1
|
Huang L, Zhang T, Zhu Y, Lai X, Tao H, Xing Y, Li Z. Deciphering the Role of CD36 in Gestational Diabetes Mellitus: Linking Fatty Acid Metabolism and Inflammation in Disease Pathogenesis. J Inflamm Res 2025; 18:1575-1588. [PMID: 39925938 PMCID: PMC11806725 DOI: 10.2147/jir.s502314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications which exerts detrimental effects on mothers and children. Emerging evidence has pointed to the important role of the fatty acid transporter protein CD36 in the pathogenesis of GDM. As a heavily glycosylated transmembrane protein, CD36 is widely expressed in diverse cell types, including placental trophoblasts, monocytes/macrophages, adipocytes, and pancreatic cells et al. CD36 plays a key role in lipid metabolism and signal transduction in the pathophysiological mechanism of GDM. The modified expression and functionality of CD36 may contribute to inflammation and oxidative stress in maternal tissues, interfere with insulin signaling, and subsequently influence maternal insulin sensitivity and fetal growth, increasing the risk for GDM. This review provides an overview of the current knowledge regarding the expression and function of CD36 in various tissues throughout pregnancy and explores how CD36 dysregulation can activate inflammatory pathways, worsen insulin resistance, and disrupt lipid metabolism, thereby complicating the necessary metabolic adjustments during pregnancy. Furthermore, the review delves into emerging therapeutic approaches targeting CD36 signaling to alleviate the impacts of GDM. Understanding the involvement of CD36 in GDM could yield crucial insights into its mechanisms and potential interventions for enhancing maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Li Huang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, Sichuan, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, People’s Republic of China
| | - Tong Zhang
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuanyuan Zhu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Xueling Lai
- Shenzhen Guangming Maternal & Child Healthcare Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Hualin Tao
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, Sichuan, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, People’s Republic of China
| | - Yuhan Xing
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, Sichuan, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
2
|
Katra B, Szopa M. Course of pregnancy and 10-year observation of twins diagnosed with GCK-MODY in the neonatal period: a case report. Front Endocrinol (Lausanne) 2024; 15:1395424. [PMID: 39411314 PMCID: PMC11473288 DOI: 10.3389/fendo.2024.1395424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Monogenic diabetes accounts for 5% of all incidence of hyperglycemia and Maturity Onset Diabetes of the Young (MODY) is the most common form. In GCK-MODY, one of the most common forms of MODY, hyperglycemia is caused by a mutation of a gene responsible for coding glucokinase. At the clinical level, this condition presents as persistent, moderate and asymptomatic elevated fasting glucose levels and has a relatively low incidence of micro and macro-vascular complications. In general, the treatment of choice is to follow and maintain a healthy lifestyle. The incidence of GCK-MODY during pregnancy is 2% on average (0-6%). In this report, we introduce a case of a woman diagnosed with GCK-MODY during the pregnancy with twins, a boy and a girl, diagnosed with GCK-MODY after birth. We discuss the course of pregnancy, the need for access to fast and uncomplicated genetic diagnostics in utero, and the impact of the MODY diagnosis on the life of the mother and that of her children. In our case, the diagnosis of GCK-MODY was associated with a feeling of relief, after years of uncertainty, and helped to introduce more appropriate eating behaviors and lifestyle changes for both the mother and her children.
Collapse
Affiliation(s)
- Barbara Katra
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
- Department of Metabolic Diseases and Diabetology, University Hospital in Krakow, Kraków, Poland
| | - Magdalena Szopa
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
- Department of Metabolic Diseases and Diabetology, University Hospital in Krakow, Kraków, Poland
| |
Collapse
|
3
|
Abu Aqel Y, Alnesf A, Aigha II, Islam Z, Kolatkar PR, Teo A, Abdelalim EM. Glucokinase (GCK) in diabetes: from molecular mechanisms to disease pathogenesis. Cell Mol Biol Lett 2024; 29:120. [PMID: 39245718 PMCID: PMC11382428 DOI: 10.1186/s11658-024-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Glucokinase (GCK), a key enzyme in glucose metabolism, plays a central role in glucose sensing and insulin secretion in pancreatic β-cells, as well as glycogen synthesis in the liver. Mutations in the GCK gene have been associated with various monogenic diabetes (MD) disorders, including permanent neonatal diabetes mellitus (PNDM) and maturity-onset diabetes of the young (MODY), highlighting its importance in maintaining glucose homeostasis. Additionally, GCK gain-of-function mutations lead to a rare congenital form of hyperinsulinism known as hyperinsulinemic hypoglycemia (HH), characterized by increased enzymatic activity and increased glucose sensitivity in pancreatic β-cells. This review offers a comprehensive exploration of the critical role played by the GCK gene in diabetes development, shedding light on its expression patterns, regulatory mechanisms, and diverse forms of associated monogenic disorders. Structural and mechanistic insights into GCK's involvement in glucose metabolism are discussed, emphasizing its significance in insulin secretion and glycogen synthesis. Animal models have provided valuable insights into the physiological consequences of GCK mutations, although challenges remain in accurately recapitulating human disease phenotypes. In addition, the potential of human pluripotent stem cell (hPSC) technology in overcoming current model limitations is discussed, offering a promising avenue for studying GCK-related diseases at the molecular level. Ultimately, a deeper understanding of GCK's multifaceted role in glucose metabolism and its dysregulation in disease states holds implications for developing targeted therapeutic interventions for diabetes and related disorders.
Collapse
Affiliation(s)
- Yasmin Abu Aqel
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Aldana Alnesf
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
| | - Idil I Aigha
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Adrian Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Singapore
- Department of Biochemistry and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme (PM TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Essam M Abdelalim
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
4
|
Zečević K, Volčanšek Š, Katsiki N, Rizzo M, Milardović TM, Stoian AP, Banach M, Muzurović E. Maturity-onset diabetes of the young (MODY) - in search of ideal diagnostic criteria and precise treatment. Prog Cardiovasc Dis 2024; 85:14-25. [PMID: 38513726 DOI: 10.1016/j.pcad.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Maturity-onset diabetes of the young (MODY) is a spectrum of clinically heterogenous forms of monogenic diabetes mellitus characterized by autosomal dominant inheritance, onset at a young age, and absence of pancreatic islets autoimmunity. This rare form of hyperglycemia, with clinical features overlapping with type 1 and type 2 diabetes mellitus, has 14 subtypes with differences in prevalence and complications occurrence which tailor therapeutic approach. MODY phenotypes differ based on the gene involved, gene penetrance and expressivity. While MODY 2 rarely leads to diabetic complications and is easily managed with lifestyle interventions alone, more severe subtypes, such as MODY 1, 3, and 6, require an individualized treatment approach to maintain a patient's quality of life and prevention of complications. This review summarizes current evidence on the presentation, diagnosis, and management of MODY, an example of a genetic cause of hyperglycemia that calls for a precision medicine approach.
Collapse
Affiliation(s)
- Ksenija Zečević
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Špela Volčanšek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia; Medical Faculty Ljubljana, Ljubljana, Slovenia
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Tanja Miličević Milardović
- Internal Medicine Department, Endocrinology, Diabetology, and Metabolism Division, University Hospital of Split, Split, Croatia; University of Split School of Medicine, Split, Croatia
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic diseases Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Łódź, Lodz, Poland; Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland; Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emir Muzurović
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro; Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, Podgorica, Montenegro.
| |
Collapse
|
5
|
Tsur N, Frankel M, Cahn A, Tsur A. Gestational diabetes and risk of future diabetes in a multi-ethnic population. J Diabetes Complications 2024; 38:108720. [PMID: 38452402 DOI: 10.1016/j.jdiacomp.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024]
Abstract
AIM To investigate ethnic disparities in risk of gestational diabetes-mellitus (GDM) and future diabetes. METHODS A population-based retrospective cohort study of women who underwent a 100-g oral glucose-tolerance-test (oGTT) during pregnancy between 2007 and 2017 in Clalit-Health-Services of the Jerusalem district. Univariate and multivariate logistic regression analyses were used to compare the risk of GDM in Arab versus Jewish women. Further, Cox-regression analysis was used to establish the risk of future diabetes. RESULTS A total of 9875 women, 71 % of Jewish ethnicity and 29 % of Arab ethnicity were included. Arab women had a higher incidence of GDM compared to Jewish women (17.3 % vs. 10.6 %, p < 0.001), which persisted after adjusting for age, BMI, and metabolic profile (aOR 1.7; CI 1.48-2.0, P < 0.001). Additionally, Arab ethnicity was associated with an increased risk of future diabetes, even after adjusting for GDM status (aHR 5.9; 95 % CI 3.7-9.4, P < 0.001). CONCLUSIONS Women of Arab ethnicity have a higher risk for both GDM and future diabetes, a risk that is beyond the initial increased risk associated with GDM. These findings highlight the need for increased focus on preventing diabetes in women of Arab ethnicity, especially those with a history of GDM.
Collapse
Affiliation(s)
- Noa Tsur
- Department of Internal Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Meir Frankel
- Endocrinology Unit, Shaare Zedek Medical Center, Jerusalem, Israel; Department of Endocrinology and Metabolism, Clalit Health Services, Jerusalem, Israel
| | - Avivit Cahn
- The Diabetes Unit, Department of Endocrinology and Metabolism, Hadassah Medical Center, Jerusalem, Israel; The Faculty of Medicine, Hadassah Hebrew University, Jerusalem, Israel
| | - Anat Tsur
- Department of Endocrinology and Metabolism, Clalit Health Services, Jerusalem, Israel; The Faculty of Medicine, Hadassah Hebrew University, Jerusalem, Israel.
| |
Collapse
|
6
|
Wang Y, Su X, Zhang W, Zhou Y, Zhou X, Yang W, Li H, Ma J. Effects of a Novel Glucokinase Activator, Dorzagliatin, on Glycemic Control and Glucose Fluctuation in Drug-Naïve Patients with Type 2 Diabetes Mellitus. Int J Endocrinol 2023; 2023:4996057. [PMID: 38179187 PMCID: PMC10764651 DOI: 10.1155/2023/4996057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
AIM The prevalence rate of type 2 diabetes mellitus (T2DM) has been increasing and a large proportion of patients still do not achieve adequate or sustainable glycemic control on the basis of previous hypoglycemic treatment. In this present study, we explored whether dorzagliatin, a novel glucokinase activator (GKA), could improve glycemic control and lessen glucose fluctuation in drug-naïve patients with T2DM. METHODS A self-comparative observational study of 25 drug-naïve patients with T2DM (aged 18-75 years and HbA1c of 7.5%-11.0%) treated with dorzagliatin 75 mg twice daily for 52 weeks. Before and after dorzagliatin intervention, the serum levels of hemoglobin A1c (HbA1c), insulin, and C-peptide were measured repeatedly during fasting and after a mixed meal. The continuous glucose monitoring (CGM) device was also used to obtain 24-hour glucose profiles and assess the changes in glycemic variability parameters. RESULTS After 52 weeks of treatment with dorzagliatin, a numerally greater reduction in HbA1c of 1.03% from the baseline was observed in patients with T2DM, accompanied by significant improvement in insulin resistance and insulin secretion. Moreover, the standard deviation of blood glucose (SDBG) and the mean amplitude of glycemic excursion (MAGE) derived from CGM data were significantly decreased after dorzagliatin therapy. The 24-h glucose variation profile showed that study patients had obviously lower mean glucose levels during the postprandial period from the baseline to week 52, an effect also demonstrated by the significant decrease in the incremental area under glucose concentration versus time curve for 2 h (iAUC0-2 h) after meals. CONCLUSIONS This study suggests that dorzagliatin therapy could effectively improve glycemic control and glucose fluctuation in drug-naïve patients with T2DM.
Collapse
Affiliation(s)
- Yuming Wang
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Xiaofei Su
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Wenli Zhang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yunting Zhou
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Xiao Zhou
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Wei Yang
- Department of Pharmacy, Lai'an County People's Hospital, Chuzhou, Anhui 239200, China
| | - Huiqin Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| |
Collapse
|
7
|
Sun HY, Lin XY. Genetic perspectives on childhood monogenic diabetes: Diagnosis, management, and future directions. World J Diabetes 2023; 14:1738-1753. [PMID: 38222792 PMCID: PMC10784795 DOI: 10.4239/wjd.v14.i12.1738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/14/2023] Open
Abstract
Monogenic diabetes is caused by one or even more genetic variations, which may be uncommon yet have a significant influence and cause diabetes at an early age. Monogenic diabetes affects 1 to 5% of children, and early detection and gene-tically focused treatment of neonatal diabetes and maturity-onset diabetes of the young can significantly improve long-term health and well-being. The etiology of monogenic diabetes in childhood is primarily attributed to genetic variations affecting the regulatory genes responsible for beta-cell activity. In rare instances, mutations leading to severe insulin resistance can also result in the development of diabetes. Individuals diagnosed with specific types of monogenic diabetes, which are commonly found, can transition from insulin therapy to sulfonylureas, provided they maintain consistent regulation of their blood glucose levels. Scientists have successfully devised materials and methodologies to distinguish individuals with type 1 or 2 diabetes from those more prone to monogenic diabetes. Genetic screening with appropriate findings and interpretations is essential to establish a prognosis and to guide the choice of therapies and management of these interrelated ailments. This review aims to design a comprehensive literature summarizing genetic insights into monogenetic diabetes in children and adolescents as well as summarizing their diagnosis and mana-gement.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| | - Xiao-Yan Lin
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| |
Collapse
|
8
|
Gersing S, Cagiada M, Gebbia M, Gjesing AP, Coté AG, Seesankar G, Li R, Tabet D, Weile J, Stein A, Gloyn AL, Hansen T, Roth FP, Lindorff-Larsen K, Hartmann-Petersen R. A comprehensive map of human glucokinase variant activity. Genome Biol 2023; 24:97. [PMID: 37101203 PMCID: PMC10131484 DOI: 10.1186/s13059-023-02935-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Glucokinase (GCK) regulates insulin secretion to maintain appropriate blood glucose levels. Sequence variants can alter GCK activity to cause hyperinsulinemic hypoglycemia or hyperglycemia associated with GCK-maturity-onset diabetes of the young (GCK-MODY), collectively affecting up to 10 million people worldwide. Patients with GCK-MODY are frequently misdiagnosed and treated unnecessarily. Genetic testing can prevent this but is hampered by the challenge of interpreting novel missense variants. RESULT Here, we exploit a multiplexed yeast complementation assay to measure both hyper- and hypoactive GCK variation, capturing 97% of all possible missense and nonsense variants. Activity scores correlate with in vitro catalytic efficiency, fasting glucose levels in carriers of GCK variants and with evolutionary conservation. Hypoactive variants are concentrated at buried positions, near the active site, and at a region of known importance for GCK conformational dynamics. Some hyperactive variants shift the conformational equilibrium towards the active state through a relative destabilization of the inactive conformation. CONCLUSION Our comprehensive assessment of GCK variant activity promises to facilitate variant interpretation and diagnosis, expand our mechanistic understanding of hyperactive variants, and inform development of therapeutics targeting GCK.
Collapse
Affiliation(s)
- Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Matteo Cagiada
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Marinella Gebbia
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Anette P Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Atina G Coté
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Gireesh Seesankar
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Roujia Li
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Daniel Tabet
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Jochen Weile
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Anna L Gloyn
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederick P Roth
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada.
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| |
Collapse
|
9
|
Costa-Riquetto AD, de Santana LS, Franco PC, Jr ACS, Martio AE, Lisboa HRK, Kohara SK, Teles MG. Genetic and clinical features of neonatal and early onset diabetes mellitus in a tertiary center cohort in Brazil. Clin Genet 2023; 103:434-447. [PMID: 36510364 DOI: 10.1111/cge.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Neonatal diabetes mellitus (NDM) is defined as the occurrence of severe hyperglycemia in infants under 6 months old and may be permanent (PNDM) or transient (TNDM). When diabetes is diagnosed at 6-12 months of age (early onset diabetes [EOD]), the etiology may be monogenic; however, most cases consist of type 1 diabetes mellitus (T1DM). Molecular diagnosis was determined in a cohort of 35 unrelated Brazilian patients with NDM or EOD based on targeted next-generation sequencing panel and/or chromosome 6q24 abnormalities. The impact of genetic testing on treatment and follow-up was evaluated. Overall, 24 patients had NDM: with 18 (75.0%) having PNDM, 5 TNDM (20.8%) and 1 case in which this information was unknown. Eleven patients had EOD. Genetic testing was positive in 20/24 patients with NDM (83.3%) and in 18.2% of cases of EOD. The commonest causes were ATP-sensitive potassium (KATP) channel genes, and GCK and IPEX mutations (37.1%, 11.4% and 5.7%, respectively). Patients with PNDM due to KCNJ11 and ABCC8 mutations transitioned successfully to sulfonylureas in almost 60% of cases, reinforcing the benefit of performing genetic testing in NDM as early as possible. This report refers to the largest series of cases of NDM (TNDM and PNDM) and EOD in Brazil in which patients were submitted to molecular investigation and in which the clinical impact of genetic diagnosis was also evaluated.
Collapse
Affiliation(s)
- Aline Dantas Costa-Riquetto
- Grupo de Diabetes Monogênico (Monogenic Diabetes Group), Unidade de Endocrinologia Genética (LIM25), Unidade de Diabetes, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Lucas Santos de Santana
- Grupo de Diabetes Monogênico (Monogenic Diabetes Group), Unidade de Endocrinologia Genética (LIM25), Unidade de Diabetes, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Pedro Campos Franco
- Grupo de Diabetes Monogênico (Monogenic Diabetes Group), Unidade de Endocrinologia Genética (LIM25), Unidade de Diabetes, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Augusto Cezar Santomauro Jr
- Grupo de Diabetes Monogênico (Monogenic Diabetes Group), Unidade de Endocrinologia Genética (LIM25), Unidade de Diabetes, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | | | | | | | - Milena G Teles
- Grupo de Diabetes Monogênico (Monogenic Diabetes Group), Unidade de Endocrinologia Genética (LIM25), Unidade de Diabetes, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| |
Collapse
|
10
|
Surendran A, Brackenridge A, White SL. Window of opportunity: screening for
GCK
monogenic diabetes in the antenatal diabetes clinic. PRACTICAL DIABETES 2022. [DOI: 10.1002/pdi.2427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Aarthi Surendran
- Consultant in Diabetes and Endocrinology, University Hospital Lewisham, Lewisham and Greenwich NHS Trust London UK
| | - Anna Brackenridge
- Consultant, Department of Diabetes and Endocrinology, Guy's and St Thomas’ Hospitals NHS Foundation Trust London UK
| | - Sara L White
- Clinician Scientist, Department of Women and Children's Health, King's College London; Honorary Consultant in Metabolic Medicine (Clinical Biochemistry), Guy's and St Thomas’ Hospitals NHS Foundation Trust London UK
| |
Collapse
|
11
|
da Silva Santos T, Fonseca L, Santos Monteiro S, Borges Duarte D, Martins Lopes A, Couto de Carvalho A, Oliveira MJ, Borges T, Laranjeira F, Couce ML, Cardoso MH. MODY probability calculator utility in individuals' selection for genetic testing: Its accuracy and performance. Endocrinol Diabetes Metab 2022; 5:e00332. [PMID: 35822264 PMCID: PMC9471596 DOI: 10.1002/edm2.332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction MODY probability calculator (MPC) represents an easy‐to‐use tool developed by Exeter University to help clinicians prioritize which individuals should be oriented to genetic testing. We aimed to assess the utility of MPC in a Portuguese cohort with early‐onset monogenic diabetes. Methods This single‐centre retrospective study enrolled 132 participants submitted to genetic testing between 2015 and 2020. Automatic sequencing and, in case of initial negative results, generation sequencing were performed. MODY probability was calculated using the probability calculator available online. Positive and negative predictive values (PPV and NPV, respectively), accuracy, sensitivity and specificity of the calculator were determined for this cohort. Results Seventy‐three individuals were included according to inclusion criteria: 20 glucokinase (GCK‐MODY); 16 hepatocyte nuclear factor 1A (HNF1A‐MODY); 2 hepatocyte nuclear factor 4A (HNF4A‐MODY) and 35 DM individuals with no monogenic mutations found. The median probability score of MODY was significantly higher in monogenic diabetes‐positive subgroup (75.5% vs. 24.2%, p < .001). The discriminative accuracy of the calculator, as expressed by area under the curve, was 75% (95% CI: 64%–85%). In our cohort, the best cut‐off value for the MODY calculator was found to be 36%, with a PPV of 74.4%, NPV of 73.5% and corresponding sensitivity and specificity of 76.2% and 71.4%, respectively. Conclusions In a highly pre‐selected group of probands qualified for genetic testing, the Exeter MODY probability calculator provided a useful tool in individuals' selection for genetic testing, with good discrimination ability under an optimal probability cut‐off of 36%. Further geographical and population adjustments are warranted for general use.
Collapse
Affiliation(s)
- Tiago da Silva Santos
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Liliana Fonseca
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Sílvia Santos Monteiro
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Diana Borges Duarte
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Ana Martins Lopes
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - André Couto de Carvalho
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Maria João Oliveira
- Division of Pediatric Endocrinology Department of Pediatrics Centro Materno‐Infantil do Norte – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Teresa Borges
- Division of Pediatric Endocrinology Department of Pediatrics Centro Materno‐Infantil do Norte – Centro Hospitalar e Universitário do Porto Porto Portugal
| | | | - María Luz Couce
- University Clinical Hospital of Santiago de Compostela, IDIS CIBERER MetabERN Santiago de Compostela Spain
| | - Maria Helena Cardoso
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| |
Collapse
|
12
|
Jiang Y, Jiang F, Li M, Wu Q, Xu C, Zhang R, Song M, Wang Y, Wang Y, Chen Y, Zhang J, Ge X, Zhu Q, Zhuang L, Yang D, Lu M, Wang F, Jiang M, Liu X, Liu Y, Liu L. Identification and management of GCK-MODY complicating pregnancy in Chinese patients with gestational diabetes. Mol Cell Biochem 2022; 477:1629-1643. [PMID: 35229243 DOI: 10.1007/s11010-022-04374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Precise differentiation of glucokinase (GCK) monogenic diabetes from gestational diabetes mellitus (GDM) is critical for accurate management of the pregnancy outcome. We screened GCK-MODY complicating pregnancies in Chinese GDM patients, explored the pathogenesis of novel GCK mutations, and evaluated the patients' pregnancy outcome and management. The GCK gene from 411 GDM patients was screened with PCR-direct sequencing and multiplex ligation-dependent probe amplification (MLPA) and 15 GCK mutations were identified. We also retrospectively analyzed a total of 65 pregnancies from 21 GCK-MODY families, wherein 41 were from 15 maternal families and 24 were from six paternal families. Bioinformatic analysis and biochemical functional study were conducted to identify novel GCK mutations. In total, we identified 21 GCK mutations: 15 from the 411 GDM patients and six from 24 fathers. Of th Asp78Asn (GAC → AAC), Met87Arg (ATG → AGG), Leu451Val (CTT → GTT), Leu451Pro (CTG → CCG) and 1019 + 20G > A e mutations, five, i.e., were novel and deleterious, with markedly decreased enzyme activity and thermal stability. The unaffected offspring of GCK mutation-affected mothers were heavier than affected offspring (p < 0.001). Of 21 insulin-treated affected mothers, 10 had maternal hypoglycemia (47.6%) and seven had perinatal complications (33.3%), and the affected offspring of the insulin-treated affected mothers had significantly lower birth weights than that of the 20 diet-control affected mothers (p = 0.031). In this study, the prevalence of GCK-MODY complicating pregnancy in Chinese GDM patients was 3.6% (15/411). The defective GCK may contribute to the hyperglycemia in GCK-MODY. Insulin therapy is not beneficial for GCK-MODY complicating pregnancy and therefore should not be recommended.
Collapse
Affiliation(s)
- Yanyan Jiang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Fusong Jiang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Ming Li
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Qingkai Wu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, China
| | - Chenming Xu
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Mingqiang Song
- Department of Endocrinology, Weihai Municipal Hospital, No. 70, Heping Road, Weihai, 264200, China
| | - Yanzhong Wang
- School of Population Health and Environmental Science, King's College London, London, UK
| | - Ying Wang
- Department of Pediatrics, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Yating Chen
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Juan Zhang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Huanghuai University, Zhumadian, 463000, Henan, China
| | - Xiaoxu Ge
- Department of Endocrinology, School of Medicine, Shanghai Tongren Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Qihan Zhu
- Department of Endocrinology, The first affiliated hospital of Wenzhou Medical University, The South of Shangcai Village, Nanbaixiang Town, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Langen Zhuang
- Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Di Yang
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, USA
| | - Ming Lu
- Department of Endocrinology & Metabolism, Putuo Hospital Attached to Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200000, China
| | - Feng Wang
- Department of Nephrology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Xipeng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai, 200240, China
| | - Yanjun Liu
- Department of Internal Medicine, Charles R. Drew University, Los Angeles, USA
- David Geffen School of Medicine at University of California, Los Angeles, USA
| | - Limei Liu
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
13
|
Pace NP, Vella B, Craus J, Caruana R, Savona-Ventura C, Vassallo J. Screening for monogenic subtypes of gestational diabetes in a high prevalence island population - A whole exome sequencing study. Diabetes Metab Res Rev 2022; 38:e3486. [PMID: 34278679 DOI: 10.1002/dmrr.3486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
AIMS The reported frequency of monogenic defects of beta cell function in gestational diabetes (GDM) varies extensively. This study aimed to evaluate the frequency and molecular spectrum of variants in genes associated with monogenic/atypical diabetes in non-obese females of Maltese ethnicity with GDM. METHODS 50 non-obese females who met the International Association of the Diabetes and Pregnancy Study Groups (IADPSG) criteria for diagnosis of GDM and with a first-degree relative with non-autoimmune diabetes were included in this study. Whole exome capture and high throughput sequencing was carried out. Rare sequence variants were filtered, annotated, and prioritised according to the American College for Medical Genetics guidelines. For selected missense variants we explored effects on protein stability and structure through in-silico tools. RESULTS We identified three pathogenic variants in GCK, ABCC8 and HNF1A and several variants of uncertain significance in the cohort. Genotype-phenotype correlations and post-pregnancy follow-up data are described. CONCLUSIONS This study provides the first insight into an underlying monogenic aetiology in non-obese females with GDM from an island population having a high prevalence of diabetes. It suggests that monogenic variants constitute an underestimated cause of diabetes detected in pregnancy, and that careful evaluation of GDM probands to identify monogenic disease subtypes is indicated.
Collapse
Affiliation(s)
- Nikolai Paul Pace
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Barbara Vella
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Johann Craus
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Ruth Caruana
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Charles Savona-Ventura
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Josanne Vassallo
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
14
|
Role of Actionable Genes in Pursuing a True Approach of Precision Medicine in Monogenic Diabetes. Genes (Basel) 2022; 13:genes13010117. [PMID: 35052457 PMCID: PMC8774614 DOI: 10.3390/genes13010117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Monogenic diabetes is a genetic disorder caused by one or more variations in a single gene. It encompasses a broad spectrum of heterogeneous conditions, including neonatal diabetes, maturity onset diabetes of the young (MODY) and syndromic diabetes, affecting 1-5% of patients with diabetes. Some of these variants are harbored by genes whose altered function can be tackled by specific actions ("actionable genes"). In suspected patients, molecular diagnosis allows the implementation of effective approaches of precision medicine so as to allow individual interventions aimed to prevent, mitigate or delay clinical outcomes. This review will almost exclusively concentrate on the clinical strategy that can be specifically pursued in carriers of mutations in "actionable genes", including ABCC8, KCNJ11, GCK, HNF1A, HNF4A, HNF1B, PPARG, GATA4 and GATA6. For each of them we will provide a short background on what is known about gene function and dysfunction. Then, we will discuss how the identification of their mutations in individuals with this form of diabetes, can be used in daily clinical practice to implement specific monitoring and treatments. We hope this article will help clinical diabetologists carefully consider who of their patients deserves timely genetic testing for monogenic diabetes.
Collapse
|
15
|
Lepore C, Damaso E, Suazo V, Queiroz R, Junior RL, Moisés E. Molecular Changes in the Glucokinase Gene (GCK) Associated with the Diagnosis of Maturity Onset Diabetes of the Young (MODY) in Pregnant Women and Newborns. Curr Diabetes Rev 2022; 18:e060821195358. [PMID: 34365926 DOI: 10.2174/1573399817666210806110633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes mellitus is the most common metabolic alteration in gestation. Monogenic diabetes or Maturity-Onset Diabetes of the Young (MODY) is a subtype caused by a primary defect in insulin secretion determined by autosomal dominant inheritance. OBJECTIVES This study aimed to analyze molecular changes of the Glucokinase gene (GCK) in pregnant women with hyperglycemia during gestation and in their neonates. Case Study and Methods: We collected 201 blood samples, 128 from pregnant patients diagnosed with hyperglycemia and 73 from umbilical cord blood from neonates of the respective patients. DNA extraction and polymerase chain reaction (PCR) were performed to identify molecular changes in the GCK gene. RESULTS In a total of 201 samples (128 from mothers and 73 from neonates), we found changes in 21 (10.6%), among which 12 were maternal samples (6.0%) and 9 were neonatal samples (4.5%). DNA sequencing identified two polymorphisms and one deleterious MODY GCK-diagnostic mutation. CONCLUSION The prevalence of molecular changes in the Glucokinase gene (GCK) and the deleterious MODY GCK-diagnostic mutation were 9.3% and 0.7%, respectively, in women with hyperglycemia during gestation and 12.5% and 1.3%, respectively, in their neonates. The deleterious MODY GCK mutation identified is associated with a reduction in GCK activity and hyperglycemia. In the other molecular changes identified, it was impossible to exclude phenotypic change despite not having clinical significance. Therefore, these changes may interfere with the management and clinical outcome of the patients.
Collapse
Affiliation(s)
- Carolina Lepore
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Enio Damaso
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Veridiana Suazo
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Rosane Queiroz
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Raphael Liberatore Junior
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Elaine Moisés
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
16
|
Emmelheinz M, Knebel B, Müssig K. Diagnose und Behandlung des Maturity-Onset Diabetes of the Young (MODY). DIABETOL STOFFWECHS 2021. [DOI: 10.1055/a-0785-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Markus Emmelheinz
- Endokrinologie, Diabetologie, Diabetes-Zentrum Düsseldorf, Düsseldorf
| | - Birgit Knebel
- Institut für Biometrie und Epidemiologie, Deutsches Diabetes-Zentrum Leibniz-Zentrum fur Diabetes-Forschung, Düsseldorf, Germany
| | - Karsten Müssig
- Franziskus-Hospital Harderberg, Klinik für Innere Medizin und Gastroenterologie, Niels-Stensen-Kliniken GmbH, Georgsmarienhütte, Deutschland
| |
Collapse
|
17
|
Lima Ferreira J, Voss G, Sá Couto A, Príncipe RM. Monogenic diabetes caused by GCK gene mutation is misdiagnosed as gestational diabetes - A multicenter study in Portugal. Diabetes Metab Syndr 2021; 15:102259. [PMID: 34438359 DOI: 10.1016/j.dsx.2021.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
AIMS Monogenic diabetes is an underdiagnosed type of diabetes mellitus, which can be harmful in pregnancy. We aim to estimate the prevalence of diabetes caused by the mutation of the glucokinase gene (GCK-MODY) in pregnant women diagnosed with gestational diabetes mellitus (GDM) and to characterize pregnant women with this suspicion. METHODS A multicenter observational study with data prospectively collected from pregnancies with GDM was conducted. Two groups of pregnant women were considered: those with GCK-MODY criteria and those without those criteria. RESULTS Of 18421 women with GDM, 3.6% (n = 730) had the GCK-MODY clinical criteria. A prevalence of 1.5% of GCK-MODY is estimated in women with GDM in Portugal, which is higher than in Northern European countries. Suspected GCK-MODY women had statistically higher odds of having neonates below the 25th percentile (OR = 1.23, 95%CI = 1.04-1.46, p = 0.016) and having prediabetes and diabetes in postpartum reclassification (OR = 2.11, 95%CI = 1.55-2.82, p < 0.001 and OR = 5.96, 95%CI = 3.38-10.06, p < 0.001, respectively). CONCLUSIONS Higher odds of neonates below the 25th percentile was probably due to excessive insulin treatment in cases where both the mother and the fetus have the mutation. It is essential to consider the diagnosis of GCK-MODY in all women with GDM criteria for better management of diabetes in pregnancy.
Collapse
Affiliation(s)
- Joana Lima Ferreira
- Department of Endocrinology, Hospital Pedro Hispano, Matosinhos Local Health Unit, Rua Dr. Eduardo Torres, 4464-513, Senhora da Hora, Matosinhos, Portugal.
| | - Gina Voss
- Centro de Estudos de Comunicação e Sociedade, Instituto de Ciências Sociais, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Braga, Portugal
| | - Adelina Sá Couto
- Department of Gynecology and Obstetrics, Hospital Pedro Hispano, Matosinhos Local Health Unit, Rua Dr. Eduardo Torres, 4464-513, Senhora da Hora, Matosinhos, Portugal
| | - Rosa Maria Príncipe
- Department of Endocrinology, Hospital Pedro Hispano, Matosinhos Local Health Unit, Rua Dr. Eduardo Torres, 4464-513, Senhora da Hora, Matosinhos, Portugal
| |
Collapse
|
18
|
Kwak SH, Powe CE, Jang SS, Callahan MJ, Bernstein SN, Lee SM, Kang S, Park KS, Jang HC, Florez JC, Kim JI, Chae JH. Sequencing Cell-free Fetal DNA in Pregnant Women With GCK-MODY. J Clin Endocrinol Metab 2021; 106:2678-2689. [PMID: 34406393 PMCID: PMC8660061 DOI: 10.1210/clinem/dgab265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Individuals with monogenic diabetes due to inactivating glucokinase (GCK) variants typically do not require treatment, except potentially during pregnancy. In pregnancy, fetal GCK genotype determines whether treatment is indicated, but noninvasive methods are not clinically available. OBJECTIVE This work aims to develop a method to determine fetal GCK genotype noninvasively using maternal cell-free fetal DNA. METHODS This was a proof-of-concept study involving 3 pregnant women with a causal GCK variant that used information from 1) massive parallel sequencing of maternal plasma cell-free DNA, 2) direct haplotype sequences of maternal genomic DNA, and 3) the paternal genotypes to estimate relative haplotype dosage of the pathogenic variant-linked haplotype. Statistical testing of variant inheritance was performed using a sequential probability ratio test (SPRT). RESULTS In each of the 3 cases, plasma cell-free DNA was extracted once between gestational weeks 24 and 36. The fetal fraction of cell-free DNA ranged from 21.8% to 23.0%. Paternal homozygous alleles that were identical to the maternal GCK variant-linked allele were not overrepresented in the cell-free DNA. Paternal homozygous alleles that were identical to the maternal wild-type-linked allele were significantly overrepresented. Based on the SPRT, we predicted that all 3 cases did not inherit the GCK variant. Postnatal infant genotyping confirmed our prediction in each case. CONCLUSION We have successfully implemented a noninvasive method to predict fetal GCK genotype using cell-free DNA in 3 pregnant women carrying an inactivating GCK variant. This method could guide tailoring of hyperglycemia treatment in pregnancies of women with GCK monogenic diabetes.
Collapse
Affiliation(s)
- Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Camille E Powe
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA 02114-2696, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Se Song Jang
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Michael J Callahan
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA 02114-2696, USA
| | - Sarah N Bernstein
- Harvard Medical School, Boston, MA 02115, USA
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Massachusetts General Hospital, Boston, MA 02114-2696, USA
| | - Seung Mi Lee
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea
| | - Sunyoung Kang
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - Hak C Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Jose C Florez
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA 02114-2696, USA
- Harvard Medical School, Boston, MA 02115, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114-2696, USA
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Jong Hee Chae
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
19
|
Phoswa WN, Khaliq OP. The Role of Oxidative Stress in Hypertensive Disorders of Pregnancy (Preeclampsia, Gestational Hypertension) and Metabolic Disorder of Pregnancy (Gestational Diabetes Mellitus). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5581570. [PMID: 34194606 PMCID: PMC8184326 DOI: 10.1155/2021/5581570] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/25/2021] [Indexed: 11/17/2022]
Abstract
Purpose of the Review.To highlight the role of oxidative stress in hypertensive disorders of pregnancy (HDP) and metabolic disorders of pregnancy (gestational diabetes mellitus). Recent Findings. In both preeclampsia (PE) and gestational hypertension (GH), oxidative stress leads to inadequate placental perfusion thus resulting in a hypoxic placenta, which generally leads to the activation of maternal systemic inflammatory response. In PE, this causes inflammation in the kidneys and leads to proteinuria. A proteinuria marker known as urinary 8-oxoGuo excretion is expressed in preeclampsia. In GDM, oxidative stress plays a role in the pathogenesis of the disease, as a result of over secretion of insulin during pregnancy. This uncontrolled secretion of insulin results in the production of lipid peroxidation factors that also mask the secretion of antioxidants. Therefore, ROS becomes abundant at cellular level and prevents the cells from transporting glucose to body tissues. Summary. There is a need for more research investigating the role of oxidative stress, especially in obstetrics-related conditions. More studies are required in order to understand the difference between the pathogenesis and pathophysiology of PE versus GH since investigations on the differences in genetic aspects of each condition are lacking. Furthermore, research to improve diagnostic procedures for GDM in pregnancy is needed.
Collapse
Affiliation(s)
- Wendy N. Phoswa
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa
| | - Olive P. Khaliq
- Department of Obstetrics and Gynaecology and Women's Health and HIV Research Group, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
20
|
Immanuel J, Simmons D, Harreiter J, Desoye G, Corcoy R, Adelantado JM, Devlieger R, Lapolla A, Dalfra MG, Bertolotto A, Wender-Ozegowska E, Zawiejska A, Dunne FP, Damm P, Mathiesen ER, Jensen DM, Andersen LLT, Hill DJ, Jelsma JGM, Kautzky-Willer A, Galjaard S, Snoek FJ, van Poppel MNM. Metabolic phenotypes of early gestational diabetes mellitus and their association with adverse pregnancy outcomes. Diabet Med 2021; 38:e14413. [PMID: 32991758 DOI: 10.1111/dme.14413] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
AIMS To describe the metabolic phenotypes of early gestational diabetes mellitus and their association with adverse pregnancy outcomes. METHODS We performed a post hoc analysis using data from the Vitamin D And Lifestyle Intervention for gestational diabetes prevention (DALI) trial conducted across nine European countries (2012-2014). In women with a BMI ≥29 kg/m2 , insulin resistance and secretion were estimated from the oral glucose tolerance test values performed before 20 weeks, using homeostatic model assessment of insulin resistance and Stumvoll first-phase indices, respectively. Women with early gestational diabetes, defined by the International Association of Diabetes and Pregnancy Study Groups criteria, were classified into three groups: GDM-R (above-median insulin resistance alone), GDM-S (below-median insulin secretion alone), and GDM-B (combination of both) and the few remaining women were excluded. RESULTS Compared with women in the normal glucose tolerance group (n = 651), women in the GDM-R group (n = 143) had higher fasting and post-load glucose values and insulin levels, with a greater risk of having large-for-gestational age babies [adjusted odds ratio 3.30 (95% CI 1.50-7.50)] and caesarean section [adjusted odds ratio 2.30 (95% CI 1.20-4.40)]. Women in the GDM-S (n = 37) and GDM-B (n = 56) groups had comparable pregnancy outcomes with those in the normal glucose tolerance group. CONCLUSIONS In overweight and obese women with early gestational diabetes, higher degree of insulin resistance alone was more likely to be associated with adverse pregnancy outcomes than lower insulin secretion alone or a combination of both.
Collapse
Affiliation(s)
- J Immanuel
- Macarthur Clinical School, Western Sydney University, Sydney, NSW, Australia
| | - D Simmons
- Macarthur Clinical School, Western Sydney University, Sydney, NSW, Australia
- Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, UK
| | - J Harreiter
- Department of Medicine III, Division of Endocrinology, Gender Medicine Unit, Medical University of Vienna, Vienna, Austria
| | - G Desoye
- Department of Obstetrics and Gynecology, Medizinische Universitaet Graz, Graz, Austria
| | - R Corcoy
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut de Recerca de l´Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- CIBER Bioengineering, Biomaterials and Nanotechnology, Instituto de Salud Carlos III, Madrid, Spain
| | - J M Adelantado
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - R Devlieger
- KU Leuven Department of Development and Regeneration: Pregnancy, Fetus and Neonate, Leuven, Belgium
- Gynaecology and Obstetrics, University Hospitals Leuven, Belgium
| | - A Lapolla
- Universita Degli Studi di Padova, Padua, Italy
| | - M G Dalfra
- Universita Degli Studi di Padova, Padua, Italy
| | - A Bertolotto
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - E Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, Poland
| | - A Zawiejska
- Department of Reproduction, Poznan University of Medical Sciences, Poland
| | - F P Dunne
- National University of Ireland, Galway, Ireland
| | - P Damm
- Centre for Pregnant Women with Diabetes, Departments of Endocrinology and Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - E R Mathiesen
- Centre for Pregnant Women with Diabetes, Departments of Endocrinology and Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - D M Jensen
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Gynecology and Obstetrics, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - L L T Andersen
- Department of Gynecology and Obstetrics, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - D J Hill
- Recherche en Santé Lawson SA, St. Gallen, Switzerland
- Lawson Health Research Institute, London, Ontario, Canada
| | - J G M Jelsma
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam
| | - A Kautzky-Willer
- Department of Medicine III, Division of Endocrinology, Gender Medicine Unit, Medical University of Vienna, Vienna, Austria
- Gender Institute Gars am Kamp, Vienna, Austria
| | - S Galjaard
- KU Leuven Department of Development and Regeneration: Pregnancy, Fetus and Neonate, Leuven, Belgium
- Gynaecology and Obstetrics, University Hospitals Leuven, Belgium
- Department of Obstetrics and Gynaecology, Division of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - F J Snoek
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Psychology, Amsterdam, The Netherlands
| | - M N M van Poppel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam
- Institute of Sport Science, University of Graz, Graz, Austria
| |
Collapse
|
21
|
Ivanoshchuk DE, Shakhtshneider EV, Rymar OD, Ovsyannikova AK, Mikhailova SV, Fishman VS, Valeev ES, Orlov PS, Voevoda MI. The Mutation Spectrum of Maturity Onset Diabetes of the Young (MODY)-Associated Genes among Western Siberia Patients. J Pers Med 2021; 11:57. [PMID: 33477506 PMCID: PMC7831070 DOI: 10.3390/jpm11010057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Maturity onset diabetes of the young (MODY) is a congenital form of diabetes characterized by onset at a young age and a primary defect in pancreatic-β-cell function. Currently, 14 subtypes of MODY are known, and each is associated with mutations in a specific gene: HNF4A, GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, KCNJ11, ABCC8, and APPL1. The most common subtypes of MODY are associated with mutations in the genes GCK, HNF1A, HNF4A, and HNF1B. Among them, up to 70% of cases are caused by mutations in GCK and HNF1A. Here, an analysis of 14 MODY genes was performed in 178 patients with a MODY phenotype in Western Siberia. Multiplex ligation-dependent probe amplification analysis of DNA samples from 50 randomly selected patients without detectable mutations did not reveal large rearrangements in the MODY genes. In 38 patients (37% males) among the 178 subjects, mutations were identified in HNF4A, GCK, HNF1A, and ABCC8. We identified novel potentially causative mutations p.Lys142*, Leu146Val, Ala173Glnfs*30, Val181Asp, Gly261Ala, IVS7 c.864 -1G>T, Cys371*, and Glu443Lys in GCK and Ser6Arg, IVS 2 c.526 +1 G>T, IVS3 c.713 +2 T>A, and Arg238Lys in HNF1A.
Collapse
Affiliation(s)
- Dinara E. Ivanoshchuk
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.V.S.); (S.V.M.); (V.S.F.); (E.S.V.); (P.S.O.); (M.I.V.)
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, SB RAS, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia; (O.D.R.); (A.K.O.)
| | - Elena V. Shakhtshneider
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.V.S.); (S.V.M.); (V.S.F.); (E.S.V.); (P.S.O.); (M.I.V.)
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, SB RAS, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia; (O.D.R.); (A.K.O.)
| | - Oksana D. Rymar
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, SB RAS, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia; (O.D.R.); (A.K.O.)
| | - Alla K. Ovsyannikova
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, SB RAS, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia; (O.D.R.); (A.K.O.)
| | - Svetlana V. Mikhailova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.V.S.); (S.V.M.); (V.S.F.); (E.S.V.); (P.S.O.); (M.I.V.)
| | - Veniamin S. Fishman
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.V.S.); (S.V.M.); (V.S.F.); (E.S.V.); (P.S.O.); (M.I.V.)
| | - Emil S. Valeev
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.V.S.); (S.V.M.); (V.S.F.); (E.S.V.); (P.S.O.); (M.I.V.)
| | - Pavel S. Orlov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.V.S.); (S.V.M.); (V.S.F.); (E.S.V.); (P.S.O.); (M.I.V.)
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, SB RAS, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia; (O.D.R.); (A.K.O.)
| | - Mikhail I. Voevoda
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (E.V.S.); (S.V.M.); (V.S.F.); (E.S.V.); (P.S.O.); (M.I.V.)
| |
Collapse
|
22
|
Li J, Shu M, Wang X, Deng A, Wen C, Wang J, Jin S, Zhang H. Precision Therapy for a Chinese Family With Maturity-Onset Diabetes of the Young. Front Endocrinol (Lausanne) 2021; 12:700342. [PMID: 34421822 PMCID: PMC8374143 DOI: 10.3389/fendo.2021.700342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/08/2021] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE To determine the pathogenic gene and explore the clinical characteristics of maturity-onset diabetes of the young type 2 (MODY2) pedigree caused by a mutation in the glucokinase (GCK) gene. METHODS Using whole-exome sequencing (WES), the pathogenic gene was detected in the proband-a 20-year-old young man who was accidentally found with hyperglycemia, no ketosis tendency, and a family history of diabetes. The family members of the proband were examined. In addition, relevant clinical data were obtained and genomic DNA from peripheral blood was obtained. Pathologic variants of the candidate were verified by Sanger sequencing technology, and cosegregation tests were conducted among other family members and non-related healthy controls. After adjusting the treatment plan based on the results of genetic testing, changes in biochemical parameters, such as blood glucose levels and HAblc levels were determined. RESULTS In the GCK gene (NM_000162) in exon 9, a heterozygous missense mutation c.1160C > T (p.Ala387Val) was found in the proband, his father, uncle, and grandmother. Thus mutation, which was found to co-segregate with diabetes, was the first discovery of such a mutation in the Asian population. After stopping hypoglycemic drug treatment, good glycemic control was achieved with diet and exercise therapy. CONCLUSION GCK gene mutation c.1160C > T (p.Ala387Val) is the pathogenic gene in the GCK-MODY pedigree. Formulating an optimized and personalized treatment strategy can reduce unnecessary excessive medical treatment and adverse drug reactions, and maintain a good HbA1c compliance rate.
Collapse
Affiliation(s)
- Juyi Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiufang Wang
- Department of Pain, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiping Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chong Wen
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juanjuan Wang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Si Jin, ; Hongmei Zhang,
| | - Hongmei Zhang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Si Jin, ; Hongmei Zhang,
| |
Collapse
|
23
|
Moalla M, Safi W, Babiker Mansour M, Hadj Kacem M, Mahfood M, Abid M, Kammoun T, Hachicha M, Mnif-Feki M, Hadj Kacem F, Hadj Kacem H. Tunisian Maturity-Onset Diabetes of the Young: A Short Review and a New Molecular and Clinical Investigation. Front Endocrinol (Lausanne) 2021; 12:684018. [PMID: 34393998 PMCID: PMC8358796 DOI: 10.3389/fendo.2021.684018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION/AIMS Maturity-Onset Diabetes of the Young (MODY) is a monogenic non-autoimmune diabetes with 14 different genetic forms. MODY-related mutations are rarely found in the Tunisian population. Here, we explored MODY related genes sequences among seventeen unrelated Tunisian probands qualifying the MODY clinical criteria. MATERIALS AND METHODS The GCK and HNF1A genes were systematically analyzed by direct sequencing in all probands. Then, clinical exome sequencing of 4,813 genes was performed on three unrelated patients. Among them, 130 genes have been reported to be involved in the regulation of glucose metabolism, β-cell development, differentiation and function. All identified variants were analyzed according to their frequencies in the GnomAD database and validated by direct sequencing. RESULTS We identified the previously reported GCK mutation (rs1085307455) in one patient. The clinical features of the MODY2 proband were similar to previous reports. In this study, we revealed rare and novel alterations in GCK (rs780806456) and ABCC8 (rs201499958) genes with uncertain significance. We also found two likely benign alterations in HNF1A (rs1800574) and KLF11 (rs35927125) genes with minor allele frequencies similar to those depicted in public databases. No pathogenic variants have been identified through clinical exome analysis. CONCLUSIONS The most appropriate patients were selected, following a strict clinical screening approach, for genetic testing. However, the known MODY1-13 genes could not explain most of the Tunisian MODY cases, suggesting the involvement of unidentified genes in the majority of Tunisian affected families.
Collapse
Affiliation(s)
- Mariam Moalla
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Wajdi Safi
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Maab Babiker Mansour
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed Hadj Kacem
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed Abid
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Thouraya Kammoun
- Pediatric Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Mongia Hachicha
- Pediatric Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Mouna Mnif-Feki
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Faten Hadj Kacem
- Endocrinology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Hassen Hadj Kacem
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Hassen Hadj Kacem,
| |
Collapse
|
24
|
Marcovecchio ML, Predieri B, De Filippo G, Delvecchio M. Editorial: Debates in Clinical Management in Pediatric Endocrinology. Front Endocrinol (Lausanne) 2021; 12:663860. [PMID: 33776945 PMCID: PMC7988199 DOI: 10.3389/fendo.2021.663860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Barbara Predieri
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianpaolo De Filippo
- Assistance Publique - Hôpitaux de Paris, Service d'Endocrinologie et Diabétologie Pédiatrique, Hôpital Robert Debré, Paris, France
| | - Maurizio Delvecchio
- Metabolic and Genetic Disorders, “Giovanni XXIII” Children’s Hospital, Bari, Italy
- *Correspondence: Maurizio Delvecchio,
| |
Collapse
|
25
|
Huvinen E, Engberg E, Meinilä J, Tammelin T, Kulmala J, Heinonen K, Bergman P, Stach-Lempinen B, Koivusalo S. Lifestyle and glycemic health 5 years postpartum in obese and non-obese high diabetes risk women. Acta Diabetol 2020; 57:1453-1462. [PMID: 32712801 PMCID: PMC7591422 DOI: 10.1007/s00592-020-01553-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
AIM Women with prior gestational diabetes (GDM) are at increased diabetes risk. This study aimed to assess whether lifestyle is associated with glycemic health of high-risk women 5 years postpartum, taking into account the pre-pregnancy BMI. METHODS The RADIEL study enrolled before or in early pregnancy 720 women with pre-pregnancy BMI ≥ 30 kg/m2 and/or prior GDM. The follow-up visit 5 years postpartum included questionnaires and measurements of anthropometrics, blood pressure, and physical activity (PA) as well as analyses of glucose metabolism, lipids, and inflammatory markers. We measured body composition (Inbody) and calculated a Healthy Food Intake Index (HFII) from Food Frequency Questionnaires (FFQ). ArmBand measured PA, sedentary time, and sleep. To take into account the diverse risk groups of GDM, we divided the women based on pre-pregnancy BMI over/under 30 kg/m2. RESULTS Altogether 348 women attended the follow-up. The obese and non-obese women showed similar prevalence of glycemic abnormalities, 13% and 19% (p = 0.139). PA levels were higher among the non-obese women (p < 0.05), except for step count, and their HFII was higher compared to the obese women (p = 0.033). After adjusting for age, education, and GDM history, PA and HFII were associated with glycemic health only among obese women. When both lifestyle factors were in the same model, only PA remained significant. PA associated with other markers of metabolic health also among the non-obese women, excluding HbA1c. CONCLUSION Lifestyle 5 years postpartum was associated with better glycemic health only among the obese high-risk women. PA, however, is essential for the metabolic health of all high-risk women. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, http://www.clinicaltrials.com , NCT01698385.
Collapse
Affiliation(s)
- Emilia Huvinen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, PL 140, 00029 HUS, Helsinki, Finland.
| | - Elina Engberg
- Folkhälsan Research Center, Helsinki, Finland
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jelena Meinilä
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, PL 140, 00029 HUS, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Tuija Tammelin
- LIKES Research Centre for Physical Activity and Health, Jyväskylä, Finland
| | - Janne Kulmala
- LIKES Research Centre for Physical Activity and Health, Jyväskylä, Finland
| | - Kati Heinonen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Paula Bergman
- Biostatistics Consulting, Department of Public Health, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Beata Stach-Lempinen
- Department of Obstetrics and Gynecology, South-Karelia Central Hospital, Lappeenranta, Finland
| | - Saila Koivusalo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, PL 140, 00029 HUS, Helsinki, Finland
| |
Collapse
|
26
|
Riddle MC, Philipson LH, Rich SS, Carlsson A, Franks PW, Greeley SAW, Nolan JJ, Pearson ER, Zeitler PS, Hattersley AT. Monogenic Diabetes: From Genetic Insights to Population-Based Precision in Care. Reflections From a Diabetes Care Editors' Expert Forum. Diabetes Care 2020; 43:3117-3128. [PMID: 33560999 PMCID: PMC8162450 DOI: 10.2337/dci20-0065] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Individualization of therapy based on a person's specific type of diabetes is one key element of a "precision medicine" approach to diabetes care. However, applying such an approach remains difficult because of barriers such as disease heterogeneity, difficulties in accurately diagnosing different types of diabetes, multiple genetic influences, incomplete understanding of pathophysiology, limitations of current therapies, and environmental, social, and psychological factors. Monogenic diabetes, for which single gene mutations are causal, is the category most suited to a precision approach. The pathophysiological mechanisms of monogenic diabetes are understood better than those of any other form of diabetes. Thus, this category offers the advantage of accurate diagnosis of nonoverlapping etiological subgroups for which specific interventions can be applied. Although representing a small proportion of all diabetes cases, monogenic forms present an opportunity to demonstrate the feasibility of precision medicine strategies. In June 2019, the editors of Diabetes Care convened a panel of experts to discuss this opportunity. This article summarizes the major themes that arose at that forum. It presents an overview of the common causes of monogenic diabetes, describes some challenges in identifying and treating these disorders, and reports experience with various approaches to screening, diagnosis, and management. This article complements a larger American Diabetes Association effort supporting implementation of precision medicine for monogenic diabetes, which could serve as a platform for a broader initiative to apply more precise tactics to treating the more common forms of diabetes.
Collapse
Affiliation(s)
- Matthew C Riddle
- Division of Endocrinology, Diabetes, & Clinical Nutrition, Oregon Health & Science University, Portland, OR
| | - Louis H Philipson
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL.,Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Annelie Carlsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Lund, Sweden
| | - Paul W Franks
- Harvard T.H. Chan School of Public Health, Boston, MA.,Lund University Diabetes Center, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL.,Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - John J Nolan
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ewan R Pearson
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, Scotland, U.K
| | - Philip S Zeitler
- Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| |
Collapse
|
27
|
Delvecchio M, Pastore C, Giordano P. Treatment Options for MODY Patients: A Systematic Review of Literature. Diabetes Ther 2020; 11:1667-1685. [PMID: 32583173 PMCID: PMC7376807 DOI: 10.1007/s13300-020-00864-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is an unusual form of diabetes with specific features that distinguish it from type 1 and type 2 diabetes. There are 14 known subtypes of MODY, and mutations in three genes (HNF1A, HNF4A, GCK) account for about 95% of all MODY cases. Diagnosis usually occurs before the age of 25 years, although less frequent forms may occur more often-but not necessarily-later in life. The molecular diagnosis may tailor the choice of the most appropriate treatment, with the aim to optimize blood glucose control, reduce the risk of hypoglycemic events and long-term complications, and enable proper genetic counseling. Treatment is usually unnecessary for patients with mutations in the GCK gene, while oral hypoglycemic agents (generally sulphonylureas) are recommended for patients with mutations in the HNF4A and HNF1A genes. More recent data show that other glucose-lowering agents can be effective in the latter patients, and additional and alternative therapies have been proposed. Proper management guidelines during pregnancy have been developed for carriers of GCK gene mutations, but such guidelines are still a subject of debate in other cases, although some recommendations are available. The other subtypes of MODY are even more rare, and very little data are available in the literature. In this review we summarize the most pertinent findings and recommendations on the treatment of patients with the different subtypes of MODY. Our aim is to provide the reader with an easy-to-read update that can be used to drive the clinician's therapeutical approach to these patients after the molecular diagnosis.
Collapse
Affiliation(s)
- Maurizio Delvecchio
- Metabolic Disorders and Diabetes Unit, "Giovanni XXIII" Children's Hospital, A.O.U. Policlinico di Bari, Bari, Italy.
| | - Carmela Pastore
- Pediatric Unit, Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Giordano
- Pediatric Unit, Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
28
|
Identification of MODY among patients screened for gestational diabetes: a clinician's guide. Arch Gynecol Obstet 2020; 302:305-314. [PMID: 32495018 DOI: 10.1007/s00404-020-05626-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Screening of gestational diabetes/GDM (although different in different countries) represents a standard procedure allowing to identify women with pregnancy-associated diabetes. Some of the women with GDM (up to 5%) may, however, suffer from previously undiagnosed MODY (Maturity-Onset Diabetes of the Young). Currently, no international or local guidelines focused on the identification of MODY among GDM exist. Thus, the aim of this manuscript is to propose a clear guide for clinicians on how to detect MODY among pregnant women with gestational diabetes. METHODS Based on the available literature about diagnosis (in general population) of MODY and management of MODY (both, in general population and in pregnant women), we propose a clear clinical guide on how to diagnose and manage MODY in pregnancy. RESULTS The manuscript suggests a feasible clinical approach how to recognize MODY among patients with GDM and how to manage pregnancy of women with three most common MODY subtypes. CONCLUSION A correct classification of diabetes is, nonetheless, essential, particularly in case of MODY, as the management of pregnant women with MODY is different and the correct diagnosis of MODY enables individualized treatment with regard to optimal pregnancy outcomes.
Collapse
|
29
|
Rengaraj S, Thiyagalingam S, Kathirvel V, Delhikumar CG. Raised blood glucose due to heterozygous glucokinase gene mutation (GCK-MODY) diagnosed for the first time in pregnancy: The dilemmas and successful management - Case report and review of literature. Obstet Med 2020; 14:53-56. [PMID: 33995576 DOI: 10.1177/1753495x19874573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 07/12/2019] [Accepted: 08/15/2019] [Indexed: 11/16/2022] Open
Abstract
Glucokinase mutation (GCK-MODY) is frequently misdiagnosed as either type I or type II diabetes mellitus, especially if presented for the first time during pregnancy. Generally GCK-MODY affects 1-2% of individuals with a diagnosis of diabetes. The defect in the glucose sensing mechanism in GCK-MODY results in a higher set point for maintenance of glucose homeostasis. Treatment is not recommended outside the pregnancy; however, in pregnancy, fetal abdominal circumference helps to decide about the likelihood of the fetus having inherited the condition and therefore whether insulin is required in pregnancy. We present a case in which GCK-MODY was diagnosed for the first time after pregnancy; the subsequent pregnancy was uneventful. Genetic testing is mandatory to establish the diagnosis. Here the implications of MODY and its subtypes, along with the pattern of inheritance and management aspects are discussed.
Collapse
Affiliation(s)
| | | | - Vimala Kathirvel
- Department of Obstetrics and Gynaecology, JIPMER, Puducherry, India
| | | |
Collapse
|
30
|
Bitterman O, Giuliani C, Festa C, Napoli A. Glucokinase Deficit Prevalence in Women With Diabetes in Pregnancy: A Matter of Screening Selection. Front Endocrinol (Lausanne) 2020; 11:268. [PMID: 32508747 PMCID: PMC7251140 DOI: 10.3389/fendo.2020.00268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/14/2020] [Indexed: 12/01/2022] Open
Abstract
Introduction: The prevalence among pregnant women with diabetes of monogenic diabetes due to glucokinase deficit (GCK-MODY) varies from 0 to 80% in different studies, based on the chosen selection criteria for genetic test. New pregnancy-specific Screening Criteria (NSC), validated on an Anglo-Celtic pregnant cohort, have been proposed and include pre-pregnancy BMI <25 kg/m2 and fasting glycemia >99 mg/dl. Our aim was to estimate the prevalence of GCK-MODY and to evaluate the diagnostic performance of NSC in our population of women with diabetes in pregnancy. Patients and Methods: We retrospectively selected from our database of 468 diabetic pregnant patients in Sant'Andrea Hospital, in Rome, from 2010 to 2018, all the women who received a genetic test for GCK deficit because of specific clinical features. We estimated the prevalence of GCK-MODY among tested women and the minimum prevalence in our entire population with non-autoimmune diabetes. We evaluated diagnostic performance of NSC on the tested cohort and estimated the eligibility to genetic test based on NSC in the entire population. Results: A total of 409 patients had diabetes in pregnancy, excluding those with autoimmune diabetes; 21 patients have been tested for GCK-MODY, 8 have been positive and 13 have been negative (2 of them had HNF1-alfa mutations and 1 had HNF4-alfa mutation). We found no significant differences in clinical features between positive and negative groups except for fasting glycemia, which was higher in the positive group. The minimum prevalence of monogenic diabetes in our population was 2.4%. The minimum prevalence of GCK-MODY was 1.95%. In the tested cohort, the prevalence of GCK-MODY was 38%. In this group, NSC sensitivity is 87% and specificity is 30%, positive predictive value is 43%, and negative predictive value is 80%. Applying NSC on the entire population of women with non-autoimmune diabetes in pregnancy, 41 patients (10%) would be eligible for genetic test; considering a fasting glycemia >92 mg/dl, 85 patients (20.7%) would be eligible. Discussion: In our population, NSC have good sensitivity but low specificity, probably because there are many GDM with GCK-MODY like features. It is mandatory to define selective criteria with a good diagnostic performance on Italian population, to avoid unnecessary genetic tests.
Collapse
Affiliation(s)
- Olimpia Bitterman
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- *Correspondence: Olimpia Bitterman
| | - Chiara Giuliani
- Department of Experimental Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Camilla Festa
- Department of Experimental Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Angela Napoli
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
31
|
Hosokawa Y, Higuchi S, Kawakita R, Hata I, Urakami T, Isojima T, Takasawa K, Matsubara Y, Mizuno H, Maruo Y, Matsui K, Aizu K, Jinno K, Araki S, Fujisawa Y, Osugi K, Tono C, Takeshima Y, Yorifuji T. Pregnancy outcome of Japanese patients with glucokinase-maturity-onset diabetes of the young. J Diabetes Investig 2019; 10:1586-1589. [PMID: 30897270 PMCID: PMC6825925 DOI: 10.1111/jdi.13046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS/INTRODUCTION Glucokinase-maturity-onset diabetes of the young (GCK-MODY; also known as MODY2) is a benign hyperglycemic condition, which generally does not require medical interventions. The only known exception is increased birthweight and related perinatal complications in unaffected offspring of affected women. As previous data were obtained mostly from white Europeans, the present study analyzed the pregnancy outcomes of Japanese women with GCK-MODY to better formulate the management plan for this population. MATERIALS AND METHODS The study participants were 34 GCK-MODY families whose members were diagnosed at Osaka City General Hospital during 2010-2017. A total of 53 pregnancies (40 from 23 affected women, 13 from 11 unaffected women) were retrospectively analyzed by chart review. RESULTS Birthweights of unaffected offspring born to affected women were significantly greater as compared with those of affected offspring (P = 0.003). The risk of >4,000 g birthweight (16%), however, was lower as compared with that previously reported for white Europeans, and none of the offspring had complications related to large birthweight. Insulin treatment of the affected women resulted in a significant reduction in the birthweights of unaffected offspring. Perinatal complications including small-for-gestational age birthweight were found only in affected offspring born to insulin-treated women. CONCLUSIONS In Japanese GCK-MODY families, unaffected offspring born to affected women were heavier than affected offspring. However, insulin treatment of affected women might not be advisable because of the lower risk of macrosomic birth injury, and an increased risk of perinatal complications in affected offspring.
Collapse
Affiliation(s)
- Yuki Hosokawa
- Division of Pediatric Endocrinology and MetabolismChildren's Medical CenterOsakaJapan
- Present address:
Department of PediatricsKurashiki Central HospitalKurashikiOkayamaJapan
| | - Shinji Higuchi
- Division of Pediatric Endocrinology and MetabolismChildren's Medical CenterOsakaJapan
| | - Rie Kawakita
- Division of Pediatric Endocrinology and MetabolismChildren's Medical CenterOsakaJapan
- Department of Genetic MedicineOsaka City General HospitalOsakaJapan
| | - Ikue Hata
- Faculty of Medical SciencesDepartment of PediatricsUniversity of FukuiFukuiJapan
| | - Tatsuhiko Urakami
- Department of PediatricsNihon University School of MedicineTokyoJapan
| | - Tsuyoshi Isojima
- Department of PediatricsTeikyo University School of MedicineTokyoJapan
| | - Kei Takasawa
- Department of Pediatrics and Developmental BiologyTokyo Medical and Dental UniversityTokyoJapan
| | - Yohei Matsubara
- Department of Pediatrics and Developmental BiologyTokyo Medical and Dental UniversityTokyoJapan
| | - Haruo Mizuno
- Department of PediatricsInternational University of Health and Welfare School of MedicineChibaJapan
| | - Yoshihiro Maruo
- Department of PediatricsShiga University of Medical ScienceShigaJapan
| | - Katsuyuki Matsui
- Department of PediatricsShiga University of Medical ScienceShigaJapan
| | - Katsuya Aizu
- Division of Endocrinology and MetabolismSaitama Children's Medical CenterSaitamaJapan
| | - Kazuhiko Jinno
- Department of PediatricsHiroshima Prefectural HospitalHiroshimaJapan
| | - Shunsuke Araki
- Department of PediatricsSchool of MedicineUniversity of Occupational and Environmental HealthFukuokaJapan
| | - Yasuko Fujisawa
- Department of PediatricsHamamatsu University School of MedicineShizuokaJapan
| | - Koji Osugi
- Department of PediatricsYokohama City University Medical CenterKanagawaJapan
| | - Chikako Tono
- Department of PediatricsIwate Prefectural Chubu HospitalIwateJapan
| | | | - Tohru Yorifuji
- Division of Pediatric Endocrinology and MetabolismChildren's Medical CenterOsakaJapan
- Department of Genetic MedicineOsaka City General HospitalOsakaJapan
| |
Collapse
|
32
|
Kononenko IV, Glibka AA, Zubkova NA, Mayorov AY, Tyulpakov AN, Schmidt OM. MODY2 diagnostic issues in adults. DIABETES MELLITUS 2019. [DOI: 10.14341/dm10063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Approximately 90% of all cases of diabetes mellitus in adults involve type 2 diabetes, while the prevalence of maturity-onset diabetes of the young (MODY) remains undetermined leading to inappropriate treatment regimens. One of the most common monogenic forms of diabetes is a disease caused by a mutation in the glucokinase gene, MODY2. Knowledge of the clinical features of the disease allows the selection of patients with a high risk of mutation in the glucokinase gene and verification of diagnosis for molecular genetic research. This paper reflects the clinical features of MODY2 and the difficulties of diagnosis in adults. Furthermore, it presents a clinical case of a patient with MODY2 demonstrating all the features of this type of diabetes. A family member with a mutation in the gene allows to predict the nature of carbohydrate metabolism disorders in first degree relatives. A targeted study of only one part of the glucokinase gene in molecular genetic research is sufficient to confirm the diagnosis in relatives.
Collapse
|
33
|
Abstract
Hyperglycemia is common during pregnancy, involving multisystem adaptations. Pregnancy-induced metabolic changes increase insulin resistance. Pregnancy-induced insulin resistance adds to preexisting insulin resistance. Preexisting pancreatic β-cell defect compromises the ability to enhance insulin secretion, leading to hyperglycemia. Women with type 2 DM have similar rates of major congenital malformations, stillbirth, and neonatal mortality, but an even higher risk of perinatal mortality. In utero type 2 DM exposure confers greater risk and reduces time to development of type 2 DM in offspring. Preconception care to improve metabolic control in women with type 2 diabetes is critical.
Collapse
Affiliation(s)
- Anil Kapur
- World Diabetes Foundation, 30 A, Krogshoejvej, Bagsverd 2880, Denmark; FIGO Pregnancy and NCD Committee, Jabotinski Street, Petah Tiqwa 49100, Israel.
| | - Harold David McIntyre
- FIGO Pregnancy and NCD Committee, Jabotinski Street, Petah Tiqwa 49100, Israel; UQ Mater Clinical Unit, Faculty of Medicine, Mater Health Services, University of Queensland, Raymond Terrace, South Brisbane, Brisbane, Qld 4101, Australia
| | - Moshe Hod
- FIGO Pregnancy and NCD Committee, Jabotinski Street, Petah Tiqwa 49100, Israel; Department of Obstetrics and Gynecology, Clalit Health Services, Mor Women's Health Center, Rabin Medical Center, Tel Aviv University, 18 Aba Ahimeir St., Tel Aviv 6949204, Israel
| |
Collapse
|
34
|
Monsonego S, Clark H, Karovitch A, O'Meara P, Shaw T, Malcolm J. Management and Outcomes of Maturity-Onset Diabetes of the Young in Pregnancy. Can J Diabetes 2019; 43:647-654. [PMID: 31564623 DOI: 10.1016/j.jcjd.2019.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 02/08/2023]
Abstract
Maturity-onset diabetes of the young (MODY) is a group of monogenic disorders that accounts for 1% to 5% of diabetes. The most common mutations are those in the hepatocyte nuclear factor-1-alpha (HNF-1-alpha) and in the glucokinase (GCK) genes. Although management of MODY is well established, no guidelines currently exist for management during pregnancy. Both maternal glycemic control and fetal mutation status are factors that may influence outcomes during pregnancy. The primary aim of this project was to describe cases of MODY during pregnancy to highlight the clinical implications of management of this disorder during pregnancy. The Ottawa Hospital is the primary referral centre for high-risk obstetrical patients, including those with diabetes in pregnancy, in Ottawa, Canada. Referrals between 2008 and 2018 were reviewed and a case series of three women and five pregnancies is described. Together with the illustrative cases, a literature review of MODY in pregnancy is used to highlight clinical considerations unique to MODY in pregnancy. We describe 5 pregnancies with MODY-2 (GCK mutation) and MODY 3 (HNF-1-alpha mutation). Important issues identified included monitoring of fetal growth and individualization of maternal glycemic control, particularly in cases where fetal mutation status is unknown. Management of MODY in pregnancy is challenging and there is little evidence to guide recommendations. Fetal growth can be used to guide management of maternal glycemic targets when fetal mutation status is unknown.
Collapse
Affiliation(s)
- Sarah Monsonego
- Division of Endocrinology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Heather Clark
- Division of General Internal Medicine, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alan Karovitch
- Division of General Internal Medicine, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Paloma O'Meara
- Division of General Internal Medicine, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tammy Shaw
- Division of General Internal Medicine, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Janine Malcolm
- Division of Endocrinology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
35
|
Wang Z, Diao C, Liu Y, Li M, Zheng J, Zhang Q, Yu M, Zhang H, Ping F, Li M, Xiao X. Identification and functional analysis of GCK gene mutations in 12 Chinese families with hyperglycemia. J Diabetes Investig 2019; 10:963-971. [PMID: 30592380 PMCID: PMC6626954 DOI: 10.1111/jdi.13001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 01/07/2023] Open
Abstract
AIMS/INTRODUCTION To investigate the clinical and genetic characteristics of Chinese patients with a phenotype consistent with maturity-onset diabetes of the young type 2 and explore the pathogenic mechanism of their hyperglycemia. MATERIALS AND METHODS We studied 12 probands and their extended families referred to our center for screening mutations in the glucokinase gene (GCK). Clinical data were collected and genetic analysis was carried out. The recombinant wild-type and mutant glucokinase were generated in Escherichia coli. The kinetic parameters and thermal stability of the enzymes were determined in vitro. RESULTS In the 12 families, 11 GCK mutations (R43C, T168A, K169N, R191W, Y215X, E221K, M235T, R250H, W257X, G261R and A379E) and one variant of uncertain significance (R275H) were identified. R191W was detected in two unrelated families. Of the 11 GCK mutations, three mutations (c.507G>C, K169N; c.645C>A, Y215X; c.771G>A, W257X; NM_000162.3, NP_000153.1) are novel. Basic kinetics analysis explained the pathogenicity of the five mutants (R43C, K169N, R191W, E221K and A379E), which showed reduced enzyme activity with relative activity indexes between ~0.001 and 0.5 compared with the wild-type (1.0). In addition, the thermal stabilities of these five mutants were also decreased to varying degrees. However, for R250H and R275H, there was no significant difference in the enzyme activity and thermal stability between the mutants and the wild type. CONCLUSIONS We have identified 11 GCK mutations and one variant of uncertain significance in 12 Chinese families with hyperglycemia. For five GCK mutations (R43C, K169N, R191W, E221K and A379E), the changes in enzyme kinetics and thermostability might be the pathogenic mechanisms by which mutations cause hyperglycemia.
Collapse
Affiliation(s)
- Zhixin Wang
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Present address:
Department of EndocrinologyBeijing Jishuitan HospitalBeijingChina
| | - Chengming Diao
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yijing Liu
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Mingmin Li
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Jia Zheng
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Qian Zhang
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Miao Yu
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Huabing Zhang
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Fan Ping
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Ming Li
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xinhua Xiao
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
36
|
Zubkova N, Burumkulova F, Plechanova M, Petrukhin V, Petrov V, Vasilyev E, Panov A, Sorkina E, Ulyatovskaya V, Makretskaya N, Tiulpakov A. High frequency of pathogenic and rare sequence variants in diabetes-related genes among Russian patients with diabetes in pregnancy. Acta Diabetol 2019; 56:413-420. [PMID: 30663027 DOI: 10.1007/s00592-018-01282-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/24/2018] [Indexed: 01/05/2023]
Abstract
AIMS Diabetes in pregnancy may be associated with monogenic defects of beta-cell function, frequency of which depends on ethnicity, clinical criteria for selection of patients as well as methods used for genetic analysis. The aim was to evaluate the contribution and molecular spectrum of mutations among genes associated with monogenic diabetes in non-obese Russian patients with diabetes in pregnancy using the next-generation sequencing (NGS). METHODS 188 non-obese pregnant women with diabetes during pregnancy were included in the study; among them 57 subjects (30.3%) met the American Diabetes Association (ADA) criteria of preexisting pregestational diabetes (pre-GDM), whereas 131 women (69.7%) fulfilled criteria of gestational diabetes mellitus (GDM). A custom NGS panel targeting 28 diabetes causative genes was used for sequencing. The sequence variants were rated according to the American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS In total, 23 pathogenic, 18 likely pathogenic and 16 variants of uncertain significance were identified in 59/188 patients (31.4%). The majority of variants (38/59) were found in GCK gene. No significant differences in the number of variants among the two study groups (pre-GDM and GDM) were observed. CONCLUSIONS The study suggests that frequency of monogenic variants of diabetes might be underestimated, which warrants a broader use of genetic testing, especially in pregnancy.
Collapse
Affiliation(s)
- Natalia Zubkova
- Department and Laboratory of Inherited Endocrine Disorders, Endocrinology Research Centre, Ulitsa Dmitriya Ulianova, 11, 117036, Moscow, Russian Federation.
| | - Fatima Burumkulova
- Moscow Regional Research Institute of Obstetrics and Gynecology, Moscow, Russian Federation
| | - Margarita Plechanova
- Moscow Regional Research Institute of Obstetrics and Gynecology, Moscow, Russian Federation
| | - Vasily Petrukhin
- Moscow Regional Research Institute of Obstetrics and Gynecology, Moscow, Russian Federation
| | - Vasily Petrov
- Department and Laboratory of Inherited Endocrine Disorders, Endocrinology Research Centre, Ulitsa Dmitriya Ulianova, 11, 117036, Moscow, Russian Federation
| | - Evgeny Vasilyev
- Department and Laboratory of Inherited Endocrine Disorders, Endocrinology Research Centre, Ulitsa Dmitriya Ulianova, 11, 117036, Moscow, Russian Federation
| | - Anton Panov
- Moscow Regional Research Institute of Obstetrics and Gynecology, Moscow, Russian Federation
| | - Ekaterina Sorkina
- Department and Laboratory of Inherited Endocrine Disorders, Endocrinology Research Centre, Ulitsa Dmitriya Ulianova, 11, 117036, Moscow, Russian Federation
| | - Victoria Ulyatovskaya
- Moscow Regional Research Institute of Obstetrics and Gynecology, Moscow, Russian Federation
| | - Nina Makretskaya
- Department and Laboratory of Inherited Endocrine Disorders, Endocrinology Research Centre, Ulitsa Dmitriya Ulianova, 11, 117036, Moscow, Russian Federation
| | - Anatoly Tiulpakov
- Department and Laboratory of Inherited Endocrine Disorders, Endocrinology Research Centre, Ulitsa Dmitriya Ulianova, 11, 117036, Moscow, Russian Federation
| |
Collapse
|
37
|
Pace NP, Rizzo C, Abela A, Gruppetta M, Fava S, Felice A, Vassallo J. Identification of an HNF1A p.Gly292fs Frameshift Mutation Presenting as Diabetes During Pregnancy in a Maltese Family. CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2019; 12:1179547619831034. [PMID: 30814848 PMCID: PMC6383084 DOI: 10.1177/1179547619831034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/18/2019] [Indexed: 12/15/2022]
Abstract
The diagnosis of maturity onset diabetes of the young (MODY) is a challenging
process in view of the extensive clinical and genetic heterogeneity of the
disease. Mutations in the gene encoding hepatocyte nuclear factor 1α
(HNF1A) are responsible for most forms of monogenic
diabetes in Northern European populations. Genetic analysis through a
combination of whole exome sequencing and Sanger sequencing in three Maltese
siblings and their father identified a rare duplication/frameshift mutation in
exon 4 of HNF1A that lies within a known mutational hotspot in
this gene. In this report, we provide the first description of an
HNF1A-MODY3 phenotype in a Maltese family. The findings
reported are relevant and new to a regional population, where the epidemiology
of atypical diabetes has never been studied before. This report is of clinical
interest as it highlights how monogenic diabetes can be misdiagnosed as either
type 1, type 2, or gestational diabetes. It also reinforces the need for a
better characterisation of monogenic diabetes in Mediterranean countries,
particularly in island populations such as Malta with a high prevalence of
diabetes.
Collapse
Affiliation(s)
- Nikolai Paul Pace
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | | | - Alexia Abela
- Department of Medicine, Mater Dei Hospital, Msida, Malta
| | - Mark Gruppetta
- Department of Medicine, Mater Dei Hospital, Msida, Malta
| | - Stephen Fava
- Department of Medicine, Mater Dei Hospital, Msida, Malta
| | - Alex Felice
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | | |
Collapse
|
38
|
Rudland VL. Diagnosis and management of glucokinase monogenic diabetes in pregnancy: current perspectives. Diabetes Metab Syndr Obes 2019; 12:1081-1089. [PMID: 31372018 PMCID: PMC6628087 DOI: 10.2147/dmso.s186610] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/22/2019] [Indexed: 12/21/2022] Open
Abstract
Glucokinase-maturity-onset diabetes of the young (GCK-MODY) is an autosomal dominant disorder caused by heterozygous inactivating GCK gene mutations. GCK-MODY is one the most common MODY subtypes, affecting 0.1% of the population and 0.4-1% of women with gestational diabetes mellitus. Glucokinase is predominantly expressed in pancreatic beta cells and catalyzes the phosphorylation of glucose to glucose-6-phosphate. The unique kinetics of glucokinase enable it to change the rate of glucose phosphorylation according to the glucose concentration, thereby regulating insulin secretion. Individuals with GCK-MODY have mildly elevated fasting blood glucose levels (5.5-8.0 mmol/L) and regulate glucose perturbations to a higher set-point, resulting in a relatively flat glucose profile on a 75 g oral glucose tolerance test. The hyperglycemia is usually subclinical and may only be detected on incidental glucose testing. It is important to correctly identify GCK-MODY as the clinical course and management differs substantially from other types of diabetes. Diabetes-related complications are relatively uncommon, so glucose-lowering treatment is not usually required. The exception is pregnancy, where fetal growth and therefore glucose-lowering treatment are predominantly determined by whether or not the fetus inherits the GCK mutation. The fetal genotype is not usually known but can be inferred from serial fetal ultrasound measurements. If there is evidence of accelerating fetal abdominal circumference on serial ultrasounds, the fetus is assumed to not have the GCK mutation and treatment of maternal hyperglycemia is indicated to reduce the risk of macrosomia, Caesarean section and neonatal hypoglycemia. If there is no evidence of accelerating fetal growth, the fetus is assumed to have inherited the GCK mutation and will have a similarly elevated glucose set-point as their mother, so maternal hyperglycemia is not treated. With recent advances in genetic technology, such as next-generation sequencing and noninvasive fetal genotyping, the detection and management of GCK-MODY in pregnancy should continue to improve.
Collapse
Affiliation(s)
- Victoria L Rudland
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Correspondence: Victoria L RudlandDepartment of Diabetes and Endocrinology, Westmead Hospital, Hawkesbury Road, Westmead, NSW2145, AustraliaTel +61 2 8890 6796; +61 2 9635 5691Fax +61 2 9635 5691Email
| |
Collapse
|
39
|
Siddiqui S, Waghdhare S, Gopi S, Bhargava A, Panda M, Radha V, Mohan V, Dubey S, Jha S. GCK Gene Screening and Association of GCK Variants With Gestational Diabetes in North Indian Population. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2018; 11:1179551418806896. [PMID: 30386132 PMCID: PMC6204622 DOI: 10.1177/1179551418806896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/23/2022]
Abstract
Background: GCK gene variants have been reported to be associated with gestational diabetes mellitus (GDM) in the Caucasian population. There are no reports exploring this association in the Indian population. Methods: This cross-sectional study included subjects from Max Super Speciality Hospital, New Delhi, India, over a span of 6 months. Females diagnosed with GDM as per the International Association of the Diabetes and Pregnancy Study Groups (IADPSG) criteria were enrolled. Direct gene sequencing was performed to screen all 10 exons and promoter region of GCK gene. Results: Out of the total 1000 females screened, 154 subjects had any degree of hyperglycemia. GCK gene screening was done and we observed 11 variants in 80.4% (41/51) of the GDM subset and 89.6% (43/48) of the controls. Allele frequencies of observed variants were not different between the control subjects (12.5%) and those diagnosed with GDM (8.4%). Conclusion: To the best of our knowledge, this is the first report from north India exploring association of GCK variants with GDM and we do not observe any association of GCK variants with GDM in our study population. CTRI Registration No: CTRI/2017/07/008964
Collapse
Affiliation(s)
- Samreen Siddiqui
- Institute of Endocrinology, Diabetes & Metabolism, Max Healthcare Institute Ltd., New Delhi, India.,Amity Institute of Virology and Immunology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Swati Waghdhare
- Institute of Endocrinology, Diabetes & Metabolism, Max Healthcare Institute Ltd., New Delhi, India
| | - Sundaramoorthy Gopi
- Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Chennai, India
| | - Amit Bhargava
- Institute of Endocrinology, Diabetes & Metabolism, Max Healthcare Institute Ltd., New Delhi, India
| | - Manju Panda
- Institute of Endocrinology, Diabetes & Metabolism, Max Healthcare Institute Ltd., New Delhi, India
| | - Venkatesan Radha
- Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Chennai, India
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Chennai, India.,Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non Communicable Diseases Prevention & Control, IDF Centre of Excellence in Diabetes Care, Chennai, India
| | - Shweta Dubey
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Sujeet Jha
- Institute of Endocrinology, Diabetes & Metabolism, Max Healthcare Institute Ltd., New Delhi, India
| |
Collapse
|
40
|
Kleinberger JW, Copeland KC, Gandica RG, Haymond MW, Levitsky LL, Linder B, Shuldiner AR, Tollefsen S, White NH, Pollin TI, for the TODAY Study Group. Monogenic diabetes in overweight and obese youth diagnosed with type 2 diabetes: the TODAY clinical trial. Genet Med 2018; 20:583-590. [PMID: 29758564 PMCID: PMC5955780 DOI: 10.1038/gim.2017.150] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022] Open
Abstract
PurposeMonogenic diabetes accounts for 1-2% of diabetes cases. It is often undiagnosed, which may lead to inappropriate treatment. This study was performed to estimate the prevalence of monogenic diabetes in a cohort of overweight/obese adolescents diagnosed with type 2 diabetes (T2D).MethodsSequencing using a custom monogenic diabetes gene panel was performed on a racially/ethnically diverse cohort of 488 overweight/obese adolescents with T2D in the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) clinical trial. Associations between having a monogenic diabetes variant and clinical characteristics and time to treatment failure were analyzed.ResultsMore than 4% (22/488) had genetic variants causing monogenic diabetes (seven GCK, seven HNF4A, five HNF1A, two INS, and one KLF11). Patients with monogenic diabetes had a statistically, but not clinically, significant lower body mass index (BMI) z-score, lower fasting insulin, and higher fasting glucose. Most (6/7) patients with HNF4A variants rapidly failed TODAY treatment across study arms (hazard ratio = 5.03, P = 0.0002), while none with GCK variants failed treatment.ConclusionThe finding of 4.5% of patients with monogenic diabetes in an overweight/obese cohort of children and adolescents with T2D suggests that monogenic diabetes diagnosis should be considered in children and adolescents without diabetes-associated autoantibodies and maintained C-peptide, regardless of BMI, as it may direct appropriate clinical management.
Collapse
Affiliation(s)
- Jeffrey W. Kleinberger
- Division of Endocrinology, Diabetes, and Nutrition, Department of
Medicine, University of Maryland School of Medicine, Baltimore, MD
| | | | - Rachelle G. Gandica
- Naomi Berrie Diabetes Center, Columbia University Medical Center,
New York, NY
| | | | | | - Barbara Linder
- Division of Diabetes, Endocrinology and Metabolic Diseases, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of
Health, Bethesda, MD
| | - Alan R. Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition, Department of
Medicine, University of Maryland School of Medicine, Baltimore, MD
- Regeneron Genetics Center, Regeneron, Tarrytown, NY
| | | | - Neil H. White
- Washington University School of Medicine, St. Louis, MO
| | - Toni I. Pollin
- Division of Endocrinology, Diabetes, and Nutrition, Department of
Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - for the TODAY Study Group
- Address for correspondence: Toni I. Pollin, M.S., Ph.D.,
University of Maryland School of Medicine, 660 West Redwood Street, Room 445C,
Baltimore, MD 21201.;
| |
Collapse
|
41
|
Should the Clinical Criteria for Suspecting Glucokinase Mutation-Related Hyperglycemia (MODY-2) Be Revisited During Pregnancy? Can J Diabetes 2018; 42:226-228. [DOI: 10.1016/j.jcjd.2017.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/07/2017] [Accepted: 07/11/2017] [Indexed: 12/27/2022]
|
42
|
Firdous P, Nissar K, Ali S, Ganai BA, Shabir U, Hassan T, Masoodi SR. Genetic Testing of Maturity-Onset Diabetes of the Young Current Status and Future Perspectives. Front Endocrinol (Lausanne) 2018; 9:253. [PMID: 29867778 PMCID: PMC5966560 DOI: 10.3389/fendo.2018.00253] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a global epidemic problem growing exponentially in Asian countries posing a serious threat. Among diabetes, maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic disorders that occurs due to β cell dysfunction. Genetic defects in the pancreatic β-cells result in the decrease of insulin production required for glucose utilization thereby lead to early-onset diabetes (often <25 years). It is generally considered as non-insulin dependent form of diabetes and comprises of 1-5% of total diabetes. Till date, 14 genes have been identified and mutation in them may lead to MODY. Different genetic testing methodologies like linkage analysis, restriction fragment length polymorphism, and DNA sequencing are used for the accurate and correct investigation of gene mutations associated with MODY. The next-generation sequencing has emerged as one of the most promising and effective tools to identify novel mutated genes related to MODY. Diagnosis of MODY is mainly relying on the sequential screening of the three marker genes like hepatocyte nuclear factor 1 alpha (HNF1α), hepatocyte nuclear factor 4 alpha (HNF4α), and glucokinase (GCK). Interestingly, MODY patients can be managed by diet alone for many years and may also require minimal doses of sulfonylureas. The primary objective of this article is to provide a review on current status of MODY, its prevalence, genetic testing/diagnosis, possible treatment, and future perspective.
Collapse
Affiliation(s)
- Parveena Firdous
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, India
| | - Kamran Nissar
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Sajad Ali
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, India
- *Correspondence: Bashir Ahmad Ganai,
| | - Uzma Shabir
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, India
| | - Toyeeba Hassan
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, India
| | - Shariq Rashid Masoodi
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, India
| |
Collapse
|
43
|
Estampador AC, Franks PW. Precision Medicine in Obesity and Type 2 Diabetes: The Relevance of Early-Life Exposures. Clin Chem 2018; 64:130-141. [DOI: 10.1373/clinchem.2017.273540] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022]
Abstract
Abstract
BACKGROUND
Type 2 diabetes is highly prevalent and devastating. Obesity is a diabetogenic factor, driving insulin resistance and a compensatory demand for increased insulin secretion from the pancreatic β cells; a failure to address this demand results in diabetes. Accordingly, primary and secondary prevention of obesity are at the core of diabetes prevention programs. The development of obesity and declining β-cell function often span many years or decades before diabetes is clinically manifest. Thus, characterizing the early-life process and risk factors that set disease trajectories may yield novel targets for early intervention and help improve the accuracy of prediction algorithms, factors germane to the emerging field of precision medicine.
CONTENT
Here, we overview the concepts of precision medicine and fetal programming. We discuss the barriers to preventing obesity and type 2 diabetes in adulthood and present the rationale for considering early-life events in this context. In so doing, we discuss proof-of-concept studies and cutting-edge technological developments that are likely to transform current thinking on the etiology and pathogenesis of obesity and type 2 diabetes. We also review the factors hampering progress, including the success and failures of pregnancy intervention trials.
SUMMARY
Obesity and type 2 diabetes are among the major health and economic burdens of our time. Defeating these diseases is likely to require life-course approaches, which may include aggressive interventions informed by biomarker profiling undertaken during early life.
Collapse
Affiliation(s)
- Angela C Estampador
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Danish Diabetes Academy, Odense, Denmark
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA
- Oxford Center for Diabetes, Endocrinology, and Metabolism, Radcliff Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Triunfo S, Lanzone A, Lindqvist PG. Low maternal circulating levels of vitamin D as potential determinant in the development of gestational diabetes mellitus. J Endocrinol Invest 2017; 40:1049-1059. [PMID: 28555324 DOI: 10.1007/s40618-017-0696-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/17/2017] [Indexed: 12/29/2022]
Abstract
Gestational diabetes mellitus (GDM), defined as any glucose intolerance with the onset or first recognition during pregnancy, is characterized by rising incidence, fostered by the worldwide increase of pathological nutritional status from young age. Clinical research has intended to identify potential risk factors, suggested improvements in screening strategies, and recommended the combination between promotion of an appropriate lifestyle before and during pregnancy and selected therapeutic approaches. Preventing pathological hyperglycemia could have several benefits, ranging from clinical side (reduction in the risk of adverse perinatal and long-term sequelae) to financial side (cost reduction to healthcare systems). Among risk factors recognized, deficiency in 25-hydroxyvitamin D [25(OH)D], already acknowledged as involved in calcium homeostasis, pathogenesis of cardiovascular, oncological, infective and immunity diseases, could predispose to the development of both type 1 and 2 diabetes, modifying the activity of pancreatic β-cells vitamin D (VD) receptor. In pregnant women, lower 25(OH)D concentrations have been suggested to present an inverse association with maternal glycaemia, insulin resistance, and increased risk of GDM. In spite of growing body of evidence, there is not full agreement on the therapeutic association between GDM based on VD deficiency and 25(OH)D supplementation. In the attempt to bring up-to-date the role of low VD levels on subsequent development of GDM, this narrative review, based on medium-high-quality randomized clinical trials, systematic reviews, and meta-analysis published in last decade, has a twofold purpose: firstly, to elucidate the relationship between maternal VD status and GDM; and secondly, to illuminate the impact of VD supplementation on GDM onset.
Collapse
Affiliation(s)
- S Triunfo
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine, University of Barcelona, Sabino de Arana 1, 08028, Barcelona, Spain.
| | - A Lanzone
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| | - P G Lindqvist
- Department of Obstetrics and Gynecology, CLINTEC Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
45
|
Wang Z, Ping F, Zhang Q, Zheng J, Zhang H, Yu M, Li W, Xiao X. Preliminary screening of mutations in the glucokinase gene of Chinese patients with gestational diabetes. J Diabetes Investig 2017; 9:199-203. [PMID: 28371533 PMCID: PMC5754514 DOI: 10.1111/jdi.12664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/13/2017] [Accepted: 03/23/2017] [Indexed: 11/28/2022] Open
Abstract
Aims/Introduction Mutations in the glucokinase gene (GCK) are a pathogenetic cause of maturity‐onset diabetes of the young. Studies have found that female patients with GCK maturity‐onset diabetes of the young often present with gestational diabetes during pregnancy. Our aim was to preliminarily assess the prevalence of mutations in the glucokinase gene in Chinese women with gestational diabetes. Materials and Methods Chinese gestational diabetes patients who underwent a 100‐g oral glucose tolerance test in Peking Union Medical College Hospital from July 2005 to May 2008 were retrospectively analyzed. Participants were selected for direct sequencing of the GCK gene if they met the following criteria: (i) fasting plasma glucose between 5.5 and 10.0 mmol/L; and (ii) a small increment (<4.6 mmol/L) during a 2‐h oral glucose tolerance test. Results Of the 501 participants with gestational diabetes, there were 38 participants who met the criteria for GCK analysis. In the 29 participants whose deoxyribonucleic acid samples were available, two mutations in coding regions were detected, c.626 C>T (p.T209M, NP_000153.1) mutation in exon 6 and c.824 G>A (p.R275H, NP_000153.1; rs767565869) mutation in exon 7. According to our results, the minimum prevalence of GCK mutations in Chinese women with gestational diabetes was estimated to be 0.4%, and the minimum prevalence of GCK maturity‐onset diabetes of the young in the Chinese population might be one in 2,000. Conclusions Our screening criteria allowed for the identification of glucokinase‐deficient patients who were diagnosed with gestational diabetes, and these mutations in the GCK gene were not common in Chinese women with gestational diabetes.
Collapse
Affiliation(s)
- Zhixin Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Fan Ping
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jia Zheng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Huabing Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Wenhui Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Gjesing AP, Rui G, Lauenborg J, Have CT, Hollensted M, Andersson E, Grarup N, Sun J, Quan S, Brandslund I, Damm P, Pedersen O, Wang J, Hansen T. High Prevalence of Diabetes-Predisposing Variants in MODY Genes Among Danish Women With Gestational Diabetes Mellitus. J Endocr Soc 2017; 1:681-690. [PMID: 29264522 PMCID: PMC5686663 DOI: 10.1210/js.2017-00040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023] Open
Abstract
Context: Gestational diabetes mellitus (GDM), defined as any degree of glucose intolerance with first recognition during pregnancy, is a heterogeneous form of diabetes characterized by various degrees of β-cell dysfunction. Objectives: We aimed to estimate the prevalence of possibly pathogenic variants in the maturity-onset diabetes of the young genes GCK, HNF1A, HNF4A, HNF1B, and INS among women with GDM. Furthermore, we examined the glucose tolerance status in variant carriers vs noncarriers at follow-up. Design, Setting, and Patients: We sequenced the coding regions and intron/exon boundaries of GCK, HNF1A, HNF4A, HNF1B, and INS using targeted region capture and next-generation sequencing in 354 Danish women with diet-treated GDM. Glucose tolerance was examined at follow-up 10 years after the index pregnancy. Main Outcome Measures: The prevalence of possibly pathogenic variants in GCK, HNF1A, HNF4A, HNF1B, and INS was estimated, and differences in anthropometric traits, high-sensitivity C-Reactive Protein (CRP), and glucose metabolism were measured. Results: At baseline, 17 possibly disease-causing variants were found in 21 women, revealing a combined GCK, HNF1A, HNF4A, HNF1B, and INS variant prevalence of 5.9% (95% confidence interval: 3.5% to 8.4%). At follow-up, 15 out of 135 women with diabetes (11%) were carriers of variants in GCK, HNF1A, HNF4A, HNF1B, or INS. Conclusions: Almost 6% of Danish women with diet-treated GDM have possibly pathogenic variants in GCK, HNF1A, HNF4A, HNF1B, or INS. These women are at high risk of developing diabetes after pregnancy. Thus screening for variants in GCK, HNF1A, HNF4A, HNF1B, and INS should be considered among women with GDM.
Collapse
Affiliation(s)
- Anette P Gjesing
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Gao Rui
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Jeannet Lauenborg
- Department of Gynecology and Obstetrics, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Christian Theil Have
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mette Hollensted
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ehm Andersson
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jihua Sun
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Shi Quan
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Vejle Hospital, DK-7100 Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Peter Damm
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, 2100 Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
47
|
Santana LS, Caetano LA, Costa-Riquetto AD, Quedas EPS, Nery M, Collett-Solberg P, Boguszewski MCS, Vendramini MF, Crisostomo LG, Floh FO, Zarabia ZI, Kohara SK, Guastapaglia L, Passone CGB, Sewaybricker LE, Jorge AAL, Teles MG. Clinical application of ACMG-AMP guidelines in HNF1A and GCK variants in a cohort of MODY families. Clin Genet 2017; 92:388-396. [PMID: 28170077 DOI: 10.1111/cge.12988] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 01/05/2023]
Abstract
Maturity-onset diabetes of the young (MODY) is a form of monogenic diabetes with autosomal dominant inheritance. GCK -MODY and HNF1A -MODY are the prevalent subtypes. Currently, there is growing concern regarding the correct interpretation of molecular genetic findings. The American College of Medical Genetics and Genomics (ACMG) updated guidelines to interpret and classify molecular variants. This study aimed to determine the prevalence of MODY ( GCK / HNF1A ) in a large cohort of Brazilian families, to report variants related to phenotype, and to classify them according to ACMG guidelines. One hundred and nine probands were investigated, 45% with clinical suspicion of GCK -MODY and 55% with suspicion of HNF1A -MODY. Twenty-five different variants were identified in GCK gene (30 probands-61% of positivity), and 7 variants in HNF1A (10 probands-17% of positivity). Fourteen of them were novel (12- GCK /2- HNF1A ). ACMG guidelines were able to classify a large portion of variants as pathogenic (36%- GCK /86%- HNF1A ) and likely pathogenic (44%- GCK /14%- HNF1A ), with 16% (5/32) as uncertain significance. This allows us to determine the pathogenicity classification more efficiently, and also reinforces the suspected associations with the phenotype among novel variants.
Collapse
Affiliation(s)
- L S Santana
- Monogenic Diabetes Group, Genetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - L A Caetano
- Monogenic Diabetes Group, Genetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.,Diabetes Unit, Clinics Hospital, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - A D Costa-Riquetto
- Monogenic Diabetes Group, Genetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.,Diabetes Unit, Clinics Hospital, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - E P S Quedas
- Monogenic Diabetes Group, Genetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - M Nery
- Diabetes Unit, Clinics Hospital, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - P Collett-Solberg
- Department of Endocrinology, University of Rio de Janeiro State (UERJ), Rio de Janeiro, RJ, Brazil
| | - M C S Boguszewski
- Departamento de Pediatria, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - M F Vendramini
- Serviço de Endocrinologia, Hospital do Servidor Público Estadual de São Paulo (HSPE-SP), Sao Paulo, SP, Brazil
| | - L G Crisostomo
- Serviço de Endocrinologia, Hospital Israelita Albert Eisntein, Sao Paulo, SP, Brazil.,Faculdade de Medicina, Centro Universitário São Camilo, Sao Paulo, SP, Brazil
| | - F O Floh
- Serviço de Endocrinologia, Hospital Israelita Albert Eisntein, Sao Paulo, SP, Brazil
| | - Z I Zarabia
- Serviço de Endocrinologia, Hospital Infantil Dr. Jeser Amarante Faria, Joinville, SC, Brazil
| | - S K Kohara
- Serviço de Endocrinologia, Universidade da Região de Joinville (UNIVILLE), Joinville, SC, Brazil
| | - L Guastapaglia
- Serviço de Endocrinologia, Hospital do Servidor Público Municipal de São Paulo (HSPM-SP), Sao Paulo, SP, Brazil
| | - C G B Passone
- Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), Sao Paulo, SP, Brazil
| | - L E Sewaybricker
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - A A L Jorge
- Monogenic Diabetes Group, Genetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - M G Teles
- Monogenic Diabetes Group, Genetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.,Diabetes Unit, Clinics Hospital, School of Medicine, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| |
Collapse
|
48
|
|
49
|
Franzago M, Fraticelli F, Nicolucci A, Celentano C, Liberati M, Stuppia L, Vitacolonna E. Molecular Analysis of a Genetic Variants Panel Related to Nutrients and Metabolism: Association with Susceptibility to Gestational Diabetes and Cardiometabolic Risk in Affected Women. J Diabetes Res 2017; 2017:4612623. [PMID: 28133617 PMCID: PMC5241477 DOI: 10.1155/2017/4612623] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/22/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the most frequent metabolic disorder in pregnancy. Women with a GDM history are at increased risk of developing diabetes and cardiovascular diseases. Studies have demonstrated a significant correlation between several genes involved in the metabolic pathway of insulin and environmental factors. The aim of this study was to investigate the relationship between clinical parameters in GDM and variants in genes involved with nutrients and metabolism. Several variants PPARG2 rs1801282 (C>G); PPARGC1A rs8192678 (C>T); TCF7L2 rs7903146 (C>T); LDLR rs2228671 (C>T); MTHFR rs1801133 (C>T); APOA5 rs662799 (T>C); GCKR rs1260326 (C>T); FTO rs9939609 (T>A); MC4R rs17782313 (T>C) were genotyped in 168 pregnant Caucasian women with or without GDM by High Resolution Melting (HRM) analysis. A significant correlation was observed between TT genotype of TCF7L2 gene and increased risk of GDM (OR 5.4 [95% CI 1.5-19.3]). Moreover, a significant correlation was observed between lipid parameters and genetic variations in additional genes, namely, PPARG2 [p = 0,02], APOA5 [p = 0,02], MC4R [p = 0,03], LDLR [p = 0,01], and FTO [p = 0,02]. Our findings support the association between TCF7L2 rs7903146 variant and an increased GDM risk. Results about the investigated genetic variants provide important information about cardiometabolic risk in GDM and help to plan future prevention studies.
Collapse
Affiliation(s)
- Marica Franzago
- Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy
- Ce.S.I-Met, “G. d'Annunzio” University, Chieti-Pescara, Via Colle dell'Ara No. 1, 66100 Chieti, Italy
| | - Federica Fraticelli
- Ce.S.I-Met, “G. d'Annunzio” University, Chieti-Pescara, Via Colle dell'Ara No. 1, 66100 Chieti, Italy
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Antonio Nicolucci
- Center for Outcomes Research and Clinical Epidemiology (CORE), Pescara, Italy
| | - Claudio Celentano
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Marco Liberati
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Liborio Stuppia
- Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy
- Ce.S.I-Met, “G. d'Annunzio” University, Chieti-Pescara, Via Colle dell'Ara No. 1, 66100 Chieti, Italy
| | - Ester Vitacolonna
- Ce.S.I-Met, “G. d'Annunzio” University, Chieti-Pescara, Via Colle dell'Ara No. 1, 66100 Chieti, Italy
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
- *Ester Vitacolonna:
| |
Collapse
|
50
|
Lopez AP, de Dios A, Chiesa I, Perez MS, Frechtel GD. Analysis of mutations in the glucokinase gene in people clinically characterized as MODY2 without a family history of diabetes. Diabetes Res Clin Pract 2016; 118:38-43. [PMID: 27289208 DOI: 10.1016/j.diabres.2016.04.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/08/2016] [Accepted: 04/21/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Maturity-onset diabetes of the young 2 (MODY2) is a form of diabetes that is clinically characterized by early age at onset and mild hyperglycemia, and has a low risk of late complications. It is often underdiagnosed due to its mild symptoms. To date, over 600 different GCK/MODY2 mutations have been reported. Despite only a few de novo mutations having been described, recent studies have reported the detection of a higher frequency of this kind of mutation. Therefore, de novo mutations could be more frequent than previously described. Even though common recommendations regarding the diagnosis of monogenic diabetes include the existence of a strong family history of diabetes, here we describe the study of mutations in two families with a symptomatic individual with clear clinical features of MODY2 but without any family history of diabetes. METHODS Genetic diagnosis in a group of participants with MODY2 characteristics was carried out by direct sequencing of coding regions of the GCK gene and analysis of mutations found using bioinformatics tools. RESULTS We found two de novo mutations, one of them novel, constituting 14.29% of all the participants who were phenotyped as MODY2. CONCLUSIONS The number of mutations in GCK/MODY2 or even other MODY-related genes is undoubtedly underestimated, as accepted criteria for performing genetic tests include family history of the pathology. These cases illustrate the value of analyzing the GCK gene in patients with clinical features of MODY2, even in the absence of family history of the condition as it is essential for establishing the correct treatment.
Collapse
Affiliation(s)
- Ariel Pablo Lopez
- Genetics Division, 4to piso sala 5, Hospital de Clinicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires CP 1120, Argentina.
| | - Alejandro de Dios
- Genetics Division, 4to piso sala 5, Hospital de Clinicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires CP 1120, Argentina.
| | - Ignacio Chiesa
- Manlab Laboratory, M. T. de Alvear 2263, Buenos Aires CP 1122, Argentina.
| | - Maria Silvia Perez
- Manlab Laboratory, M. T. de Alvear 2263, Buenos Aires CP 1122, Argentina.
| | - Gustavo Daniel Frechtel
- Genetics Division, 4to piso sala 5, Hospital de Clinicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires CP 1120, Argentina.
| |
Collapse
|