol/L of CoCl2 (HG-CoCl2). To identify the regulating relationship between miR-29b-3p and SIRT1, HRMECs were transfected with miR-29b-3p mimics/inhibitors or their negative controls. SRT1720 was used as a SIRT1 agonist. Cell viability was assessed with the cell counting kit-8 (CCK-8) assay, and apoptotic cells were stained by one-step terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay kit. Gene and protein expression were assayed by quantitative real-time reverse transcriptase-PCR (RT-qPCR) and western blotting separately. Result MiR-29b-3p was upregulated to 3.2-fold, and SIRT1 protein was downregulated to 65% in DR patients. Dual-luciferase reporter assay showed the direct interaction of miR-29b-3p and SIRT1. HRMECs were identified as >95% positive for CD31 and von Willebrand factor (vWF). MiR-29b-3p and Bax/Bcl-2 ratio was upregulated, whereas SIRT1 was downregulated in HRMECs in the HG-CoCl2 condition. Decreased cell viability and upregulated apoptosis were also found in HRMECs of the HG-CoCl2 condition. Upregulated miR-29b-3p decreased the expression of SIRT1 and increased the ratio of Bax/Bcl-2, whereas downregulated miR-29b-3p increased the expression of SIRT1 protein and downregulated the ratio of Bax/Bcl-2. SRT1720 rescued miR-29b-3p-induced HRMEC apoptosis via upregulating the expression of SIRT1 protein. Conclusion The dysregulation of miR-29b-3p/SIRT1 is a potential mechanism of HRMEC apoptosis in DR. MiR-29b-3p/SIRT1 may be a potential therapeutic target for DR.
Collapse
Affiliation(s)
- Yong Zeng
- Aier School of Ophthalmology, Central South University, Changsha, China
| | | | - Jian Liu
- Aier Eye Institute, Changsha, China
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Scherm MG, Daniel C. miRNA-Mediated Immune Regulation in Islet Autoimmunity and Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:606322. [PMID: 33329406 PMCID: PMC7731293 DOI: 10.3389/fendo.2020.606322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
The important role of microRNAs as major modulators of various physiological processes, including immune regulation and homeostasis, has been increasingly recognized. Consequently, aberrant miRNA expression contributes to the defective regulation of T cell development, differentiation, and function. This can result in immune activation and impaired tolerance mechanisms, which exert a cardinal function for the onset of islet autoimmunity and the progression to T1D. The specific impact of miRNAs for immune regulation and how miRNAs and their downstream targets are involved in the pathogenesis of islet autoimmunity and T1D has been investigated recently. These studies revealed that increased expression of individual miRNAs is involved in several layers of tolerance impairments, such as inefficient Treg induction and Treg instability. The targeted modulation of miRNAs using specific inhibitors, resulting in improved immune homeostasis, as well as improved methods for the targeting of miRNAs, suggest that miRNAs, especially in T cells, are a promising target for the reestablishment of immune tolerance.
Collapse
Affiliation(s)
- Martin G. Scherm
- Institute of Diabetes Research, Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Munich-Neuherberg, Germany
| | - Carolin Daniel
- Institute of Diabetes Research, Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Munich-Neuherberg, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany
- *Correspondence: Carolin Daniel,
| |
Collapse
|
22
|
Nigi L, Brusco N, Grieco GE, Licata G, Krogvold L, Marselli L, Gysemans C, Overbergh L, Marchetti P, Mathieu C, Dahl Jørgensen K, Sebastiani G, Dotta F. Pancreatic Alpha-Cells Contribute Together With Beta-Cells to CXCL10 Expression in Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:630. [PMID: 33042009 PMCID: PMC7523508 DOI: 10.3389/fendo.2020.00630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
C-X-C Motif Chemokine Ligand 10 (CXCL10) is a pro-inflammatory chemokine specifically recognized by the ligand receptor CXCR3 which is mostly expressed in T-lymphocytes. Although CXCL10 expression and secretion have been widely associated to pancreatic islets both in non-obese diabetic (NOD) mice and in human type 1 diabetic (T1D) donors, the specific expression pattern among pancreatic endocrine cell subtypes has not been clarified yet. Therefore, the purpose of this study was to shed light on the pancreatic islet expression of CXCL10 in NOD, in C57Bl/6J and in NOD-SCID mice as well as in human T1D pancreata from new-onset T1D patients (DiViD study) compared to non-diabetic multiorgan donors from the INNODIA European Network for Pancreatic Organ Donors with Diabetes (EUnPOD). CXCL10 was expressed in pancreatic islets of normoglycaemic and new-onset diabetic NOD mice but not in C57Bl/6J and NOD-SCID mice. CXCL10 expression was increased in pancreatic islets of new-onset diabetic NOD mice compared to normoglycaemic NOD mice. In NOD mice, CXCL10 colocalized both with insulin and glucagon. Interestingly, CXCL10-glucagon colocalization rate was significantly increased in diabetic vs. normoglycaemic NOD mouse islets, indicating an increased expression of CXCL10 also in alpha-cells. CXCL10 was expressed in pancreatic islets of T1D patients but not in non-diabetic donors. The analysis of the expression pattern of CXCL10 in human T1D pancreata from DiViD study, revealed an increased colocalization rate with glucagon compared to insulin. Of note, CXCL10 was also expressed in alpha-cells residing in insulin-deficient islets (IDI), suggesting that CXCL10 expression in alpha cells is not driven by residual beta-cells and therefore may represent an independent phenomenon. In conclusion, we show that in T1D CXCL10 is expressed by alpha-cells both in NOD mice and in T1D patients, thus pointing to an additional novel role for alpha-cells in T1D pathogenesis and progression.
Collapse
Affiliation(s)
- Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Giuseppina E. Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Lars Krogvold
- Faculty of Odontology, University of Oslo, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Conny Gysemans
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven (KU LEUVEN), Leuven, Belgium
| | - Lut Overbergh
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven (KU LEUVEN), Leuven, Belgium
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology (CEE), Katholieke Universiteit Leuven (KU LEUVEN), Leuven, Belgium
| | - Knut Dahl Jørgensen
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
- *Correspondence: Francesco Dotta
| |
Collapse
|