1
|
Liu J, Kong Y, Pan J, Qiao M, Ruan X, Wang Y. Biodegradation of crude oil by newly enriched biosurfactant-producing bacterial consortium. Enzyme Microb Technol 2025; 187:110635. [PMID: 40139014 DOI: 10.1016/j.enzmictec.2025.110635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Crude oil contamination in different environmental media is a global environmental problem, biodegradation is a potential, environmentally friendly method for remediating this pollutant. In the present study, a biosurfactant-producing and crude oil degrading bacterial consortium (S1) was enriched from a contaminated soil, and its degradation efficiency of crude oil in solution and soil under the optimum conditions was studied. The results showed that the predominant species of S1 were Pseudomonadaceae and Alcaligenaceae. S1 could produce surfactant, with the maximum content of 2.27 g/L, which was identified as rhamnolipids. The optimal pH, temperature, and (NH4)2SO4 concentration for crude oil degradation were 7.0, 40 °C, and 3 g/L, respectively, with the maximum degradation efficiency of 51.51 % after 7 days incubation. Plackett-Burman experiment and response surface methodology demonstrated that Cu, Co, and Zn could significantly promote the degradation of crude oil, with their optimum concentration of 0.36, 0.88, and 0.60 mg/L, respectively. Under the optimum conditions, the highest crude oil degradation efficiency reached 53.23 % within 7 days. Kinetic analysis showed that the first-order reaction kinetic was suitable for describing the degradation of crude oil by S1, with a half-life of 4.57 days. Furthermore, S1 also could degrade the crude oil in soil efficiently, with the maximum degradation efficiency of 60.34 % within 56 days. These results indicate that S1 has great potential for practical application in remediation of crude oil contamination.
Collapse
Affiliation(s)
- Jinhui Liu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Yuke Kong
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Junchao Pan
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Mengjiao Qiao
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Xinling Ruan
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China.
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Umar AW, Naeem M, Hussain H, Ahmad N, Xu M. Starvation from within: How heavy metals compete with essential nutrients, disrupt metabolism, and impair plant growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112412. [PMID: 39920911 DOI: 10.1016/j.plantsci.2025.112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/31/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
Nutrient starvation is a critical consequence of heavy metal toxicity, severely impacting plant health and productivity. This issue arises from various sources, including industrial activities, mining, agricultural practices, and natural processes, leading to the accumulation of metals such as aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and nickel (Ni) in soil and water. Heavy metal exposure disrupts key physiological processes, particularly nutrient uptake and transport, resulting in nutrient imbalances within the plant. Essential nutrients are often unavailable or improperly absorbed due to metal chelation and interference with transporter functions, exacerbating nutrient deficiencies. This nutrient starvation, coupled with oxidative stress induced by heavy metals, manifests in impaired photosynthesis, stunted growth, and reduced crop yields. This review presents important insights into the molecular mechanisms driving nutrient deprivation in plants exposed to heavy metals, emphasizing the roles of transporters, transcription factors, and signaling pathways. It also examines the physiological and biochemical effects, such as chlorosis, necrosis, and altered metabolic activities. Lastly, we explore strategies to mitigate heavy metal-induced nutrient starvation, including phytoremediation, soil amendments, genetic approaches, and microbial interventions, offering insights for enhancing plant resilience in contaminated soils.
Collapse
Affiliation(s)
- Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai City 519087, China.
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hamad Hussain
- Department of Agriculture, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23390, Pakistan
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ming Xu
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai City 519087, China; Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen 529199, China.
| |
Collapse
|
3
|
Amjad M, Kousar R, Naeem MA, Imran M, Nadeem M, Abbas G, Khalid MS, Qaisrani SA, Azhar S, Murtaza B. An interplay of salt and Ni stress on contrasting tomato ( Solanum lycopersicum L.) genotypes: a physiological and biochemical insight. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:711-723. [PMID: 39670648 DOI: 10.1080/15226514.2024.2438772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The concurrently occurring multiple abiotic stresses like salinity and heavy metals (Nickel) pose a serious threat to plant survival and food security worldwide, especially in the face of climate change. Therefore, it is imperative to continuously test and study the plant's physiological changes under combinations of abiotic stresses to ensure sustainability and food security. An experiment was conducted to study the interactive effects of salinity (0, 7.5, and 15 dS m-1) and Ni toxicity (0, 10, 20, and 40 mg kg-1) on a tolerant (Naqeeb) and a sensitive (Nadir) Solanum lycopersicum L. physiology and fruit quality in the soil. At maturity (50% fruit ripening), the plant growth and physiological characteristics were measured, revealing that the tolerant genotype exhibited the higher values for plant height, dry weight, potassium, membrane stability index (MSI), and antioxidant enzymes (superoxide dismutase; SOD, catalase; CAT, ascorbate peroxidase; APX, and glutathione reductase; GR). Additionally, it showed enhancement in fruit yield, size, and quality. Conversely, the tolerant genotypes showed a lower reduction in terms of plant height (25.4%) and plant dry weight (41.9%) compared to sensitive genotype (30.1 and 51.4%, respectively). Additionally, the tolerant genotype demonstrated lower values of Ni and Na+ concentration and MDA accumulation under the combined stress of salt and Ni, compared to the sensitive genotype. Furthermore, the study indicated that Ni at a concentration of 10 mg kg-1 significantly influenced tomato plant growth by enhancing its nutritional efficiency and competing with Na+. However, Ni at concentrations of 20 and 40 mg kg-1 had toxic effects on the plants, leading to a decrease in plant growth and physiological processes. Moreover, a negative relationship was observed between Ni uptake and Na+ uptake, while a positive relationship was observed between Ni and K+ uptake. Overall, this study provides valuable insights into the interaction between salinity, heavy metal toxicity, and tomato plant physiology, contributing to the development of sustainable agricultural practices.
Collapse
Affiliation(s)
- Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Rukhshinda Kousar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Muhammad Nadeem
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Ghulam Abbas
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Shafique Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Saeed Ahmad Qaisrani
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Sajida Azhar
- Pesticide Quality Control Laboratory, Ayyub Agricultural Research Institute, Faisalabad, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| |
Collapse
|
4
|
Khan K, Li ZW, Khan R, Ali S, Ahmad H, Shah MA, Zhou XB. Co-exposure impact of nickel oxide nanomaterials and Bacillus subtilis on soybean growth and nitrogen assimilation dynamics. PLANT PHYSIOLOGY 2024; 197:kiae638. [PMID: 39607727 DOI: 10.1093/plphys/kiae638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Nickel oxide nanoparticles (NiO-NPs) pose potential threats to agricultural production. Bacillus subtilis has emerged as a stress-mitigating microbe that alleviates the phytotoxicity caused by NiO-NPs. However, the mechanisms underlying its effectiveness, particularly in root-nodule symbiosis and biological N2-fixation (BNF), remain unclear. Here, we tested the combined exposure of NiO-NPs (50 mg kg-1) and B. subtilis on soybean (Glycine max L.) growth and BNF. Combined exposure increased root length, shoot length, root biomass, and shoot biomass by 19% to 26%, while Ni (200 mg kg-1) reduced them by 38% to 53% compared to the control. NiO-NPs at 100 and 200 mg kg-1 significantly (P < 0.05) reduced nodule formation by 16% and 58% and Nitrogen assimilation enzyme activities levels (urease, nitrate reductase, glutamine synthetase, and glutamate synthetase) by 13% to 57%. However, co-exposure with B. subtilis improved nodule formation by 22% to 44%. Co-exposure of NiO-NPs (200 mg kg-1) with B. subtilis increased peroxidase, catalase, and glutathione peroxidase activity levels by 20%, 16%, and 14% while reducing malondialdehyde (14%) and hydrogen peroxide (12%) levels compared to NiO-NPs alone. Additionally, co-exposure of NiO-NPs (100 and 200 mg kg-1) with B. subtilis enhanced the relative abundance of Stenotrophomonas, Gemmatimonas, and B. subtilis, is associated with N2-cycling and N2-fixation potential. This study confirms that B. subtilis effectively mitigates NiO-NP toxicity in soybean, offering a sustainable method to enhance BNF and crop growth and contribute to addressing global food insecurity.
Collapse
Affiliation(s)
- Kashif Khan
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhen Wei Li
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Rayyan Khan
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shahid Ali
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Haseeb Ahmad
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Muhammad Ali Shah
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xun Bo Zhou
- Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Vinnikov D, Syurin S. Nickel and human sperm quality: a systematic review. BMC Public Health 2024; 24:3545. [PMID: 39702049 DOI: 10.1186/s12889-024-21119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Reproductive effects of chronic exposure to nickel (Ni), including sperm quality, have been a matter of debate given that published studies yielded contrasting results. We have, therefore, planned to systematically search and analyze medical literature with the aim to ascertain the association of exposure to nickel with the sperm quality in humans. MATERIALS AND METHODS We systematically searched Pubmed, Scopus and Embase for studies reporting the association of Ni with the sperm quality in humans with no time or language limits and used PRISMA to report the findings. The risk of bias was assessed using JBI critical appraisal checklist and SIGN tool. Because the reported effects were no coherent, meta-analysis was not possible. RESULTS All included studies were observational and planned to test the effect of a group of trace elements, but not Ni alone. We identified and included 19 studies from 23 publications, published from 12 countries, which assessed sperm quality, sperm DNA damage and sperm metabolome. Ni was quantified in blood, semen plasma, spermatozoa and urine. Sixteen included cross-sectional studies were of acceptable quality, whereas three more case-control reports were of poor quality. Multivariate models were reported in only eight studies. Overall, studies were inconsistent in the direction of effect, when elevated Ni was not associated with the outcome (N = 8 studies), or some association was present (N = 11 studies). In the latter, 9 studies yielded elevated risk and 2 studies exhibited protective effect. Only one report was in an occupationally exposed population with some association with tail defects, but present in both welders and controls. CONCLUSIONS Existing evidence from the studies in humans is inconsistent and does not confirm a clear adverse effect of higher Ni concentrations in blood, urine or semen on the sperm quality. Robust methodology must be a key issue in the future studies. Studies with more powerful evidence, such as cohort or experimental reports are needed.
Collapse
Affiliation(s)
- Denis Vinnikov
- al-Farabi Kazakh National University, 71 al-Farabi avenue, Almaty, 050040, Kazakhstan.
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya street, Moscow, 117198, Russian Federation.
| | - Sergei Syurin
- Northwest Public Health Research Center, 4 2-Sovetskaya street, Saint-Petersburg, 191036, Russian Federation
| |
Collapse
|
6
|
de Paula Correia DV, Rodak BW, Machado HA, Lopes G, Freitas DS. Beneficial or detrimental? How nickel application alters the ionome of soybean plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112274. [PMID: 39343061 DOI: 10.1016/j.plantsci.2024.112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
The use of nickel (Ni) in agriculture may represent one of the most significant cases of plant hormesis ever reported, as plants exhibit both positive and negative responses depending on the level of exposure to this element. For a more comprehensive understanding of this effect, the next step is to conduct studies on the dynamics of pre-existing chemical elements in the system (ionomic profile), especially when introducing Ni as a novel nutrient for the plants. This micronutrient is of particular interest to the fertilization of leguminous plants, such as the soybean, due to its additional effects on the biological nitrogen fixation process. This study thus evaluated the influence of five doses of Ni (0.0, 0.5, 1.0, 3.0, and 9.0 mg of Ni kg-1) on the ionomic profile of soybean genotypes using modern quantification techniques. The results revealed that the addition of Ni reduced the concentration of cationic micronutrients manganese (Mn), iron (Fe), zinc (Zn), and copper (Cu), while it increased the concentration of macronutrients nitrogen (N) and magnesium (Mg). The application of Ni also resulted in a reduction of the potentially toxic element aluminum (Al). Correlations were also observed for these elements, indicating that Ni could be a controlling agent in elemental absorption and translocation. The ionome of the leaf tissues exhibited the most significant alterations, followed by the grains, nodules, and roots. Exogenous agronomic doses of Ni proved beneficial for the growth and production of soybean plants, although a genotypic effect was observed. The treatment with 9.0 mg of Ni kg-1, resulted in a new ionomic profile related to toxicity, demonstrating suboptimal plant development. Thus, the application of Ni in appropriate doses had a significant impact on the ionomic profile of soybeans, improving plant development and implying resistance to potentially toxic elements such as Al.
Collapse
Affiliation(s)
| | - Bruna Wurr Rodak
- Department of Agronomy, Paraná Federal Institute of Education, Science and Technology, Palmas, Paraná 85690-740, Brazil.
| | - Henrique Amorim Machado
- Department of Agricultural and Natural Science, State University of Minas Gerais, Ituiutaba, Minas Gerais 38302-192, Brazil.
| | - Guilherme Lopes
- Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais 37200-000, Brazil.
| | - Douglas Siqueira Freitas
- Department of Agricultural and Natural Science, State University of Minas Gerais, Ituiutaba, Minas Gerais 38302-192, Brazil.
| |
Collapse
|
7
|
Ke X, Tang Z, Li J. Methodological insights into soil elemental nickel in typical Karst areas: comprehensive analysis of geochemical characteristics, source determination, and influencing factors. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:505. [PMID: 39508884 DOI: 10.1007/s10653-024-02263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
Excessive levels of Nickel in the soil can compromise the security of agricultural products, posing a threat to health of human beings; therefore, the repair and treatment of Nickel exceeding the standard levels in soil are particularly critical. Although it is crucial that the potential restoration of Nickel in ensuring the security of both soil and farm produce within karst regions., few studies have been conducted on the potential restoration of large-scale Nickel-contaminated soils. In this study, the soil in Wuming, Guangxi, a typical karst area, was comprehensively studied. 12,547 surface soil samples, 134 deep soil samples and 60 soil profiles were collected systematically. The results showed that the Nickel background value of the surface soil was 34.9 mg/kg, indicating strong background characteristics and high variability. Principal component analysis showed that soil Nickel was primarily derived from natural sources in the geological background and partly derived from agricultural sources. Analysis of variance showed that the Nickel content of the soil was affected by the parent rock, soil type, soil use type, and topography. In addition, the distribution of Nickel in the soil profile increased exponentially with depth. Therefore, the exponential model and multiple integrals were used to derive the formula for the Nickel potential restoration amount at different depth ranges, and the potential restoration amount of soil Nickel was calculated based on different parent material, soil, and land use types. The formula is reasonable and representative and can provide a theoretical basis for the remediation and treatment of Nickel-polluted soil in karst areas.
Collapse
Affiliation(s)
- Xinying Ke
- College of Resources and Environment, Yangtze University, Wuhan, China.
| | - Zhenhua Tang
- College of Resources and Environment, Yangtze University, Wuhan, China.
| | - Jie Li
- Geological Survey of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
8
|
Zeid I, Ghaly EK, Shedeed ZA. Azolla pinnata as a phytoremediator: improves germination, growth and yield of maize irrigated with Ni-polluted water. Sci Rep 2024; 14:22284. [PMID: 39333677 PMCID: PMC11437153 DOI: 10.1038/s41598-024-72651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
The removal of pollutants from the environment has become a global demand. The current study aimed to relieve the Ni toxicity effect on the germination, growth, and grain yield of maize by using Azolla pinnata as a phytoremediator. Azolla-treated and untreated nickel solutions [0 (control), 24, 70, 140 and 190 ppm] were applied for germination and pot experiments. Electron microscope examination cleared the Ni accumulation in Azolla's cell vacuole and its adsorption on the cell wall. The inhibition of the hydrolytic enzyme activity reduces maize germination; maximal inhibition was 57.1% at 190 ppm of Ni compared to the control (100%). During vegetative growth, Ni stimulated the generation of H2O2 (0.387 mM g-1 F Wt at 190 ppm of Ni), which induced maximal lipid peroxidation (3.913 µMDA g-1 F Wt) and ion leakage (74.456%) compared to control. Chlorophyll content and carbon fixation also showed significant reductions at all Ni concentrations; at 190 ppm, they showed maximum reductions of 56.2 and 63%, respectively. However, detoxification enzymes' activity such as catalase and antioxidant substances (phenolics) increased. The highest concentration of Ni (190 ppm) had the most effect on constraining yield, reaching zero for the weight of 100 grains at 190 ppm of Ni. Azolla-treated Ni solutions amended all determinant parameters, indicating a high percentage of changes in hydrolytic enzyme activity (125.2%) during germination, chlorophyll content (77.6%) and photosynthetic rate (120.1%). Growth measurements, carbon fixation, and yield components showed a positive association. Thus, we recommended using Azolla as a cost-effective and eco-friendly strategy to recover Ni-polluted water.
Collapse
Affiliation(s)
- Ibrahim Zeid
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Essra Khaled Ghaly
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Zeinab Ashour Shedeed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
9
|
Labidi O, Kouki R, Hidouri S, Bouzahouane H, Caçador I, Pérez-Clemente RM, Sleimi N. Impact of Nickel Toxicity on Growth, Fruit Quality and Antioxidant Response in Zucchini Squash ( Cucurbita pepo L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2361. [PMID: 39273845 PMCID: PMC11397644 DOI: 10.3390/plants13172361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
The impact of trace metal elements (TMEs) on plants is one current pollution problem, the severity of which is increasing with industrial development, population growth and inappropriate agricultural practices. The latter can have irreversible effects on ecosystems, including species extinction, trophic chain contamination and altered human health, particularly in the case of consumed plants such as zucchini squash (Cucurbita pepo L.). This study aims to investigate the effects of nickel on various physiological and biochemical parameters of zucchini growth, with a particular focus on how this toxic metal impacts the quality of fruit that is consumed by humans. To achieve this, plants aged 45 days were grown for one month on solid media loaded with different concentrations of Ni (0, 100, 300 and 500 µM). The results showed that exposure of plants to Ni resulted in significantly altered growth and higher accumulation of Ni in the shoots (1314 µg·g-1 DW) than in roots and fruits. Concerning non-enzymatic antioxidants, the results showed that Ni toxicity significantly increased total polyphenols, especially in shoots at 300 µM Ni, while flavonoid content decreased in the roots and shoots in response to Ni treatment. Our results also show that nickel tolerance in C. pepo is ensured by a combination of several mechanisms such as an increase in the content of proline. This species can survive and tolerate, to different degrees, toxic cations at concentrations up to 500 µM but with visible symptoms of toxicity such as chlorosis of the leaves. Indeed, based on thresholds of hyperaccumulation, we can qualify Cucurbita pepo as a hyperaccumulator species of nickel.
Collapse
Affiliation(s)
- Oumayma Labidi
- Laboratory RME-Resources, Materials and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Bizerte 7021, Tunisia
| | - Rim Kouki
- Laboratory RME-Resources, Materials and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Bizerte 7021, Tunisia
| | - Saida Hidouri
- LR12SP13, Faculty of Medicine of Monastir, University of Monastir, Av. Avicenne, Monastir 5000, Tunisia
| | - Hana Bouzahouane
- Faculty of Natural and Life Sciences, University of Mohamed Cherif Messaadia, Souk-Ahras 41000, Algeria
- Laboratory of Environmental Biosurveillance, Faculty of Sciences, University of Badji Mokhtar, Annaba 23000, Algeria
| | - Isabel Caçador
- MARE-Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rosa M Pérez-Clemente
- Department de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, Campus Riu Sec, 12071 Castelló de la Plana, Spain
| | - Noomene Sleimi
- Laboratory RME-Resources, Materials and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Bizerte 7021, Tunisia
| |
Collapse
|
10
|
Cheraghvareh L, Pourakbar L, Siavash Moghaddam S, Xiao J. The effect of biofertilizers on nickel accumulation, nitrogen metabolism and amino acid profile of corn (Zea mays L.) exposed to nickel stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49498-49513. [PMID: 39078554 DOI: 10.1007/s11356-024-34507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
The issue of heavy metal pollution such as nickel poses a significant environmental concern, exerting detrimental effects on the growth and viability of plant life. Plants have various mechanisms to effectively manage heavy metal stress, including the ability to modify their amino acid type and content. This adaptive response allows plants to mitigate the detrimental effects caused by excessive heavy metal accumulation. The aim of this study was to investigate the effect of biofertilizers on nickel accumulation, nitrogen metabolism and amino acid profile of corn (Zea mays L.) cv. 'PL438' exposed to Ni stress. After disinfecting and soaking in water for 24 h, corn seeds were primed with bacterial biofertilizers (T2: NPK + FZ), fungal biofertilizers (T3: Arbuscular mycorrhizal fungi (AMF) + Trichoderma (T)), or a combination of them (T4: NPK + FZ + AMF + T) and were cultured by the hydroponic method in completely controlled conditions. Then, they were simultaneously exposed to nickel chloride at various rates (0, 75, or 150 µM) at the three-leaf stage. They were harvested two weeks later and were subjected to the measurement of Ni content, nitrate and nitrite content, nitrate reductase activity, and amino acid profile by high-performance liquid chromatography. The results showed that the application of Ni at higher rates increased Ni, nitrate, and nitrite contents and nitrate reductase activity. The study of Ni accumulation and TF revealed that Ni accumulated in the roots to a greater extent than in the shoots and TF was < 1 in all treatments. The shoot amino acid profile showed that the treatment of Ni+2 increased som amino acids such as aspartic acid, asparagine, serine, histidine, and glycine versus the control, whereas T4 Ni+2 increased aspartic acid, glutamic acid, threonine and arginine. The change in amino acids in Ni-treated plants may play a key role in their adaptation to Ni stress. The findings indicate that biofertilizers played a crucial role in mitigating the negative impacts of Ni on corn plants through alterations in amino acid composition and decreased absorption and translocation of Ni.
Collapse
Affiliation(s)
- Leila Cheraghvareh
- Department of Biology, Faculty of Science, Urmia University, Urmia, 5756151818, Iran
| | - Latifeh Pourakbar
- Department of Biology, Faculty of Science, Urmia University, Urmia, 5756151818, Iran.
| | - Sina Siavash Moghaddam
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| |
Collapse
|
11
|
Modarresi M, Karimi N, Chaichi M, Chahardoli A, Najafi-Kakavand S. Salicylic acid and jasmonic acid-mediated different fate of nickel phytoremediation in two populations of Alyssum inflatum Nyár. Sci Rep 2024; 14:13259. [PMID: 38858574 PMCID: PMC11164946 DOI: 10.1038/s41598-024-64336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
This study investigates Ni phytoremediation and accumulation potential in the presence of salicylic acid (SA) (0, 50 and 200 μM) and jasmonic acid (JA) (0, 5 and 10 μM) in two populations of Alyssum inflatum under various nickel (Ni) doses (0, 100 and 400 μM). By measuring Ni levels in the shoots and roots, values of bioaccumulation coefficient (BAC), biological concentration factor (BCF) and translocation factor (TF) were calculated to quantify Ni accumulation and translocation between plant organs. Additionally, the amounts of histidine (His), citric acid (CA) and malic acid (MA) were explored. The results showed that plant dry weight (DW) [in shoot (29.8%, 8.74%) and in root (21.6%, 24.4%)] and chlorophyll [a (17.1%, 32.5%), b (10.1%, 30.9%)] declined in M and NM populations respectively, when exposed to Ni (400 μM). Conversely, the levels of MA [in shoot (37.0%, 32.0%) and in root (25.5%, 21.2%)], CA [in shoot (17.0%, 10.0%) and in root (47.9%, 37.2%)] and His [in shoot (by 1.59- and 1.34-fold) and in root (by 1.24- and 1.18-fold)] increased. Also, in the presence 400 μM Ni, the highest accumulation of Ni was observed in shoots of M (1392 μg/g DW) and NM (1382 μg/g DW). However, the application of SA and JA (especially in Ni 400 μM + SA 200 μM + JA 5 and 10 μM treatments) mitigated the harmful impact of Ni on physiological parameters. Also, a decreasing trend was observed in the contents of MA, CA, and His. The reduction of these compounds as important chelators of Ni caused a decrease in root-to-shoot Ni transfer and reducing accumulation in the shoots of both populations. The values of phytoremediation indices in both populations exposed to Ni (400 μM) were above one. In presence of the SA and JA, these indices showed a decreasing trend, although the values remained above one (BAC, BCF and TF > 1). Overall, the results indicated that SA and JA can reduce phytoremediation potential of the two populations through different mechanisms.
Collapse
Grants
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Laboratory of Plant Physiology, Department of Biology, School of Science, Razi University, Kermanshah, Iran
- Seed and Plant Improvement Research Department, Hamedan Agricultural and Natural Resources Research and Education Center, Hamedan, Iran
Collapse
Affiliation(s)
- Masoud Modarresi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, School of Science, Razi University, Kermanshah, Iran
| | - Mehrdad Chaichi
- Seed and Plant Improvement Research Department, Hamedan Agricultural and Natural Resources Research and Education Center, Hamedan, Iran
| | - Azam Chahardoli
- Laboratory of Plant Physiology, Department of Biology, School of Science, Razi University, Kermanshah, Iran
| | - Shiva Najafi-Kakavand
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Laboratory of Plant Physiology, Department of Biology, School of Science, Razi University, Kermanshah, Iran.
| |
Collapse
|
12
|
Yu H, Li W, Liu X, Song Q, Li J, Xu J. Physiological and molecular bases of the nickel toxicity responses in tomato. STRESS BIOLOGY 2024; 4:25. [PMID: 38722370 PMCID: PMC11082119 DOI: 10.1007/s44154-024-00162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/15/2024] [Indexed: 05/12/2024]
Abstract
Nickel (Ni), a component of urease, is a micronutrient essential for plant growth and development, but excess Ni is toxic to plants. Tomato (Solanum lycopersicum L.) is one of the important vegetables worldwide. Excessive use of fertilizers and pesticides led to Ni contamination in agricultural soils, thus reducing yield and quality of tomatoes. However, the molecular regulatory mechanisms of Ni toxicity responses in tomato plants have largely not been elucidated. Here, we investigated the molecular mechanisms underlying the Ni toxicity response in tomato plants by physio-biochemical, transcriptomic and molecular regulatory network analyses. Ni toxicity repressed photosynthesis, induced the formation of brush-like lateral roots and interfered with micronutrient accumulation in tomato seedlings. Ni toxicity also induced reactive oxygen species accumulation and oxidative stress responses in plants. Furthermore, Ni toxicity reduced the phytohormone concentrations, including auxin, cytokinin and gibberellic acid, thereby retarding plant growth. Transcriptome analysis revealed that Ni toxicity altered the expression of genes involved in carbon/nitrogen metabolism pathways. Taken together, these results provide a theoretical basis for identifying key genes that could reduce excess Ni accumulation in tomato plants and are helpful for ensuring food safety and sustainable agricultural development.
Collapse
Affiliation(s)
- Hao Yu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Weimin Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Xiaoxiao Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Qianqian Song
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Junjun Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China.
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China.
| |
Collapse
|
13
|
Moy A, Nkongolo K. Decrypting Molecular Mechanisms Involved in Counteracting Copper and Nickel Toxicity in Jack Pine ( Pinus banksiana) Based on Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1042. [PMID: 38611570 PMCID: PMC11013723 DOI: 10.3390/plants13071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
The remediation of copper and nickel-afflicted sites is challenged by the different physiological effects imposed by each metal on a given plant system. Pinus banksiana is resilient against copper and nickel, providing an opportunity to build a valuable resource to investigate the responding gene expression toward each metal. The objectives of this study were to (1) extend the analysis of the Pinus banksiana transcriptome exposed to nickel and copper, (2) assess the differential gene expression in nickel-resistant compared to copper-resistant genotypes, and (3) identify mechanisms specific to each metal. The Illumina platform was used to sequence RNA that was extracted from seedlings treated with each of the metals. There were 449 differentially expressed genes (DEGs) between copper-resistant genotypes (RGs) and nickel-resistant genotypes (RGs) at a high stringency cut-off, indicating a distinct pattern of gene expression toward each metal. For biological processes, 19.8% of DEGs were associated with the DNA metabolic process, followed by the response to stress (13.15%) and the response to chemicals (8.59%). For metabolic function, 27.9% of DEGs were associated with nuclease activity, followed by nucleotide binding (27.64%) and kinase activity (10.16%). Overall, 21.49% of DEGs were localized to the plasma membrane, followed by the cytosol (16.26%) and chloroplast (12.43%). Annotation of the top upregulated genes in copper RG compared to nickel RG identified genes and mechanisms that were specific to copper and not to nickel. NtPDR, AtHIPP10, and YSL1 were identified as genes associated with copper resistance. Various genes related to cell wall metabolism were identified, and they included genes encoding for HCT, CslE6, MPG, and polygalacturonase. Annotation of the top downregulated genes in copper RG compared to nickel RG revealed genes and mechanisms that were specific to nickel and not copper. Various regulatory and signaling-related genes associated with the stress response were identified. They included UGT, TIFY, ACC, dirigent protein, peroxidase, and glyoxyalase I. Additional research is needed to determine the specific functions of signaling and stress response mechanisms in nickel-resistant plants.
Collapse
Affiliation(s)
| | - Kabwe Nkongolo
- Biomolecular Sciences Program, Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| |
Collapse
|
14
|
Chen M, Jiang P, Zhang X, Sunahara GI, Liu J, Yu G. Physiological and biochemical responses of Leersia hexandra Swartz to nickel stress: Insights into antioxidant defense mechanisms and metal detoxification strategies. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133578. [PMID: 38306837 DOI: 10.1016/j.jhazmat.2024.133578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Phytoremediation is widely considered as a cost-effective method for managing heavy metal soil pollution. Leersia hexandra Swartz shows a promising potential for the remediation of heavy metals pollution, including chromium (Cr), copper (Cu), and nickel (Ni). It is vital to understand the physiological and biochemical responses of L. hexandra to Ni stress to elucidate the mechanisms underlying Ni tolerance and accumulation. Here, we examined the metabolic and transcriptomic responses of L. hexandra exposed to 40 mg/L Ni for 24 h and 14 d. After 24-h Ni stress, gene expression of glutathione metabolic cycle (GSTF1, GSTU1 and MDAR4) and superoxide dismutase (SODCC2) was significantly increased in plant leaves. Furthermore, after 14-d Ni stress, the ascorbate peroxidase (APX7), superoxide dismutase (SODCP and SOD1), and catalase (CAT) gene expression was significantly upregulated, but that of glutathione metabolic cycle (EMB2360, GSTU1, GSTU6, GSH2, GPX6, and MDAR2) was downregulated. After 24-h Ni stress, the differentially expressed metabolites (DEMs) were mainly flavonoids (45%) and flavones (20%). However, after 14-d Ni stress, the DEMs were mainly carbohydrates and their derivatives (34%), amino acids and derivatives (15%), and organic acids and derivatives (8%). Results suggest that L. hexandra adopt distinct time-dependent antioxidant and metal detoxification strategies likely associated with intracellular reduction-oxidation balance. Novel insights into the molecular mechanisms responsible for Ni tolerance in plants are presented.
Collapse
Affiliation(s)
- Mouyixing Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Pingping Jiang
- College of Earth Sciences, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Exploration for Hidden Metallic Ore Deposits, Guilin 541004, China.
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Geoffrey I Sunahara
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| |
Collapse
|
15
|
Joradon P, Poolpak T, Kruatrachue M, Yang KM, Saengwilai P, Upatham S, Pokethitiyook P. Phytoremediation technology for recovery of Ni by Acacia plants in association with Bacillus amyloliquefaciens isolated from E-waste contaminated site. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:903-912. [PMID: 38018097 DOI: 10.1080/15226514.2023.2282043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Electronic waste (e-waste) illegally disposal in Thailand is becoming more widespread. A sustainable metal recovery technology is needed. A phytotechnology called "phytomining" of metals such as nickel (Ni) is a promising technology providing a sustainable solution to the growing e-waste problems. This study investigated the ability of Acacia species in association with e-waste site isolated, plant growth-promoting rhizobacteria (PGPR), Bacillus amyloliquefaciens. Acacia mangium accumulated higher Ni in their tissues when Ni concentrations in soil were lower than 200 mg kg-1. The inoculation of PGPR B. amyloliquefaciens enhanced Ni uptake and accumulation in the leaves, stem, and root. The results showed that the highest Ni concentration was found in the root ash (825.50 mg kg-1) when inoculated plants were grown in soil containing 600 mg kg-1 Ni. Hence, the Ni recovery process and mass balance were performed on root ashes. The highest Ni recovery was 91.3% from the acid (H2SO4) leachate of the ash of inoculated plant treated with 600 mg kg-1 Ni. This demonstrates the feasibility of PGPR-assisted phytomining from Ni-contaminated soil. Phytomining of Ni from any e-waste contaminated sites using Acacia mangium in combination with B. amyloliquefaciens can promote plant growth and improve the uptake of Ni.
Collapse
Affiliation(s)
- Pinida Joradon
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Toemthip Poolpak
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Maleeya Kruatrachue
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Kwang Mo Yang
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Patompong Saengwilai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Suchart Upatham
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Prayad Pokethitiyook
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| |
Collapse
|
16
|
Osmani M, Gashi B, Elezaj IR, Tuna M. Assessment of heavy metal stress in the adaptation strategies of Tulipa luanica growing on serpentine soil through some biomarkers in comparison to Tulipa kosovarica. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:718-725. [PMID: 37897250 DOI: 10.1080/03601234.2023.2274743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
The aim of this study was to gain a better understanding of how Tulipa luanica adapts to growth in soil with higher concentrations of heavy metals and to assess potential toxic effects using various biomarkers, in comparison to Tulipa kosovarica, a typical serpentine species. For this purpose, we analyzed the concentrations of Al, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn in the soil, as well as their accumulation in plants and their associated stress effects. The results indicate that, despite the presence of some metals in very high concentrations in the soil (Al, Fe, Mn, and Ni), they are translocated in minimal amounts within plant organs, particularly in T. luanica. Nearly all metals exhibited significantly higher concentrations in T. kosovarica when compared to T. luanica. Based on the analysis of biomarkers, it is apparent that T. luanica shows greater sensitivity to these conditions. This is evident through the decreased activity of δ-aminolevulinic acid dehydratase and levels of δ-aminolevulinic acid, malondialdehyde, and glutathione observed in T. luanica. It appears that T. luanica effectively restricts the absorption of metals in serpentine soils; however, it experiences oxidative stress induced by these metals, setting it apart from the more resilient T. kosovarica.
Collapse
Affiliation(s)
- Mirsade Osmani
- Laboratory of Biochemistry, Faculty of Food Technology, University of Mitrovica "Isa Boletini", Mitrovicë, Kosovo
| | - Bekim Gashi
- Department of Biology, Faculty of Mathematical and Natural Sciences, University of Prishtina "Hasan Prishtina", Prishtinë, Kosovo
| | - Isa R Elezaj
- Department of Biology, Faculty of Mathematical and Natural Sciences, University of Prishtina "Hasan Prishtina", Prishtinë, Kosovo
| | - Metin Tuna
- Department of Field Crops, Faculty of Agriculture, Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
17
|
Aslam M, Sonia M, Abbas G, Shahid M, Murtaza B, Khalid MS, Qaisrani SA, Alharby HF, Alghamdi SA, Alharbi BM, Chen Y. Multivariate characterization of biochemical and physiological attributes of quinoa (Chenopodium quinoa Willd.) genotypes exposed to nickel stress: implications for phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99247-99259. [PMID: 36279057 DOI: 10.1007/s11356-022-23581-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Nickel (Ni) is an essential element for plants; however, excessive uptake of Ni causes phytotoxicity in plants. The phytotoxic effects of Ni on the growth of quinoa and the underlaying mechanisms for Ni tolerance and phytoremediation are unknown. Hence, the present study investigated Ni tolerance and accumulation potential of two quinoa genotypes (Puno and Vikinga). Both genotypes were exposed to Ni (0, 100, 200, 300, and 400 μM) in half-strength Hoagland nutrient solution for three weeks. Results revealed that shoot and root lengths, biomass, stomatal conductance, and chlorophyll contents were decreased with the increase of Ni concentration. Excessive uptake of Ni resulted in the limited uptake of K by root and its translocation to shoot. Ni caused oxidative stress in plants by overproduction of H2O2 leading to lipid peroxidation of cell membranes. Genotype Puno showed greater tolerance to Ni than Vikinga based on tolerance index, lower bioconcentration factor, and translocation factor. Greater tolerance of Puno was mainly attributed to improved physiological responses and amelioration of oxidative stress by induction of antioxidant enzymes such as peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX). It was revealed through multivariate analysis that Ni had strong negative correlations with growth and physiological attributes and positive associations with oxidative stress attributes. The study demonstrated genotypic variation in response to varying Ni concentrations and Puno performed better than Vikinga for phytostabilization of Ni-contaminated soils.
Collapse
Affiliation(s)
- Maria Aslam
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Mbarki Sonia
- Laboratory of Management and Valorization of Forest Resources, Water and Forestry (INRGREF), National Research Institute of Rural Engineering, 2080, Ariana, Tunisia
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhmmad Shafique Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Saeed Ahmad Qaisrani
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sameera A Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Basmah M Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Yinglong Chen
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| |
Collapse
|
18
|
Hasanović M, Čakar J, Ahatović Hajro A, Murtić S, Subašić M, Bajrović K, Durmić-Pašić A. Geranium robertianum L. tolerates various soil types burdened with heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93830-93845. [PMID: 37525079 DOI: 10.1007/s11356-023-28952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
Many heavy metals (HMs) are essential micronutrients for the growth and development of plants. However, human activities such as mining, smelting, waste disposal, and industrial processes have led to toxic levels of HMs in soil. Fortunately, many plant species have developed incredible adaptive mechanisms to survive and thrive in such harsh environments. As a widespread and ruderal species, Geranium robertianum L. inhabits versatile soil types, both polluted and unpolluted. Considering the ubiquity of G. robertianum, the study aimed to determine whether geographically distant populations can tolerate HMs. We collected soil and plant samples from serpentine, an anthropogenic heavy metal contaminated, and a non-metalliferous site to study the physiological state of G. robertianum. HMs in soil and plants were determined using flame atomic absorption spectrometry. Spectrophotometric methods were used to measure the total content of chlorophylls a and b, total phenolics, phenolic acids, flavonoids, and proline. Principal component analysis (PCA) was used to investigate the potential correlation between HMs concentrations gathered from various soil types and plant samples and biochemical data acquired for plant material. A statistically significant difference was observed for all localities regarding secondary metabolite parameters. A positive correlation between Ni and Zn in soil and Ni and Zn in plant matter was observed (p<0.0005) indicating higher absorption. Regardless of high concentrations of heavy metals in investigated soils, G. robertianum displayed resilience and was capable of thriving. These results may be ascribed to several protective mechanisms that allow G. robertianum to express normal growth and development and act as a pioneer species.
Collapse
Affiliation(s)
- Mujo Hasanović
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina.
| | - Jasmina Čakar
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| | - Anesa Ahatović Hajro
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| | - Senad Murtić
- Faculty of Agriculture and Food Science, University of Sarajevo, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| | - Mirel Subašić
- Faculty of Forestry, University of Sarajevo, Zagrebacka 20, Sarajevo, Bosnia and Herzegovina
| | - Kasim Bajrović
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| | - Adaleta Durmić-Pašić
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
19
|
Moy A, Czajka K, Michael P, Nkongolo K. Transcriptome Analysis Reveals Changes in Whole Gene Expression, Biological Process, and Molecular Functions Induced by Nickel in Jack Pine ( Pinus banksiana). PLANTS (BASEL, SWITZERLAND) 2023; 12:2889. [PMID: 37571042 PMCID: PMC10421529 DOI: 10.3390/plants12152889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Understanding the genetic response of plants to nickel stress is a necessary step to improving the utility of plants in environmental remediation and restoration. The main objective of this study was to generate whole genome expression profiles of P. banksiana exposed to nickel ion toxicity compared to reference genotypes. Pinus banksiana seedlings were screened in a growth chamber setting using a high concentration of 1600 mg of nickel per 1 kg of soil. RNA was extracted and sequenced using the Illumina platform, followed by de novo transcriptome assembly. Overall, 25,552 transcripts were assigned gene ontology. The biological processes in water-treated samples were analyzed, and 55% of transcripts were distributed among five categories: DNA metabolic process (19.3%), response to stress (13.3%), response to chemical stimuli (8.7%), signal transduction (7.7%) and response to biotic stimulus (6.0%). For molecular function, the highest percentages of genes were involved in nucleotide binding (27.6%), nuclease activity (27.3%) and kinase activity (10.3%). Sixty-two percent of genes were associated with cellular compartments. Of these genes, 21.7% were found in the plasma membrane, 16.1% in the cytosol, 12.4% with the chloroplast and 11.9% in the extracellular region. Nickel ions induced changes in gene expression, resulting in the emergence of differentially regulated categories. Overall, there were significant changes in gene expression with a total 4128 genes upregulated and 3754 downregulated genes detected in nickel-treated genotypes compared to water-treated control plants. For biological processes, the highest percentage of upregulated genes in plants exposed to nickel were associated with the response to stress (15%), the response to chemicals (11,1%), carbohydrate metabolic processes (7.4%) and catabolic processes (7.4%). The largest proportions of downregulated genes were associated with the biosynthetic process (21%), carbohydrate metabolic process (14.3%), response to biotic stimulus (10.7%) and response to stress (10.7%). For molecular function, genes encoding for enzyme regulatory and hydrolase activities represented the highest proportion (61%) of upregulated gene. The majority of downregulated genes were involved in the biosynthetic processes. Overall, 58% of upregulated genes were located in the extracellular region and the nucleus, while 42% of downregulated genes were localized to the plasma membrane and 33% to the extracellular region. This study represents the first report of a transcriptome from a conifer species treated with nickel.
Collapse
Affiliation(s)
| | | | | | - Kabwe Nkongolo
- Biomolecular Sciences Program and Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (A.M.); (K.C.); (P.M.)
| |
Collapse
|
20
|
Ashraf MA, Hafeez A, Rasheed R, Hussain I, Farooq U, Rizwan M, Ali S. Effect of exogenous taurine on growth, oxidative defense, and nickel (Ni) uptake in canola ( Brassica napus L.) under Ni stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1135-1152. [PMID: 37829701 PMCID: PMC10564706 DOI: 10.1007/s12298-023-01359-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/22/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Nickel (Ni) contamination and its associated hazardous effects on human health and plant growth are ironclad. However, the potential remedial effects of taurine (TAU) on Ni-induced stress in plants remain obscure. Therefore, the present study was undertaken to examine the effect of TAU seed priming (100 and 150 mg L‒1) as an alleviative strategy to circumvent the phytotoxic effects of Ni (150 mg kg‒1) on two canola cultivars (Ni-tolerant cv. Shiralee and Ni-sensitive cv. Dunkeld). Our results manifested an apparent decline in growth, biomass, photosynthetic pigments, leaf relative water content, DPPH free radical scavenging activity, total soluble proteins, nitrate reductase activity, and nutrient acquisition (N, P, K, Ca) under Ni toxicity. Further, Ni toxicity led to a substantial increase in oxidative stress reflected as higher levels of superoxide radicals (O2•‒) and hydrogen peroxide (H2O2) alongside increased relative membrane permeability, lipoxygenase (LOX) activity, and Ni accumulation in leaves and roots. However, TAU protected canola plants from Ni-induced oxidative damage through the amplification of hydrogen sulfide (H2S) production that intensified the antioxidant system to avert O2•‒, H2O2, and malondialdehyde (MDA) production. Further, TAU-mediated increase in H2S levels maintained membrane integrity that might have improved ionomics and bettered plant growth under Ni toxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01359-9.
Collapse
Affiliation(s)
- Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Arslan Hafeez
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Umer Farooq
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000 Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402 Taiwan
| |
Collapse
|
21
|
Huang K, Yang Y, Lu H, Hu S, Chen G, Du Y, Liu T, Li X, Li F. Transformation kinetics of exogenous nickel in a paddy soil during anoxic-oxic alteration: Roles of organic matter and iron oxides. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131246. [PMID: 36989790 DOI: 10.1016/j.jhazmat.2023.131246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Nickel is generally released from flooded soils; however, the key Ni transformation processes in soils that are freshly contaminated by Ni2+ during anoxic-oxic alteration remain unclear. We developed a kinetic model to investigate the Ni transformation in paddy soils under anoxic and oxic conditions based on the results of the seven-step sequential extraction, determination of dissolved and soil organic matter, and surface site quantification, which provide the kinetic data of different Ni fractions, organic matter, and reactive sites for modeling. The dissolved, exchangeable, and specifically adsorbed Ni was gradually transferred to fulvic complex, humic complex, Fe-Mn oxide bound, and sulfide bound Ni after 40 d of anoxic incubation due to the increase in pH and soil surface sites, which were mainly induced by Fe(III) oxide reduction and soil organic matter release. The introduction of oxygen triggered a rapid release of Ni, which was ascribed to the decrease in pH and soil surface sites caused by Fe(II) oxidation and carbon re-immobilization. Kinetic modeling demonstrated that complexation with soil organic matter dominated Ni immobilization under anoxic conditions, while organic matter and Fe-Mn oxides contributed similarly to Ni release under oxic conditions, although the majority of Ni remained complexed with soil organic matter. These findings are important for the evaluation and prediction of Ni behavior in paddy soils with exogenous Ni during flooding-drainage practices.
Collapse
Affiliation(s)
- Kaiyi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hansha Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Shiwen Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yanhong Du
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
22
|
Bhat JA, Basit F, Alyemeni MN, Mansoor S, Kaya C, Ahmad P. Gibberellic acid mitigates nickel stress in soybean by cell wall fixation and regulating oxidative stress metabolism and glyoxalase system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107678. [PMID: 37054613 DOI: 10.1016/j.plaphy.2023.107678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 05/07/2023]
Abstract
It is broadly known that excessive concentration of nickel (Ni) causes venomous effects on plant health as well as food security. The underlying gibberellic acid (GA) mechanism to overcome Ni-induced stress is still unclear. Our outcomes represented the potential role of gibberellic acid (GA) to boost the soybean stress tolerance mechanism against Ni toxicity. GA elevated the seed germination, plant growth, biomass indices, and photosynthetic machinery as well as relative water contents under Ni-induced stress in soybean. We found that the GA lowered the Ni uptake, and distribution in the soybean plants, as well as GA, can decrease the Ni fixation in the root cell wall by lowering the hemicelluloses content. However, it reduces the MDA level, over-generation of ROS, electrolyte leakage, and methylglyoxal contents by up-surging the level of antioxidant enzyme, and glyoxalase I and glyoxalase II activities. Furthermore, GA regulates the antioxidant-related (CAT, SOD, APX, and GSH) and phytochelatins (PCs) genes expression to sequester the excessive Ni to the vacuoles and efflux the Ni outer the cell. Hence, less Ni was translocated toward shoots. Overall, GA augmented cell wall Ni elimination, and the antioxidant defense mechanism possibly upgraded the soybean tolerance against Ni stress.
Collapse
Affiliation(s)
| | - Farwa Basit
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243, Republic of Korea
| | - Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
23
|
Manna I, Sahoo S, Bandyopadhyay M. Dynamic changes in global methylation and plant cell death mechanism in response to NiO nanoparticles. PLANTA 2023; 257:93. [PMID: 37017788 DOI: 10.1007/s00425-023-04127-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
This report is a first comprehensive work on the potential of engineered nickel oxide nanoparticles affecting the epigenome and modulating global methylation leading to retention of transgenerational footprints. Nickel oxide nanoparticles (NiO-NPs) are known to instigate extensive phenotypic and physiological damage to plants. In the present work, it was shown that exposure to increasing concentrations of NiO-NP-induced cell death cascades in model systems, Allium cepa and tobacco BY-2 cells. NiO-NP also generated variation in global CpG methylation; its transgenerational transmission was shown in affected cells. Plant tissues exposed to NiO-NP showed progressive replacement of essential cations, like Fe and Mg, as seen in XANES and ICP-OES data, providing earliest signs of disturbed ionic homeostasis. Fluorescent staining based confocal microscopy confirmed upsurge of H2O2 and nitric oxide after NiO-NP exposure. A NiO-NP concentration gradient-based switching-on of the cell death cascades was observed when autophagosomes were seen in samples exposed to lower and median concentrations of NiO-NP (10-125 mg L-1). The apoptotic cell death marker, caspase-3 like protein, was noted in the median to higher doses (50-500 mg L-1), and leakage of lactate dehydrogenase marking necrotic cell death was observed in samples exposed to the highest doses (125-500 mg L-1) of NiO-NP. Concomitant increase of DNA hypermethylation (quantified by ELISA-based assay) and genomic DNA damage (evaluated through Comet-based analyses) was recorded at higher doses of NiO-NP. MSAP profiles confirmed that global methylation changes incurring in the parental generation upon NiO-NP exposure were transmitted through the two subsequent generations of BY-2 cells which was supported by data from A. cepa, too. Thus, it was evident that NiO-NP exposure incited DNA hypermethylation, as an aftermath of oxidative burst, and led to induction of autophagy, apoptotic and necrotic cell death pathways. Global methylation changes induced by NiO-NP exposure can be transmitted through subsequent cell generations.
Collapse
Affiliation(s)
- Indrani Manna
- Plant Molecular Cytogenetics Laboratory, Department of Botany, Center of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, India
| | - Saikat Sahoo
- Plant Molecular Cytogenetics Laboratory, Department of Botany, Center of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, India
- Department of Botany, Krishna Chandra College, Birbhum, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Department of Botany, Center of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, India.
| |
Collapse
|
24
|
Borah P, Rene ER, Rangan L, Mitra S. Phytoremediation of nickel and zinc using Jatropha curcas and Pongamia pinnata from the soils contaminated by municipal solid wastes and paper mill wastes. ENVIRONMENTAL RESEARCH 2023; 219:115055. [PMID: 36574797 DOI: 10.1016/j.envres.2022.115055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/14/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The primary source of soil pollution is a complex mixture of numerous inorganic and organic compounds (including chlorinated compounds, nutrients, and heavy metals, etc.). The presence of all of these compounds makes remediation and cleanup difficult. In this study, the phytoremediation ability of Jatropha curcas and Pongamia pinnata was tested to remove nickel (Ni) and Zinc (Zn) from paper mill and municipal landfill contaminated soils, to understand the uptake potential and to estimate the accumulation pattern of Ni and Zn in the vegetative parts of the plant. The experiments were carried out in pots (3 kg capacity) and the different combinations of soil were made by mixing the contaminated soil with a reference soil (forest soil) as T0, T25, T50, T75 and T100. The plant biomass, chlorophyll content, proline, nitrate reductase activity and metal removal efficiency (%)were determined after 120 DAS (i.e., the days after sowing). The results of the study showed that with increasing metal stress, there is a reduction in the above-ground biomass content in both the plant species with a slightly less impact on the root biomass. Over a period of 4 months, J. curcas and P. pinnata removed 82-86% and 93-90% Ni, respectively. The removal of Zn was significantly less as compared to Ni as most of the Zn remained in the belowground part (roots) and in the soil. Besides, the phytostabilization capacities of the plants were calculated on the basis of their tolerance index (TI), bioaccumulation factor (BAF) and translocation factor (TF). The low BAF and TF values with increasing heavy metals (HMs) content indicates its higher phytostabilization capacity in the root and rhizospheric region as compared to phytoaccumulation.
Collapse
Affiliation(s)
- Pallabi Borah
- Department of Environmental Science, Royal Global University, Guwahati, Assam, 781035, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Latha Rangan
- Applied Biodiversity Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, School of Agro & Rural Technology, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India; Centre for Disaster Management and Research, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India.
| |
Collapse
|
25
|
Nezhadasad B, Radjabian T, Hajiboland R. Diverse responses of halophyte and glycophyte Lepidium species to the salt-mediated amelioration of nickel toxicity and accumulation. JOURNAL OF PLANT RESEARCH 2023; 136:117-137. [PMID: 36409432 DOI: 10.1007/s10265-022-01424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Tolerance mechanisms employed by plants under environmental stresses can protect them against other co-occurring stresses. In this study, the effect of pre-exposure and simultaneous salt treatment on nickel (Ni) toxicity tolerance in one halophyte (L. sativum) and one glycophyte (L. latifolium) Lepidium species in hydroponics was investigated. In order to compare the species independent from their salt and Ni tolerance level, the glycophyte was subjected to lower salt and Ni concentrations and for a shorter period of time than the halophyte. Salt (NaCl) was applied at 50 and 100 mM concentrations and Ni was provided at an equal free Ni2+ activity by adding 100 and 200 µM Ni as single stresses, but 130 and 300 µM Ni for the treatment of its combination with salt in the glycophyte and halophyte, respectively. Temporal analyses of signaling molecules revealed that the halophyte is characteristically different from the glycophyte in that it exhibits a higher constitutive level of nitric oxide and hydrogen peroxide, a longer duration of response to Ni, and its augmentation by salt. In addition to higher biomass and less Ni accumulation in salt-treated plants, the concentrations of free thiol groups, leaf pigments, proline, free and cell wall-bound phenolics contents, and the activity of phenolic metabolizing enzymes were higher in L. latifolium under the combined salt and Ni treatments than under the single Ni stress. In contrast, the biomass and most biochemical parameters of Ni-stressed L. sativum plants were not enhanced by salt treatment but rather decreased. Our findings shed light on cross-tolerance mechanisms in halophytes and uncovered halophyte survival strategies under multiple stresses.
Collapse
Affiliation(s)
- Behzad Nezhadasad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Tayebeh Radjabian
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Roghieh Hajiboland
- Department of Plant, Cell and Molecular Biology, University of Tabriz, Tabriz, Iran.
- Faculty of Natural Sciences, Department of Plant, Cell and Molecular Biology, University of Tabriz, 29 Bahman Ave, Tabriz, 51666-16471, Iran.
| |
Collapse
|
26
|
Subhani MA, Amjad M, Iqbal MM, Murtaza B, Imran M, Naeem MA, Abbas G, Andersen MN. Nickel toxicity pretreatment attenuates salt stress by activating antioxidative system and ion homeostasis in tomato (Solanum lycopersicon L.): an interplay from mild to severe stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:227-246. [PMID: 35934744 DOI: 10.1007/s10653-022-01336-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Plants antioxidative system is the first line of defense against oxidative stress caused secondarily by toxic ions under salinity. Plants with pre-activated antioxidative system can better adapt to salinity and can result in higher growth and yield. The current experiment was conducted to assess the adaptation of two tomato genotypes (Riogrande and Green Gold) with pre-activated antioxidative enzymes against salt stress. Tomato seedlings were exposed to mild stress (Ni: 0, 15 and 30 mg L-1) for three weeks to activate the antioxidative enzymes. The seedlings with pre-activated antioxidative enzymes were then grown under severe stress in hydroponics (0, 75 and 150 mM NaCl) and soil (control, 7.5 and 15 dS m-1) to check the adaptation, growth and yield. The results showed that Ni toxicity significantly enhanced activities of antioxidant enzymes (SOD, CAT, APX and POX) in both the genotypes and reduced growth with higher values in genotype Riogrande than Green Gold. The seedlings with pre-activated antioxidant enzymes showed better growth, low Na+ and high K+ uptake and maintained higher antioxidative enzymes activity than non-treated seedlings after four weeks of salt stress treatment in hydroponics. Similarly, the results in soil salinity treatment of the Ni pretreated seedlings showed higher yield characteristics (fruit yield per plant, average fruit weight and fruit diameter) than non-treated seedlings. However, Ni pretreatment had nonsignificant effect on tomato fruit quality characteristics like fruit dry matter percentage, total soluble solids, fruit juice pH and titratable acidity. The genotype Riogrande showed better growth, yield and fruit quality than Green Gold due to higher activity of antioxidant enzymes and better ion homeostasis as a result of Ni pretreatment. The results suggest that pre-activation antioxidant enzymes by Ni treatment proved to be an effective strategy to attenuate salt stress for better growth and yield of tomato plants.
Collapse
Affiliation(s)
- Muhammad Azeem Subhani
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
- Department of Agroecology, Aarhus University, Blichers Allé 50, 8830, Tjele, Denmark.
| | - Muhammad Mohsin Iqbal
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | | |
Collapse
|
27
|
Kumar S, Wang M, Liu Y, Fahad S, Qayyum A, Jadoon SA, Chen Y, Zhu G. Nickel toxicity alters growth patterns and induces oxidative stress response in sweetpotato. FRONTIERS IN PLANT SCIENCE 2022; 13:1054924. [PMID: 36438136 PMCID: PMC9685627 DOI: 10.3389/fpls.2022.1054924] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Nickel (Ni) contaminated soil is a persistent risk to plant growth and production worldwide. Therefore, to explore the Ni toxicity levels in sweetpotato production areas, we investigated the influence of different Ni treatments (0, 7.5, 15, 30, and 60 mg L-1) for 15 days on phenotype, Ni uptake, relative water content, gas exchange, photosynthetic pigments, oxidative stress, osmolytes, antioxidants, and enzymes of sweetpotato plants. The results presented that Ni at higher levels (30 and 60 mg L-1) substantially reduced growth, biomass, and root morphological traits. The Pearson correlation analysis suggested that Ni toxicity causes oxidative injuries as persistent augmentation of hydrogen peroxide (H2O2) and malonaldehyde (MDA) and reduced RWC, gas exchange, and photosynthetic pigment. Furthermore, this study revealed that sweetpotato could tolerate moderate Ni treatment (up to 15 mg L-1) by reducing oxidative stress. The results also indicated that the increase in the activities of mentioned osmolytes, antioxidants, and enzymes is not sufficient to overcome the higher Ni toxicity. Based on these results, we suggest using low Ni-contaminated soil for better growth of sweetpotato and also could be used as a phytoremediator in moderate Ni-contaminated soil.
Collapse
Affiliation(s)
- Sunjeet Kumar
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Mengzhao Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Yi Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur, Pakistan
| | - Sultan Akbar Jadoon
- Department of Plant Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Yanli Chen
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| |
Collapse
|
28
|
Helaoui S, Boughattas I, El Kribi-Boukhris S, Mkhinini M, Alphonse V, Livet A, Bousserrhine N, Banni M. Assessing the effects of nickel on, e.g., Medicago sativa L. nodules using multidisciplinary approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77386-77400. [PMID: 35672641 DOI: 10.1007/s11356-022-21311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Industrial wastes and fertilizers can introduce excessive levels of nickel (Ni) into the environment, potentially causing threats to plants, animals, as well as human beings. However, the number of studies on the effects of Ni toxicity on nodules is fairly limited. To address this issue, the effects of increasing Ni concentration on alfalfa nodules were assessed at chemical, biochemical, and transcriptomic levels. For this purpose, plants were grown in soils supplied with Ni (control, 0 mg/kg; C1, 50 mg/kg; C2, 150 mg/kg; C3, 250 mg/kg; and C4, 500 mg/kg) for 90 days. Ni loads in leaves, roots, and nodules were monitored after the exposure period. A set of biochemical biomarkers of oxidative stress was determined in nodules including antioxidants and metal homeostasis as well as lipid peroxidation. Gene expression levels of the main targets involved in oxidative stress and metal homeostasis were assessed. Our data indicated a high concentration of Ni in leaves, roots, and nodules where values reached 25.64 ± 3.04 mg/kg, 83.23 ± 5.16 mg/kg, and 125.71 ± 4.53 mg/kg in dry weight, respectively. Moreover, a significant increase in nodule biomass was observed in plants exposed to C4 in comparison to control treatment and percentage increased by 63%. Then, lipid peroxidation increased with a rate of 95% in nodules exposed to C4. Enzymatic activities were enhanced remarkably, suggesting the occurrence of oxidative stress, with increased superoxide dismutase (SOD), glutathione reductase (GR), and ascorbate peroxidase (APX). Our results showed also a significant upregulation of SOD, GR and APX genes in nodules. Nodule homoglutathione (HGSH) levels increased with the different Ni concentrations, with a remarkable decrease of glutathione S-transferase (GST) activity and glutathione (GSH) content for the highest Ni concentration with 43% and 52% reduction, respectively. The phytochelatin (PC) and metallothionein (MT) concentrations increased in nodules, which implied the triggering of a cellular protection mechanism for coping with Ni toxicity. The results suggested that Ni promotes a drastic oxidative stress in alfalfa nodules, yet the expression of MT and PC to reduce Ni toxicity could be used as Ni stress bioindicators. Our findings provide new insights into the central role of alfalfa nodules in limiting the harmful effects of soil pollution. Therefore, nodules co-expressing antioxidant enzymes may have high phytoremediation potential.
Collapse
Affiliation(s)
- Sondes Helaoui
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Iteb Boughattas
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia.
| | - Sameh El Kribi-Boukhris
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Marouane Mkhinini
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Vanessa Alphonse
- Laboratory Water, Environment and Urban Systems, Faculty of Science and Technology, University Paris-Est Créteil, Créteil Cedex, France
| | - Alexandre Livet
- Laboratory Water, Environment and Urban Systems, Faculty of Science and Technology, University Paris-Est Créteil, Créteil Cedex, France
| | - Noureddine Bousserrhine
- Laboratory Water, Environment and Urban Systems, Faculty of Science and Technology, University Paris-Est Créteil, Créteil Cedex, France
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
- Higher Institute of Biotechnologie of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
29
|
Lwin CS, Kim YN, Lee M, Kim KR. Coexistence of Cr and Ni in anthropogenic soils and their chemistry: implication to proper management and remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62807-62821. [PMID: 35802322 DOI: 10.1007/s11356-022-21753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
In anthropogenic soils, there have been relatively limited studies focusing on Cr and Ni contaminants because they exhibit less toxic effects to overall ecosystem and human health than other metal contaminants. In recent years, however, soil contamination with Cr and Ni has become a serious concern in several parts of the world because of the continuously increasing concentrations of these metals due to accelerated industrialization and urbanization. To investigate the status of soil contamination with Cr and Ni by anthropogenic activities, relevant global data sets in different land-use types reported by several studies were reviewed. This review presents the significant work done on Cr and Ni concentrations in roadside, central business district (CBD), and industrial soils in 46 global cities and evaluated their correlation by global data in the past few years. The highest concentrations of Cr and Ni were observed in industrial soils. Furthermore, a significant relationship was found between Cr and Ni concentrations in the soils, which might be because both metals are released from the same sources or anthropogenic activity processes. We also discuss the state of knowledge about the chemistry and distribution of Cr and Ni in the soil environment to understand how their processes such as redox reaction, precipitation-dissolution, and sorption-desorption affect the remediation of Cr- and Ni-contaminated soils using in situ immobilization technology. Application of organic and inorganic immobilizing agents (e.g., lime, compost, and sulfur) for the clean-up of Cr- and Ni-contaminated soils has received increasing interest from several researchers worldwide. Several immobilizing agents have been suggested and experimentally tested with varying degrees of achievement in Cr- and Ni-contaminated soils. Overall, the use of sulfur-containing amendments and pH-increasing materials could be considered the best options for the remediation of co-contamination of Cr and Ni in soil.
Collapse
Affiliation(s)
- Chaw Su Lwin
- Department of Smart Agro-Industry, Gyeongsang National University, Jinju, 52725, Republic of Korea
| | - Young-Nam Kim
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Mina Lee
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725, Republic of Korea
| | - Kwon-Rae Kim
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725, Republic of Korea.
| |
Collapse
|
30
|
Hao H, Li P, Lv Y, Chen W, Ge D. Probabilistic health risk assessment for residents exposed to potentially toxic elements near typical mining areas in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58791-58809. [PMID: 35378652 DOI: 10.1007/s11356-022-20015-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Public health problems caused by toxic elements in mining areas have always been an important topic worldwide. However, existing studies have focused on single exposure routes and common toxic elements, which might underestimate the risks faced by residents. In this study, three typical mining areas in central China were selected to assess the health risks of 14 potentially toxic elements through five exposure routes using Monte Carlo simulations. The results indicated that the 95th percentile non-carcinogenic risk values to humans via rice and vegetable ingestion ranged from 9.8 to 26.0 and 6.2 to 19.0. The corresponding carcinogenic risks ranged from 1.4E-2 to 6.3E-2 and from 2.9E-3 to 2.3E-2, respectively. Therefore, residents face serious health risks. Multi-element analysis showed that cadmium (Cd), boron (B), and arsenic (As) were the main contributors to rice non-carcinogenicity, whereas Cd and nickel (Ni) were the main elements of rice carcinogenicity. B and lead (Pb) played an essential role in the non-carcinogenesis of vegetables, and B, Ni, and Cd played an essential role in carcinogenesis. Accidental ingestion is the main route of soil exposure. In these three areas, the probability of non-carcinogenic risk faced by adults was 40%, 0%, and 1%, respectively, while the probabilities for children were 100%, 62%, and 83%, respectively. Regarding carcinogenicity, the risk for both adults and children was up to 100%. This study emphasizes the overall health risks in polluted areas via multi-route and multi-element analysis. This conclusion is helpful to comprehensively assess the potential health risks faced by residents in mining areas and provide baseline data support and a scientific basis for formulating reasonable risk control measures.
Collapse
Affiliation(s)
- Huijuan Hao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410125, People's Republic of China
- Risk Assessment Laboratory for Environmental Factors of Agro-Product Quality Safety, Ministry of Agriculture and Villages, Changsha, 410005, People's Republic of China
| | - Panpan Li
- College of Computer, National University of Defense Technology, Changsha, 410005, People's Republic of China
| | - Yuntao Lv
- Risk Assessment Laboratory for Environmental Factors of Agro-Product Quality Safety, Ministry of Agriculture and Villages, Changsha, 410005, People's Republic of China
| | - Wanming Chen
- Risk Assessment Laboratory for Environmental Factors of Agro-Product Quality Safety, Ministry of Agriculture and Villages, Changsha, 410005, People's Republic of China
| | - Dabing Ge
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410125, People's Republic of China.
| |
Collapse
|
31
|
Saravanan A, Kumar PS, Srinivasan S, Jeevanantham S, Vishnu M, Amith KV, Sruthi R, Saravanan R, Vo DVN. Insights on synthesis and applications of graphene-based materials in wastewater treatment: A review. CHEMOSPHERE 2022; 298:134284. [PMID: 35283157 DOI: 10.1016/j.chemosphere.2022.134284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Graphene has excellent unique thermal, chemical, optical, and mechanical properties such as high thermal conductivity, high chemical stability, optical transmittance, high current density, higher surface area, etc. Due to their outstanding properties, the attention towards graphene-based materials and their derivatives in wastewater treatment has been increased in recent times. Different graphene-based materials such as graphene oxides, graphene quantum dots, graphene nanoplatelets, graphene nanoribbons and other graphene-based nanocomposites are synthesized through chemical vapor deposition, mechanical and electrochemical exfoliation of graphite. In this review, the specifics about the graphenes and their derivatives, the synthesis strategy of graphene-based materials are described. This review critically explained the applications of graphene-based materials in wastewater treatment. Graphene-based materials were utilized as adsorbents, electrodes, and photocatalysts for the efficient removal of toxic pollutants such as heavy metals, dyes, pharmaceutics, antibiotics, phenols, polycyclic aromatic hydrocarbons have been highlighted and discussed. Herein, the potential scope of graphene-based material in the field of wastewater treatment is critically reviewed. In addition, a brief perspective on future research directions and difficulties in the synthesis of graphene-based material are summarized.
Collapse
Affiliation(s)
- A Saravanan
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Srinivasan
- Department of Biomedical Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - M Vishnu
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - K Vishal Amith
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - R Sruthi
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
32
|
Nawaz H, Ali A, Saleem MH, Ameer A, Hafeez A, Alharbi K, Ezzat A, Khan A, Jamil M, Farid G. Comparative effectiveness of EDTA and citric acid assisted phytoremediation of Ni contaminated soil by using canola (Brassica napus). BRAZ J BIOL 2022; 82:e261785. [PMID: 35703635 DOI: 10.1590/1519-6984.261785] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Phytoremediation is an ecofriendly technique to clean heavy metals from contaminated soil by the use of high biomass producing plant species. Chelators can help to improve this biological technique by increasing metal solubility. Therefore, a pot experiment was conducted to determine the effect of the chelators EDTA and citric acid (CA) in phytoremediation of Ni contaminated soil by using Brassica napus (canola). Two cultivars of B. napus, Con-II (tolerant) and Oscar (sensitive), were selected after screening and exposed to NiSO4 at 30 ppm at the time of sowing. CA (10 mM) and EDTA (1.5 mM) were applied either alone or in combination with each other after two weeks of Ni treatments. Different parameters like morpho-physiological and biochemical data were recorded after 15 days of chelate application. The results highlighted the successful use of chelating agents (CA and EDTA) not only to ameliorate Ni stress but also to enhance Ni accumulation which is prerequisite for phytoremediation. The basal application of 10 mMCA and 1.5 mM EDTA concentration proved to be effective for the growth of plants. The combination of chelating agents failed to show any synergistic effects.
Collapse
Affiliation(s)
- H Nawaz
- University of Education, Division of Science and Technology, Department of Botany, Lahore, Punjab, Pakistan.,University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - A Ali
- University of Sargodha, Department of Botany, Sargodha, Pakistan
| | - M H Saleem
- Agriculture University, College of Plant Science and Technology, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Researches of Yangtze River, Wuhan, China
| | - A Ameer
- University of Agriculture, Department of Botany, Faisalabad, Pakistan
| | - A Hafeez
- Quaid-i-Azam University, Department of Plant Sciences, Islamabad, Pakistan
| | - K Alharbi
- Princess Nourah bint Abdulrahman University, College of Science, Department of Biology, Riyadh, Saudi Arabia
| | - A Ezzat
- King Khalid University, College of Science, Department of Biology, Abha, Saudia Arabia.,South Valley University, Faculty of Veterinary Medicine, Department of Theriogenology, Qena, Egypt
| | - A Khan
- University of Education, Division of Science and Technology, Department of Botany, Lahore, Punjab, Pakistan
| | - M Jamil
- The Islamia University of Bahawalpur, Department of Botany, Bahawalpur, Pakistan
| | - G Farid
- Nuclear Institute for Agriculture and Biology - NIAB, Faisalabad, Pakistan
| |
Collapse
|
33
|
Rizwan M, Usman K, Alsafran M, Jabri HA, Samreen T, Saleem MH, Tu S. Nickel Toxicity Interferes with NO3−/NH4+ Uptake and Nitrogen Metabolic Enzyme Activity in Rice (Oryza sativa L.). PLANTS 2022; 11:plants11111401. [PMID: 35684174 PMCID: PMC9182924 DOI: 10.3390/plants11111401] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
The excessive use of nickel (Ni) in manufacturing and various industries has made Ni a serious pollutant in the past few decades. As a micronutrient, Ni is crucial for plant growth at low concentrations, but at higher concentrations, it can hamper growth. We evaluated the effects of Ni concentrations on nitrate (NO3−) and ammonium (NH4+) concentrations, and nitrogen metabolism enzyme activity in rice seedlings grown in hydroponic systems, using different Ni concentrations. A Ni concentration of 200 μM significantly decreased the NO3− concentration in rice leaves, as well as the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthetase (GOGAT), respectively, when compared to the control. By contrast, the NH4+ concentration and glutamate dehydrogenase (GDH) activity both increased markedly by 48% and 46%, respectively, compared with the control. Furthermore, the activity of most active aminotransferases, including glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT), was inhibited by 48% and 36%, respectively, in comparison with the control. The results indicate that Ni toxicity causes the enzymes involved in N assimilation to desynchronize, ultimately negatively impacting the overall plant growth.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar; (M.R.); (M.H.S.)
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Kamal Usman
- Agricultural Research Station (ARS), Office of VP for Research and Graduate Studies, Qatar University, Doha 2713, Qatar;
| | - Mohammed Alsafran
- Agricultural Research Station (ARS), Office of VP for Research and Graduate Studies, Qatar University, Doha 2713, Qatar;
- Central Laboratories Unit (CLU), Office of VP for Research and Graduate Studies, Qatar University, Doha 2713, Qatar
- Correspondence: (M.A.); (S.T.)
| | - Hareb Al Jabri
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar;
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Tayyaba Samreen
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar; (M.R.); (M.H.S.)
| | - Shuxin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (M.A.); (S.T.)
| |
Collapse
|
34
|
Dotaniya ML, Pipalde JS, Jain RC, Selladurai R, Gupta SC, Das Vyas M, Vassanda Coumar M, Sahoo S, Saha JK, Kumar A. Nickel-mediated lead dynamics and their interactive effect on lead partitioning and phytoremediation indices in spinach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:334. [PMID: 35389101 DOI: 10.1007/s10661-022-09935-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
A greenhouse research was conducted to monitor lead (Pb) translocation dynamics in spinach (Spinacia oleracea L.) mediated by nickel (Ni) application. Each of the four levels of Pb (0, 100, 150, and 300 mg/kg) and Ni (0, 100, 150, and 300 mg/kg) was applied in different combinations in the pot experiment. A fully matured spinach crop was harvested and divided into biomass samples from the roots and above ground. ICP-OES was used to determine the concentrations of Pb and Ni in the samples. The increase in Pb application rate in soil resulted in a decrease in dry matter yield of plant roots and above-ground biomass, according to the findings. Pb accumulation was also found in significant amounts in roots and above-ground biomass. Pb was accumulated in greater quantities in the spinach roots than in the above-ground biomass. Pb uptake in spinach roots and above-ground biomass decreased when high dose of Ni was applied. The Ni application in spinach crop had a negative impact on various parameters of Pb uptake, including translocation factor, bioconcentration factor, translocation efficiency, and crop removal of Pb. Pb toxicity was reduced when higher doses of Ni (100 to 300 mg/kg) were applied to Pb-contaminated soil. The findings of this study could help researchers better understand how Pb and Ni interact, as well as how to treat soil that has been contaminated by industrial wastewater containing nickel and lead.
Collapse
Affiliation(s)
- Mohan Lal Dotaniya
- ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, 462 038, India.
- ICAR-Directorate of Rapeseed-Mustard Research, Sewar, Bharatpur, 321 303, India.
| | - Jaypal Singh Pipalde
- ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, 462 038, India
- Department of Soil Science & Agricultural Chemistry, RAK College of Agriculture, Sehore, 466 001, India
| | - Ramesh Chandra Jain
- Department of Soil Science & Agricultural Chemistry, RAK College of Agriculture, Sehore, 466 001, India
| | - Rajendiran Selladurai
- ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, 462 038, India
- Division of Natural Resources, ICAR-Indian Institute of Horticultural Research, Bangalore, 560 089, India
| | - Subhash Chandra Gupta
- Department of Soil Science & Agricultural Chemistry, RAK College of Agriculture, Sehore, 466 001, India
| | - Madhav Das Vyas
- Department of Agronomy, RAK College of Agriculture, 466 001, Sehore, India
| | - M Vassanda Coumar
- ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, 462 038, India
| | - Sonalika Sahoo
- ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, 462 038, India
- Division of Soil Resource Studies, National Bureau of Soil Survey and Land Use Planning, Nagpur, 440 033, India
| | - Jayanta Kumar Saha
- ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, 462 038, India
| | - Ajay Kumar
- ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, 462 038, India
| |
Collapse
|
35
|
Babu S, Singh R, Yadav D, Rathore SS, Raj R, Avasthe R, Yadav SK, Das A, Yadav V, Yadav B, Shekhawat K, Upadhyay PK, Yadav DK, Singh VK. Nanofertilizers for agricultural and environmental sustainability. CHEMOSPHERE 2022; 292:133451. [PMID: 34973251 DOI: 10.1016/j.chemosphere.2021.133451] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/02/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Indiscriminate use of chemical fertilizers in the agricultural production systems to keep pace with the food and nutritional demand of the galloping population had an adverse impact on ecosystem services and environmental quality. Hence, an alternative mechanism is to be developed to enhance farm production and environmental sustainability. A nanohybrid construct like nanofertilizers (NFs) is an excellent alternative to overcome the negative impact of traditional chemical fertilizers. The NFs provide smart nutrient delivery to the plants and proves their efficacy in terms of crop productivity and environmental sustainability over bulky chemical fertilizers. Plants can absorb NFs by foliage or roots depending upon the application methods and properties of the particles. NFs enhance the biotic and abiotic stresses tolerance in plants. It reduces the production cost and mitigates the environmental footprint. Multitude benefits of the NFs open new vistas towards sustainable agriculture and climate change mitigation. Although supra-optimal doses of NFs have a detrimental effect on crop growth, soil health, and environmental outcomes. The extensive release of NFs into the environment and food chain may pose a risk to human health, hence, need careful assessment. Thus, a thorough review on the role of different NFs and their impact on crop growth, productivity, soil, and environmental quality is required, which would be helpful for the research of sustainable agriculture.
Collapse
Affiliation(s)
- Subhash Babu
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Raghavendra Singh
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208 024, India
| | - Devideen Yadav
- ICAR- Indian Institute of Soil & Water Conservation, Dehradun, Uttarakhand, 248 195, India
| | - Sanjay Singh Rathore
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | - Rishi Raj
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Ravikant Avasthe
- ICAR Research Complex for North Eastern Hill Region, Sikkim Centre, Sikkim, 737 102, India
| | - S K Yadav
- ICAR- Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh, 226 002, India
| | - Anup Das
- ICAR Research Complex for North Eastern Hill Region, Tripura Centre, Tripura, 799 210, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Brijesh Yadav
- ICAR-Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh, 173213, India
| | - Kapila Shekhawat
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - P K Upadhyay
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Dinesh Kumar Yadav
- ICAR- Indian Institute of Soil Science, Bhopal, Madhya Pradesh, 462038, India
| | - Vinod K Singh
- ICAR-Central Research Institute on Dryland Agriculture, Hyderabad, Telangana, 500 059, India
| |
Collapse
|
36
|
Scartazza A, Di Baccio D, Mariotti L, Bettarini I, Selvi F, Pazzagli L, Colzi I, Gonnelli C. Photosynthesizing while hyperaccumulating nickel: Insights from the genus Odontarrhena (Brassicaceae). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 176:9-20. [PMID: 35182963 DOI: 10.1016/j.plaphy.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Nickel-induced changes in photosynthetic activity were investigated in three Ni-hyperaccumulating Odontarrhena species with increasing Ni tolerance and accumulation capacity, O. muralis, O. moravensis, and O. chalcidica. Plantlets were grown in hydroponics at increasing NiSO4 concentrations (0, 0.25, and 1 mM) for one week, and the effects of Ni on growth, metal accumulation, photosynthesis, and nitrogen (N) allocation to components of the photosynthetic apparatus were analysed. Nickel treatments in O. chalcidica, and O. moravensis to a lesser extent, increased not only the photochemical efficiency of photosystem II (PSII) and the CO2 assimilation rate, but also CO2 diffusion from the atmosphere to the carboxylation sites. These two species displayed a specific increase and/or rearrangement of the photosynthetic pigments and a higher leaf N allocation to the photosynthetic components in the presence of the metal. Odontarrhena muralis displayed a decrease in photosynthetic performance at the lowest Ni concentration due to a combination of both stomatal and non-stomatal limitations. Our data represent the first complete investigation of the effects of Ni on the photosynthetic machinery in Ni hyperaccumulating plants. Our findings clearly indicate a stimulatory, hormetic-like, effect of the metal on both biophysics and biochemistry of photosynthesis in the species with the highest hyperaccumulation capacity.
Collapse
Affiliation(s)
- Andrea Scartazza
- Research Institute on Terrestrial Ecosystems, National Research Council, via Moruzzi 1, I-56124, Pisa, Italy.
| | - Daniela Di Baccio
- Research Institute on Terrestrial Ecosystems, National Research Council, via Moruzzi 1, I-56124, Pisa, Italy.
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, via Mariscoglio 34, I-56124, Pisa, Italy.
| | - Isabella Bettarini
- Department of Biology, University of Florence, via Micheli 1, I-50121, Firenze, Italy.
| | - Federico Selvi
- Department of Agriculture, Food, Environment and Forest Sciences, Laboratories of Botany, Università degli Studi di Firenze, P. le Cascine 28, I-50144, Firenze, Italy.
| | - Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, I-50134, Firenze, Italy.
| | - Ilaria Colzi
- Department of Biology, University of Florence, via Micheli 1, I-50121, Firenze, Italy.
| | - Cristina Gonnelli
- Department of Biology, University of Florence, via Micheli 1, I-50121, Firenze, Italy.
| |
Collapse
|
37
|
Naheed N, Abbas G, Naeem MA, Hussain M, Shabbir R, Alamri S, Siddiqui MH, Mumtaz MZ. Nickel tolerance and phytoremediation potential of quinoa are modulated under salinity: multivariate comparison of physiological and biochemical attributes. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1409-1424. [PMID: 34988723 DOI: 10.1007/s10653-021-01165-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Soils salinization along with heavy metals contamination is among the serious environmental menaces. The present experiment was conducted to study the combined influence of salinity and nickel (Ni) on growth and physiological attributes of quinoa (Chenopodium quinoa Willd.). Thirty-day-old healthy and uniform seedlings of quinoa genotype A7 were exposed to different concentrations of Ni (0, 100, 200, 400 µM), NaCl (0, 150, 300 mM) and their combinations for three weeks. Results indicated that plant growth, pigments and stomatal conductance decreased with increasing Ni concentrations in nutrient solution. Combining lower level of salt (150 mM NaCl) with Ni resulted in improvement in growth and physiological attributes of quinoa. However, the combined application of higher level of salt (300 mM NaCl) with Ni was more detrimental for plant growth and caused more oxidative stress (H2O2 and TBARS) than the alone treatments. The oxidative stress was mitigated by 5.5-fold, 5-fold and 15-fold increase in the activities of SOD, CAT and APX, respectively. The concentration of Na was increased, while K and Ni decreased under the combined treatment of Ni and salinity. Multivariate analysis revealed that a moderate level of salinity had positive effects on growth and Ni phytoremediation potential of quinoa. The higher tolerance index, bioconcentration factor and lower translocation factor depicted that quinoa genotype A7 can be cultivated for phytostabilization of Ni under salinity stress. It was concluded that NaCl salinity level of 150 mM is promising for increasing growth of quinoa on Ni contaminated soils.
Collapse
Affiliation(s)
- Naila Naheed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Munawar Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Rahat Shabbir
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Main Campus Lahore, Lahore, 54000, Pakistan
| |
Collapse
|
38
|
Roccotiello E, Nicosia E, Pierdonà L, Marescotti P, Ciardiello MA, Giangrieco I, Mari A, Zennaro D, Dozza D, Brancucci M, Mariotti M. Tomato (Solanum lycopersicum L.) accumulation and allergenicity in response to nickel stress. Sci Rep 2022; 12:5432. [PMID: 35361841 PMCID: PMC8971441 DOI: 10.1038/s41598-022-09107-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Vegetables represent a major source of Ni exposure. Environmental contamination and cultural practices can increase Ni amount in tomato posing significant risk for human health. This work assesses the tomato (Solanum lycopersicum L.) response to Ni on the agronomic yield of fruits and the related production of allergens. Two cultivars were grown in pots amended with Ni 0, 30, 60, 120, and 300 mg kg−1, respectively. XRF and ICP-MS analyses highlighted the direct increase of fruit Ni content compared to soil Ni, maintaining a stable biomass. Leaf water content increased at Ni 300 mg kg−1. Total protein content and individual allergenic components were investigated using biochemical (RP-HPLC and N-terminal amino acid sequencing) and immunological (inhibition tests of IgE binding by SPHIAa assay on the FABER testing system) methodologies. Ni affected the fruit tissue concentration of pathogenesis-related proteins and relevant allergens (LTP, profilin, Bet v 1-like protein and TLP). This study elucidates for the first time that tomato reacts to exogenous Ni, uptaking the metal while changing its allergenic profiles, with potential double increasing of exposure risks for consumers. This evidence highlighted the importance of adequate choice of low-Ni tomato cultivars and practices to reduce Ni uptake by potentially contaminated matrices.
Collapse
Affiliation(s)
- Enrica Roccotiello
- Department of Earth Environment and Life Sciences (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132, Genoa, Italy.
| | - Elena Nicosia
- Regione Liguria, Dipartimento Salute e Servizi Sociali, Settore Tutela della Salute negli Ambienti di Vita e di Lavoro Via Fieschi 17, Piano U8, 16121, Genoa, Italy
| | - Lorenzo Pierdonà
- Department of Agroenvironmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16500, Prague, Czech Republic
| | - Pietro Marescotti
- Department of Earth Environment and Life Sciences (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132, Genoa, Italy
| | | | - Ivana Giangrieco
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy.,Allergy Data Laboratories (ADL), Latina, Italy
| | - Adriano Mari
- Allergy Data Laboratories (ADL), Latina, Italy.,Associated Centers for Molecular Allergology (CAAM), Rome, Italy
| | - Danila Zennaro
- Allergy Data Laboratories (ADL), Latina, Italy.,Associated Centers for Molecular Allergology (CAAM), Rome, Italy
| | - Denise Dozza
- IREN Laboratori S.P.a, Via SS. Giacomo E Filippo 7, 16122, Genoa, Italy
| | | | - Mauro Mariotti
- Department of Earth Environment and Life Sciences (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132, Genoa, Italy
| |
Collapse
|
39
|
Dassié EP, Gourves PY, Cipolloni O, Pascal PY, Baudrimont M. First assessment of Atlantic open ocean Sargassum spp. metal and metalloid concentrations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17606-17616. [PMID: 34671906 DOI: 10.1007/s11356-021-17047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Over the last decade, increasing proliferations of Atlantic Sargassum populations have led to massive beaching with disastrous environmental consequences. This study is a preliminary assessment of open ocean Sargassum spp. element concentration to assess their potential contribution on coastal ecosystems. Sargassum spp. samples from seven sites, collected along a transect from the center of the Atlantic Ocean to near the coast of Martinique (French West Indies), were analyzed to determine their potential metal and metalloid enrichment. Mean element concentrations from the Sargassum spp. samples were ranked in the following descending order: As > Fe > Mn > Al > Zn > V > Ni > Cu > Cr > Cd > Hg. Element concentrations are relatively low compared to previous results of beached Sargassum spp. except for As that need to be carefully considered before reusing Sargassum spp.
Collapse
Affiliation(s)
| | | | - Océanne Cipolloni
- UMR7205: Institut de Systématique, Évolution, Biodiversité, ISYEB, UMR 7205, Université Des Antilles, Équipe Biologie de la mangrove, UFR SEN, 97100, Pointe-à-Pitre, France
| | - Pierre-Yves Pascal
- UMR7205: Institut de Systématique, Évolution, Biodiversité, ISYEB, UMR 7205, Université Des Antilles, Équipe Biologie de la mangrove, UFR SEN, 97100, Pointe-à-Pitre, France
| | | |
Collapse
|
40
|
Sanjosé I, Muñoz-Rodríguez AF, Ruiz F, Navarro F, Sánchez-Gullón E, Nieva FJJ, Polo A, Infante MD, Castillo JM. Metal effects on germination and seedling development in closely-related halophyte species inhabiting different elevations along the intertidal gradient. MARINE POLLUTION BULLETIN 2022; 175:113375. [PMID: 35101744 DOI: 10.1016/j.marpolbul.2022.113375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Seed germination and seedling establishment are very sensitive plant stages to metal pollution. Many halophyte species colonizing salt marshes are able to germinate and establish in highly contaminated habitats and low marsh halophyte species seem to show higher tolerance to metals than high marsh species. We analyzed the effects of copper, zinc and nickel in concentrations up to 2000 μM on seed germination and seedling growth in two closely related species of Sarcocornia, S. perennis, a low marsh species, and S. fruticosa, a high marsh species. Germination of both halophytes was not affected by any metal concentration, and their seedling growth, mainly radicle length, was reduced by increasing metal concentrations. Seedlings of S. perennis showed higher tolerance to the three metals than those of S. fruticosa. Our results are useful for designing ecotoxicological bioassays and planning phytoremediation projects in salt marshes.
Collapse
Affiliation(s)
- Israel Sanjosé
- Departamento de Ciencias Integradas, Fuerzas Armadas Ave., Campus El Carmen, Universidad de Huelva, 21071 Huelva, Spain
| | - Adolfo F Muñoz-Rodríguez
- Departamento de Ciencias Integradas, Fuerzas Armadas Ave., Campus El Carmen, Universidad de Huelva, 21071 Huelva, Spain
| | - Francisco Ruiz
- Departamento de Ciencias de la Tierra, Fuerzas Armadas Ave., Campus El Carmen, Universidad de Huelva, 21071 Huelva, Spain
| | - Francisco Navarro
- Departamento de Ciencias Integradas, Fuerzas Armadas Ave., Campus El Carmen, Universidad de Huelva, 21071 Huelva, Spain
| | - Enrique Sánchez-Gullón
- Paraje Natural Marismas del Odiel, Ctra. del Dique Juan Carlos I, Apdo. 720, Huelva, Spain
| | - Francisco J J Nieva
- Departamento de Ciencias Integradas, Fuerzas Armadas Ave., Campus El Carmen, Universidad de Huelva, 21071 Huelva, Spain
| | - Alejandro Polo
- Departamento de Ciencias Integradas, Fuerzas Armadas Ave., Campus El Carmen, Universidad de Huelva, 21071 Huelva, Spain
| | - María D Infante
- Departamento de Ciencias Integradas, Fuerzas Armadas Ave., Campus El Carmen, Universidad de Huelva, 21071 Huelva, Spain
| | - Jesús M Castillo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Ap. 1095, 41080 Sevilla, Spain.
| |
Collapse
|
41
|
Oláh V, Hepp A, Irfan M, Mészáros I. Chlorophyll Fluorescence Imaging-Based Duckweed Phenotyping to Assess Acute Phytotoxic Effects. PLANTS (BASEL, SWITZERLAND) 2021; 10:2763. [PMID: 34961232 PMCID: PMC8707530 DOI: 10.3390/plants10122763] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 06/12/2023]
Abstract
Duckweeds (Lemnaceae species) are extensively used models in ecotoxicology, and chlorophyll fluorescence imaging offers a sensitive and high throughput platform for phytotoxicity assays with these tiny plants. However, the vast number of potentially applicable chlorophyll fluorescence-based test endpoints makes comparison and generalization of results hard among different studies. The present study aimed to jointly measure and compare the sensitivity of various chlorophyll fluorescence parameters in Spirodela polyrhiza (giant duckweed) plants exposed to nickel, chromate (hexavalent chromium) and sodium chloride for 72 h, respectively. The photochemistry of Photosystem II in both dark- and light-adapted states of plants was assessed via in vivo chlorophyll fluorescence imaging method. Our results indicated that the studied parameters responded with very divergent sensitivity, highlighting the importance of parallelly assessing several chlorophyll fluorescence parameters. Generally, the light-adapted parameters were more sensitive than the dark-adapted ones. Thus, the former ones might be the preferred endpoints in phytotoxicity assays. Fv/Fm, i.e., the most extensively reported parameter literature-wise, proved to be the least sensitive endpoint; therefore, future studies might also consider reporting Fv/Fo, as its more responsive analogue. The tested toxicants induced different trends in the basic chlorophyll fluorescence parameters and, at least partly, in relative proportions of different quenching processes, suggesting that a basic distinction of water pollutants with different modes of action might be achievable by this method. We found definite hormetic patterns in responses to several endpoints. Hormesis occurred in the concentration ranges where the applied toxicants resulted in strong growth inhibition in longer-term exposures of the same duckweed clone in previous studies. These findings indicate that changes in the photochemical efficiency of plants do not necessarily go hand in hand with growth responses, and care should be taken when one exclusively interprets chlorophyll fluorescence-based endpoints as general proxies for phytotoxic effects.
Collapse
Affiliation(s)
- Viktor Oláh
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (A.H.); (M.I.); (I.M.)
| | | | | | | |
Collapse
|
42
|
Kumar PS, Gayathri R, Rathi BS. A review on adsorptive separation of toxic metals from aquatic system using biochar produced from agro-waste. CHEMOSPHERE 2021; 285:131438. [PMID: 34252804 DOI: 10.1016/j.chemosphere.2021.131438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Water is a basic and significant asset for living beings. Water assets are progressively diminishing due to huge populace development, industrial activities, urbanization and rural exercises. Few heavy metals include zinc, copper, lead, nickel, cadmium and so forth can easily transfer into the water system either direct or indirect activities of electroplating, mining, tannery, painting, fertilizer industries and so forth. The different treatment techniques have been utilized to eliminate the heavy metals from aquatic system, which includes coagulation/flocculation, precipitation, membrane filtration, oxidation, flotation, ion exchange, photo catalysis and adsorption. The adsorption technique is a better option than other techniques because it can eliminate heavy metals even at lower metal ions concentration, simplicity and better regeneration behavior. Agricultural wastes are low-cost biosorbent and typically containing cellulose have the ability to absorb a variety of contaminants. It is important to note that almost all agro wastes are no longer used in their original form but are instead processed in a variety of techniques to improve the adsorption capacity of the substance. The wide range of adsorption capacities for agro waste materials were observed and almost more than 99% removal of toxic pollutants from aquatic systems were achieved using modified agro-waste materials. The present review aims at the water pollution due to heavy metals, as well as various heavy metal removal treatment procedures. The primary objectives of this research is to include an overview of adsorption and various agriculture based adsorbents and its comparison in heavy metal removal.
Collapse
Affiliation(s)
- P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - R Gayathri
- Tamilnadu Pollution Control Board, Guindy, Chennai, 600032, India
| | - B Senthil Rathi
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, 600119, India
| |
Collapse
|
43
|
Oyasowo OT, Ore OT, Durodola SS, Oyebode BA, Inuyomi SO, Aliyu HE, Akeremale OF. Appraisal of Health Risk Assessment of Potentially Toxic Metals in Edible Fruits in Ile-Ife, Nigeria. CHEMISTRY AFRICA 2021. [DOI: 10.1007/s42250-021-00260-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
44
|
Milić D, Bubanja N, Ninkov J, Milić S, Vasin J, Luković J. Phytoremediation potential of the naturally occurring wetland species in protected Long Beach in Ulcinj, Montenegro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:148995. [PMID: 34303239 DOI: 10.1016/j.scitotenv.2021.148995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Long Beach, situated in southern Montenegro, is subject to considerable biogenic and abiogenic influences. Thus, analyzing total heavy metal content in soil and plants in this region is, while challenging, highly important in order to assess the level for determining the soil degradation level and the phytoremediation potential of naturally growing salt marsh species. This area together with a Bojana river and backshore forms a real vegetation mosaic where habitats of various types coexist. Therefore, it represents good model system. In the present study, the levels of As, Al, B, Cd, Co, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb and Zn in coastal soils as well as in eight salt marsh plants: Bolboschoenus maritimus, Juncus acutus, Juncus anceps, Juncus articulatus, Juncus gerardii, Juncus maritimus, Scirpus holoschoenus and Schoenus nigricans, were investigated in order to identify the plant species that can be used for the remediation of polluted sites, especially those located along the coastline. The obtained results show that species J. gerardii, J. articulatus and B. maritimus can be clearly separated from J. acutus, J. anceps, J. maritimus, S. holoschoenus and Sh. nigricans based on the degree of heavy metal accumulation in various organs. Moreover, analyses revealed that the bioaccumulation factor of underground organs is significantly higher relative to that of the aboveground parts for almost all investigated metals and species. The bioaccumulation factor had the highest value in the underground organs of J. gerardii and B. maritimus, where a value of 3.37 was measured for B and 2.54 for Hg, respectively. Hence, as all investigated species are "underground accumulators" for most of the analyzed metals, they could be useful for phytostabilization and phytoremediation of B and Hg in particular. Moreover, each plant species can be used in the phytoremediation process targeting specific heavy metals.
Collapse
Affiliation(s)
- Dubravka Milić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovica 2, Novi Sad 21000, Serbia.
| | - Nada Bubanja
- Natural History Museum of Montenegro, Trg Vojvode Bećir Bega Osmanagića 16, Podgorica, Montenegro.
| | - Jordana Ninkov
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia.
| | - Stanko Milić
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia.
| | - Jovica Vasin
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia.
| | - Jadranka Luković
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovica 2, Novi Sad 21000, Serbia.
| |
Collapse
|
45
|
Rabêlo FHS, Vangronsveld J, Baker AJM, van der Ent A, Alleoni LRF. Are Grasses Really Useful for the Phytoremediation of Potentially Toxic Trace Elements? A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:778275. [PMID: 34917111 PMCID: PMC8670575 DOI: 10.3389/fpls.2021.778275] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/19/2021] [Indexed: 05/27/2023]
Abstract
The pollution of soil, water, and air by potentially toxic trace elements poses risks to environmental and human health. For this reason, many chemical, physical, and biological processes of remediation have been developed to reduce the (available) trace element concentrations in the environment. Among those technologies, phytoremediation is an environmentally friendly in situ and cost-effective approach to remediate sites with low-to-moderate pollution with trace elements. However, not all species have the potential to be used for phytoremediation of trace element-polluted sites due to their morpho-physiological characteristics and low tolerance to toxicity induced by the trace elements. Grasses are prospective candidates due to their high biomass yields, fast growth, adaptations to infertile soils, and successive shoot regrowth after harvest. A large number of studies evaluating the processes related to the uptake, transport, accumulation, and toxicity of trace elements in grasses assessed for phytoremediation have been conducted. The aim of this review is (i) to synthesize the available information on the mechanisms involved in uptake, transport, accumulation, toxicity, and tolerance to trace elements in grasses; (ii) to identify suitable grasses for trace element phytoextraction, phytostabilization, and phytofiltration; (iii) to describe the main strategies used to improve trace element phytoremediation efficiency by grasses; and (iv) to point out the advantages, disadvantages, and perspectives for the use of grasses for phytoremediation of trace element-polluted soils.
Collapse
Affiliation(s)
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Alan J. M. Baker
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Laboratoire Sols et Environnement, Université de Lorraine – INRAE, Nancy, France
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
46
|
Pishchik VN, Filippova PS, Mirskaya GV, Khomyakov YV, Vertebny VE, Dubovitskaya VI, Ostankova YV, Semenov AV, Chakrabarty D, Zuev EV, Chebotar VK. Epiphytic PGPB Bacillus megaterium AFI1 and Paenibacillus nicotianae AFI2 Improve Wheat Growth and Antioxidant Status under Ni Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:2334. [PMID: 34834698 PMCID: PMC8620400 DOI: 10.3390/plants10112334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 06/12/2023]
Abstract
The present study demonstrates the Ni toxicity-ameliorating and growth-promoting abilities of two different bacterial isolates when applied to wheat (Triticum aestivum L.) as the host plant. Two bacterial strains tolerant to Ni stress were isolated from wheat seeds and selected based on their ability to improve the germination of wheat plants; they were identified as Bacillus megaterium AFI1 and Paenibacillus nicotianae AFI2. The protective effects of these epiphytic bacteria against Ni stress were studied in model experiments with two wheat cultivars: Ni stress-tolerant Leningradskaya 6 and susceptible Chinese spring. When these isolates were used as the inoculants applied to Ni-treated wheat plants, the growth parameters and the levels of photosynthetic pigments of the two wheat cultivars both under normal and Ni-stress conditions were increased, though B. megaterium AFI1 had a more pronounced ameliorative effect on the Ni contents in plant tissues due to its synthesis of siderophores. Over the 10 days of Ni exposure, the plant growth promotion bacteria (PGPB) significantly reduced the lipid peroxidation (LPO), ascorbate peroxidase (APX), superoxide dismutase (SOD) activities and proline content in the leaves of both wheat cultivars. The PGPB also increased peroxidase (POX) activity and the levels of chlorophyll a, chlorophyll b, and carotenoids in the wheat leaves. It was concluded that B. megaterium AFI1 is an ideal candidate for bioremediation and wheat growth promotion against Ni-induced oxidative stress, as it increases photosynthetic pigment contents, induces the antioxidant defense system, and lowers Ni metal uptake.
Collapse
Affiliation(s)
- Veronika N. Pishchik
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy, 3, Pushkin, 196608 St. Petersburg, Russia
- Agrophysical Scientific Research Institute, Grazhdansky pr. 14, 195220 St. Petersburg, Russia; (G.V.M.); (Y.V.K.); (V.E.V.); (V.I.D.)
| | - Polina S. Filippova
- St. Petersburg Federal Research Center of the Russian Academy of Sciences, North-West Centre of Interdisciplinary Researches of Problems of Food Maintenance, Podbelskogo hwy, 7, Pushkin, 196608 St. Petersburg, Russia;
| | - Galina V. Mirskaya
- Agrophysical Scientific Research Institute, Grazhdansky pr. 14, 195220 St. Petersburg, Russia; (G.V.M.); (Y.V.K.); (V.E.V.); (V.I.D.)
| | - Yuriy V. Khomyakov
- Agrophysical Scientific Research Institute, Grazhdansky pr. 14, 195220 St. Petersburg, Russia; (G.V.M.); (Y.V.K.); (V.E.V.); (V.I.D.)
| | - Vitaliy E. Vertebny
- Agrophysical Scientific Research Institute, Grazhdansky pr. 14, 195220 St. Petersburg, Russia; (G.V.M.); (Y.V.K.); (V.E.V.); (V.I.D.)
| | - Viktoriya I. Dubovitskaya
- Agrophysical Scientific Research Institute, Grazhdansky pr. 14, 195220 St. Petersburg, Russia; (G.V.M.); (Y.V.K.); (V.E.V.); (V.I.D.)
| | - Yuliya V. Ostankova
- St. Petersburg Pasteur Institute, Federal Service for the Oversight of Consumer Protection and Welfare, 14, Mira Str., 197101 St. Petersburg, Russia;
| | - Aleksandr V. Semenov
- Yekaterinburg Research Institute of Viral Infections, The Federal Budgetary Institution of Science “State Scientific Center of Virology and Biotechnology Vector”, The Federal Service for Supervision of Consumer Rights Protection and Human Well-Being, 23, Letnyay Str., 620030 Yekaterinburg, Russia;
| | - Debasis Chakrabarty
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 22600, India;
| | - Evgeny V. Zuev
- Federal Research Center N. I. Vavilov, All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Str., 42-44, 190000 St. Petersburg, Russia;
| | - Vladimir K. Chebotar
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy, 3, Pushkin, 196608 St. Petersburg, Russia
| |
Collapse
|
47
|
Accumulation and Effect of Heavy Metals on the Germination and Growth of Salsola vermiculata L. Seedlings. DIVERSITY 2021. [DOI: 10.3390/d13110539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The influence of different concentrations of heavy metals (Cu, Mn, Ni, Zn) was analyzed in the Salsola vermiculata germination pattern, seedling development, and accumulation in seedlings. The responses to different metals were dissimilar. Germination was only significantly reduced at Cu and Zn 4000 μM but Zn induced radicle growth at lower concentrations. Without damage, the species acted as a good accumulator and tolerant for Mn, Ni, and Cu. In seedlings, accumulation increased following two patterns: Mn and Ni, induced an arithmetic increase in content in tissue, to the point where the content reached a maximum; with Cu and Ni, the pattern was linear, in which the accumulation in tissue was directly related to the metal concentration in the medium. Compared to other Chenopodiaceae halophyte species, S. vermiculata seems to be more tolerant of metals and is proposed for the phytoremediation of soils contaminated by heavy metals.
Collapse
|
48
|
Managing Micronutrients for Improving Soil Fertility, Health, and Soybean Yield. SUSTAINABILITY 2021. [DOI: 10.3390/su132111766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Plants need only a small quantity of micronutrients, but they are essential for vital cell functions. Critical micronutrients for plant growth and development include iron (Fe), boron (B), manganese (Mn), zinc (Zn), copper (Cu), molybdenum (Mo), chlorine (Cl), and nickel (Ni). The deficiency of one or more micronutrients can greatly affect plant production and quality. To explore the potential for using micronutrients, we reviewed the literature evaluating the effect of micronutrients on soybean production in the U.S. Midwest and beyond. Soil and foliar applications were the major micronutrient application methods. Overall, studies indicated the positive yield response of soybean to micronutrients. However, soybean yield response to micronutrients was not consistent among studies, mainly because of different environmental conditions such as soil type, soil organic matter (SOM), moisture, and temperature. Despite this inconsistency, there has been increased pressure for growers to apply micronutrients to soybeans due to a fact that deficiencies have increased with the increased use of high-yielding cultivars. Further studies on quantification and variable rate application of micronutrients under different soil and environmental conditions are warranted to acquire more knowledge and improve the micronutrient management strategies in soybean. Since the SOM could meet the micronutrient need of many crops, management strategies that increase SOM should be encouraged to ensure nutrient availability and improve soil fertility and health for sustainable soybean production.
Collapse
|
49
|
Newsome L, Falagán C. The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health. GEOHEALTH 2021; 5:e2020GH000380. [PMID: 34632243 PMCID: PMC8490943 DOI: 10.1029/2020gh000380] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 05/13/2023]
Abstract
Mine wastes pollute the environment with metals and metalloids in toxic concentrations, causing problems for humans and wildlife. Microorganisms colonize and inhabit mine wastes, and can influence the environmental mobility of metals through metabolic activity, biogeochemical cycling and detoxification mechanisms. In this article we review the microbiology of the metals and metalloids most commonly associated with mine wastes: arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc. We discuss the molecular mechanisms by which bacteria, archaea, and fungi interact with contaminant metals and the consequences for metal fate in the environment, focusing on long-term field studies of metal-impacted mine wastes where possible. Metal contamination can decrease the efficiency of soil functioning and essential element cycling due to the need for microbes to expend energy to maintain and repair cells. However, microbial communities are able to tolerate and adapt to metal contamination, particularly when the contaminant metals are essential elements that are subject to homeostasis or have a close biochemical analog. Stimulating the development of microbially reducing conditions, for example in constructed wetlands, is beneficial for remediating many metals associated with mine wastes. It has been shown to be effective at low pH, circumneutral and high pH conditions in the laboratory and at pilot field-scale. Further demonstration of this technology at full field-scale is required, as is more research to optimize bioremediation and to investigate combined remediation strategies. Microbial activity has the potential to mitigate the impacts of metal mine wastes, and therefore lessen the impact of this pollution on planetary health.
Collapse
Affiliation(s)
- Laura Newsome
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| | - Carmen Falagán
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| |
Collapse
|
50
|
Akhter N, Aqeel M, Hameed M, Sakit Alhaithloul HA, Alghanem SM, Shahnaz MM, Hashem M, Alamri S, Khalid N, Al-Zoubi OM, Iqbal MF, Masood T, Noman A. Foliar architecture and physio-biochemical plasticity determines survival of Typha domingensis pers. Ecotypes in nickel and salt affected soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117316. [PMID: 33990051 DOI: 10.1016/j.envpol.2021.117316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Six ecotypes of Typha domingensis Pers. Jahlar (E1), Sheikhupura (E2), Sahianwala (E3), Gatwala (E4), Treemu (E5) and Knotti (E6) from different ecological regions were collected to evaluate the leaf anatomical and biochemical attributes under different levels of salinity and nickel stress viz; L0 (control), L1 (100 mM + 50 mg kg-1), L2 (200 mM + 100 mg kg-1) and L3 (300 mM + 150 mg kg-1). Presence of salt and Ni in rooting medium consistently affected growth, anatomical and physio-biochemical attributes in all Typha ecotypes. Discrete anatomical modifications among ecotypes such as reduced leaf thickness, increased parenchyma area, metaxylem cell area, aerenchyma formation and improved metaxylem vessels were recorded with increasing dose of salt and Ni. The minimum anatomical damages were recorded in E1 and E6 ecotypes. In all ecotypes, progressive perturbations in ionic homeostasis (Na+, K+, Cl-, N) due to salt and metal toxicity were evident along with reduction in photosynthetic pigments. Maximum enhancement in Catalase (CAT), Superoxide dismutase (SOD), Peroxidase (POD) and modulated Malondialdehyde (MDA) activity was recorded in E1 and E6 as compared to other ecotypes. Accumulation of large amounts of metabolites such as total soluble sugars, total free amino acids content in Jahlar, Knotti, Treemu and Sahianawala ecotypes under different levels of salt and Ni prevented cellular damages in T. domingensis Pers. The correlation analysis exhibited a close relationship among different levels of salinity and Ni with various plant attributes. PCA-Biplot verified our correlational analysis among various attributes of Typha ecotypes. An obvious separation of Typha characters in response to different salinity and Ni levels was exhibited by PC1. We recommend that genetic potential of T. domingensis Pers. To grow under salt and Ni stresses must be investigated and used for phytoremediation and reclamation of contaminated soil.
Collapse
Affiliation(s)
- Noreen Akhter
- Department of Botany, Government College Women University, Faisalabad, 38000, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| | - Mansoor Hameed
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | | | | | | | - Mohamed Hashem
- Department of Biology, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, 71516, Egypt
| | - Saad Alamri
- Department of Biology, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Noreen Khalid
- Department of Botany, Government College Women University Sialkot, Sialkot, Pakistan
| | | | - Muhammad Faisal Iqbal
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hafei, Anhui, PR China
| | - Tayyaba Masood
- Department of Environmental Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan.
| |
Collapse
|