1
|
Gao Y, Chen Q, Wu Z, Yuan L. Regulation of pancreatic β cells by exosomes from different sources. Diabetes Res Clin Pract 2025; 224:112222. [PMID: 40324722 DOI: 10.1016/j.diabres.2025.112222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Diabetes is a chronic metabolic disorder with rising global prevalence, particularly in developed and high-income regions. Central to its pathogenesis is the dysfunction of pancreatic β-cells, alongside impaired glucose and lipid metabolism in peripheral insulin-responsive tissues. Exosomes are nano-sized extracellular vesicles essential for intercellular communication and have emerged as pivotal regulators of metabolic homeostasis. Secreted by virtually all cell types, exosomes encapsulate bioactive cargo that reflects their cellular origin and physiological state, thereby exerting diverse functional effects. Recent evidence highlights the role of exosomes derived from the liver, gut, adipose tissue, skeletal muscle, and mesenchymal stem cells in modulating β-cell proliferation, insulin secretion, and survival. In peripheral tissues exosomes also influence insulin sensitivity by regulating glucose and lipid metabolism, ultimately shaping β-cell responses under hyperglycemic conditions. A more comprehensive understanding of exosome-mediated crosstalk between metabolic organs and pancreatic β-cells could pave the way for the development of exosome-based diagnostic tools and therapeutic strategies aimed at improving early detection, prevention, and treatment of the diabetes.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhuoying Wu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
Tirkes T, Yadav D, Conwell DL, Zhao X, Dasyam AK, Halappa VG, Patel A, Shah ZK, Swensson J, Takahashi N, Venkatesh S, Wachsman A, Li L, Jennings K, Yang Y, Hart PA, Pandol SJ, Park WG, Vege SS, Topazian M, Territo PR, Persohn SA, Andersen DK, Fogel EL. Multiparametric MRI Scoring System of the Pancreas for the Diagnosis of Chronic Pancreatitis. J Magn Reson Imaging 2025; 61:2183-2194. [PMID: 39225586 PMCID: PMC11873175 DOI: 10.1002/jmri.29594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Ductal features alone may not offer high diagnostic sensitivity or most accurate disease severity of chronic pancreatitis (CP). PURPOSE Diagnose CP based on multiparametric MRI and MRCP features. STUDY TYPE Prospective. POPULATION Between February 2019 and May 2021, 46 control (23 males, 49.3 ± 14.1 years), 45 suspected (20 males, 48.7 ± 12.5 years), and 46 definite (20 males, 53.7 ± 14.6 years) CP patients were enrolled at seven hospitals enrolled in the MINIMAP study. CP classification was based on imaging findings and clinical presentation. FIELD STRENGTH AND SEQUENCES 1.5 T. T1-weighted (T1W) spoiled gradient echo, T1 map with variable flip angle, dual-echo Dixon, secretin-enhanced MRCP before and after secretin infusion. ASSESSMENT Dual-echo fat fraction (FF), T1 relaxation time, extracellular volume (ECV), T1 signal intensity ratio of the pancreas to the spleen (T1 score), arterial-to-venous enhancement ratio (AVR), pancreatic tail diameter (PTD), pancreas volume, late gadolinium enhancement, pancreatic ductal elasticity (PDE), and duodenal filling grade of secretin-enhanced MRCP were measured. STATISTICAL TESTS Logistic regression analysis generated CP-MRI and secretin-enhanced CP-SMRI scores. Receiver operating characteristics analysis was used to differentiate definite CP from control. Interobserver agreement was assessed using Lin's concordance correlation coefficient. RESULTS Compared to control, definite CP cohort showed significantly higher dual-echo FF (7% vs. 11%), lower AVR (1.35 vs. 0.85), smaller PTD (2.5 cm vs. 1.95 cm), higher ECV (28% vs. 38%), and higher incidence of PDE loss (6.5% vs. 50%). With the cut-off of >2.5 CP-MRI score (dual-echo FF, AVR, and PTD) and CP-SMRI score (dual-echo FF, AVR, PTD, and PDE) had cross-validated area under the curves of 0.84 (sensitivity 87%, specificity 68%) and 0.86 (sensitivity 89%, specificity 67%), respectively. Interobserver agreement for both CP-MRI and CP-SMRI scores was 0.74. CONCLUSION The CP-MRI and CP-SMRI scores yielded acceptable performance and interobserver agreement for the diagnosis of CP. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Grants
- U01DK108323 The Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer
- U01 DK108288 NIDDK NIH HHS
- U01 DK108323 NIDDK NIH HHS
- U01DK108306 The Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer
- U01DK108328 The Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer
- U01DK108300 The Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer
- U01DK108327 The Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer
- U01 DK108327 NIDDK NIH HHS
- U01DK108288 The Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer
- DKP3041301 The Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer
- U01 DK108300 NIDDK NIH HHS
- R01 DK116963 NIDDK NIH HHS
- U01 DK108306 NIDDK NIH HHS
- U01 DK108328 NIDDK NIH HHS
- R01DK116963 NIDDK NIH HHS
- R01DK116963 NIDDK NIH HHS
- National Institute of Diabetes and Digestive and Kidney Diseases
Collapse
Affiliation(s)
- Temel Tirkes
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology & Nutrition, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Darwin L. Conwell
- Department of Internal MedicineUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Xuandong Zhao
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Anil K. Dasyam
- Department of RadiologyUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Vivek Gowdra Halappa
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Aashish Patel
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Zarine K. Shah
- Department of RadiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Jordan Swensson
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | | | | | - Ashley Wachsman
- Department of Imaging, Cedars‐Sinai Medical CenterUniversity of California in Los AngelesLos AngelesCaliforniaUSA
| | - Liang Li
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Kristofer Jennings
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Yunlong Yang
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Phil A. Hart
- Division of Gastroenterology, Hepatology & NutritionThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Stephen J. Pandol
- Division of Digestive and Liver DiseasesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Walter G. Park
- Division of Gastroenterology and Hepatology, Department of MedicineStanford University Medical CenterStanfordCaliforniaUSA
| | | | | | - Paul R. Territo
- Division of Clinical PharmacologyStark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Scott A. Persohn
- Stark Neurosciences Research Institute, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Dana K. Andersen
- Division of Digestive Diseases and NutritionNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Evan L. Fogel
- Lehman, Bucksot and Sherman Section of Pancreatobiliary EndoscopyIndiana University School of MedicineIndianapolisIndianaUSA
| | | |
Collapse
|
3
|
Forjaz A, Kramer D, Shen Y, Bea H, Tsapatsis M, Ping J, Queiroga V, San KH, Joshi S, Grubel C, Beery ML, Kusmartseva I, Atkinson M, Kiemen AL, Wirtz D. Integration of nuclear morphology and 3D imaging to profile cellular neighborhoods. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646356. [PMID: 40236208 PMCID: PMC11996441 DOI: 10.1101/2025.03.31.646356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Nuclear morphology is an indicator of cellular function and disease states, as changes in nuclear size, shape, and texture often reflect underlying disease-related genetic, epigenetic, and microenvironmental alterations. For disease diagnosis, nuclear segmentation performed in 2D hematoxylin and eosin (H&E)-stained tissue sections has long represented the gold standard. However, recent advances in three-dimensional (3D) histology, which provide a more biologically accurate representation of the spatial heterogeneity of human microanatomy, has led to improved understandings of disease pathology. Yet challenges remain in the development of scalable and computationally efficient pipelines for extracting and interpreting nuclear features in 3D space. 2D histology neglects crucial spatial information, such as 3D connectivity, morphology, and rare events missed by sparser sampling. Here, through extension of the CODA platform, we integrate 3D imaging with nuclear segmentation to analyze nuclear morphological features in human tissue. Analysis of 3D tissue microenvironments uncovered critical changes in 3D morphometric heterogeneity. Additionally, it enables the spatial characterization of immune cell distribution in relation to tissue structures, such as variations in leukocyte density near pancreatic ducts and blood vessels of different sizes. This approach provides a more comprehensive understanding of tissue and nuclear structures, revealing spatial patterns and interactions that are critical for disease progression.
Collapse
|
4
|
Hu K, Zhao X, Zhang N, Ma J, Zhang R, Lu Z, Wu W, Ji Y, Li X. Effect of tumor microenvironment in pancreatic cancer on the loss of β-cell mass: implications for type 3c diabetes. J Gastroenterol 2025; 60:512-525. [PMID: 39760782 DOI: 10.1007/s00535-024-02204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND To explore the complex interactions between the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) and the loss of β-cell mass, further elucidating the mechanisms of type 3c diabetes mellitus (T3cDM) onset. METHODS Single-cell RNA sequencing was employed to analyze the PDAC TME, identifying cell interactions and gene expression changes of endocrine cells. Pathological changes and paraneoplastic islets were assessed in the proximal paratumor (PP) and distal paratumor (DP). Fractional β-cell area and islet density were compared among normal pancreas from donors and paraneoplastic tissues from non-diabetes mellitus (NDM) and T3cDM patients. TUNEL staining, RT-qPCR and CCK8 assay were applied to demonstrate the β-cell apoptosis. RESULTS Tumor cells, immune cells and fibroblasts could interact with endocrine cells, and apoptotic pathways were activated in endocrine cells of the PP. The PDAC TME was characterized by marked inflammation, sever fibrosis and atrophy. The islets in the PP had lower fractional β-cell area (0.68 ± 0.65% vs. 0.86 ± 1.02%, P = 0.037) and islet density (0.54 ± 0.42 counts/mm2 vs. 0.83 ± 0.90 counts/mm2, P = 0.001) compared to those in the DP. The PDAC TME in T3cDM exerted a more significant impact on the paraneoplastic islets compared to NDM. Moreover, β-cell apoptosis was markedly increased in the PP compared to the DP in PDAC patients without diabetes, particularly in smaller islets. Apoptosis-related genes were highly expressed in INS-1E cells exposed to PANC-1 medium. CONCLUSION Our research revealed that the PDAC TME is usually accompanied by some pathological changes, including inflammation, fibrosis, and atrophy. These pathological changes are related to a reduction in β-cell mass and trigger the development of T3cDM.
Collapse
Affiliation(s)
- Ke Hu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xuelian Zhao
- Department of Pathology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Na Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jing Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Ruonan Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zhiqiang Lu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Wenchuan Wu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
5
|
Sastre J, Pérez S, Sabater L, Rius-Pérez S. Redox signaling in the pancreas in health and disease. Physiol Rev 2025; 105:593-650. [PMID: 39324871 DOI: 10.1152/physrev.00044.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
This review addresses oxidative stress and redox signaling in the pancreas under healthy physiological conditions as well as in acute pancreatitis, chronic pancreatitis, pancreatic cancer, and diabetes. Physiological redox homeodynamics is maintained mainly by NRF2/KEAP1, NF-κB, protein tyrosine phosphatases, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), and normal autophagy. Depletion of reduced glutathione (GSH) in the pancreas is a hallmark of acute pancreatitis and is initially accompanied by disulfide stress, which is characterized by protein cysteinylation without increased glutathione oxidation. A cross talk between oxidative stress, MAPKs, and NF-κB amplifies the inflammatory cascade, with PP2A and PGC1α as key redox regulatory nodes. In acute pancreatitis, nitration of cystathionine-β synthase causes blockade of the transsulfuration pathway leading to increased homocysteine levels, whereas p53 triggers necroptosis in the pancreas through downregulation of sulfiredoxin, PGC1α, and peroxiredoxin 3. Chronic pancreatitis exhibits oxidative distress mediated by NADPH oxidase 1 and/or CYP2E1, which promotes cell death, fibrosis, and inflammation. Oxidative stress cooperates with mutant KRAS to initiate and promote pancreatic adenocarcinoma. Mutant KRAS increases mitochondrial reactive oxygen species (ROS), which trigger acinar-to-ductal metaplasia and progression to pancreatic intraepithelial neoplasia (PanIN). ROS are maintained at a sufficient level to promote cell proliferation, while avoiding cell death or senescence through formation of NADPH and GSH and activation of NRF2, HIF-1/2α, and CREB. Redox signaling also plays a fundamental role in differentiation, proliferation, and insulin secretion of β-cells. However, ROS overproduction promotes β-cell dysfunction and apoptosis in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Luis Sabater
- Liver, Biliary and Pancreatic Unit, Hospital Clínico, Department of Surgery, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
6
|
Li G, Zhang D. Research progress on the correlation between islet amyloid peptides and type 2 diabetes mellitus. Open Med (Wars) 2025; 20:20241124. [PMID: 40109329 PMCID: PMC11920764 DOI: 10.1515/med-2024-1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/27/2024] [Accepted: 11/28/2024] [Indexed: 03/22/2025] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance and β-cell dysfunction. A hallmark of T2DM pathology is the accumulation of toxic amyloid polypeptides in and around pancreatic islet cells, leading to the progressive loss of β-cell populations. Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37-amino acid peptide hormone primarily produced by pancreatic β-cells. hIAPP aggregation and amyloid formation are strongly correlated with β-cell death and disease severity in T2DM patients. Objectives This article aims to review the current research progress on the correlation between hIAPP and T2DM, focusing on the molecular mechanisms and potential therapeutic strategies. Methods We conducted a comprehensive literature review covering recent studies on the molecular structure, physiological function, and pathological mechanisms of hIAPP. Key areas include biosynthesis, monomer structure, and the formation of hIAPP fiber structures. Additionally, we examined the mechanisms of hIAPP-induced β-cell death, including oxidative stress (OS), endoplasmic reticulum stress (ERS), impaired cell membrane and mitochondrial functions, and inflammatory factors. Results Our review highlights the critical role of hIAPP in the pathogenesis of T2DM. Specifically, we found that hIAPP biosynthesis and monomer structure contribute to its physiological functions, while hIAPP aggregation forms toxic amyloid fibers, contributing to β-cell dysfunction. OS, ERS, impaired cell membrane and mitochondrial functions, and inflammatory factors play significant roles in hIAPP-induced β-cell death. There is a strong correlation between hIAPP aggregation and the severity of T2DM, and potential therapeutic approaches using small molecule inhibitors to prevent hIAPP aggregation and fibrosis are discussed. Conclusion Understanding the molecular mechanisms of hIAPP in T2DM provides insights into potential therapeutic targets and preventive strategies. Future research should focus on developing more effective treatments targeting hIAPP aggregation and its downstream effects.
Collapse
Affiliation(s)
- GuangZhi Li
- Department of Basic Medical, Jiangsu College of Nursing, JiangSu, 223005, China
| | - Dongmei Zhang
- Department of Basic Medical, Jiangsu College of Nursing, JiangSu, 223005, China
| |
Collapse
|
7
|
Spaska A. Correlation of the anatomical variations of pancreatic blood vessels and occurrence of diseases of pancreas. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2025; 53:100-107. [PMID: 40063918 DOI: 10.36740/merkur202501114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
OBJECTIVE Aim: The research aims to confirm or reject the hypothesis on the possible relationship between the influence of changes in pancreatic vascular variations on the mechanisms of occurrence of pancreatic diseases based on the collected scientific literature.. PATIENTS AND METHODS Materials and Methods: The bibliosemantic, bibliographic, statistical research methods were used in the research. Scientometric databases Web of Science, Scopus, PubMed, and archives of scientific papers such as Google Scholar and Research Gate for the last 6 years (2018-2023) were used to form a study basis. CONCLUSION Conclusions: Based on the analyzed sources, blood supply variants to the pancreas do not influence the development of pathological processes. However, vein and artery features impact treatment choices and surgical outcomes. Main and additional pancreatic ducts, and the common bile duct, may be linked to diseases. Atypical pancreatic artery branching affects surgical tactics and increases bleeding risk.
Collapse
|
8
|
Guidi L, Martinez-Tellez B, Ortega Santos CP. Obesity, gut bacteria, and the epigenetic control of metabolic disease. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:333-368. [DOI: 10.1016/b978-0-443-18979-1.00013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Alver CG, Dominguez-Bendala J, Agarwal A. Engineered tools to study endocrine dysfunction of pancreas. BIOPHYSICS REVIEWS 2024; 5:041303. [PMID: 39449867 PMCID: PMC11498943 DOI: 10.1063/5.0220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Pancreas, a vital organ with intricate endocrine and exocrine functions, is central to the regulation of the body's glucose levels and digestive processes. Disruptions in its endocrine functions, primarily regulated by islets of Langerhans, can lead to debilitating diseases such as diabetes mellitus. Murine models of pancreatic dysfunction have contributed significantly to the understanding of insulitis, islet-relevant immunological responses, and the optimization of cell therapies. However, genetic differences between mice and humans have severely limited their clinical translational relevance. Recent advancements in tissue engineering and microfabrication have ushered in a new era of in vitro models that offer a promising solution. This paper reviews the state-of-the-art engineered tools designed to study endocrine dysfunction of the pancreas. Islet on a chip devices that allow precise control of various culture conditions and noninvasive readouts of functional outcomes have led to the generation of physiomimetic niches for primary and stem cell derived islets. Live pancreatic slices are a new experimental tool that could more comprehensively recapitulate the complex cellular interplay between the endocrine and exocrine parts of the pancreas. Although a powerful tool, live pancreatic slices require more complex control over their culture parameters such as local oxygenation and continuous removal of digestive enzymes and cellular waste products for maintaining experimental functionality over long term. The combination of islet-immune and slice on chip strategies can guide the path toward the next generation of pancreatic tissue modeling for better understanding and treatment of endocrine pancreatic dysfunctions.
Collapse
Affiliation(s)
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Ashutosh Agarwal
- Author to whom correspondence should be addressed:. Tel.: +1 305 243-8925
| |
Collapse
|
10
|
Tekin H, Lindhardt C, Antvorskov JC, Bager NS, Michaelsen SR, Areškevičiūtė A, Vind JP, Kristensen BW, Josefsen K. Using GeoMx DSP Spatial Proteomics to Investigate Immune Infiltration of NOD Mouse Islet and Exocrine Compartments. Mol Imaging Biol 2024; 26:943-954. [PMID: 39557779 PMCID: PMC11634915 DOI: 10.1007/s11307-024-01961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
PURPOSE Type 1 Diabetes (T1D) pathogenesis involves immune cells infiltrating pancreatic Islets of Langerhans, leading to T cell activation, beta cell destruction, and impaired insulin production. However, infiltration has a heterogenic nature that isn't described in detail, as not all islets are infiltrated. The aim of this study was to investigate if the observed heterogeneity is coupled to differences in immune and/or dysfunctional status of islets or exocrine cells, and if specific markers could elucidate mechanistic details of T1D pathogenesis. PROCEDURES The GeoMx platform was used to spatially quantify protein levels in pancreatic islets and exocrine tissue in Non-Obese Diabetic (NOD) mice. The protein panel included 17 immune activity markers and nine dysfunction markers. Immunohistochemical (IHC) staining and digital image analysis was used to analyze select marker proteins. RESULTS Use of the GeoMx platform to investigate T1D was shown to be possible, as Granzyme B protein levels were found to be lower in distal islet areas when compared to proximal areas. Smooth Muscle Actin protein levels were higher in exocrine areas proximal to immune-infiltrated islets, when compared to distally located exocrine areas. Findings from GeoMx were however not observed in IHC-stained sections. CONCLUSIONS This study demonstrates that investigating T1D is possible with spatial proteomics, as the assays revealed presence of heterogenic islet areas in NOD mice, which may play a role in T1D progression and escape from immune recognition. This study highlights the potential of spatial technologies for elucidating T1D pathogenesis and future treatment strategies.
Collapse
Affiliation(s)
- Hasim Tekin
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Claes Lindhardt
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Copenhagen, Denmark
| | - Julie Christine Antvorskov
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Translational Type 1 Diabetes Research, Herlev, Denmark
| | - Nicolai Schou Bager
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Signe Regner Michaelsen
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Aušrinė Areškevičiūtė
- Danish Reference Centre for Prion Disease, Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jonas Pordel Vind
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Knud Josefsen
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
11
|
Tampio J, Montaser AB, Järvinen J, Lehtonen M, Jalkanen AJ, Reinisalo M, Kokkola T, Terasaki T, Laakso M, Rysä J, Kauppinen A, Huttunen KM. The L-type amino acid transporter 1 enhances drug delivery to the mouse pancreatic beta cell line (MIN6). Eur J Pharm Sci 2024; 203:106937. [PMID: 39419128 DOI: 10.1016/j.ejps.2024.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
l-type amino acid transporter 1 (LAT1) is a membrane transporter responsible for carrying large, neutral l-configured amino acids as well as appropriate (pro)drugs into a cell. It has shown a great potential to improve drug delivery across the blood-brain barrier and to increase cell uptake into several brain and cancer cell types. However, besides the brain, the LAT1-utilizing compounds are also delivered more efficiently into the pancreas in vivo. In this study, we quantified the expression of LAT1 along several other membrane transporters in mouse pancreatic β-cell line (MIN6). Furthermore, we studied the function of LAT1 in MIN6 cells, and its ability to deliver non-steroidal anti-inflammatory drug (NSAID)-derived prodrugs there. The results showed that LAT1 was highly abundant in MIN6 cells, with an even expression on cell pseudoislets. The l-leucine uptake as a probe substrate was efficient, with comparable affinity and capacity to previously studied immortalized mouse microglia (BV2). The NSAID-derived prodrugs utilized LAT1 for their delivery and were uptaken into MIN6 cells 2-300 times more efficiently when compared to their parent drugs. A similar increase in pancreatic delivery was observed also in vivo, where the pancreatic exposure was 2-10 times higher with selected prodrugs, indicating an excellent correlation between in vitro uptake and in vivo pancreatic delivery. Finally, the LAT1-utilizing prodrugs were able to reverse the effects of cytokines on insulin secretion in MIN6 cells, showing that improved delivery via LAT1 can enhance drug effects in the mouse pancreatic β-cell line.
Collapse
Affiliation(s)
- Janne Tampio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Ahmed B Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Juulia Järvinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Aaro J Jalkanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mika Reinisalo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Tarja Kokkola
- Institute of Clinical Medicine, Internal Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Tetsuya Terasaki
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
12
|
Huan Z, Li J, Guo J, Yu Y, Li L. Pancreatic islet cells in microfluidic-spun hydrogel microfibers for the treatment of diabetes. Acta Biomater 2024; 187:149-160. [PMID: 39222705 DOI: 10.1016/j.actbio.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Islet transplantation has been developed as an effective cell therapy strategy to treat the progressive life-threatening disease Type 1 diabetes (T1DM). To mimic the natural islets and achieve immune isolation, hydrogel encapsulation of multiple islet cell types is the current endeavor. Here, we present a microfiber loading with pancreatic α and β cells by microfluidic spinning for diabetes treatment. Benefiting from microfluidic technology, the cells could be controllably and continuously loaded in the alginate and methacrylated hyaluronic acid (Alg-HAMA) microfiber and maintained their high bioactivity. The resultant microfiber could then hold the capacity of dual-mode glucose responsiveness attributed to the glucagon and insulin secreted by the encapsulated pancreatic α and β cells. After transplantation into the brown adipose tissue (BAT), these cell-laden microfibers showed successful blood glucose control in rodents and avoided the occurrence of hypoglycemia. These results conceived that the multicellular microfibers are expected to provide new insight into artificial islet preparation, diabetes treatment, and regenerative medicine as well as tissue engineering. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jingbo Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jiahui Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland.
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, China.
| |
Collapse
|
13
|
Balyan P, Gupta S, Mavileti SK, Pandey SS, Kato T. NIR-Sensitive Squaraine Dye-Peptide Conjugate for Trypsin Fluorogenic Detection. BIOSENSORS 2024; 14:458. [PMID: 39451672 PMCID: PMC11505658 DOI: 10.3390/bios14100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Trypsin enzyme has gained recognition as a potential biomarker in several tumors, such as colorectal, gastric, and pancreatic cancer, highlighting its importance in disease diagnosis. In response to the demand for rapid, cost-effective, and real-time detection methods, we present an innovative strategy utilizing the design and synthesis of NIR-sensitive dye-peptide conjugate (SQ-3 PC) for the sensitive and selective monitoring of trypsin activity by fluorescence ON/OFF sensing. The current research deals with the design and synthesis of three unsymmetrical squaraine dyes SQ-1, SQ-2, and SQ-3 along with a dye-peptide conjugate SQ-3-PC as a trypsin-specific probe followed by their photophysical characterizations. The absorption spectral investigation conducted on both the dye alone and its corresponding dye-peptide conjugates in water, utilizing SQ-3 and SQ-3 PC respectively, reveals enhanced dye aggregation and pronounced fluorescence quenching compared to observations in DMSO solution. The absorption spectral investigation conducted on dye only and corresponding dye-peptide conjugates in water utilizing SQ-3 and SQ-3 PC, respectively, reveals not only the enhanced dye aggregation but also pronounced fluorescence quenching compared to that observed in the DMSO solution. The trypsin-specific probe SQ-3 PC demonstrated a fluorescence quenching efficiency of 61.8% in water attributed to the combined effect of aggregation-induced quenching (AIQ) and fluorescence resonance energy transfer (FRET). FRET was found to be dominant over AIQ. The trypsin-mediated hydrolysis of SQ-3 PC led to a rapid and efficient recovery of quenched fluorescence (5-fold increase in 30 min). Concentration-dependent changes in the fluorescence at the emission maximum of the dyes reveal that SQ-3 PC works as a trypsin enzyme-specific fluorescence biosensor with linearity up to 30 nM along with the limit of detection and limit of quantification of 1.07 nM and 3.25 nM, respectively.
Collapse
Affiliation(s)
| | | | | | - Shyam S. Pandey
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-Ku, Kitakyushu-Shi, Fukuoka 808-0196, Japan; (P.B.); (S.G.); (S.K.M.)
| | - Tamaki Kato
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-Ku, Kitakyushu-Shi, Fukuoka 808-0196, Japan; (P.B.); (S.G.); (S.K.M.)
| |
Collapse
|
14
|
Su R, Ai Y, Wang J, Wu L, Sun H, Ding M, Xie R, Liang Q. Engineered Microfibers for Tissue Engineering. ACS APPLIED BIO MATERIALS 2024; 7:5823-5840. [PMID: 39145987 DOI: 10.1021/acsabm.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Hydrogel microfibers are hydrogel materials engineered into fiber structures. Techniques such as wet spinning, microfluidic spinning, and 3D bioprinting are often used to prepare microfibers due to their ability to precisely control the size, morphology, and structure of the microfibers. Microfibers with different structural morphologies have different functions; they provide a flow-through culture environment for cells to improve viability, and can also be used to induce the differentiation of cells such as skeletal muscle and cardiac muscle cells to eventually form functional organs in vitro through special morphologies. This Review introduces recent advances in microfluidics, 3D bioprinting, and wet spinning in the preparation of microfibers, focusing on the materials and fabrication methods. The applications of microfibers in tissue engineering are highlighted by summarizing their contributions in engineering biomimetic blood vessels, vascularized tissues, bone, heart, pancreas, kidney, liver, and fat. Furthermore, applications of engineered fibers in tissue repair and drug screening are also discussed.
Collapse
Affiliation(s)
- Riguga Su
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Jingyu Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Lei Wu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Hua Sun
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Mingyu Ding
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Ruoxiao Xie
- Department of Materials, Design and Manufacturing Engineering, School of Engineering, University of Liverpool, Liverpool L69 3BX, U.K
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
15
|
Tirkes T. Advances in MRI of Chronic Pancreatitis. ADVANCES IN CLINICAL RADIOLOGY 2024; 6:31-39. [PMID: 39185367 PMCID: PMC11339961 DOI: 10.1016/j.yacr.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
MRI and MRCP play an essential role in diagnosing CP by imaging pancreatic parenchyma and ducts. Quantitative and semi-quantitative MR imaging offers potential advantages over conventional MR imaging, including simplicity of analysis, quantitative and population-based comparisons, and more direct interpretation of disease progression or response to drug therapy. Using parenchymal imaging techniques may provide quantitative metrics for determining the presence and severity of acinar cell loss and aid in diagnosing CP. Given that the parenchymal changes of CP precede the ductal involvement, there would be a significant benefit from developing a new MRI/MRCP based, more robust diagnostic criteria combining ductal and parenchymal findings.
Collapse
Affiliation(s)
- Temel Tirkes
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd. Suite 0663, Indianapolis, IN, 46202, USA
| |
Collapse
|
16
|
Shan Z, Zhang H, He C, An Y, Huang Y, Fu W, Wang M, Du Y, Xie J, Yang Y, Zhao B. High-Protein Mulberry Leaves Improve Glucose and Lipid Metabolism via Activation of the PI3K/Akt/PPARα/CPT-1 Pathway. Int J Mol Sci 2024; 25:8726. [PMID: 39201413 PMCID: PMC11354309 DOI: 10.3390/ijms25168726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
High-Protein Mulberry is a novel strain of mulberry. High-Protein Mulberry leaves (HPM) were the subject of this study, which aimed to investigate its efficacy and underlying mechanisms in modulating glucose and lipid metabolism. A six-week intervention using db/db mice was carried out to assess the effects of HPM on serum lipid levels, liver function, and insulin (INS) levels. qRT-PCR and Western Blotting were employed to measure key RNA and protein expressions in the PI3K/Akt and PPARα/CPT-1 pathways. UHPLC-MS and the Kjeldahl method were utilized to analyze the component content and total protein. Additionally, network pharmacology was employed to predict regulatory mechanism differences between HPM and Traditional Mulberry leaves. The results of the study revealed significant improvements in fasting blood glucose, glucose tolerance, and insulin resistance in mice treated with HPM. HPM notably reduced serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and INS, while increasing high-density lipoprotein cholesterol (HDL-C) levels. The treatment also effectively mitigated liver fatty lesions, inflammatory infiltration, and islet atrophy. HPM activation of the PI3K/Akt/PPARα/CPT-1 pathway suggested its pivotal role in the regulation of glucose and lipid metabolism. With its rich composition and pharmacodynamic material basis, HPM displayed a greater number of targets associated with glucose and lipid metabolism pathways, underscoring the need for further research into its potential therapeutic applications.
Collapse
Affiliation(s)
- Ziyi Shan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huilin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changhao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yongcheng An
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wanxin Fu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Menglu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuhang Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiamei Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
17
|
Wang H, He W, Yang G, Zhu L, Liu X. The Impact of Weight Cycling on Health and Obesity. Metabolites 2024; 14:344. [PMID: 38921478 PMCID: PMC11205792 DOI: 10.3390/metabo14060344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Obesity is a systemic and chronic inflammation, which seriously endangers people's health. People tend to diet to control weight, and the short-term effect of dieting in losing weight is significant, but the prognosis is limited. With weight loss and recovery occurring frequently, people focus on weight cycling. The effect of weight cycling on a certain tissue of the body also has different conclusions. Therefore, this article systematically reviews the effects of body weight cycling on the body and finds that multiple weight cycling (1) increased fat deposition in central areas, lean mass decreased in weight loss period, and fat mass increased in weight recovery period, which harms body composition and skeletal muscle mass; (2) enhanced the inflammatory response of adipose tissue, macrophages infiltrated into adipose tissue, and increased the production of pro-inflammatory mediators in adipocytes; (3) blood glucose concentration mutation and hyperinsulinemia caused the increase or decrease in pancreatic β-cell population, which makes β-cell fatigue and leads to β-cell failure; (4) resulted in additional burden on the cardiovascular system because of cardiovascular rick escalation. Physical activity combined with calorie restriction can effectively reduce metabolic disease and chronic inflammation, alleviating the adverse effects of weight cycling on the body.
Collapse
Affiliation(s)
- Huan Wang
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (H.W.); (W.H.); (G.Y.)
| | - Wenbi He
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (H.W.); (W.H.); (G.Y.)
| | - Gaoyuan Yang
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (H.W.); (W.H.); (G.Y.)
| | - Lin Zhu
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (H.W.); (W.H.); (G.Y.)
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, China
| | - Xiaoguang Liu
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (H.W.); (W.H.); (G.Y.)
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, China
| |
Collapse
|
18
|
Villalba A, Gitton Y, Inoue M, Aiello V, Blain R, Toupin M, Mazaud-Guittot S, Rachdi L, Semb H, Chédotal A, Scharfmann R. A 3D atlas of the human developing pancreas to explore progenitor proliferation and differentiation. Diabetologia 2024; 67:1066-1078. [PMID: 38630142 PMCID: PMC11058870 DOI: 10.1007/s00125-024-06143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/07/2024] [Indexed: 04/30/2024]
Abstract
AIMS/HYPOTHESIS Rodent pancreas development has been described in great detail. On the other hand, there are still gaps in our understanding of the developmental trajectories of pancreatic cells during human ontogenesis. Here, our aim was to map the spatial and chronological dynamics of human pancreatic cell differentiation and proliferation by using 3D imaging of cleared human embryonic and fetal pancreases. METHODS We combined tissue clearing with light-sheet fluorescence imaging in human embryonic and fetal pancreases during the first trimester of pregnancy. In addition, we validated an explant culture system enabling in vitro proliferation of pancreatic progenitors to determine the mitogenic effect of candidate molecules. RESULTS We detected the first insulin-positive cells as early as five post-conceptional weeks, two weeks earlier than previously observed. We observed few insulin-positive clusters at five post-conceptional weeks (mean ± SD 9.25±5.65) with a sharp increase to 11 post-conceptional weeks (4307±152.34). We identified a central niche as the location of onset of the earliest insulin cell production and detected extra-pancreatic loci within the adjacent developing gut. Conversely, proliferating pancreatic progenitors were located in the periphery of the epithelium, suggesting the existence of two separated pancreatic niches for differentiation and proliferation. Additionally, we observed that the proliferation ratio of progenitors ranged between 20% and 30%, while for insulin-positive cells it was 1%. We next unveiled a mitogenic effect of the platelet-derived growth factor AA isoform (PDGFAA) in progenitors acting through the pancreatic mesenchyme by increasing threefold the number of proliferating progenitors. CONCLUSIONS/INTERPRETATION This work presents a first 3D atlas of the human developing pancreas, charting both endocrine and proliferating cells across early development.
Collapse
Affiliation(s)
- Adrian Villalba
- Institut Cochin, CNRS, Inserm, Université Paris Cité, Paris, France
| | - Yorick Gitton
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Megumi Inoue
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Virginie Aiello
- Institut Cochin, CNRS, Inserm, Université Paris Cité, Paris, France
| | - Raphaël Blain
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Maryne Toupin
- Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Université Rennes, Rennes, France
| | - Séverine Mazaud-Guittot
- Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Université Rennes, Rennes, France
| | - Latif Rachdi
- Institut Cochin, CNRS, Inserm, Université Paris Cité, Paris, France
| | - Henrik Semb
- Institute of Translational Stem Cell Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, München, Germany
| | - Alain Chédotal
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France.
- Institut de pathologie, groupe hospitalier Est, hospices civils de Lyon, Lyon, France.
- MeLiS, CNRS UMR5284, Inserm U1314, University Claude Bernard Lyon 1, Lyon, France.
| | | |
Collapse
|
19
|
Ferreira GM, Pantanali CAR, Mantovani MDC, Ferreira CL, De Melo HC, Sogayar MC, Chaib E, D'Albuquerque LAC, Galvão FHF. Anatomic and Surgical Aspects of Total Pancreatectomy in Swine. Transplant Proc 2024; 56:1134-1137. [PMID: 38890075 DOI: 10.1016/j.transproceed.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/26/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The swine is a valuable model for preclinical research and surgical technique training. Induction of Type I diabetes is achieved by total pancreatectomy, therefore these animals may be used in several research studies, including islet transplantation field. Given the lack of information in the literature, the purpose of this work is to describe anatomic aspects of swine pancreas, the total pancreatectomy surgical technique, intra- and postoperative complications and the autopsy results. MATERIAL AND METHODS Five hybrid male pigs, 20-35 kg, submitted to total pancreatectomy with duodenum, bile duct, and spleen preservation. Postoperatively, daily clinical assessment and capillary blood glucose collection were performed. At the end of the 30-day period or in the occurrence of serious clinical complications, euthanasia and autopsy were performed. RESULTS The average duration of surgery was 128 minutes, without intraoperative deaths or anesthesia induction failures. The median survival was 6.6 days. Postoperative complications were weight loss (3), emesis (2), constipation (2), abdominal distension (2), diarrhea (1), and loss of appetite (1). All animals were euthanized due to serious complications. Two animals presented surgical complications (duodenal necrosis with gastroparesis and internal hernia with intestinal necrosis). The other 3 animals presented serious clinical complications related to exocrine pancreatic insufficiency due to deficiency of pancreatic enzymes. Glycemic values above 200 mg/dL were found on the first postoperative day and above 300 mg/dL on the seventh day in all animals. CONCLUSION A model of total pancreatectomy with duodenum, spleen, and bile duct preservation in pigs was established. All animals became diabetic, however, animals without postoperative complications were euthanized due to serious complications related to pancreas exocrine insufficiency.
Collapse
Affiliation(s)
- Giovanna Mattos Ferreira
- Laboratory of Medical Investigation 37, Department of Gastroenterology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Carlos Andres Rodriguez Pantanali
- Liver and Gastrointestinal Transplant Division, Department of Gastroenterology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marluce Da Cunha Mantovani
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, Brazil; Technical Division for Teaching, Research and Innovation Support (DTAPEPI), Biotechnology and Innovation Facility, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Cinthia Lanchotte Ferreira
- Laboratory of Medical Investigation 37, Department of Gastroenterology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Mari Cleide Sogayar
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, Brazil; Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - Eleazar Chaib
- Laboratory of Medical Investigation 37, Department of Gastroenterology, School of Medicine, University of São Paulo, São Paulo, Brazil; Liver and Gastrointestinal Transplant Division, Department of Gastroenterology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Luiz Augusto Carneiro D'Albuquerque
- Laboratory of Medical Investigation 37, Department of Gastroenterology, School of Medicine, University of São Paulo, São Paulo, Brazil; Liver and Gastrointestinal Transplant Division, Department of Gastroenterology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Flávio Henrique Ferreira Galvão
- Laboratory of Medical Investigation 37, Department of Gastroenterology, School of Medicine, University of São Paulo, São Paulo, Brazil; Liver and Gastrointestinal Transplant Division, Department of Gastroenterology, School of Medicine, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
20
|
Vera Castro MF, Assmann CE, Reichert KP, Coppetti PM, Stefanello N, da Silva AD, Mostardeiro VB, de Jesus LB, da Silveira MV, Schirmann AA, Fracasso M, Maciel RM, Morsch VMM, Schetinger MRC. Vitamin D3 mitigates type 2 diabetes induced by a high carbohydrate-high fat diet in rats: Role of the purinergic system. J Nutr Biochem 2024; 127:109602. [PMID: 38373509 DOI: 10.1016/j.jnutbio.2024.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
This study evaluated the effect of vitamin D3 (VIT D3) supplementation on the enzymatic activities and density of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5-nucleotidase (E-5'-NT), adenosine deaminase (ADA), as well as the density of P2 × 7R, P2Y12R, A1R, A2AR receptors, IL-1β, and oxidative parameters in type 2 diabetic rats. Forty male Wistar rats were fed a high carbohydrate-high fat diet (HCHFD) and received an intraperitoneal injection containing a single dose of streptozotocin (STZ, 35 mg/kg). Animals were divided into four groups: 1) control; 2) control/VIT D3 12 µg/kg; 3) diabetic; and 4) diabetic/VIT D3 12 µg/kg. Results show that VIT D3 reduced blood glucose, ATP hydrolysis, ADA activity, P2Y12R density (platelets), as well as ATP, ADP, and AMP hydrolysis and ADA activity (synaptosomes). Moreover, VIT D3 increased insulin levels and AMP hydrolysis (platelets) and improved antioxidant defense. Therefore, we suggest that VIT D3 treatment modulates hyperglycemia-induced changes via purinergic enzymes and receptor expression, consequently attenuating insulin homeostasis dysregulation in the diabetic state.
Collapse
Affiliation(s)
- Milagros Fanny Vera Castro
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil.
| | - Charles Elias Assmann
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Karine Paula Reichert
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Priscila Marquezan Coppetti
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Naiara Stefanello
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Aniélen Dutra da Silva
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vitor Bastianello Mostardeiro
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Loren Borba de Jesus
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Marcylene Vieira da Silveira
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Adriel Antonio Schirmann
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Mateus Fracasso
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Roberto Marinho Maciel
- Department of Pathology, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil.
| |
Collapse
|
21
|
Loukelis K, Koutsomarkos N, Mikos AG, Chatzinikolaidou M. Advances in 3D bioprinting for regenerative medicine applications. Regen Biomater 2024; 11:rbae033. [PMID: 38845855 PMCID: PMC11153344 DOI: 10.1093/rb/rbae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 06/09/2024] Open
Abstract
Biofabrication techniques allow for the construction of biocompatible and biofunctional structures composed from biomaterials, cells and biomolecules. Bioprinting is an emerging 3D printing method which utilizes biomaterial-based mixtures with cells and other biological constituents into printable suspensions known as bioinks. Coupled with automated design protocols and based on different modes for droplet deposition, 3D bioprinters are able to fabricate hydrogel-based objects with specific architecture and geometrical properties, providing the necessary environment that promotes cell growth and directs cell differentiation towards application-related lineages. For the preparation of such bioinks, various water-soluble biomaterials have been employed, including natural and synthetic biopolymers, and inorganic materials. Bioprinted constructs are considered to be one of the most promising avenues in regenerative medicine due to their native organ biomimicry. For a successful application, the bioprinted constructs should meet particular criteria such as optimal biological response, mechanical properties similar to the target tissue, high levels of reproducibility and printing fidelity, but also increased upscaling capability. In this review, we highlight the most recent advances in bioprinting, focusing on the regeneration of various tissues including bone, cartilage, cardiovascular, neural, skin and other organs such as liver, kidney, pancreas and lungs. We discuss the rapidly developing co-culture bioprinting systems used to resemble the complexity of tissues and organs and the crosstalk between various cell populations towards regeneration. Moreover, we report on the basic physical principles governing 3D bioprinting, and the ideal bioink properties based on the biomaterials' regenerative potential. We examine and critically discuss the present status of 3D bioprinting regarding its applicability and current limitations that need to be overcome to establish it at the forefront of artificial organ production and transplantation.
Collapse
Affiliation(s)
- Konstantinos Loukelis
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Nikos Koutsomarkos
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), Heraklion 70013, Greece
| |
Collapse
|
22
|
Lipovšek S, Dolenšek J, Dariš B, Valladolid-Acebes I, Vajs T, Leitinger G, Stožer A, Skelin Klemen M. Western diet-induced ultrastructural changes in mouse pancreatic acinar cells. Front Cell Dev Biol 2024; 12:1380564. [PMID: 38550379 PMCID: PMC10972872 DOI: 10.3389/fcell.2024.1380564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 12/18/2024] Open
Abstract
Mouse models of diet-induced type 2 diabetes mellitus provide powerful tools for studying the structural and physiological changes that are related to the disease progression. In this study, diabetic-like glucose dysregulation was induced in mice by feeding them a western diet, and light and transmission electron microscopy were used to study the ultrastructural changes in the pancreatic acinar cells. Acinar necrosis and vacuolization of the cytoplasm were the most prominent features. Furthermore, we observed intracellular and extracellular accumulation of lipid compounds in the form of lipid droplets, structural enlargement of the cisternae of the rough endoplasmic reticulum (RER), and altered mitochondrial morphology, with mitochondria lacking the typical organization of the inner membrane. Last, autophagic structures, i.e., autophagosomes, autolysosomes, and residual bodies, were abundant within the acinar cells of western diet-fed mice, and the autolysosomes contained lipids and material of varying electron density. While diets inducing obesity and type 2 diabetes are clearly associated with structural changes and dysfunction of the endocrine pancreas, we here demonstrate the strong effect of dietary intervention on the structure of acinar cells in the exocrine part of the organ before detectable changes in plasma amylase activity, which may help us better understand the development of non-alcoholic fatty pancreas disease and its association with endo- and exocrine dysfunction.
Collapse
Affiliation(s)
- Saška Lipovšek
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Barbara Dariš
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tanja Vajs
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Gerd Leitinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | |
Collapse
|
23
|
Su X, Qu Y, Mu D. Methyltransferase-like 3 modifications of RNAs: Implications for the pathology in the endocrine system. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167010. [PMID: 38176459 DOI: 10.1016/j.bbadis.2023.167010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Methyltransferase-like 3 (METTL3) is the most well-known element of N6-methyladenosine modification on RNAs. METTL3 deposits a methyl group onto target RNAs to modify their expression, ultimately regulating various physiological and pathological events. Numerous studies have suggested the significant role of METTL3 in endocrine dysfunction and related disorders. However, reviews that summarize and interpret these studies are lacking. In this review, we systematically analyze such studies, including obesity, type 2 diabetes mellitus (T2DM), T2DM-induced diseases, pancreatic cancer, and thyroid carcinoma. This review indicates that METTL3 contributes remarkably to the endocrine dysfunction and progression of obesity, T2DM, T2DM-induced diseases, pancreatic cancer, and thyroid carcinoma. In conclusion, this review provides a comprehensive interpretation of the mechanism via which METTL3 functions on RNAs and regulates various endocrine dysfunction events and suggest potential associated correlations. Our review, thus, provides a valuable reference for further fundamental studies and clinical applications.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
24
|
Gordon WE, Baek S, Nguyen HP, Kuo YM, Bradley R, Fong SL, Kim N, Galazyuk A, Lee I, Ingala MR, Simmons NB, Schountz T, Cooper LN, Georgakopoulos-Soares I, Hemberg M, Ahituv N. Integrative single-cell characterization of a frugivorous and an insectivorous bat kidney and pancreas. Nat Commun 2024; 15:12. [PMID: 38195585 PMCID: PMC10776631 DOI: 10.1038/s41467-023-44186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024] Open
Abstract
Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we use integrative single-cell sequencing (scRNA-seq and scATAC-seq) on insectivorous (Eptesicus fuscus; big brown bat) and frugivorous (Artibeus jamaicensis; Jamaican fruit bat) bat kidneys and pancreases and identify key cell population, gene expression and regulatory differences associated with the Jamaican fruit bat that also relate to human disease, particularly diabetes. We find a decrease in loop of Henle and an increase in collecting duct cells, and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the Jamaican fruit bat kidney. The Jamaican fruit bat pancreas shows an increase in endocrine and a decrease in exocrine cells, and differences in genes and regulatory elements involved in insulin regulation. We also find that these frugivorous bats share several molecular characteristics with human diabetes. Combined, our work provides insights from a frugivorous mammal that could be leveraged for therapeutic purposes.
Collapse
Affiliation(s)
- Wei E Gordon
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biology, Menlo College, 1000 El Camino Real, Atherton, CA, 94027, USA
| | - Seungbyn Baek
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hai P Nguyen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Rachael Bradley
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Sarah L Fong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Nayeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Alex Galazyuk
- Hearing Research Focus Area, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Melissa R Ingala
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ, 07940, USA
| | - Nancy B Simmons
- Division of Vertebrate Zoology, Department of Mammalogy, American Museum of Natural History, New York, NY, 10024, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lisa Noelle Cooper
- Musculoskeletal Research Focus Area, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Martin Hemberg
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
25
|
Cohrs CM, Chen C, Atkinson MA, Drotar DM, Speier S. Bridging the Gap: Pancreas Tissue Slices From Organ and Tissue Donors for the Study of Diabetes Pathogenesis. Diabetes 2024; 73:11-22. [PMID: 38117999 PMCID: PMC10784654 DOI: 10.2337/dbi20-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/14/2023] [Indexed: 12/22/2023]
Abstract
Over the last two decades, increased availability of human pancreatic tissues has allowed for major expansions in our understanding of islet biology in health and disease. Indeed, studies of fixed and frozen pancreatic tissues, as well as efforts using viable isolated islets obtained from organ donors, have provided significant insights toward our understanding of diabetes. However, the procedures associated with islet isolation result in distressed cells that have been removed from any surrounding influence. The pancreas tissue slice technology was developed as an in situ approach to overcome certain limitations associated with studies on isolated islets or fixed tissue. In this Perspective, we discuss the value of this novel platform and review how pancreas tissue slices, within a short time, have been integrated in numerous studies of rodent and human islet research. We show that pancreas tissue slices allow for investigations in a less perturbed organ tissue environment, ranging from cellular processes, over peri-islet modulations, to tissue interactions. Finally, we discuss the considerations and limitations of this technology in its future applications. We believe the pancreas tissue slices will help bridge the gap between studies on isolated islets and cells to the systemic conditions by providing new insight into physiological and pathophysiological processes at the organ level. ARTICLE HIGHLIGHTS Human pancreas tissue slices represent a novel platform to study human islet biology in close to physiological conditions. Complementary to established technologies, such as isolated islets, single cells, and histological sections, pancreas tissue slices help bridge our understanding of islet physiology and pathophysiology from single cell to intact organ. Diverse sources of viable human pancreas tissue, each with distinct characteristics to be considered, are available to use in tissue slices for the study of diabetes pathogenesis.
Collapse
Affiliation(s)
- Christian M. Cohrs
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Chunguang Chen
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Mark A. Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Denise M. Drotar
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
26
|
Sun S, Gong S, Li M, Wang X, Wang F, Cai X, Liu W, Luo Y, Zhang S, Zhang R, Zhou L, Zhu Y, Ma Y, Ren Q, Zhang X, Chen J, Chen L, Wu J, Gao L, Zhou X, Li Y, Zhong L, Han X, Ji L. Clinical and genetic characteristics of CEL-MODY (MODY8): a literature review and screening in Chinese individuals diagnosed with early-onset type 2 diabetes. Endocrine 2024; 83:99-109. [PMID: 37726640 DOI: 10.1007/s12020-023-03512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE CEL-related maturity-onset diabetes of the young (CEL-MODY, MODY8) is a special type of monogenetic diabetes caused by mutations in the carboxyl-ester lipase (CEL) gene. This study aimed to summarize the genetic and clinical characteristics of CEL-MODY patients and to determine the prevalence of the disease among Chinese patients with early-onset type 2 diabetes (EOD). METHODS We systematically reviewed the literature associated with CEL-MODY in PubMed, Embase, Web of Science, China National Knowledge Infrastructure and Wanfang Data to analyze the features of patients with CEL-MODY. We screened and evaluated rare variants of the CEL gene in a cohort of 679 Chinese patients with EOD to estimate the prevalence of CEL-MODY in China. RESULTS In total, 21 individuals reported in previous studies were diagnosed with CEL-MODY based on the combination of diabetes and pancreatic exocrine dysfunction as well as frameshift mutations in exon 11 of the CEL gene. CEL-MODY patients were nonobese and presented with exocrine pancreatic affection (e.g., chronic pancreatitis, low fecal elastase levels, pancreas atrophy and lipomatosis) followed by insulin-dependent diabetes. No carriers of CEL missense mutations were reported with exocrine pancreatic dysfunction. Sequencing of CEL in Chinese EOD patients led to the identification of the variant p.Val736Cysfs*22 in two patients. However, these patients could not be diagnosed with CEL-MODY because there were no signs that the exocrine pancreas was afflicted. CONCLUSION CEL-MODY is a very rare disease caused by frameshift mutations affecting the proximal VNTR segments of the CEL gene. Signs of exocrine pancreatic dysfunction provide diagnostic clues for CEL-MODY, and genetic testing is vital for proper diagnosis. Further research in larger cohorts is needed to investigate the characteristics and prevalence of CEL-MODY in the Chinese population.
Collapse
Affiliation(s)
- Siyu Sun
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Xirui Wang
- Beijing Airport Hospital, No. 49, Shuangyu Street, Beijing, 101318, China
| | - Fang Wang
- Capital Medical University Beijing Tiantan Hospital, No. 119, Nansihuan West Street, Beijing, 100050, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Jing Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Ling Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Jing Wu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Leili Gao
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Yufeng Li
- Beijing Pinggu Hospital, No. 59, Xinping North Street, Beijing, 101200, China
| | - Liyong Zhong
- Capital Medical University Beijing Tiantan Hospital, No. 119, Nansihuan West Street, Beijing, 100050, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China.
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
27
|
Huang Z, Ma Y, Sun Z, Cheng L, Wang G. Ferroptosis: potential targets and emerging roles in pancreatic diseases. Arch Toxicol 2024; 98:75-94. [PMID: 37934210 DOI: 10.1007/s00204-023-03625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Ferroptosis is a newly discovered form of regulatory cell death characterized by excessive iron-dependent lipid peroxidation. In the past decade, significant breakthroughs have been made in comprehending the features and regulatory mechanisms of ferroptosis, and it has been confirmed that ferroptosis plays a pivotal role in the pathophysiological processes of various diseases, including tumors, inflammation, neurodegenerative diseases, and infectious diseases. The pancreas, which is the second largest digestive gland in the human body and has both endocrine and exocrine functions, is a vital organ for controlling digestion and metabolism. In recent years, numerous studies have confirmed that ferroptosis is closely related to pancreatic diseases, which is attributed to abnormal iron accumulation, as an essential biochemical feature of ferroptosis, is often present in the pathological processes of various pancreatic exocrine and endocrine diseases and the vulnerability of the pancreas to oxidative stress stimulation and damage. Therefore, comprehending the regulatory mechanism of ferroptosis in pancreatic diseases may provide valuable new insights into treatment strategies. In this review, we first summarize the hallmark features of ferroptosis and then analyze the exact mechanisms by which ferroptosis is precisely regulated at multiple levels and links, including iron metabolism, lipid metabolism, the GPX4-mediated ferroptosis defense system, the GPX4-independent ferroptosis defense system, and the regulation of autophagy on ferroptosis. Finally, we discuss the role of ferroptosis in the occurrence and development of pancreatic diseases and summarize the feasibility and limitations of ferroptosis as a therapeutic target for pancreatic diseases.
Collapse
Affiliation(s)
- Zijian Huang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yuan Ma
- Medical Department, The First Affifiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhiguo Sun
- Department of General Surgery, The Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
28
|
Garcia-Gutierrez E, O’Mahony AK, Dos Santos RS, Marroquí L, Cotter PD. Gut microbial metabolic signatures in diabetes mellitus and potential preventive and therapeutic applications. Gut Microbes 2024; 16:2401654. [PMID: 39420751 PMCID: PMC11492678 DOI: 10.1080/19490976.2024.2401654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are some common markers associated with their development. For instance, gut barrier impairment and inflammation associated with an unbalanced gut microbiota and their metabolites may be common factors in diabetes development and progression. Here, we summarize the microbial signatures that have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent advances relating to promising preventive and therapeutic interventions focusing on the targeted modulation of the gut microbiota to alleviate T1D, T2D and GDM.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, ETSIA-Universidad Politécnica de Cartagena, Cartagena, Spain
| | - A. Kate O’Mahony
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- School of Microbiology, University College Cork, Co. Cork, Ireland
| | - Reinaldo Sousa Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marroquí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
| |
Collapse
|
29
|
Doke M, Álvarez-Cubela S, Klein D, Altilio I, Schulz J, Mateus Gonçalves L, Almaça J, Fraker CA, Pugliese A, Ricordi C, Qadir MMF, Pastori RL, Domínguez-Bendala J. Dynamic scRNA-seq of live human pancreatic slices reveals functional endocrine cell neogenesis through an intermediate ducto-acinar stage. Cell Metab 2023; 35:1944-1960.e7. [PMID: 37898119 DOI: 10.1016/j.cmet.2023.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 10/30/2023]
Abstract
Human pancreatic plasticity is implied from multiple single-cell RNA sequencing (scRNA-seq) studies. However, these have been invariably based on static datasets from which fate trajectories can only be inferred using pseudotemporal estimations. Furthermore, the analysis of isolated islets has resulted in a drastic underrepresentation of other cell types, hindering our ability to interrogate exocrine-endocrine interactions. The long-term culture of human pancreatic slices (HPSs) has presented the field with an opportunity to dynamically track tissue plasticity at the single-cell level. Combining datasets from same-donor HPSs at different time points, with or without a known regenerative stimulus (BMP signaling), led to integrated single-cell datasets storing true temporal or treatment-dependent information. This integration revealed population shifts consistent with ductal progenitor activation, blurring of ductal/acinar boundaries, formation of ducto-acinar-endocrine differentiation axes, and detection of transitional insulin-producing cells. This study provides the first longitudinal scRNA-seq analysis of whole human pancreatic tissue, confirming its plasticity in a dynamic fashion.
Collapse
Affiliation(s)
- Mayur Doke
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dagmar Klein
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Isabella Altilio
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joseph Schulz
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christopher A Fraker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alberto Pugliese
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mirza M F Qadir
- Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ricardo L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
30
|
Tirkes T, Yadav D, Conwell DL, Territo PR, Zhao X, Persohn SA, Dasyam AK, Shah ZK, Venkatesh SK, Takahashi N, Wachsman A, Li L, Li Y, Pandol SJ, Park WG, Vege SS, Hart PA, Topazian M, Andersen DK, Fogel EL. Diagnosis of chronic pancreatitis using semi-quantitative MRI features of the pancreatic parenchyma: results from the multi-institutional MINIMAP study. Abdom Radiol (NY) 2023; 48:3162-3173. [PMID: 37436452 PMCID: PMC10650972 DOI: 10.1007/s00261-023-04000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE To determine the diagnostic performance of parenchymal MRI features differentiating CP from controls. METHODS This prospective study performed abdominal MRI scans at seven institutions, using 1.5 T Siemens and GE scanners, in 50 control and 51 definite CP participants, from February 2019 to May 2021. MRI parameters included the T1-weighted signal intensity ratio of the pancreas (T1 score), arterial-to-venous enhancement ratio (AVR) during venous and delayed phases, pancreas volume, and diameter. We evaluated the diagnostic performance of these parameters individually and two semi-quantitative MRI scores derived using logistic regression: SQ-MRI Model A (T1 score, AVR venous, and tail diameter) and Model B (T1 score, AVR venous, and volume). RESULTS When compared to controls, CP participants showed a significantly lower mean T1 score (1.11 vs. 1.29), AVR venous (0.86 vs. 1.45), AVR delayed (1.07 vs. 1.57), volume (54.97 vs. 80.00 ml), and diameter of the head (2.05 vs. 2.39 cm), body (2.25 vs. 2.58 cm), and tail (1.98 vs. 2.51 cm) (p < 0.05 for all). AUCs for these individual MR parameters ranged from 0.66 to 0.79, while AUCs for the SQ-MRI scores were 0.82 and 0.81 for Model A (T1 score, AVR venous, and tail diameter) and Model B (T1 score, AVR venous, and volume), respectively. After propensity-matching adjustments for covariates, AUCs for Models A and B of the SQ-MRI scores increased to 0.92 and 0.93, respectively. CONCLUSION Semi-quantitative parameters of the pancreatic parenchyma, including T1 score, enhancement ratio, pancreas volume, diameter and multi-parametric models combining these parameters are helpful in diagnosis of CP. Longitudinal analyses including more extensive population are warranted to develop new diagnostic criteria for CP.
Collapse
Affiliation(s)
- Temel Tirkes
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd. Suite 0663, Indianapolis, IN, 46202, USA.
| | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Darwin L Conwell
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Paul R Territo
- Division of Clinical Pharmacology, Stark Neurosciences Research Institute, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xuandong Zhao
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Scott A Persohn
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anil K Dasyam
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Zarine K Shah
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | | | - Ashley Wachsman
- Department of Imaging, University of California in Los Angeles, Los Angeles, CA, USA
| | - Liang Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen J Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Walter G Park
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University Medical Center, Stanford, CA, USA
| | | | - Phil A Hart
- Division of Gastroenterology, Hepatology & Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Dana K Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Evan L Fogel
- Lehman, Bucksot and Sherman Section of Pancreatobiliary Endoscopy, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
31
|
Pollé OG, Delfosse A, Michoux N, Peeters F, Duchêne G, Louis J, Van Nieuwenhuyse B, Clapuyt P, Lysy PA. Pancreas Imaging of Children with Type 1 Diabetes Reveals New Patterns and Correlations with Pancreatic Functions. Pediatr Diabetes 2023; 2023:3295812. [PMID: 40303255 PMCID: PMC12017098 DOI: 10.1155/2023/3295812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 05/02/2025] Open
Abstract
Objective To perform a longitudinal characterization of the pancreas in patients with new-onset T1D and investigate the correlations between magnetic resonance imaging (MRI) parameters and pancreatic functions during the first year postdiagnosis. Methods Thirty-one pediatric patients with new-onset T1D and 29 retrospective age-, body mass index-, and sex-matched controls were included in the study. Following hypotheses were investigated: (H1) the value of pancreas volume (PV) parameters in T1D and in controls, (H2) the association between MRI parameters and markers of pancreatic functions, (H3) the ability of MRI parameters to predict glucose homeostasis, (H4) the longitudinal evolution of MRI parameters and glucose homeostasis, per-organ (whole pancreas) and per-subregion (head, body, and tail). Results Patients with new-onset T1D demonstrated a significant decrease of PV at diagnosis compared to controls (-45%), with prepubertal patients having increased pancreas atrophy (+25%) (H1). PV parameters were correlated with C-peptide, and trypsinogen (PVTail and PVHead, respectively). Biparametric regression models including MRI parameters predicted pancreas functions during the first year postdiagnosis (H3). Longitudinal evolution of PV parameters at 1 year postdiagnosis was correlated with PV at diagnosis (R = -0.72) but not with markers of glucose homeostasis (H4). Conclusion Our study shows that longitudinal analysis of pancreases of children with T1D using multiparametric MRI improve the understanding of T1D heterogeneity both in the context of its onset and its evolution.
Collapse
Affiliation(s)
- Olivier G. Pollé
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
- Specialized Pediatrics Service, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Antoine Delfosse
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
- Specialized Pediatrics Service, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nicolas Michoux
- Department of Radiology, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Frank Peeters
- Department of Radiology, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Gaetan Duchêne
- Department of Radiology, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
- MR Applications, General Electric Healthcare, Diegem, Belgium
| | - Jacques Louis
- Division of Pediatric Endocrinology, Department of Pediatrics, Grand Hôpital de Charleroi, Charleroi, Belgium
| | | | - Philippe Clapuyt
- Department of Radiology, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Philippe A. Lysy
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
- Specialized Pediatrics Service, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
32
|
Atkinson MA, Mirmira RG. The pathogenic "symphony" in type 1 diabetes: A disorder of the immune system, β cells, and exocrine pancreas. Cell Metab 2023; 35:1500-1518. [PMID: 37478842 PMCID: PMC10529265 DOI: 10.1016/j.cmet.2023.06.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
Type 1 diabetes (T1D) is widely considered to result from the autoimmune destruction of insulin-producing β cells. This concept has been a central tenet for decades of attempts seeking to decipher the disorder's pathogenesis and prevent/reverse the disease. Recently, this and many other disease-related notions have come under increasing question, particularly given knowledge gained from analyses of human T1D pancreas. Perhaps most crucial are findings suggesting that a collective of cellular constituents-immune, endocrine, and exocrine in origin-mechanistically coalesce to facilitate T1D. This review considers these emerging concepts, from basic science to clinical research, and identifies several key remaining knowledge voids.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Raghavendra G Mirmira
- Departments of Medicine and Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
33
|
Hrovatin K, Bastidas-Ponce A, Bakhti M, Zappia L, Büttner M, Salinno C, Sterr M, Böttcher A, Migliorini A, Lickert H, Theis FJ. Delineating mouse β-cell identity during lifetime and in diabetes with a single cell atlas. Nat Metab 2023; 5:1615-1637. [PMID: 37697055 PMCID: PMC10513934 DOI: 10.1038/s42255-023-00876-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/26/2023] [Indexed: 09/13/2023]
Abstract
Although multiple pancreatic islet single-cell RNA-sequencing (scRNA-seq) datasets have been generated, a consensus on pancreatic cell states in development, homeostasis and diabetes as well as the value of preclinical animal models is missing. Here, we present an scRNA-seq cross-condition mouse islet atlas (MIA), a curated resource for interactive exploration and computational querying. We integrate over 300,000 cells from nine scRNA-seq datasets consisting of 56 samples, varying in age, sex and diabetes models, including an autoimmune type 1 diabetes model (NOD), a glucotoxicity/lipotoxicity type 2 diabetes model (db/db) and a chemical streptozotocin β-cell ablation model. The β-cell landscape of MIA reveals new cell states during disease progression and cross-publication differences between previously suggested marker genes. We show that β-cells in the streptozotocin model transcriptionally correlate with those in human type 2 diabetes and mouse db/db models, but are less similar to human type 1 diabetes and mouse NOD β-cells. We also report pathways that are shared between β-cells in immature, aged and diabetes models. MIA enables a comprehensive analysis of β-cell responses to different stressors, providing a roadmap for the understanding of β-cell plasticity, compensation and demise.
Collapse
Affiliation(s)
- Karin Hrovatin
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medical Faculty, Technical University of Munich, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Luke Zappia
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medical Faculty, Technical University of Munich, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Adriana Migliorini
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- McEwen Stem Cell Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medical Faculty, Technical University of Munich, Munich, Germany.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Department of Mathematics, Technical University of Munich, Garching, Germany.
| |
Collapse
|
34
|
Abstract
Despite major advances over the past decade, prevention and treatment of type 1 diabetes mellitus (T1DM) remain suboptimal, with large and unexplained variations in individual responses to interventions. The current classification schema for diabetes mellitus does not capture the complexity of this disease or guide clinical management effectively. One of the approaches to achieve the goal of applying precision medicine in diabetes mellitus is to identify endotypes (that is, well-defined subtypes) of the disease each of which has a distinct aetiopathogenesis that might be amenable to specific interventions. Here, we describe epidemiological, clinical, genetic, immunological, histological and metabolic differences within T1DM that, together, suggest heterogeneity in its aetiology and pathogenesis. We then present the emerging endotypes and their impact on T1DM prediction, prevention and treatment.
Collapse
Affiliation(s)
- Maria J Redondo
- Paediatric Diabetes & Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| | - Noel G Morgan
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical and Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
35
|
Casu A, Nunez Lopez YO, Yu G, Clifford C, Bilal A, Petrilli AM, Cornnell H, Carnero EA, Bhatheja A, Corbin KD, Iliuk A, Maahs DM, Pratley RE. The proteome and phosphoproteome of circulating extracellular vesicle-enriched preparations are associated with characteristic clinical features in type 1 diabetes. Front Endocrinol (Lausanne) 2023; 14:1219293. [PMID: 37576973 PMCID: PMC10417723 DOI: 10.3389/fendo.2023.1219293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction There are no validated clinical or laboratory biomarkers to identify and differentiate endotypes of type 1 diabetes (T1D) or the risk of progression to chronic complications. Extracellular vesicles (EVs) have been studied as biomarkers in several different disease states but have not been well studied in T1D. Methods As the initial step towards circulating biomarker identification in T1D, this pilot study aimed to provide an initial characterization of the proteomic and phosphoproteomic landscape of circulating EV-enriched preparations in participants with established T1D (N=10) and healthy normal volunteers (Controls) (N=7) (NCT03379792) carefully matched by age, race/ethnicity, sex, and BMI. EV-enriched preparations were obtained using EVtrap® technology. Proteins were identified and quantified by LC-MS analysis. Differential abundance and coexpression network (WGCNA), and pathway enrichment analyses were implemented. Results The detected proteins and phosphoproteins were enriched (75%) in exosomal proteins cataloged in the ExoCarta database. A total of 181 proteins and 8 phosphoproteins were differentially abundant in participants with T1D compared to controls, including some well-known EVproteins (i.e., CD63, RAB14, BSG, LAMP2, and EZR). Enrichment analyses of differentially abundant proteins and phosphoproteins of EV-enriched preparations identified associations with neutrophil, platelet, and immune response functions, as well as prion protein aggregation. Downregulated proteins were involved in MHC class II signaling and the regulation of monocyte differentiation. Potential key roles in T1D for C1q, plasminogen, IL6ST, CD40, HLA-DQB1, HLA-DRB1, CD74, NUCB1, and SAP, are highlighted. Remarkably, WGCNA uncovered two protein modules significantly associated with pancreas size, which may be implicated in the pathogenesis of T1D. Similarly, these modules showed significant enrichment for membrane compartments, processes associated with inflammation and the immune response, and regulation of viral processes, among others. Discussion This study demonstrates the potential of proteomic and phosphoproteomic signatures of EV-enriched preparations to provide insight into the pathobiology of T1D. The WGCNA analysis could be a powerful tool to discriminate signatures associated with different pathobiological components of the disease.
Collapse
Affiliation(s)
- Anna Casu
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Yury O. Nunez Lopez
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Gongxin Yu
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Christopher Clifford
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Anika Bilal
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | | | - Heather Cornnell
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | | | - Ananya Bhatheja
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Karen D. Corbin
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| | - Anton Iliuk
- Biomarker Discovery Department, Tymora Analytical Operations, West Lafayette, IN, United States
| | - David M. Maahs
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Richard E. Pratley
- AdventHealth, Translational Research Institute (TRI), Orlando, FL, United States
| |
Collapse
|
36
|
Souza-Tavares H, Miranda CS, Vasques-Monteiro IML, Sandoval C, Santana-Oliveira DA, Silva-Veiga FM, Fernandes-da-Silva A, Souza-Mello V. Peroxisome proliferator-activated receptors as targets to treat metabolic diseases: Focus on the adipose tissue, liver, and pancreas. World J Gastroenterol 2023; 29:4136-4155. [PMID: 37475842 PMCID: PMC10354577 DOI: 10.3748/wjg.v29.i26.4136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023] Open
Abstract
The world is experiencing reflections of the intersection of two pandemics: Obesity and coronavirus disease 2019. The prevalence of obesity has tripled since 1975 worldwide, representing substantial public health costs due to its comorbidities. The adipose tissue is the initial site of obesity impairments. During excessive energy intake, it undergoes hyperplasia and hypertrophy until overt inflammation and insulin resistance turn adipocytes into dysfunctional cells that send lipotoxic signals to other organs. The pancreas is one of the organs most affected by obesity. Once lipotoxicity becomes chronic, there is an increase in insulin secretion by pancreatic beta cells, a surrogate for type 2 diabetes mellitus (T2DM). These alterations threaten the survival of the pancreatic islets, which tend to become dysfunctional, reaching exhaustion in the long term. As for the liver, lipotoxicity favors lipogenesis and impairs beta-oxidation, resulting in hepatic steatosis. This silent disease affects around 30% of the worldwide population and can evolve into end-stage liver disease. Although therapy for hepatic steatosis remains to be defined, peroxisome proliferator-activated receptors (PPARs) activation copes with T2DM management. Peroxisome PPARs are transcription factors found at the intersection of several metabolic pathways, leading to insulin resistance relief, improved thermogenesis, and expressive hepatic steatosis mitigation by increasing mitochondrial beta-oxidation. This review aimed to update the potential of PPAR agonists as targets to treat metabolic diseases, focusing on adipose tissue plasticity and hepatic and pancreatic remodeling.
Collapse
Affiliation(s)
| | | | | | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Osorno 5310431, Chile
- Departamento de Ciencias Preclínicas, Universidad de la Frontera, Temuco 4780000, Chile
| | | | | | | | - Vanessa Souza-Mello
- Department of Anatomy, Rio de Janeiro State University, Rio de Janeiro 20551030, Brazil
| |
Collapse
|
37
|
Tan C, Ding M, Zheng YW. The Values and Perspectives of Organoids in the Field of Metabolic Syndrome. Int J Mol Sci 2023; 24:8125. [PMID: 37175830 PMCID: PMC10179392 DOI: 10.3390/ijms24098125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Metabolic syndrome (MetS) has become a global health problem, and the prevalence of obesity at all stages of life makes MetS research increasingly important and urgent. However, as a comprehensive and complex disease, MetS has lacked more appropriate research models. The advent of organoids provides an opportunity to address this issue. However, it should be noted that organoids are still in their infancy. The main drawbacks are a lack of maturity, complexity, and the inability to standardize large-scale production. Could organoids therefore be a better choice for studying MetS than other models? How can these limitations be overcome? Here, we summarize the available data to present current progress on pancreatic and hepatobiliary organoids and to answer these open questions. Organoids are of human origin and contain a variety of human cell types necessary to mimic the disease characteristics of MetS in their development. Taken together with the discovery of hepatobiliary progenitors in situ, the dedifferentiation of beta cells in diabetes, and studies on hepatic macrophages, we suggest that promoting endogenous regeneration has the potential to prevent the development of end-stage liver and pancreatic lesions caused by MetS and outline the direction of future research in this field.
Collapse
Affiliation(s)
- Chen Tan
- Institute of Regenerative Medicine, Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (C.T.); (M.D.)
| | - Min Ding
- Institute of Regenerative Medicine, Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (C.T.); (M.D.)
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (C.T.); (M.D.)
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- School of Medicine, Yokohama City University, Yokohama 234-0006, Japan
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
38
|
Zhe M, Wu X, Yu P, Xu J, Liu M, Yang G, Xiang Z, Xing F, Ritz U. Recent Advances in Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting in Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3197. [PMID: 37110034 PMCID: PMC10143913 DOI: 10.3390/ma16083197] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
In recent years, three-dimensional (3D) bioprinting has been widely utilized as a novel manufacturing technique by more and more researchers to construct various tissue substitutes with complex architectures and geometries. Different biomaterials, including natural and synthetic materials, have been manufactured into bioinks for tissue regeneration using 3D bioprinting. Among the natural biomaterials derived from various natural tissues or organs, the decellularized extracellular matrix (dECM) has a complex internal structure and a variety of bioactive factors that provide mechanistic, biophysical, and biochemical signals for tissue regeneration and remodeling. In recent years, more and more researchers have been developing the dECM as a novel bioink for the construction of tissue substitutes. Compared with other bioinks, the various ECM components in dECM-based bioink can regulate cellular functions, modulate the tissue regeneration process, and adjust tissue remodeling. Therefore, we conducted this review to discuss the current status of and perspectives on dECM-based bioinks for bioprinting in tissue engineering. In addition, the various bioprinting techniques and decellularization methods were also discussed in this study.
Collapse
Affiliation(s)
- Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Wu
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Jiawei Xu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming Liu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guang Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhou Xiang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Xing
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
39
|
Mastracci TL, Apte M, Amundadottir LT, Alvarsson A, Artandi S, Bellin MD, Bernal-Mizrachi E, Caicedo A, Campbell-Thompson M, Cruz-Monserrate Z, El Ouaamari A, Gaulton KJ, Geisz A, Goodarzi MO, Hara M, Hull-Meichle RL, Kleger A, Klein AP, Kopp JL, Kulkarni RN, Muzumdar MD, Naren AP, Oakes SA, Olesen SS, Phelps EA, Powers AC, Stabler CL, Tirkes T, Whitcomb DC, Yadav D, Yong J, Zaghloul NA, Pandol SJ, Sander M. Integrated Physiology of the Exocrine and Endocrine Compartments in Pancreatic Diseases: Workshop Proceedings. Diabetes 2023; 72:433-448. [PMID: 36940317 PMCID: PMC10033248 DOI: 10.2337/db22-0942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/29/2022] [Indexed: 03/22/2023]
Abstract
The Integrated Physiology of the Exocrine and Endocrine Compartments in Pancreatic Diseases workshop was a 1.5-day scientific conference at the National Institutes of Health (Bethesda, MD) that engaged clinical and basic science investigators interested in diseases of the pancreas. This report provides a summary of the proceedings from the workshop. The goals of the workshop were to forge connections and identify gaps in knowledge that could guide future research directions. Presentations were segregated into six major theme areas, including 1) pancreas anatomy and physiology, 2) diabetes in the setting of exocrine disease, 3) metabolic influences on the exocrine pancreas, 4) genetic drivers of pancreatic diseases, 5) tools for integrated pancreatic analysis, and 6) implications of exocrine-endocrine cross talk. For each theme, multiple presentations were followed by panel discussions on specific topics relevant to each area of research; these are summarized here. Significantly, the discussions resulted in the identification of research gaps and opportunities for the field to address. In general, it was concluded that as a pancreas research community, we must more thoughtfully integrate our current knowledge of normal physiology as well as the disease mechanisms that underlie endocrine and exocrine disorders so that there is a better understanding of the interplay between these compartments.
Collapse
Affiliation(s)
- Teresa L. Mastracci
- Department of Biology, Indiana University–Purdue University Indianapolis, Indianapolis, IN
| | - Minoti Apte
- Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | | | - Alexandra Alvarsson
- Diabetes, Obesity, and Metabolism Institute, Mount Sinai Hospital, New York, NY
| | - Steven Artandi
- Department of Internal Medicine, Stanford University, Stanford, CA
| | - Melena D. Bellin
- Departments of Pediatrics and Surgery, University of Minnesota Medical School, Minneapolis, MN
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Zobeida Cruz-Monserrate
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | | | - Kyle J. Gaulton
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Andrea Geisz
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Rebecca L. Hull-Meichle
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University, Ulm, Germany
| | - Alison P. Klein
- Department of Pathology and Medicine, Johns Hopkins School of Medicine, Baltimore MD
| | - Janel L. Kopp
- Department of Cellular & Physiological Sciences, The University of British Columbia, Vancouver, Canada
| | | | - Mandar D. Muzumdar
- Departments of Genetics and Internal Medicine (Oncology), Yale University School of Medicine, New Haven, CT
| | | | - Scott A. Oakes
- Department of Pathology, The University of Chicago, Chicago, IL
| | - Søren S. Olesen
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Alvin C. Powers
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Temel Tirkes
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| | | | - Dhiraj Yadav
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Jing Yong
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Norann A. Zaghloul
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Stephen J. Pandol
- Department of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Maike Sander
- Department of Pediatrics and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
40
|
Tatovic D, Narendran P, Dayan CM. A perspective on treating type 1 diabetes mellitus before insulin is needed. Nat Rev Endocrinol 2023; 19:361-370. [PMID: 36914759 DOI: 10.1038/s41574-023-00816-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/16/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a progressive autoimmune disease that starts long before a clinical diagnosis is made. The American Diabetes Association recognizes three stages: stage 1 (normoglycaemic and positive for autoantibodies to β-cell antigens); stage 2 (asymptomatic with dysglycaemia); and stage 3, which is defined by glucose levels consistent with the definition of diabetes mellitus. This Perspective focuses on the management of the proportion of individuals with early stage 3 T1DM who do not immediately require insulin; a stage we propose should be termed stage 3a. To date, this period of non-insulin-dependent T1DM has been largely unrecognized. Importantly, it represents a window of opportunity for intervention, as remaining at this stage might delay the need for insulin by months or years. Extending the insulin-free period and/or avoiding unnecessary insulin therapy are important goals, as there is no risk of hypoglycaemia during this period and the adherence burden on patients of glycaemic monitoring and daily adjustments for diet and exercise is substantially reduced. Recognizing the pressing need for guidance on adequate management of children and adults with stage 3a T1DM, we present our perspective on the subject, which needs to be tested in formal and adequately powered clinical trials.
Collapse
Affiliation(s)
- Danijela Tatovic
- Diabetes Research Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Parth Narendran
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Colin M Dayan
- Diabetes Research Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
| |
Collapse
|
41
|
Gordon WE, Baek S, Nguyen HP, Kuo YM, Bradley R, Galazyuk A, Lee I, Ingala MR, Simmons NB, Schountz T, Cooper LN, Georgakopoulos-Soares I, Hemberg M, Ahituv N. Integrative single-cell characterization of frugivory adaptations in the bat kidney and pancreas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.12.528204. [PMID: 36824791 PMCID: PMC9949079 DOI: 10.1101/2023.02.12.528204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we used integrative single-cell sequencing on insectivorous and frugivorous bat kidneys and pancreases and identified key cell population, gene expression and regulatory element differences associated with frugivorous adaptation that also relate to human disease, particularly diabetes. We found an increase in collecting duct cells and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the frugivore kidney. In the frugivorous pancreas, we observed an increase in endocrine and a decrease in exocrine cells and differences in genes and regulatory elements involved in insulin regulation. Combined, our work provides novel insights into frugivorous adaptation that also could be leveraged for therapeutic purposes.
Collapse
|
42
|
Tissue engineering of decellularized pancreas scaffolds for regenerative medicine in diabetes. Acta Biomater 2023; 157:49-66. [PMID: 36427686 DOI: 10.1016/j.actbio.2022.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Diabetes mellitus is a global disease requiring long-term treatment and monitoring. At present, pancreas or islet transplantation is the only reliable treatment for achieving stable euglycemia in Type I diabetes patients. However, the shortage of viable pancreata for transplantation limits the use of this therapy for the majority of patients. Organ decellularization and recellularization is emerging as a promising solution to overcome the shortage of viable organs for transplantation by providing a potential alternative source of donor organs. Several studies on decellularization and recellularization of rodent, porcine, and human pancreata have been performed, and show promise for generating usable decellularized pancreas scaffolds for subsequent recellularization and transplantation. In this state-of-the-art review, we provide an overview of the latest advances in pancreas decellularization, recellularization, and revascularization. We also discuss clinical considerations such as potential transplantation sites, donor source, and immune considerations. We conclude with an outlook on the remaining work that needs to be done in order to realize the goal of using this technology to create bioengineered pancreata for transplantation in diabetes patients. STATEMENT OF SIGNIFICANCE: Pancreas or islet transplantation is a means of providing insulin-independence in diabetes patients. However, due to the shortage of viable pancreata, whole-organ decellularization and recellularization is emerging as a promising solution to overcome organ shortage for transplantation. Several studies on decellularization and recellularization of rodent, porcine, and human pancreata have shown promise for generating usable decellularized pancreas scaffolds for subsequent recellularization and transplantation. In this state-of-the-art review, we highlight the latest advances in pancreas decellularization, recellularization, and revascularization. We also discuss clinical considerations such as potential transplantation sites, donor source, and immune considerations. We conclude with future work that needs to be done in order to realize clinical translation of bioengineered pancreata for transplantation in diabetes patients.
Collapse
|
43
|
NI Z, LI J, WANG Y, Wendi LV, ZHANG S, PENG G, LU Y, SUN H, DONG Y. Physicochemical properties, antioxidant activities and hypoglycemic effects of soluble dietary fibers purified from Lentinula edodes. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.131122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
| | | | | | - LV Wendi
- Xuzhou University of Technology, China
| | | | | | - Yuhan LU
- Xuzhou University of Technology, China
| | | | | |
Collapse
|
44
|
Tirkes T, Yadav D, Conwell DL, Territo PR, Zhao X, Persohn SA, Dasyam AK, Shah ZK, Venkatesh SK, Takahashi N, Wachsman A, Li L, Li Y, Pandol SJ, Park WG, Vege SS, Hart PA, Topazian M, Andersen DK, Fogel EL. Quantitative MRI of chronic pancreatitis: results from a multi-institutional prospective study, magnetic resonance imaging as a non-invasive method for assessment of pancreatic fibrosis (MINIMAP). Abdom Radiol (NY) 2022; 47:3792-3805. [PMID: 36038644 PMCID: PMC9423890 DOI: 10.1007/s00261-022-03654-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To determine if quantitative MRI techniques can be helpful to evaluate chronic pancreatitis (CP) in a setting of multi-institutional study. METHODS This study included a subgroup of participants (n = 101) enrolled in the Prospective Evaluation of Chronic Pancreatitis for Epidemiologic and Translational Studies (PROCEED) study (NCT03099850) from February 2019 to May 2021. MRI was performed on 1.5 T using Siemens and GE scanners at seven clinical centers across the USA. Quantitative MRI parameters of the pancreas included T1 relaxation time, extracellular volume (ECV) fraction, apparent diffusion coefficient (ADC), and fat signal fraction. We report the diagnostic performance and mean values within the control (n = 50) and CP (n = 51) groups. The T1, ECV and fat signal fraction were combined to generate the quantitative MRI score (Q-MRI). RESULTS There was significantly higher T1 relaxation time; mean 669 ms (± 171) vs. 593 ms (± 82) (p = 0.006), ECV fraction; 40.2% (± 14.7) vs. 30.3% (± 11.9) (p < 0.001), and pancreatic fat signal fraction; 12.2% (± 5.5) vs. 8.2% (± 4.4) (p < 0.001) in the CP group compared to controls. The ADC was similar between groups (p = 0.45). The AUCs for the T1, ECV, and pancreatic fat signal fraction were 0.62, 0.72, and 0.73, respectively. The composite Q-MRI score improved the diagnostic performance (cross-validated AUC: 0.76). CONCLUSION Quantitative MR parameters evaluating the pancreatic parenchyma (T1, ECV fraction, and fat signal fraction) are helpful in the diagnosis of CP. A Q-MRI score that combines these three MR parameters improves diagnostic performance. Further studies are warranted with larger study populations including patients with acute and recurrent acute pancreatitis and longitudinal follow-ups.
Collapse
Affiliation(s)
- Temel Tirkes
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine Indianapolis, 550 N. University Blvd. Suite 0663, Indianapolis, IN 46202 USA
| | - Dhiraj Yadav
- Department of Medicine Division of Gastroenterology, Hepatology & Nutrition University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Darwin L. Conwell
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY USA
| | - Paul R. Territo
- Division of Clinical Pharmacology, Stark Neurosciences Research Institute Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Xuandong Zhao
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Scott A. Persohn
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Anil K. Dasyam
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Zarine K. Shah
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | | | | | - Ashley Wachsman
- Department of Radiology Cedars-Sinai Medical Center, University of California in Los Angeles, Los Angeles, CA USA
| | - Liang Li
- Department of Biostatistics Director, Quantitative Science Program, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Yan Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Stephen J. Pandol
- Division of Digestive and Liver Diseases Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Walter G. Park
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, CA USA
| | - Santhi S. Vege
- Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Phil A. Hart
- Division of Gastroenterology, Hepatology & Nutrition The Ohio State University Wexner Medical Center, Columbus, OH USA
| | | | - Dana K. Andersen
- Division of Digestive Diseases and Nutrition National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Evan L. Fogel
- Lehman, Bucksot and Sherman Section of Pancreatobiliary Endoscopy, Indiana University School of Medicine, Indianapolis, IN USA
| | - On behalf of the Consortium for the Study of Chronic Pancreatitis, Diabetes, Pancreatic Cancer (CPDPC)
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine Indianapolis, 550 N. University Blvd. Suite 0663, Indianapolis, IN 46202 USA
- Department of Medicine Division of Gastroenterology, Hepatology & Nutrition University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY USA
- Division of Clinical Pharmacology, Stark Neurosciences Research Institute Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA USA
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH USA
- Department of Radiology, Mayo Clinic, Rochester, MN USA
- Department of Radiology Cedars-Sinai Medical Center, University of California in Los Angeles, Los Angeles, CA USA
- Department of Biostatistics Director, Quantitative Science Program, The University of Texas MD Anderson Cancer Center, Houston, TX USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
- Division of Digestive and Liver Diseases Cedars-Sinai Medical Center, Los Angeles, CA USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, CA USA
- Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
- Division of Gastroenterology, Hepatology & Nutrition The Ohio State University Wexner Medical Center, Columbus, OH USA
- Mayo Clinic, Rochester, MN USA
- Division of Digestive Diseases and Nutrition National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
- Lehman, Bucksot and Sherman Section of Pancreatobiliary Endoscopy, Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
45
|
Herbsthofer L, Tomberger M, Smolle MA, Prietl B, Pieber TR, López-García P. Cell2Grid: an efficient, spatial, and convolutional neural network-ready representation of cell segmentation data. J Med Imaging (Bellingham) 2022; 9:067501. [PMID: 36466076 PMCID: PMC9709305 DOI: 10.1117/1.jmi.9.6.067501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Cell segmentation algorithms are commonly used to analyze large histologic images as they facilitate interpretation, but on the other hand they complicate hypothesis-free spatial analysis. Therefore, many applications train convolutional neural networks (CNNs) on high-resolution images that resolve individual cells instead, but their practical application is severely limited by computational resources. In this work, we propose and investigate an alternative spatial data representation based on cell segmentation data for direct training of CNNs. Approach We introduce and analyze the properties of Cell2Grid, an algorithm that generates compact images from cell segmentation data by placing individual cells into a low-resolution grid and resolves possible cell conflicts. For evaluation, we present a case study on colorectal cancer relapse prediction using fluorescent multiplex immunohistochemistry images. Results We could generate Cell2Grid images at 5 - μ m resolution that were 100 times smaller than the original ones. Cell features, such as phenotype counts and nearest-neighbor cell distances, remain similar to those of original cell segmentation tables ( p < 0.0001 ). These images could be directly fed to a CNN for predicting colon cancer relapse. Our experiments showed that test set error rate was reduced by 25% compared with CNNs trained on images rescaled to 5 μ m with bilinear interpolation. Compared with images at 1 - μ m resolution (bilinear rescaling), our method reduced CNN training time by 85%. Conclusions Cell2Grid is an efficient spatial data representation algorithm that enables the use of conventional CNNs on cell segmentation data. Its cell-based representation additionally opens a door for simplified model interpretation and synthetic image generation.
Collapse
Affiliation(s)
- Laurin Herbsthofer
- CBmed, Center for Biomarker Research in Medicine GmbH, Graz, Austria
- BioTechMed, Graz, Austria
| | - Martina Tomberger
- CBmed, Center for Biomarker Research in Medicine GmbH, Graz, Austria
| | - Maria A. Smolle
- Medical University of Graz, Department of Orthopaedics and Trauma, Graz, Austria
| | - Barbara Prietl
- CBmed, Center for Biomarker Research in Medicine GmbH, Graz, Austria
- BioTechMed, Graz, Austria
- Medical University of Graz, Division of Endocrinology and Diabetology, Graz, Austria
| | - Thomas R. Pieber
- CBmed, Center for Biomarker Research in Medicine GmbH, Graz, Austria
- BioTechMed, Graz, Austria
- Medical University of Graz, Division of Endocrinology and Diabetology, Graz, Austria
- Health Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria
| | | |
Collapse
|
46
|
Makam AA, Biswas A, Kothegala L, Gandasi NR. Setting the Stage for Insulin Granule Dysfunction during Type-1-Diabetes: Is ER Stress the Culprit? Biomedicines 2022; 10:2695. [PMID: 36359215 PMCID: PMC9687317 DOI: 10.3390/biomedicines10112695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 02/06/2025] Open
Abstract
Type-1-diabetes (T1D) is a multifactorial disorder with a global incidence of about 8.4 million individuals in 2021. It is primarily classified as an autoimmune disorder, where the pancreatic β-cells are unable to secrete sufficient insulin. This leads to elevated blood glucose levels (hyperglycemia). The development of T1D is an intricate interplay between various risk factors, such as genetic, environmental, and cellular elements. In this review, we focus on the cellular elements, such as ER (endoplasmic reticulum) stress and its consequences for T1D pathogenesis. One of the major repercussions of ER stress is defective protein processing. A well-studied example is that of islet amyloid polypeptide (IAPP), which is known to form cytotoxic amyloid plaques when misfolded. This review discusses the possible association between ER stress, IAPP, and amyloid formation in β-cells and its consequences in T1D. Additionally, ER stress also leads to autoantigen generation. This is driven by the loss of Ca++ ion homeostasis. Imbalanced Ca++ levels lead to abnormal activation of enzymes, causing post-translational modification of β-cell proteins. These modified proteins act as autoantigens and trigger the autoimmune response seen in T1D islets. Several of these autoantigens are also crucial for insulin granule biogenesis, processing, and release. Here, we explore the possible associations between ER stress leading to defects in insulin secretion and ultimately β-cell destruction.
Collapse
Affiliation(s)
- Aishwarya A. Makam
- Cell metabolism Lab (GA-08), Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science (IISc), Bengaluru 560012, India
| | - Anusmita Biswas
- Cell metabolism Lab (GA-08), Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science (IISc), Bengaluru 560012, India
| | - Lakshmi Kothegala
- Cell metabolism Lab (GA-08), Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science (IISc), Bengaluru 560012, India
- Unit of Metabolic Physiology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Nikhil R. Gandasi
- Cell metabolism Lab (GA-08), Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science (IISc), Bengaluru 560012, India
- Unit of Metabolic Physiology, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Medical Cell Biology, Uppsala University, BMC 571, 751 23 Uppsala, Sweden
| |
Collapse
|
47
|
Kulkarni S, Posgai AL, Kusmartseva I, Wasserfall CH, Atkinson MA, Butler AE. Exocrine and Endocrine Inflammation Increases Cellular Replication in the Pancreatic Duct Compartment in Type 1 Diabetes. J Endocr Soc 2022; 6:bvac136. [PMID: 36249412 PMCID: PMC9557836 DOI: 10.1210/jendso/bvac136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 01/21/2023] Open
Abstract
Context We recently demonstrated increased cellular proliferation in the pancreatic ductal gland (PDG) compartment of organ donors with type 1 diabetes, suggesting that PDGs may harbor progenitor cells capable of pancreatic regeneration. Objective We evaluated the impact of diabetes and pancreatic inflammation on PDG and interlobular duct (ILD) cellular proliferation and profiles. Methods Endocrine hormone expression (insulin, glucagon, somatostatin, pancreatic polypeptide) and proliferating Ki67+ cells were localized within the PDG and ILD compartments by multicolor immunohistochemistry in cross-sections from the head, body, and tail regions of pancreata from those with (n = 31) or without type 1 diabetes (n = 43). Whole-slide scanned images were analyzed using digital pathology. Results Type 1 diabetes donors with insulitis or histologically identified pancreatitis had increased cellular replication in the ILD and PDG compartments. Interestingly, while cellular proliferation within the pancreatic ductal tree was significantly increased in type 1 diabetes (PDG mean = 3.36%, SEM = 1.06; ILD mean = 2.78%, SEM = 0.97) vs nondiabetes(ND) subjects without pancreatic inflammation (PDG mean = 1.18%, SEM = 0.42; ILD mean = 0.74%, SEM = 0.15, P < 0.05), robust replication was also observed in ND donors with pancreatitis (PDG mean = 3.52%, SEM = 1.33; ILD mean = 2.18%, SEM = 0.54, P < 0.05). Few polyhormonal cells were present in the ILD (type 1 diabetes = 0.04 ± 0.02%; ND = 0.08 ± 0.03%, P = 0.40) or PDG compartment (type 1 diabetes = 0.02 ± 0.01%; ND = 0.08 ± 0.13%, P = 0.63). Conclusion These data suggest that increased pancreatic ductal cell replication is associated with sustained pancreatic inflammation; however, as replicating cells were hormone-negative, PDGs do not appear to represent a compelling endogenous source of hormone-positive endocrine cells.
Collapse
Affiliation(s)
- Shweta Kulkarni
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Irina Kusmartseva
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32611, USA
- Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Alexandra E Butler
- Department of Research, Royal College of Surgeons in Ireland-Bahrain, 15503 Adliya, Bahrain
| |
Collapse
|
48
|
Tirkes T, Dasyam AK, Shah ZK, Fogel EL, Vege SS, Li L, Li S, Chang ST, Farinas CA, Grajo JR, Mawad K, Takahashi N, Venkatesh SK, Wachsman A, Fisher WE, Forsmark CE, Hart PA, Pandol SJ, Park WG, Van Den Eeden SK, Yang Y, Topazian M, Andersen DK, Serrano J, Conwell DL, Yadav D. T1 signal intensity ratio of the pancreas as an imaging biomarker for the staging of chronic pancreatitis. Abdom Radiol (NY) 2022; 47:3507-3519. [PMID: 35857066 PMCID: PMC10020893 DOI: 10.1007/s00261-022-03611-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE Our purpose was to validate the T1 SIR (T1 score) as an imaging biomarker for the staging of CP in a large, multi-institutional, prospective study. METHODS The prospective study population included 820 participants enrolled in the PROCEED study from nine clinical centers between June 2017 and December 2021. A radiologist at each institution used a standardized method to measure the T1 signal intensity of the pancreas and the reference organs (spleen, paraspinal muscle, liver), which was used to derive respective T1 scores. Participants were stratified according to the seven mechanistic stages of chronic pancreatitis (MSCP 0-6) based on their clinical history, MRCP, and CT findings. RESULTS The mean pancreas-to-spleen T1 score was 1.30 in participants with chronic abdominal pain, 1.22 in those with acute or recurrent acute pancreatitis, and 1.03 in definite CP. After adjusting for covariates, we observed a linear, progressive decline in the pancreas-to-spleen T1 score with increasing MSCP from 0 to 6. The mean pancreas-to-spleen T1 scores were 1.34 (MSCP 0), 1.27 (MSCP 1), 1.21 (MSCP 2), 1.16 (MSCP 3), 1.18 (MSCP 4), 1.12 (MSCP 5), and 1.05 (MSCP 6) (p < 0.0001). The pancreas-to-liver and pancreas-to-muscle T1 scores showed less linear trends and wider confidence intervals. CONCLUSION The T1 score calculated by SIR of the pancreas-to-spleen shows a negative linear correlation with the progression of chronic pancreatitis. It holds promise as a practical imaging biomarker in evaluating disease severity in clinical research and practice.
Collapse
Affiliation(s)
- Temel Tirkes
- Department of Radiology & Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd. Suite 0663, Indianapolis, IN, 46202, USA.
| | - Anil K Dasyam
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Zarine K Shah
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Evan L Fogel
- Lehman, Bucksot and Sherman Section of Pancreatobiliary Endoscopy, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Liang Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuang Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie T Chang
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos A Farinas
- Baylor College of Medicine, Radiology Department, TX, Houston, USA
| | - Joseph R Grajo
- University of Florida College of Medicine, Gainesville, FL, USA
| | - Kareem Mawad
- The Permanente Medical Group, South San Francisco Medical Center, South San Francisco, CA, 94080, USA
| | | | | | - Ashley Wachsman
- Department of Radiology, Cedars-Sinai Medical Center, University of California in Los Angeles, Los Angeles, CA, USA
| | - William E Fisher
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Christopher E Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, FL, 32610, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology & Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Walter G Park
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, CA, USA
| | | | - Yunlong Yang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Dana K Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jose Serrano
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Darwin L Conwell
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Dhiraj Yadav
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
49
|
Gu P, Lu Y, Li S, Ma C. A Label-Free Fluorescence Aptasensor Based on G-Quadruplex/Thioflavin T Complex for the Detection of Trypsin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186093. [PMID: 36144829 PMCID: PMC9503660 DOI: 10.3390/molecules27186093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
Abstract
A novel, label-free fluorescent assay has been developed for the detection of trypsin by using thioflavin T as a fluorescent probe. A specific DNA aptamer can be combined by adding cytochrome c. Trypsin hydrolyzes the cytochrome c into small peptide fragments, exposing the G-quadruplex part of DNA aptamer, which has a high affinity for thioflavin T, which then enhances the fluorescence intensity. In the absence of trypsin, the fluorescence intensity was inhibited as the combination of cytochrome c and the DNA aptamer impeded thioflavin T’s binding. Thus, the fluorescent biosensor showed a linear relationship from 0.2 to 60 μg/mL with a detection limit of 0.2 μg/mL. Furthermore, the proposed method was also successfully employed for determining trypsin in biological samples. This method is simple, rapid, cheap, and selective and possesses great potential for the detection of trypsin in bioanalytical and biological samples and medical diagnoses.
Collapse
|
50
|
Zhang CY, Liu S, Yang M. Crosstalk between gut microbiota and COVID-19 impacts pancreatic cancer progression. World J Gastrointest Oncol 2022; 14:1456-1468. [PMID: 36160747 PMCID: PMC9412935 DOI: 10.4251/wjgo.v14.i8.1456] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/26/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common causes of cancer-associated death worldwide, with a low rate of 5-year survival. Currently, the pathogenesis of PC is complicated, with no efficient therapy. Coronavirus disease 2019 (COVID-19) disease caused by severe acute respiratory syndrome coronavirus 2 further exacerbates the challenge of patients with PC. The alteration of gut microbiota caused by COVID-19 infection may impact PC progression in patients via immune regulation. The expression of inflammatory immune mediators such as interleukin (IL)-6, IL-8, and IL-10 has been found to increase in both PC and COVID-19 patients, which is associated with the disease severity and prognostic outcome. Gut microbiome serves as a critical connector between viral infection and PC. It can regulate host systemic immune response and impact the efficacy of immunotherapy. Here, we first demonstrated the features of inflammatory cytokines in both diseases and their impact on disease outcomes. Then, we demonstrated the importance of immunotherapeutic strategies. This includes the immune modulation that targets a single or dual receptors using a single agent or their combinations for the treatment of PC in patients who get infected with COVID-19. Additionally, we explored the possibility of managing the disease by regulating gut microbiome. Overall, modulation of the lung-gut-pancreases axis can boost anti-cancer immunotherapy and reduce adverse prognostic outcomes.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|