1
|
Klátyik S, Simon G, Takács E, Oláh M, Zaller JG, Antoniou MN, Benbrook C, Mesnage R, Székács A. Toxicological concerns regarding glyphosate, its formulations, and co-formulants as environmental pollutants: a review of published studies from 2010 to 2025. Arch Toxicol 2025:10.1007/s00204-025-04076-2. [PMID: 40418353 DOI: 10.1007/s00204-025-04076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/07/2025] [Indexed: 05/27/2025]
Abstract
Over the last decade and worldwide, an enormous investment in research and data collection has been made in the hope of better understanding the possible ecological and toxicological impacts triggered by glyphosate (GLY). This broad-spectrum, systemic herbicide became the most heavily applied pesticide ever in the 2000s. It is sprayed in many different ways in both agricultural and non-agricultural settings, resulting in multiple routes of exposure to organisms up and down the tree of life. Yet, relatively little is known about the environmental fate of GLY-based herbicide (GBH) formulations, and even less on how GBH co-formulants alter the absorption, distribution, metabolism, excretion, and toxicity of GLY. The environmental fate of GLY depends on several abiotic and biotic factors. As a result of heavy annual GBH use over several decades, GLY residues are ubiquitous, and sometimes adversely affect non-target terrestrial and aquatic organisms. GLY has become a frequent contaminant in drinking water and food chains. Human exposures have been associated with numerous adverse health outcomes including carcinogenicity, metabolic syndrome, and reproductive and endocrine-system effects. Nonetheless, the existence and magnitude of GLY-induced effects on human health remain in dispute, especially in the case of heavily exposed applicators. A wide range of biochemical/physiological modes of action have been elucidated. Various GBH co-formulants have long been considered as inert ingredients relative to herbicidal activity but clearly contribute to GLY-induced hazards and risk gradients. In light of already-identified toxicological and ecosystem impacts, the intensive research focuses on GLY and GBHs should continue, coupled in the interim with commonsense, low-cost changes in use patterns and label requirements crafted to slow the spread of GLY-resistant weeds and reduce applicator and general-population exposures.
Collapse
Affiliation(s)
- Szandra Klátyik
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1, 2100, Gödöllő, Hungary
| | - Gergely Simon
- Pesticide Action Network Europe, Rue de La Pacification 67, 1000, Brussels, Belgium
| | - Eszter Takács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1, 2100, Gödöllő, Hungary
| | - Marianna Oláh
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1, 2100, Gödöllő, Hungary
| | - Johann G Zaller
- Department of Integrative Biology and Biodiversity Research, Institute of Zoology, University of Natural Resources and Life Sciences Vienna, Gregor Mendel Straße 33, 1180, Vienna, Austria
| | - Michael N Antoniou
- Gene Expression and Therapy Group, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Charles Benbrook
- Benbrook Consulting Services, 10526 SE Vashon Vista Drive, Port Orchard, WA, 98367, USA
| | - Robin Mesnage
- Gene Expression and Therapy Group, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, UK.
- Buchinger Wilhelmi Clinic, Wilhelmi-Beck-Straße 27, 88662, Überlingen, Germany.
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1, 2100, Gödöllő, Hungary.
| |
Collapse
|
2
|
Thiel KL, da Silva J, Wolfarth M, Vanini J, Henriques JAP, de Oliveira IM, da Silva FR. Assessment of cytotoxic and genotoxic effects of glyphosate-based herbicide on glioblastoma cell lines: Role of p53 in cellular response and network analysis. Toxicology 2024; 508:153902. [PMID: 39094917 DOI: 10.1016/j.tox.2024.153902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Glyphosate, the world's most widely used herbicide, has a low toxicity rating despite substantial evidence of adverse health effects. Furthermore, glyphosate-based formulations (GBFs) contain several other chemicals, some of which are known to be harmful. Additionally, chronic, and acute exposure to GBFs among rural workers may lead to health impairments, such as neurodegenerative diseases and cancer. P53 is known as a tumor suppressor protein, acting as a key regulator of the cellular response to stress and DNA damage. Therefore, mutations in the TP53 gene, which encodes p53, are common genetic alterations found in various types of cancer. Therefore, this study aimed to evaluate the cytotoxicity and genotoxicity of GBF in two glioblastoma cell lines: U87MG (TP53-proficient) and U251MG (TP53-mutant). Additionally, the study aimed to identify the main proteins involved in the response to GBF exposure using Systems Biology in a network containing p53 and another network without p53. The MTT assay was used to study the toxicity of GBF in the cell lines, the clonogenic assay was used to investigate cell survival, and the Comet Assay was used for genotoxicity evaluation. For data analysis, bioinformatics tools such as String 12.0 and Stitch 5.0 were applied, serving as a basis for designing binary networks in the Cytoscape 3.10.1 program. From the in vitro test analyses, it was observed a decrease in cell viability at doses starting from 10 ppm. Comet Assay at concentrations of 10 ppm and 30 ppm for the U251MG and U87MG cell lines, respectively observed DNA damage. The network generated with systems biology showed that the presence of p53 is important for the regulation of biological processes involved in genetic stability and neurotoxicity, processes that did not appear in the TP53-mutant network.
Collapse
Affiliation(s)
- Kelly Louise Thiel
- Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, Canoas, RS 92010-000, Brazil
| | - Juliana da Silva
- Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, Canoas, RS 92010-000, Brazil; Laboratory of Genetic Toxicology, Lutheran University of Brazil, Av. Farroupilha 8001, Canoas, RS 92425-900, Brazil.
| | - Micaele Wolfarth
- Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, Canoas, RS 92010-000, Brazil; Laboratory of Genetic Toxicology, Lutheran University of Brazil, Av. Farroupilha 8001, Canoas, RS 92425-900, Brazil
| | - Julia Vanini
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Antonio Pêgas Henriques
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Biotecnologia e em Ciências Médicas, Universidade do Vale do Taquari - UNIVATES, Lajeado, RS, Brazil
| | | | - Fernanda Rabaioli da Silva
- Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, Canoas, RS 92010-000, Brazil.
| |
Collapse
|
3
|
Carvalho APC, Silva HCM, Gomes ALS, Duncan WLP, Mota AJ, Artoni RF, Carvalho-Zilse G, Matoso DA. Effects of trichlorfon on ecotoxicological biomarkers in farmed Colossoma macropomum (tambaqui). BRAZ J BIOL 2024; 84:e281971. [PMID: 38985061 DOI: 10.1590/1519-6984.281971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 07/11/2024] Open
Abstract
Producers of fish have been looking for viable alternatives for the management of Colossoma macropomum (tambaqui) in confinement systems in order to avoid the harm and subsequent losses caused by parasitic diseases. One alternative used by farmers is pesticides, such as trichlorfon, which has a genotoxic effect. Thus, this study aimed to evaluate the changes in gene expression due to the side effects of trichlorfon in tambaqui. Two treatments were used based on LC50-96h of 0.870 mg/L using 30% and 50% trichlorfon with exposure periods of 48, 72 and 96 h. For differential expression of the genes in the liver, real-time PCR was performed for the AChE, GST, CYP2J6, CYP2C8, 18S and GAPDH genes. After 96 h of exposure to trichlorfon, an alteration in the gene expression profile of the antioxidant defense system (GST) of the tambaqui was observed. It was also observed that this organophosphate did not affect the expression of genes related to the isoenzymes that are responsible for the biotransformation of xenobiotics in phase I (2J6 and 2C8) and cholinesterase AChE. It was concluded that the reduction in gene expression of GST suggests a decrease in metabolization capacity in phase II.
Collapse
Affiliation(s)
- A P C Carvalho
- Instituto Nacional de Pesquisas da Amazônia - INPA, Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva - GCBEv, Manaus, AM, Brasil
| | - H C M Silva
- Universidade Estadual de Ponta Grossa - UEPG, Departamento de Biologia Estrutural, Molecular e Genética - DEBIOGEM, Laboratório de Genética e Evolução, Ponta Grossa, PR, Brasil
| | - A L S Gomes
- Universidade Federal do Amazonas - UFAM, Departamento de Parasitologia. Instituto de Ciências Biológica - ICB, Laboratório de Parasitologia de Animais Aquáticos - LAPPA, Manaus, AM, Brasil
| | - W L P Duncan
- Universidade Federal do Amazonas - UFAM, Instituto de Ciências Biológica - ICB, Departamento de Morfologia, Laboratório de Morfologia Funcional - LMF, Manaus, AM, Brasil
| | - A J Mota
- Universidade Federal do Amazonas - UFAM, Faculdade de Ciências Agrárias - FCA, Departamento de Ciências Fundamentais e Desenvolvimento Agrícola - DCFDA, Manaus, AM, Brasil
| | - R F Artoni
- Universidade Estadual de Ponta Grossa - UEPG, Departamento de Biologia Estrutural, Molecular e Genética - DEBIOGEM, Laboratório de Genética e Evolução, Ponta Grossa, PR, Brasil
| | - G Carvalho-Zilse
- Instituto Nacional de Pesquisas da Amazônia - INPA, Coordenação de Biodiversidade, Grupo de Pesquisas em Abelhas - GPA, Manaus, AM, Brasil
| | - D A Matoso
- Universidade Federal do Amazonas - UFAM, Instituto de Ciências Biológicas - ICB, Departamento de Genética, Laboratório de Biotecnologia e Citogenômica Animal - LACA, Manaus, AM, Brasil
| |
Collapse
|
4
|
Oestreicher N, Bourdineaud JP, Vélot C. Mutagenic effects of a commercial glyphosate-based herbicide formulation on the soil filamentous fungus Aspergillus nidulans depending on the mode of exposure. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 892:503708. [PMID: 37973298 DOI: 10.1016/j.mrgentox.2023.503708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Glyphosate-based herbicides (GBH) are the most used pesticides worldwide. This widespread dissemination raises the question of non-target effects on a wide range of organisms, including soil micro-organisms. Despite a large body of scientific studies reporting the harmful effects of GBHs, the health and environmental safety of glyphosate and its commercial formulations remains controversial. In particular, contradictory results have been obtained on the possible genotoxicity of these herbicides depending on the organisms or biological systems tested, the modes and durations of exposure and the sensitivity of the detection technique used. We previously showed that the well-characterized soil filamentous fungus Aspergillus nidulans was highly affected by a commercial GBH formulation containing 450 g/L of glyphosate (R450), even when used at doses far below the agricultural application rate. In the present study, we analysed the possible mutagenicity of R450 in A. nidulans by screening for specific mutants after different modes of exposure to the herbicide. R450 was found to exert a mutagenic effect only after repeated exposure during growth on agar-medium, and depending on the metabolic status of the tested strain. The nature of some mutants and their ability to tolerate the herbicide better than did the wild-type strain suggested that their emergence may reflect an adaptive response of the fungus to offset the herbicide effects. The use of a non-selective molecular approach, the quantitative random amplified polymorphic DNA (RAPD-qPCR), showed that R450 could also exert a mutagenic effect after a one-shot overnight exposure during growth in liquid culture. However, this effect was subtle and no longer detectable when the fungus had previously been repeatedly exposed to the herbicide on a solid medium. This indicated an elevation of the sensitivity threshold of A. nidulans to the R450 mutagenicity, and thus confirmed the adaptive capacity of the fungus to the herbicide.
Collapse
Affiliation(s)
- Nathalie Oestreicher
- Laboratory VEAC, University Paris-Saclay, Faculty of Sciences, Bât. 350, Avenue Jean Perrin, 91405 Orsay, France
| | - Jean-Paul Bourdineaud
- University of Bordeaux, CNRS, UMR 5234, Laboratory of Fundamental Microbiology and Pathogenicity, European Institute of Chemistry and Biology, Bordeaux, France
| | - Christian Vélot
- Laboratory VEAC, University Paris-Saclay, Faculty of Sciences, Bât. 350, Avenue Jean Perrin, 91405 Orsay, France.
| |
Collapse
|
5
|
Faria JMDL, Guimarães LN, Silva VCD, Lima ECDO, Sabóia-Morais SMTD. Recovery trend to co-exposure of iron oxide nanoparticles (γ-Fe 2O 3) and glyphosate in liver tissue of the fish Poecilia reticulata. CHEMOSPHERE 2021; 282:130993. [PMID: 34118627 DOI: 10.1016/j.chemosphere.2021.130993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Citrate-coated iron oxide nanoparticles (IONPs) have potential use in environmental remediation, with possibilities in decontaminating aquatic environments exposed to toxic substances. This study analyzed IONPs associated to Roundup Original, a glyphosate-based herbicide (GBH), and pure glyphosate (GLY), through ultrastructural and histopathological biomarkers in liver tissue, from females of Poecilia reticulata exposed to: iron ions (0.3 mg/L) (IFe) and IONPs (0.3 mgFe/L) associated with GLY (0.65 mg/L) and GBH (0.65 mgGLY/L (IONP + GBH1) and 1.30 mgGLY/L (IONP + GBH2)) for a period of 7, 14 and 21 days, followed by an equal post-exposure period only in reconstituted water. For the assays, the synthetized IONPs had crystalline and rounded shape with an average diameter of 2,90 nm, hydrodynamic diameter 66,6 mV, zeta potential -55,4 and diffraction profile of maghemite (γ-Fe2O3). The data obtained by biomarkers indicated a high inflammatory response in all treatments. These same parameters, considered during the post-exposure period indicated recovery in reaction patterns of circulatory disturbances and regressive changes, resulting in average reductions of 37,53 points in IFe, 21 points in IONP + GBH1, 15 points in IONP + GBH2 and 11 points in IONP + GLY in total histopathological index of liver after 21 days post-exposure. However, although the cellular and tissue responses were significant, there was no change in the condition factor and hepatosomatic index, denoting resilience of the experimental model.
Collapse
Affiliation(s)
- João Marcos de Lima Faria
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lucas Nunes Guimarães
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Victória Costa da Silva
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | | |
Collapse
|
6
|
Rabelo JCS, Hanusch AL, de Jesus LWO, Mesquita LA, Franco FC, Silva RA, Sabóia-Morais SMT. DNA damage induced by cylindrospermopsin on different tissues of the biomonitor fish Poecilia reticulata. ENVIRONMENTAL TOXICOLOGY 2021; 36:1125-1134. [PMID: 33576126 DOI: 10.1002/tox.23111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The cyanotoxin cylindrospermopsin (CYN) is the second biggest cause of poisoning worldwide, both in humans and animals. Although CYN primarily affects the aquatic environments and can be absorbed in fishes by multiple routes, data reporting its toxicity and mechanism of action are still scarce in this group. Using P. reticulata as model species, it was evaluated whether CYN promotes mutagenic and genotoxic effects in different fish target tissues. Adult females were exposed in a static way to 0 (control), 0.5, 1.0, and 1.5 μg L-1 of pure CYN for 24 and 96 hours. For the first time, DNA damage was detected in fish brain after CYN exposition. In brain cells, a concentration-response DNA damage was observed for both exposure times, suggesting a direct or indirect action of CYN in neurotoxicity. For the liver cells, 96 hours caused an increase in DNA damage, as well the highest percentage of DNA in the tail was reached when used 1.5 μg L-1 of CYN. In peripheral blood cells, an increase in DNA damage was observed for all tested concentrations after 96 hours. In erythrocytes, micronuclei frequency was higher at 1.5 μg L-1 treatment while the erythrocyte nuclear abnormalities (ENA) frequency was significantly higher even at the lowest CYN concentration. Such data demonstrated that acute exposition to CYN promotes genotoxicity in the brain, liver, and blood cells of P. reticulata, as well mutagenicity in erythrocytes. It rises an alert regarding to the toxic effects of CYN for aquatic organisms as well as for human health.
Collapse
Affiliation(s)
- Jéssica C S Rabelo
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Alex L Hanusch
- Laboratory of Radiobiology and Mutagenesis, Department of Genetic, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Lázaro Wender O de Jesus
- Laboratory of Applied Animal Morphophysiology, Histology and Embryology Section, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Brazil
| | - Lorena A Mesquita
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Fernanda C Franco
- Laboratory of Mutagenicity, Department of Genetic, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Raquel A Silva
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Simone M T Sabóia-Morais
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
7
|
Trigueiro NSDS, Gonçalves BB, Dias FC, de Oliveira Lima EC, Rocha TL, Sabóia-Morais SMT. Co-exposure of iron oxide nanoparticles and glyphosate-based herbicide induces DNA damage and mutagenic effects in the guppy (Poecilia reticulata). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103521. [PMID: 33132197 DOI: 10.1016/j.etap.2020.103521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/24/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Iron oxide nanoparticles (IONPs) have been tested to remediate aquatic environments polluted by chemicals, such as pesticides. However, their interactive effects on aquatic organisms remain unknown. This study aimed to investigate the genotoxicity and mutagenicity of co-exposure of IONPs (γ-Fe2O3 NPs) and glyphosate-based herbicide (GBH) in the fish Poecilia reticulata. Thus, fish were exposed to citrate-functionalized γ-Fe2O3 NPs (0.3 mg L-1; 5.44 nm) alone or co-exposed to γ-Fe2O3 NPs (0.3 mg L-1) and GBH (65 and 130 μg of glyphosate L-1) during 14 and 21 days. The genotoxicity (DNA damage) was analyzed by comet assay, while the mutagenicity evaluated by micronucleus test (MN test) and erythrocyte nuclear abnormalities (ENA) frequency. The co-exposure induced clastogenic (DNA damage) and aneugenic (nuclear alterations) effects on guppies in a time-dependent pattern. Fish co-exposed to NPs and GBH (130 μg glyphosate L-1) showed high DNA damage when compared to NPs alone and control group, indicating synergic effects after 21 days of exposure. However, mutagenic effects (ENA) were observed in the exposure groups after 14 and 21 days. Results showed the potential genotoxic and mutagenic effects of maghemite NPs and GBH co-exposure to freshwater fish. The transformation and interaction of iron oxide nanoparticles with other pollutants, as herbicides, in the aquatic systems are critical factors in the environmental risk assessment of metal-based NPs.
Collapse
Affiliation(s)
- Nicholas Silvestre de Souza Trigueiro
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Bruno Bastos Gonçalves
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| | - Simone Maria Teixeira Sabóia-Morais
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
8
|
Moraes JS, da Silva Nornberg BF, Castro MRD, Vaz BDS, Mizuschima CW, Marins LFF, Martins CDMG. Zebrafish (Danio rerio) ability to activate ABCC transporters after exposure to glyphosate and its formulation Roundup Transorb®. CHEMOSPHERE 2020; 248:125959. [PMID: 32035379 DOI: 10.1016/j.chemosphere.2020.125959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
The emergent demand for food production has increased the widespread use of pesticides, especially glyphosate-based herbicides as they can protect different types of crops, especially transgenic ones. Molecules of glyphosate have been found in water bodies around the world, and its presence can cause negative effects on non-target organisms, such as fish. Glyphosate toxicity appears to be systemic in fish but does not affect their organs equally. Also, its formulations can be more toxic than pure glyphosate. In this sense, we investigated if these variations in toxicity could be related to ATP binding cassette subfamily C (ABCC) transporters and the cellular detoxification capacity, following exposure to herbicides. Thus, adults of Danio rerio were exposed (24 and 96 h) to glyphosate and Roundup Transorb® (RT) at an environmental concentration of 0.1 mg/L, and the activity of ABCC proteins and gene expression of five isoforms of ABCC were analyzed. Glyphosate and RT exposure increased ABCC protein activity and gene expression up to 3-fold when compared to controls, indicating the activation of detoxification mechanisms. Only in the brain of D. rerio, the exposure to RT did not stimulate the activity of ABCC proteins, neither the expression of genes abcc1 and abcc4 that responded to the exposure to pure glyphosate. These results may suggest that the brain is more sensitive to RT than the other target-tissues since the mechanism of detoxification via ABCC transporters were not activated in this tissue as it was in the other.
Collapse
Affiliation(s)
- Jenifer Silveira Moraes
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| | - Bruna Félix da Silva Nornberg
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| | - Micheli Rosa de Castro
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| | - Bernardo Dos Santos Vaz
- Instituto Federal Sul - Rio - Grandense, Campus Pelotas. Praça Vinte de Setembro, Centro, 96015-360, Pelotas, RS, Brazil.
| | - Catiúscia Weinert Mizuschima
- Instituto Federal Sul - Rio - Grandense, Campus Pelotas. Praça Vinte de Setembro, Centro, 96015-360, Pelotas, RS, Brazil.
| | - Luis Fernando Fernandes Marins
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil; Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| | - Camila de Martinez Gaspar Martins
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil; Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Laboratório de Biologia Molecular, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
9
|
Almeida SDS, Rocha TL, Qualhato G, Oliveira LDAR, Amaral CLD, Conceição ECD, Sabóia-Morais SMTD, Bailão EFLC. Acute exposure to environmentally relevant concentrations of benzophenone-3 induced genotoxicity in Poecilia reticulata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105293. [PMID: 31522060 DOI: 10.1016/j.aquatox.2019.105293] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The organic UV filter benzophenone-3 (BP-3), widely used in the commercial formulations of sunscreens and personal care products, is considered an emerging pollutant and has been associated with several human and environmental health concerns. However, knowledge about their mode of action and ecotoxicity on aquatic biota is scarce. In this scenario, the objective of this work was to evaluate the genotoxic, mutagenic, and erythrotoxicity effects of BP-3 in the guppy Poecilia reticulata after acute exposure. Adult females of P. reticulata were exposed to three non-lethal and environmentally relevant concentrations of BP-3 (10, 100, and 1000 ng L-1) during 96 h of exposure, and the somatic parameter [Fulton condition factor (K)], genotoxicity (comet assay), mutagenicity [micronucleus (MN) and erythrocyte nuclear abnormalities (ENA) tests] and erythrotoxicity parameters (such as total cell area and nucleus-cytoplasmic ratio) were analyzed. Results showed that the general physiological condition (K value) of fish was not affected by acute exposure to BP-3. However, BP-3 induced DNA damage at 100 and 1000 ng L-1 and increased the frequency of total ENA at 1000 ng L-1, specially lobed nucleus, when compared to control group, indicating its genotoxic and mutagenic effects. Furthermore, the BP-3 did not induce significant changes in the total cell area and nucleus-cytoplasmic ratio. In summary, results showed that the BP-3 at environmentally relevant concentration was genotoxic to freshwater fish P. reticulata, confirming its environmental risk.
Collapse
Affiliation(s)
- Sara Dos Santos Almeida
- Laboratório de Biotecnologia, Câmpus Henrique Santillo, Universidade Estadual de Goiás, Anápolis, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Gabriel Qualhato
- Laboratório de Comportamento Celular, Departamento de Morfologia, Instituto de Ciências Biológicos, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Leandra de Almeida Ribeiro Oliveira
- Laboratório de Biotecnologia, Câmpus Henrique Santillo, Universidade Estadual de Goiás, Anápolis, Goiás, Brazil; Laboratório de PD&I de Bioprodutos, Universidade Federal de Goiás, Faculdade de Farmácia, Goiânia, Goiás, Brazil
| | - Cátia Lira do Amaral
- Laboratório de Biotecnologia, Câmpus Henrique Santillo, Universidade Estadual de Goiás, Anápolis, Goiás, Brazil
| | | | - Simone Maria Teixeira de Sabóia-Morais
- Laboratório de Comportamento Celular, Departamento de Morfologia, Instituto de Ciências Biológicos, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | |
Collapse
|
10
|
Gajski G, Žegura B, Ladeira C, Novak M, Sramkova M, Pourrut B, Del Bo' C, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales - (Part 2 Vertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:130-164. [PMID: 31416573 DOI: 10.1016/j.mrrev.2019.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
Abstract
The comet assay has become one of the methods of choice for the evaluation and measurement of DNA damage. It is sensitive, quick to perform and relatively affordable for the evaluation of DNA damage and repair at the level of individual cells. The comet assay can be applied to virtually any cell type derived from different organs and tissues. Even though the comet assay is predominantly used on human cells, the application of the assay for the evaluation of DNA damage in yeast, plant and animal cells is also quite high, especially in terms of biomonitoring. The present extensive overview on the usage of the comet assay in animal models will cover both terrestrial and water environments. The first part of the review was focused on studies describing the comet assay applied in invertebrates. The second part of the review, (Part 2) will discuss the application of the comet assay in vertebrates covering cyclostomata, fishes, amphibians, reptiles, birds and mammals, in addition to chordates that are regarded as a transitional form towards vertebrates. Besides numerous vertebrate species, the assay is also performed on a range of cells, which includes blood, liver, kidney, brain, gill, bone marrow and sperm cells. These cells are readily used for the evaluation of a wide spectrum of genotoxic agents both in vitro and in vivo. Moreover, the use of vertebrate models and their role in environmental biomonitoring will also be discussed as well as the comparison of the use of the comet assay in vertebrate and human models in line with ethical principles. Although the comet assay in vertebrates is most commonly used in laboratory animals such as mice, rats and lately zebrafish, this paper will only briefly review its use regarding laboratory animal models and rather give special emphasis to the increasing usage of the assay in domestic and wildlife animals as well as in various ecotoxicological studies.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Carina Ladeira
- H&TRC - Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal; Centro de Investigação e Estudos em Saúde de Publica, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Monika Sramkova
- Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bertrand Pourrut
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Cristian Del Bo'
- DeFENS-Division of Human Nutrition, University of Milan, Milan, Italy
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Solange Costa
- Environmental Health Department, National Health Institute Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry-MILK, NILU - Norwegian Institute for Air Research, Kjeller, Norway
| | - Gunnar Brunborg
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo, Norway
| | - Andrew Collins
- Department of Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Albañil Sánchez JA, da Costa Klosterhoff M, Romano LA, De Martinez Gaspar Martins C. Histological evaluation of vital organs of the livebearer Jenynsia multidentata (Jenyns, 1842) exposed to glyphosate: A comparative analysis of Roundup ® formulations. CHEMOSPHERE 2019; 217:914-924. [PMID: 30471482 DOI: 10.1016/j.chemosphere.2018.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Roundup formulations are herbicides whose active principle is glyphosate. However, these formulations are potentially more toxic to non-target organisms than pure glyphosate. This study aimed to evaluate and compare the toxic potential of the Roundup formulations through histological alterations in fish. Thus, males and females of the neotropical fish species Jenynsia multidentata (Jenyns, 1842) were exposed for 24 or 96 h to the Roundup Original® (RO), Roundup Transorb® (RT) or Roundup WG® (RWG) formulations, at a fixed concentration of 0.5 mg/L of glyphosate. This concentration is close to the maximum glyphosate limits found in the environment and is non-lethal to J. multidentata. The three formulations caused histological damage to the liver, gills and brain of J. multidentata, which increased over the exposure time. Differences in the histological alterations between females and males were observed in the liver and brain. Females were more tolerant to RO and RT than RWG. Males did not exhibit these differences in sensitiveness with formulations. The RWG caused more damage in the liver and gills and RT in the brain. Overall, there were differences in the toxicity of RO, RT and RWG and the toxic effect was presented through histological damage, reinforcing the usefulness of histological biomarkers for Roundup® toxicity. The comparison of the toxic potential of glyphosate-based herbicides is important because it could give support to the governmental organizations to set protective rules for the water ecosystems and human health, as well as to reduce the use of highly toxic formulations in agriculture.
Collapse
Affiliation(s)
- Jessica Andrea Albañil Sánchez
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil
| | - Marta da Costa Klosterhoff
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil
| | - Luis Alberto Romano
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil
| | - Camila De Martinez Gaspar Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
12
|
de Vasconcelos Lima M, de Siqueira WN, Silva HAMF, de Melo Lima Filho J, de França EJ, de Albuquerque Melo AMM. Cytotoxic and genotoxic effect of oxyfluorfen on hemocytes of Biomphalaria glabrata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3350-3356. [PMID: 30506409 DOI: 10.1007/s11356-018-3848-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Chemicals released from anthropogenic activities such as industry and agriculture often end up in aquatic ecosystems. These substances can cause serious damage to these ecosystems, thus threatening the conservation of biodiversity. Among these substances are pesticides, such as oxyfluorfen, a herbicide used for the control of grasses and weeds. Considering its widespread use, it is important to investigate the possible toxicity of this compound to aquatic organisms, especially invertebrates. Hence, the use of biological systems able to detect such effects is of great importance. The mollusk Biomphalaria glabrata has been shown to be useful as an environmental indicator to assess the potential ecological effects of physical and chemical stressors in freshwater environments. The present study sought to detect mutagenic changes in hemocytes of B. glabrata exposed to oxyfluorfen. To perform these tests, this study used ten animals per group, exposed acutely (48 h) and chronically (15 days) to oxyfluorfen. The herbicide concentrations were 0.125, 0.25, and 0.5 mg/L. The results showed that oxyfluorfen induced significant frequencies of micronuclei, binucleated cells, and apoptosis in hemocytes of mollusks when compared to the control group. Unlike chronic exposure, acute exposure was dose-dependent. The present study's results demonstrate the cytotoxic and genotoxic effects of oxyfluorfen on hemocytes of B. glabrata.
Collapse
Affiliation(s)
- Maíra de Vasconcelos Lima
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, 50740-545, Brazil
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil
| | - Williams Nascimento de Siqueira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, 50740-545, Brazil.
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil.
| | - Hianna Arely Milca Fagundes Silva
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil
| | - José de Melo Lima Filho
- Grupo de Dosimetria Numérica, Instituto Federal de Educação Ciência e Tecnologia de Pernambuco, Recife, Pernambuco, 50740-540, Brazil
| | - Elvis Joacir de França
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, 50740-545, Brazil
| | - Ana Maria Mendonça de Albuquerque Melo
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil
| |
Collapse
|
13
|
Qualhato G, Rocha TL, de Oliveira Lima EC, E Silva DM, Cardoso JR, Koppe Grisolia C, de Sabóia-Morais SMT. Genotoxic and mutagenic assessment of iron oxide (maghemite-γ-Fe 2O 3) nanoparticle in the guppy Poecilia reticulata. CHEMOSPHERE 2017; 183:305-314. [PMID: 28551207 DOI: 10.1016/j.chemosphere.2017.05.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
The environmental risk of nanomaterials (NMs) designed and used in nanoremediation process is of emerging concern, but their ecotoxic effects to aquatic organism remains unclear. In this study, the citrate-coated (maghemite) nanoparticles (IONPs) were synthesized and its genotoxic and mutagenic effects were investigated in the female guppy Poecilia reticulata. Fish were exposed to IONPs at environmentally relevant iron concentration (0.3 mg L-1) during 21 days and the animals were collected at the beginning of the experiment and after 3, 7, 14 and 21 days of exposure. The genotoxicity and mutagenicity were evaluated in terms of DNA damage (comet assay), micronucleus (MN) test and erythrocyte nuclear abnormalities (ENA) frequency. Results showed differential genotoxic and mutagenic effects of IONPs in the P. reticulata according to exposure time. The IONP induced DNA damage in P. reticulata after acute (3 and 7 days) and long-term exposure (14 and 21 days), while the mutagenic effects were observed only after long-term exposure. The DNA damage and the total ENA frequency increase linearly over the exposure time, indicating a higher induction rate of clastogenic and aneugenic effects in P. reticulata erythrocytes after long-term exposure to IONPs. Results indicated that the P. reticulata erythrocytes are target of ecotoxicity of IONPs.
Collapse
Affiliation(s)
- Gabriel Qualhato
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil; Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| | | | - Daniela Melo E Silva
- Laboratory of Genotoxicity, Department of Genetic and Evolution, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Júlio Roquete Cardoso
- Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Cesar Koppe Grisolia
- Biological Sciences Institute, University of Brasília, Brasília, Distrito Federal, Brazil
| | | |
Collapse
|
14
|
Antunes AM, Rocha TL, Pires FS, de Freitas MA, Leite VRMC, Arana S, Moreira PC, Sabóia-Morais SMT. Gender-specific histopathological response in guppies Poecilia reticulata exposed to glyphosate or its metabolite aminomethylphosphonic acid. J Appl Toxicol 2017; 37:1098-1107. [PMID: 28425566 DOI: 10.1002/jat.3461] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/11/2017] [Accepted: 02/03/2017] [Indexed: 11/11/2022]
Abstract
Ecotoxicity of glyphosate (GLY) and its metabolite aminomethylphosphonic acid (AMPA) was investigated in guppies, Poecilia reticulata. We tested the effects of these chemicals on the gills and liver of both male and female guppies using qualitative and quantitative histopathological analyses associated with histopathological condition indexes. Both genders showed similar median lethal concentration (LC50 ) at 96 h for GLY (68.78 and 70.87 mg l-1 ) and AMPA (180 and 164.32 mg l-1 ). However, the histopathological assessment of both fish organs exposed to sublethal concentrations of GLY (35 mg l-1 ) and AMPA (82 mg l-1 ) for 96 h showed a tissue- and gender-specific histopathological response. In both exposure assays, fish presented mainly progressive changes, such as proliferation of the interlamellar epithelium, partial and total fusion of secondary lamellae. The liver showed mainly regressive changes, such as steatosis, pyknotic nuclei and high distribution of collagen fibers. Unusually large hepatocytes as degenerated cells were also detected. Histopathological changes in gills were similar for the males and females, but the liver response was different between the genders. The hepatic inflammatory changes were more common in males. The increase in the area of hepatocyte vacuoles is gender dependent with higher values in the male compared to the female guppies exposed to GLY and AMPA. Multiparametric analysis indicated that the male guppies are more sensitive than females, particularly in the presence of AMPA. Our study shows that the histopathological assessment associated with gender-specific response can be successfully used in ecotoxicological assessment of GLY and the metabolite AMPA. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Adriana Maria Antunes
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Fernando Santiago Pires
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Meire Alves de Freitas
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Vanessa Rafaela Milhomem Cruz Leite
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Sarah Arana
- Laboratório de Histofisiologia e Histopatologia Experimental em Animais Ectotérmicos, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970, Campinas, SP, Brazil
| | - Paulo César Moreira
- Department of Morphology, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Simone Maria Teixeira Sabóia-Morais
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
15
|
de Brito Rodrigues L, de Oliveira R, Abe FR, Brito LB, Moura DS, Valadares MC, Grisolia CK, de Oliveira DP, de Oliveira GAR. Ecotoxicological assessment of glyphosate-based herbicides: Effects on different organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1755-1763. [PMID: 27517480 DOI: 10.1002/etc.3580] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/11/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
Glyphosate-based herbicides are the most commonly used worldwide because they are effective and relatively nontoxic to nontarget species. Unlimited and uncontrolled use of such pesticides can have serious consequences for human health and ecological balance. The present study evaluated the acute toxicity and genotoxicity of 2 glyphosate-based formulations, Roundup Original (Roundup) and Glyphosate AKB 480 (AKB), on different organisms: cucumber (Cucumis sativus), lettuce (Lactuca sativa), and tomato (Lycopersicon esculentum) seeds, and microcrustacean Artemia salina and zebrafish (Danio rerio) early life stages. For the germination endpoint, only L. esculentum presented significant sensitivity to AKB and L. sativa to Roundup, whereas both formulations significantly inhibited the root growth of all species tested. Both AKB and Roundup induced significant toxicity to A. salina; both are classified as category 3, which indicates a hazard for the aquatic environment, according to criteria of the Globally Harmonized Classification System. However, Roundup was more toxic than AKB, with 48-h median lethal concentration (LC50) values of 14.19 mg/L and 37.53 mg/L, respectively. For the embryo-larval toxicity test, Roundup proved more toxic than AKB for the mortality endpoint (96-h LC50 values of 10.17 mg/L and 27.13 mg/L, respectively), whereas for the hatching parameter, AKB was more toxic than Roundup. No significant genotoxicity to zebrafish larvae was found. We concluded that AKB and Roundup glyphosate-based formulations are phytotoxic and induce toxic effects in nontarget organisms such as A. salina and zebrafish early life stages. Environ Toxicol Chem 2017;36:1755-1763. © 2016 SETAC.
Collapse
Affiliation(s)
| | - Rhaul de Oliveira
- Biological Sciences Institute, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Flávia Renata Abe
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lara Barroso Brito
- Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Diego Sousa Moura
- Biological Sciences Institute, University of Brasília, Brasília, Distrito Federal, Brazil
| | | | - Cesar Koppe Grisolia
- Biological Sciences Institute, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Danielle Palma de Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
16
|
Dos Santos APR, Rocha TL, Borges CL, Bailão AM, de Almeida Soares CM, de Sabóia-Morais SMT. A glyphosate-based herbicide induces histomorphological and protein expression changes in the liver of the female guppy Poecilia reticulata. CHEMOSPHERE 2017; 168:933-943. [PMID: 27836263 DOI: 10.1016/j.chemosphere.2016.10.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Glyphosate-based herbicides (GBH) are among the most common herbicides found in aquatic systems, but limited data are available about their mode of action and hepatotoxicity in fish. This study investigated the hepatotoxicity induced by GBH in the guppy Poecilia reticulata using a histopathological assessment associated with a proteomic approach. Guppies were exposed to GBH for 24 h at 1.8 mg of glyphosate L-1, corresponding to 50% of the LC50, 96 h. The results indicate that the GBH at 1.8 mg of glyphosate L-1 induce the development of hepatic damage in P. reticulata, which is exposure-time dependent. The histopathological indexes demonstrate that GBH cause inflammatory, regressive, vascular and progressive disorders in the liver of guppies. Using 2D gel electrophoresis associated with mass spectrometry, 18 proteins that changed by GBH were identified and were related to the cellular structure, motility and transport, energy metabolism and apoptosis. The results show that the acute exposure to GBH causes hepatic histopathological damage related to protein expression profile changes in P. reticulata, indicating that a histopathological assessment associated with a proteomic analysis provides a valuable approach to assess the toxic effects of GBH in sentinel fish species.
Collapse
Affiliation(s)
- Ana Paula Rezende Dos Santos
- Laboratory of Cellular Behavior, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Cellular Behavior, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil; CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Clayton Luiz Borges
- Laboratory of Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Alexandre Melo Bailão
- Laboratory of Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | | |
Collapse
|
17
|
Braz-Mota S, Sadauskas-Henrique H, Duarte RM, Val AL, Almeida-Val VMF. Roundup® exposure promotes gills and liver impairments, DNA damage and inhibition of brain cholinergic activity in the Amazon teleost fish Colossoma macropomum. CHEMOSPHERE 2015; 135:53-60. [PMID: 25898390 DOI: 10.1016/j.chemosphere.2015.03.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
Roundup Original® (RD) is a glyphosate-based herbicide used to control weeds in agriculture. Contamination of Amazon waters has increased as a consequence of anthropogenic pressure, including the use of herbicides as RD. The central goal of this study was to evaluate the toxic effects of RD on juveniles of tambaqui (Colossoma macropomum). Our findings show that biomarkers in tambaqui are organ specific and dependent on RD concentration. Alterations in gills structural and respiratory epithelium were followed by changes in hematological parameters such as concentration of hemoglobin, particularly in fish exposed to the higher concentration tested (75% of RD LC50 96 h). In addition, both RD concentrations affected the biotransformation process in gills of tambaqui negatively. Instead, liver responses suggest that a production of reactive oxygen species (ROS) occurred in fish exposed to RD, particularly in the animals exposed to 75% RD, as seen by imbalances in biotransformation and antioxidant systems. The increased DNA damage observed in red blood cells of tambaqui exposed to RD is in agreement with this hypothesis. Finally, both tested sub-lethal concentrations of RD markedly inhibited the cholinesterase activity in fish brain. Thus, we can suggest that RD is potentially toxic to tambaqui and possibly to other tropical fish species.
Collapse
Affiliation(s)
- Susana Braz-Mota
- Brazilian National Institute for Research in the Amazon, Laboratory of Ecophysiology and Molecular Evolution, Ave André Araújo, 2936 Aleixo, 69083-000 Manaus, AM, Brazil.
| | - Helen Sadauskas-Henrique
- Brazilian National Institute for Research in the Amazon, Laboratory of Ecophysiology and Molecular Evolution, Ave André Araújo, 2936 Aleixo, 69083-000 Manaus, AM, Brazil
| | - Rafael M Duarte
- Brazilian National Institute for Research in the Amazon, Laboratory of Ecophysiology and Molecular Evolution, Ave André Araújo, 2936 Aleixo, 69083-000 Manaus, AM, Brazil
| | - Adalberto L Val
- Brazilian National Institute for Research in the Amazon, Laboratory of Ecophysiology and Molecular Evolution, Ave André Araújo, 2936 Aleixo, 69083-000 Manaus, AM, Brazil
| | - Vera M F Almeida-Val
- Brazilian National Institute for Research in the Amazon, Laboratory of Ecophysiology and Molecular Evolution, Ave André Araújo, 2936 Aleixo, 69083-000 Manaus, AM, Brazil; Aquaculture Graduate Program, University of Nilton Lins/INPA, Av. Nilton Lins, Manaus, AM, Brazil
| |
Collapse
|
18
|
Pereira BB, de Campos Júnior EO. Enzymatic Alterations and Genotoxic Effects Produced by Sublethal Concentrations of Organophosphorous Temephos in Poecilia reticulata. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:1033-1037. [PMID: 26252754 DOI: 10.1080/15287394.2015.1050566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
The responses of biochemical and genetic parameters were evaluated in tissues of Poecilia reticulata exposed to sublethal and environmentally relevant concentrations of 0.005, 0.01, or 0.02 mg/L of the organophosphorous (OP) pesticide temephos (TE) for 168 h. Activities of enzymes brain acetylcholinesterase (AChE) and liver carboxylesterase (CbE) were determined. Nuclear abnormalities (NA) and micronucleus (MN) frequency in gill erythrocytes were also measured. No mortality was observed over the experimental period; however, brain AChE activities were decreased significantly in guppies in all TE treatment groups after 72 h of exposure. Hepatic CbE activities of fish were increased in all TE treatment groups at 96, 120, and 144 h of exposure. The frequencies of MN and NA in fish gill erythrocytes displayed a marked rise after 168 h of exposure to concentrations of 0.01 or 0.02 mg/L TE. Thus, determination of these parameters may be employed as potential indices of exposure to TE using this sentinel organism for monitorining.
Collapse
Affiliation(s)
- Boscolli Barbosa Pereira
- a Department of Environmental Health, Laboratory of Environmental Health , Federal University of Uberlândia, Santa Mônica Campus , Uberlândia , Minas Gerais , Brazil
| | - Edimar Olegário de Campos Júnior
- b Department of Genetics and Biochemistry, Laboratory of Cytogenetics and Mutagenesis , Federal University of Uberlândia, Umuarama Campus , Uberlândia , Minas Gerais , Brazil
| |
Collapse
|
19
|
Rocha TL, Santos APRD, Yamada ÁT, Soares CMDA, Borges CL, Bailão AM, Sabóia-Morais SMT. Proteomic and histopathological response in the gills of Poecilia reticulata exposed to glyphosate-based herbicide. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:175-86. [PMID: 26141659 DOI: 10.1016/j.etap.2015.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/21/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Glyphosate-based herbicides (GBH) are one of the most used herbicide nowadays, whilst there is growing concern over their impact on aquatic environment. Since data about the early proteomic response and toxic mechanisms of GBH in fish is very limited, the aim of this study was to investigate the early toxicity of GBH in the gills of guppies Poecilia reticulata using a proteomic approach associated with histopathological index. Median lethal concentration (LC50,96 h) was determined and LC50,96h values of guppies exposed to GBH were 3.6 ± 0.4 mg GLIL(-1). Using two-dimensional gel electrophoresis associated with mass spectrometry, 14 proteins regulated by GBH were identified, which are involved in different cell processes, as energy metabolism, regulation and maintenance of cytoskeleton, nucleic acid metabolism and stress response. Guppies exposed to GBH at 1.82 mg GLIL(-1) showed time-dependent histopathological response in different epithelial and muscle cell types. The histopathological indexes indicate that GBH cause regressive, vascular and progressive disorders in the gills of guppies. This study helped to unravel the molecular and tissue mechanisms associated with GBH toxicity, which are potential biomarkers for biomonitoring water pollution by herbicides.
Collapse
Affiliation(s)
- Thiago Lopes Rocha
- Laboratório de Comportamento Celular, Departamento de Morfologia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Ana Paula Rezende Dos Santos
- Laboratório de Comportamento Celular, Departamento de Morfologia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Áureo Tatsumi Yamada
- Laboratório de Citoquímica e Imunocitoquímica, Departamento de Histologia e Embriologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | |
Collapse
|
20
|
Ribeiro DL, Barcelos GRM, d'Arce LPG. Genotoxic effects of water from São Francisco River, Brazil, in Astyanax paranae. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 93:274-279. [PMID: 24849712 DOI: 10.1007/s00128-014-1291-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
Aquatic monitoring is an important tool for identifying potential compounds in rivers that may damage the environment. Here, we evaluate the potential genotoxic effects of water samples from São Francisco River (Brazil) using the micronuclei (MN) assay in resident species, Astyanax paranae. Four seasonal collections occurred between the years 2009 and 2010, at three locations between two nearby cities in the region. It was clearly observed an increase of MN frequency in fish caught in the river. This result is most likely due to the sewage contamination from the treatment plant, the waste pesticides from crops and the lack of riparian vegetation along the river, especially during the winter when there was a significant increase in the frequencies of MN. These results indicate that compounds in waters from São Francisco River may have genotoxic effects and consequently, cause damage to the environment as well as to human health.
Collapse
Affiliation(s)
- Diego Luis Ribeiro
- Center of Biological Sciences and Health, College of Biological Sciences, State University of West of Paraná, Rua Universitária, 2069, Cascavel, Paraná, CEP 85819-110, Brazil
| | | | | |
Collapse
|