1
|
Gupta M, Kumar S, Dwivedi V, Gupta DG, Ali D, Alarifi S, Patel A, Yadav VK. Selective synergistic effects of oxalic acid and salicylic acid in enhancing amino acid levels and alleviating lead stress in Zea mays L. PLANT SIGNALING & BEHAVIOR 2024; 19:2400451. [PMID: 39235999 PMCID: PMC11382712 DOI: 10.1080/15592324.2024.2400451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Lead is one of the major environmental pollutants which is highly toxic to plants and living beings. The current investigation thoroughly evaluated the synergistic effects of oxalic acid (OA) and salicylic acid (SA) on Zea mays L. plants subjected to varying durations (15, 30, 30, and 45 days) of lead (Pb) stress. Besides, the effects of oxalic acid (OA) combined with salicylic acid (SA) for different amino acids at various periods of Pb stress were also investigated on Zea mays L. The soil was treated with lead nitrate Pb (NO3)2 (0.5 mM) to induce Pb stress while the stressed plants were further treated using oxalic acid (25 mg/L), salicylic acid (25 mg/L), and their combination OA + SA (25 mg/L each). Measurements of protein content, malondialdehyde (MDA) levels, guaiacol peroxidase (GPOX) activity, catalase (CAT) activity, GSH content, and Pb concentration in maize leaves were done during this study. MDA levels increased by 71% under Pb stress, while protein content decreased by 56%, GSH content by 35%, and CAT activity by 46%. After treatment with SA, OA, and OA+SA, there was a significant reversal of these damages, with the OA+SA combination showing the highest improvement. Specifically, OA+SA treatment led to a 45% increase in protein content and a 39% reduction in MDA levels compared to Pb treatment alone. Moreover, amino acid concentrations increased by 68% under the Pb+OA+SA treatment, reflecting the most significant recovery (p < 0.0001).
Collapse
Affiliation(s)
- Minoti Gupta
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Chandigarh, India
| | - Swatantar Kumar
- Department of Biotechnology Engineering & Food Technology, University Institute of Engineering, Chandigarh University, Chandigarh, India
| | - Vinay Dwivedi
- Amity Institute of Biotechnology, Amity University, Gwalior, India
| | - Dikshat Gopal Gupta
- Department of Urology & Pathology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Virendra Kumar Yadav
- Department of Microbiology, Faculty of Sciences, Marwadi University Research Center, Marwadi University, Rajkot, India
| |
Collapse
|
2
|
Yurkevich M, Kurbatov A, Ikkonen E. Effect of Secondary Paper Sludge on Physiological Traits of Lactuca sativa L. under Heavy-Metal Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1098. [PMID: 38674506 PMCID: PMC11053480 DOI: 10.3390/plants13081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
To eliminate the negative effect of soil contamination with heavy metals on plant growth and crop yield, different methods and techniques are the subject of discussion and study. In this study, we aimed to evaluate the effect of secondary pulp and paper-mill sludge application to soil on the response of the main physiological processes such as the growth, photosynthesis, and respiration of lettuce (Lactuca sativa L.) plants to soil contamination with Pb. For the pot experiment, Pb was added to sandy loam soil at concentrations of 0, 50, and 250 mg Pb(NO3)2 per kg of the soil, and secondary sludge was added to a 0, 20, or 40% sludge solution during each plant watering. The Pb-mediated change in plant biomass allocation, decrease in the photosynthetic rate, increase in leaf respiration rate, and the degree of light inhibition of respiration were closely associated with increases in both root and shoot Pb content. For the Pb-free soil condition, secondary sludge application contributed to the allocation of plant biomass towards a greater accumulation in the shoots than in the roots. Although stomatal opening was not affected by either Pb or sludge, sludge application increased photosynthetic CO2 assimilation regardless of soil Pb content, which was associated with an increase in the electron-transport rate and carboxylase activity of Rubisco. Soil contamination with Pb significantly increased the ratio of respiration to photosynthesis, reflecting a shift in the carbon balance toward carbon losses in the leaves, but sludge application modified the coupling between the processes with a decrease in the proportion of respiratory carbon losses. The sludge-mediated recovery of the physiological processes of L. sativa reflected an increase in plant tolerance to soil contamination with heavy metals, the formation of which is associated with plant and soil adjustments initiated by secondary sludge application.
Collapse
Affiliation(s)
| | | | - Elena Ikkonen
- Institute of Biology of the Karelian Research Centre, Russian Academy of Sciences, 185910 Petrozavodsk, Russia; (M.Y.); (A.K.)
| |
Collapse
|
3
|
Huang S, Tan C, Cao X, Yang J, Xing Q, Tu C. Impacts of simulated atmospheric cadmium deposition on the physiological response and cadmium accumulation of Sedum plumbizincicola. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16413-16425. [PMID: 38315335 DOI: 10.1007/s11356-024-31928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Atmospheric cadmium (Cd) deposition contributes to the accumulation of Cd in the soil-plant system. Sedum plumbizincicola is a Cd and Zn hyperaccumulator commonly used for the phytoremediation of Cd-contaminated soil. However, studies on the effects of atmospheric Cd deposition on the accumulation of Cd and physiological response in S. plumbizincicola are still limited. A Cd solution spraying pot experiment was conducted with S. plumbizincicola at three atmospheric Cd deposition concentrations (4, 8, and 12 mg/L). Each Cd concentration levels was divided into two groups, non-mulching (foliar-root uptake) and mulching (foliar uptake). The soil type used in the experiment was reddish clayey soil collected from a farmland. The results showed that compared with the non-mulching control, the fresh weight of S. plumbizincicola in non-mulching with high atmospheric Cd deposition (12 mg/L) increased by 11.35%. Compared with those in the control group, the malondialdehyde (MDA) content in the non-mulching and mulching S. plumbizincicola groups increased by 0.88-11.06 nmol/L and 0.96-1.32 nmol/L, respectively. Compared with those in the non-Cd-treated control group, the shoot Cd content in the mulching group significantly increased by 11.09-180.51 mg/kg. Under high Cd depositions, the Cd in S. plumbizincicola mainly originated from the air and was stored in the shoots (39.7-158.5%). These findings highlight that the physiological response and Cd accumulation of S. plumbizincicola were mainly affected by high Cd deposition and suggest that atmospheric Cd could directly be absorbed by S. plumbizincicola. The effect of atmospheric deposition on S. plumbizincicola cannot be ignored.
Collapse
Affiliation(s)
- Shuopei Huang
- College of Geographical Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Changyin Tan
- College of Geographical Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Xueying Cao
- Rural Vitalization Research Institute, Changsha University, Changsha, 410022, People's Republic of China
| | - Jia Yang
- College of Geographical Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Qianwen Xing
- College of Geographical Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Chen Tu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| |
Collapse
|
4
|
Yang Y, Liao J, Chen Y, Tian Y, Chen Q, Gao S, Luo Z, Yu X, Lei T, Jiang M. Efficiency of heterogeneous chelating agents on the phytoremediation potential and growth of Sasa argenteostriata (Regel) E.G. Camus on Pb-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113603. [PMID: 35551046 DOI: 10.1016/j.ecoenv.2022.113603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/23/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Ethylenediaminetetraacetic acid (EDTA) is one of the most effective chelating agents for enhancing lead (Pb) accumulation in various plant organs. However, it has a higher risk of causing secondary pollution than other chelating agents. To reduce such environmental risks and increase remediation efficiency, EDTA can be combined with degradable chelating agents for use in phytoremediation, but there are few reports on the combination of EDTA and nitrilotriacetic acid (NTA). This study evaluated the effects of combined EDTA and NTA application at different concentrations (900, 1200, or 1500 mg/kg) and with different methods (1 application or 3 applications) on dwarf bamboo (Sasa argenteostriata (Regel) E.G. Camus) growth and phytoremediation efficiency and on the soil environment in pot experiments with Pb-contaminated soil. Applying EDTA and NTA together resulted in lower soil water-soluble Pb concentrations than applying EDTA alone and therefore resulted in lower environmental risk. The increased availability of soil Pb produced a stress response in the dwarf bamboo plants, which increased their biomass significantly. Moreover, under the chelating treatments, the soil Pb availability increased, which promoted Pb translocation in plants. The Pb content in the aerial parts of the dwarf bamboo increased significantly in all treatments (translocation factors increased by 300~1500% compared with that in CK). The Pb content increase in the aerial parts caused high proline accumulation in dwarf bamboo leaves, to alleviate Pb toxicity. Maximum Pb accumulation was observed in the EN1500 treatment, which was significantly higher than that in the other treatments except the EN900 treatment. This study elucidates the choice of remediation techniques and the physiological characteristics of the plants used in such studies. In conclusion, the EN900 treatment resulted in the lowest environmental risk, greatest biomass production, and highest phytoremediation efficiency of all treatments, indicating that it has great potential for application in phytoremediation with dwarf bamboo in Pb-contaminated soil.
Collapse
Affiliation(s)
- Yixiong Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Jiarong Liao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Yahui Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Yuan Tian
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Zhenghua Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
5
|
Zhang H, Qin Y, Huang K, Zhan F, Li R, Chen J. Root Metabolite Differences in Two Maize Varieties Under Lead (Pb) Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:656074. [PMID: 34887879 PMCID: PMC8649664 DOI: 10.3389/fpls.2021.656074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
To assess root metabolic differences of maize varieties in their response to lead (Pb) stress, the lead-tolerant variety Huidan No. 4 and the lead-sensitive variety Ludan No. 8 were tested under Pb-free and Pb-stressed conditions. Changes in metabolites were measured using ultra-performance liquid chromatography-mass spectrometry. Pb stress changed the levels of the amino acids proline, glutamine, lysine, and arginine in both varieties, whereas glutamate and phenylalanine levels changed only in Huidan No. 4. Pb stress altered cystine, valine, methionine, and tryptophan levels only in Ludan No. 8. Therefore, the synthesis and decomposition of amino acids may affect the response of maize to Pb stress. The degree of change in differential metabolites for Huidan No. 4 was greater than that for Ludan No. 8. In cell wall subcellular components, increases in superoxide dismutase (SOD), peroxidases (PODs), and Pb concentrations were greater in Huidan No. 4 than in Ludan No. 8. Therefore, the greater Pb tolerance of Huidan No. 4 could be due to better sequestration of Pb in cell walls and more effective removal of reactive oxygen species (ROS) from the plant. The levels of certain metabolites only increased in Ludan No. 8, indicating that Pb-sensitive varieties may use different metabolic pathways to cope with Pb stress. Both varieties showed increased levels of some metabolites related to antioxidant protection and osmotic regulation. This study provides an understanding of maize Pb tolerance mechanisms and a basis for further development of tools for use in maize breeding.
Collapse
Affiliation(s)
- Hanqian Zhang
- College of Resource and Environment, Yunnan Agricultural University, Kunming, China
| | - Yuying Qin
- College of Resource and Environment, Yunnan Agricultural University, Kunming, China
| | - Kai Huang
- College of Resource and Environment, Yunnan Agricultural University, Kunming, China
| | - Fangdong Zhan
- College of Resource and Environment, Yunnan Agricultural University, Kunming, China
| | - Ru Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jianjun Chen
- College of Resource and Environment, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
6
|
Kaur G, Sharma P, Rathee S, Singh HP, Batish DR, Kohli RK. Salicylic acid pre-treatment modulates Pb 2+-induced DNA damage vis-à-vis oxidative stress in Allium cepa roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51989-52000. [PMID: 33999323 DOI: 10.1007/s11356-021-14151-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The current study investigated the putative role of salicylic acid (SA) in modulating Pb2+-induced DNA and oxidative damage in Allium cepa roots. Pb2+ exposure enhanced free radical generation and reduced DNA integrity and antioxidant machinery after 24 h; however, SA pre-treatment (for 24 h) ameliorated Pb2+ toxicity. Pb2+ exposure led to an increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) accumulation and enhanced superoxide radical and hydroxyl radical levels. SA improved the efficiency of enzymatic antioxidants (ascorbate and guaiacol peroxidases [APX, GPX], superoxide dismutases [SOD], and catalases [CAT]) at 50-μM Pb2+ concentration. However, SA pre-treatment could not improve the efficiency of CAT and APX at 500 μM of Pb2+ treatment. Elevated levels of ascorbate and glutathione were observed in A. cepa roots pre-treated with SA and exposed to 50 μM Pb2+ treatment, except for oxidized glutathione. Nuclear membrane integrity test demonstrated the ameliorating effect of SA by reducing the number of dark blue-stained nuclei as compared to Pb2+ alone treatments. SA was successful in reducing DNA damage in cell exposed to higher concentration of Pb2+ (500 μM) as observed through comet assay. The study concludes that SA played a major role in enhancing defense mechanism and protecting against DNA damage by acclimatizing the plant to Pb2+-induced toxicity.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
- Agriculture Victoria, AgriBio, The Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| | - Daizy Rani Batish
- Department of Botany, Panjab University, Chandigarh, 160 014, India.
| | | |
Collapse
|
7
|
Angulo-Bejarano PI, Puente-Rivera J, Cruz-Ortega R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. PLANTS (BASEL, SWITZERLAND) 2021; 10:635. [PMID: 33801570 PMCID: PMC8066251 DOI: 10.3390/plants10040635] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Worldwide, the effects of metal and metalloid toxicity are increasing, mainly due to anthropogenic causes. Soil contamination ranks among the most important factors, since it affects crop yield, and the metals/metalloids can enter the food chain and undergo biomagnification, having concomitant effects on human health and alterations to the environment. Plants have developed complex mechanisms to overcome these biotic and abiotic stresses during evolution. Metals and metalloids exert several effects on plants generated by elements such as Zn, Cu, Al, Pb, Cd, and As, among others. The main strategies involve hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Recent studies in the omics era have increased knowledge on the plant genome and transcriptome plasticity to defend against these stimuli. The aim of the present review is to summarize relevant findings on the mechanisms by which plants take up, accumulate, transport, tolerate, and respond to this metal/metalloid stress. We also address some of the potential applications of biotechnology to improve plant tolerance or increase accumulation.
Collapse
Affiliation(s)
- Paola I. Angulo-Bejarano
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
- School of Engineering and Sciences, Centre of Bioengineering, Tecnologico de Monterrey, Queretaro 21620, Mexico
| | - Jonathan Puente-Rivera
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| | - Rocío Cruz-Ortega
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| |
Collapse
|
8
|
Chen C, Zhang X, Huang H, Bao H, Li X, Cheng Y, Zhang J, Ding Y, Yang Y, Gu H, Xia D. Bi-enzymes treatments attenuate cognitive impairment associated with oxidative damage of heavy metals. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201404. [PMID: 33614079 PMCID: PMC7890482 DOI: 10.1098/rsos.201404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Oxidative stress has been implicated in the pathogenesis of cognitive impairment. Lead (Pb) is a common environmental toxicant and plays a vital role in oxidative stress activation. In this study, a superoxide dismutase (SOD) and catalase (CAT) containing poly (lactic-co-glycolic acid) (PLGA) meso-particles (PLGA@SOD-CAT) were prepared to attenuate cognitive impairment via inhibiting oxidative stress in rats. It was prepared using a double emulsion (water/oil/water phase) technique to minimize the hazardous effects of Pb burden on cognitive impairment. The meso-particles antagonized the Pb-induced cognitive impairments. Behaviour, serum biochemical parameters and biomarkers of oxidative stress in rats were evaluated after they were subjected to intravenous injection with lead nitrate and PLGA@SOD-CAT. Moreover, the potential protective mechanism of PLGA@SOD-CAT was determined. Notably, PLGA@SOD-CAT appreciably agented memory impairment caused by lead nitrate and it could significantly inhibit Pb-induced oxidative stress in the blood. Furthermore, a remarkable reversion effect of cognitive impairments, including escape latency, crossing platform times and time per cent during the platform quadrant, after PLGA@SOD-CAT administration were noted. Therefore, these results suggested that the bi-enzymes platform was a superior product in eliminating Pb-induced cognitive impairments through reducing expression of Pb-associated oxidative stress, and it could potentially be applied in detoxifying heavy metals in blood circulation.
Collapse
Affiliation(s)
- Chao Chen
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Xiaoxin Zhang
- Boao Evergrande International Hospital, Qionghai, Hainan 571400, People's Republic of China
| | - Hao Huang
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Hongyi Bao
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Xiaodong Li
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Ye Cheng
- Xinglin College, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Jing Zhang
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Yin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Yanguang Yang
- Nantong Tumor Hospital, Nantong, Jiangsu 226361, People's Republic of China
| | - Haiying Gu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Donglin Xia
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| |
Collapse
|
9
|
Lead (Pb) bioaccumulation and antioxidative responses in Tetraena qataranse. Sci Rep 2020; 10:17070. [PMID: 33051495 PMCID: PMC7555492 DOI: 10.1038/s41598-020-73621-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/31/2020] [Indexed: 11/08/2022] Open
Abstract
Lead (Pb) is the second most toxic metal on Earth and is toxic to humans and other living things. In plants, Pb commonly inhibits growth when it is at a concentration in the soil of 30 mg/kg or more but several Pb tolerant plants have been reported. However, few studies have focused on plant response to Pb exposure, particularly at concentrations higher than 30 mg/kg. The assessment and evaluation of metal dose-dependent plant responses will assist in future phytoremediation studies. Therefore, this work documents the Pb concentration-dependent antioxidative response in Tetraena qataranse. Young seedlings were irrigated with 0, 25, 50, and 100 mg/L Pb every 48 h for seven weeks under greenhouse conditions. A phytotoxicity test showed that at the lowest treatment concentration, Pb stimulates growth. However, at 100 mg/L (1600 mg/kg Pb in the growth medium at harvest), the metal disrupted healthy growth in T. qataranse, particularly root development. Metal accumulation in the root was higher (up to 2784 mg/kg) than that of the shoot (1141.6 mg/kg). Activity assays of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and glutathione reductase (GR) showed a progressive increase in enzymatic activities due to Pb treatment. Together, the results of this study suggest that T. qataranse is a Pb hyperaccumulator. Increased antioxidant enzyme activity was essential to maintaining cellular homeostasis and assisted in the arid plant's tolerance to Pb stress.
Collapse
|
10
|
Growth and antioxidant responses of Trigonella foenum-graecum L. seedlings to lead and simulated acid rain exposure. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00478-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Bai Y, Xiao S, Zhang Z, Zhang Y, Sun H, Zhang K, Wang X, Bai Z, Li C, Liu L. Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. PeerJ 2020; 8:e9450. [PMID: 32704446 PMCID: PMC7346864 DOI: 10.7717/peerj.9450] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
The germination of cotton (Gossypium hirsutum L.) seeds is affected by drought stress; however, little is known about the physiological mechanism affecting germination and the effect of melatonin (MT) on cotton seed germination under drought stress. Therefore, we studied the effects of exogenous MT on the antioxidant capacity and epidermal microstructure of cotton under drought stress. The results demonstrated a retarded water absorption capacity of testa under drought stress, significantly inhibiting germination and growth in cotton seeds. Drought stress led to the accumulation of reactive oxygen species (ROS), malondialdehyde (MDA), and osmoregulatory substances (e.g., proline, soluble protein, and soluble sugars); it also decreased the activity of antioxidant enzymes and α-amylase. Drought stress inhibited gibberellin acid (GA3) synthesis and increased abscisic acid (ABA) content, seriously affecting seed germination. However, seeds pre-soaked with MT (100 µM) showed a positive regulation in the number and opening of stomata in cotton testa. The exogenous application of MT increased the germination rate, germination potential, radical length, and fresh weight, as well as the activities of superoxide dismutase (SOD), peroxidase (POD), and α-amylase. In addition, MT application increased the contents of organic osmotic substances by decreasing the hydrogen peroxide (H2O2), superoxide anion (O2 -), and MDA levels under drought stress. Further analysis demonstrated that seeds pre-soaked with MT alleviated drought stress by affecting the ABA and GA3 contents. Our findings show that MT plays a positive role in protecting cotton seeds from drought stress.
Collapse
Affiliation(s)
- Yandan Bai
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Shuang Xiao
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Zichen Zhang
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Yongjiang Zhang
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Hongchun Sun
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Ke Zhang
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultrual University, Baoding, China
| | - Zhiying Bai
- College of Life Science, Hebei Agricultrual University, Baoding, China
| | - Cundong Li
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| | - Liantao Liu
- College of Agronomy, HeBei Agricultural University/ State Key Laboratory of North China Crop Improvement and Regulation/ Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei Province, China, Baoding, China
| |
Collapse
|
12
|
Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072179. [PMID: 32218253 PMCID: PMC7177270 DOI: 10.3390/ijerph17072179] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/21/2022]
Abstract
Lead (Pb) toxicity has been a subject of interest for environmental scientists due to its toxic effect on plants, animals, and humans. An increase in several Pb related industrial activities and use of Pb containing products such as agrochemicals, oil and paint, mining, etc. can lead to Pb contamination in the environment and thereby, can enter the food chain. Being one of the most toxic heavy metals, Pb ingestion via the food chain has proven to be a potential health hazard for plants and humans. The current review aims to summarize the research updates on Pb toxicity and its effects on plants, soil, and human health. Relevant literature from the past 20 years encompassing comprehensive details on Pb toxicity has been considered with key issues such as i) Pb bioavailability in soil, ii) Pb biomagnification, and iii) Pb- remediation, which has been addressed in detail through physical, chemical, and biological lenses. In the review, among different Pb-remediation approaches, we have highlighted certain advanced approaches such as microbial assisted phytoremediation which could possibly minimize the Pb load from the resources in a sustainable manner and would be a viable option to ensure a safe food production system.
Collapse
|
13
|
Aslam M, Aslam A, Sheraz M, Ali B, Ulhassan Z, Najeeb U, Zhou W, Gill RA. Lead Toxicity in Cereals: Mechanistic Insight Into Toxicity, Mode of Action, and Management. FRONTIERS IN PLANT SCIENCE 2020; 11:587785. [PMID: 33633751 PMCID: PMC7901902 DOI: 10.3389/fpls.2020.587785] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/21/2020] [Indexed: 05/04/2023]
Abstract
Cereals are the major contributors to global food supply, accounting for more than half of the total human calorie requirements. Sustainable availability of quality cereal grains is an important step to address the high-priority issue of food security. High concentrations of heavy metals specifically lead (Pb) in the soil negatively affect biochemical and physiological processes regulating grain quality in cereals. The dietary intake of Pb more than desirable quantity via food chain is a major concern for humans, as it can predispose individuals to chronic health issues. In plant systems, high Pb concentrations can disrupt several key metabolic processes such as electron transport chain, cellular organelles integrity, membrane stability index, PSII connectivity, mineral metabolism, oxygen-evolving complex, and enzymatic activity. Plant growth-promoting rhizobacteria (PGPR) has been recommended as an inexpensive strategy for remediating Pb-contaminated soils. A diverse group of Ascomycetes fungi, i.e., dark septate endophytes is successfully used for this purpose. A symbiotic relationship between endophytes and host cereal induces Pb tolerance by immobilizing Pb ions. Molecular and cellular modifications in plants under Pb-stressed environments are explained by transcription factor families such as bZIP, ERF, and GARP as a regulator. The role of metal tolerance protein (MTP), natural resistance-associated macrophage protein (NRAMP), and heavy metal ATPase in decreasing Pb toxicity is well known. In the present review, we provided the contemporary synthesis of existing data regarding the effects of Pb toxicity on morpho-physiological and biochemical responses of major cereal crops. We also highlighted the mechanism/s of Pb uptake and translocation in plants, critically discussed the possible management strategies and way forward to overcome the menace of Pb toxicity in cereals.
Collapse
Affiliation(s)
- Muhammad Aslam
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Ayesha Aslam
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sheraz
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Zaid Ulhassan
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Ullah Najeeb
- Queensland Alliance for Agriculture and Food Innovation, Centre for Crop Science, University of Queensland, Brisbane, QLD, Australia
| | - Weijun Zhou
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Rafaqat Ali Gill
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and GeneticImprovement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan, China
- *Correspondence: Rafaqat Ali Gill, ;
| |
Collapse
|
14
|
Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq M, Ahmad M, Anjum MZ. Lead toxicity in plants: Impacts and remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109557. [PMID: 31545179 DOI: 10.1016/j.jenvman.2019.109557] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 05/07/2023]
Abstract
Lead (Pb) is the second most toxic heavy metal after arsenic (As), which has no role in biological systems. Pb toxicity causes a range of damages to plants from germination to yield formation; however, its toxicity is both time and concentration dependent. Its exposure at higher rates disturbs the plant water and nutritional relations and causes oxidative damages to plants. Reduced rate of seed germination and plant growth under stress is mainly due to Pb interference with enzymatic activities, membrane damage and stomatal closure because of induction of absicic acid and negative correlation of Pb with potassium in plants. Pb induced structural changes in photosynthetic apparatus and reduced biosynthesis of chlorophyll pigments cause retardation of carbon metabolism. In this review, the noxious effects of Pb on germination, stand establishment, growth, water relations, nutrient uptake and assimilation, ultra-structural and oxidative damages, carbon metabolism and enzymatic activities in plants are reported. The Pb dynamics in soil rhizosphere and role of remediation strategies i.e. physical, chemical and biological to decontaminate the Pb polluted soils has also been described. Among them, biological strategies, including phytoremediation, microbe-assisted remediation and remediation by organic amendments, are cost effective and environmentally sound remedies for cleaning Pb contaminated soils. Use of organic manures and some agricultural practices have the potential to harvest better crops yield of good quality form Pb contaminated soils.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan; Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khoud 123, Oman; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Maqsood
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Mubshar Hussain
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan; Agriculture Discipline, College of Science Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Zohaib Anjum
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
15
|
Sytykiewicz H, Łukasik I, Goławska S, Chrzanowski G. Aphid-Triggered Changes in Oxidative Damage Markers of Nucleic Acids, Proteins, and Lipids in Maize ( Zea mays L.) Seedlings. Int J Mol Sci 2019; 20:ijms20153742. [PMID: 31370193 PMCID: PMC6696134 DOI: 10.3390/ijms20153742] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Prior experiments illustrated reactive oxygen species (ROS) overproduction in maize plants infested with bird-cherry-oat (Rhopalosiphum padi L.) aphids. However, there is no available data unveiling the impact of aphids feeding on oxidative damages of crucial macromolecules in maize tissues. Therefore, the purpose of the current study was to evaluate the scale of oxidative damages of genomic DNA, total RNA and mRNA, proteins, and lipids in seedling leaves of two maize genotypes (Złota Karłowa and Waza cvs—susceptible and relatively resistant to the aphids, respectively). The content of oxidized guanosine residues (8-hydroxy-2′-deoxyguanosine; 8-OHdG) in genomic DNA, 8-hydroxyguanosine (8-OHG) in RNA molecules, protein carbonyl groups, total thiols (T-SH), protein-bound thiols (PB-SH), non-protein thiols (NP-SH), malondialdehyde (MDA) and electrolyte leakage (EL) levels in maze plants were determined. In addition, the electrical penetration graphs (EPG) technique was used to monitor and the aphid stylet positioning and feeding modes in the hosts. Maize seedlings were infested with 0 (control), 30 or 60 R. padi adult apterae per plant. Substantial increases in the levels of RNA, protein and lipid oxidation markers in response to aphid herbivory, but no significant oxidative damages of genomic DNA, were found. Alterations in the studied parameters were dependent on maize genotype, insect abundance and infestation time.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland.
| | - Iwona Łukasik
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland
| | - Sylwia Goławska
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland
| | - Grzegorz Chrzanowski
- Department of Molecular Biotechnology, University of Rzeszow, 1 Pigonia St., 35-310 Rzeszow, Poland
| |
Collapse
|
16
|
Xalxo R, Keshavkant S. Melatonin, glutathione and thiourea attenuates lead and acid rain-induced deleterious responses by regulating gene expression of antioxidants in Trigonella foenum graecum L. CHEMOSPHERE 2019; 221:1-10. [PMID: 30634143 DOI: 10.1016/j.chemosphere.2019.01.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 05/15/2023]
Abstract
Lead and acid rain are important abiotic stress factors that limit the growth, development, metabolic activity and yield of the crops. Melatonin (MT; an indoleamine molecule), glutathione (GSH; free thiol tripeptide) and thiourea (TU; non physiological thiol based ROS scavenger) have been known to mediate several physiological, biochemical and molecular processes in plants under different kinds of environmental threats. However, the roles of MT, GSH and TU in stress tolerance against combined effect of lead and simulated acid rain (SAR) remains inexpressible. In this study, we investigated the response of Trigonella foenum graecum L. (Fenugreek) to combined application of lead (1200 ppm) and SAR (pH 3.5), and the potential roles of MT (50 μM), GSH (1 mM) and TU (3 mM) in enhancing lead and SAR stress tolerance of Fenugreek. The results showed that co-application of each MT, GSH and TU along with lead and SAR improved the growth and development of seedlings. Moreover, MT, GSH and TU treatments stabilized the cell membrane integrity, reduced ROS accumulation [superoxide radical (O2-) and hydrogen peroxide (H2O2)], malondialdehyde (MDA) content, lipoxygenase (LOX) activity and, enhanced protein accumulation and up-regulated the gene expressions of catalase (CAT) and superoxide dismutase (SOD) significantly. Furthermore, the present work provides strong evidence regarding protective roles of MT, GSH and TU against oxidative stress resulted from lead and SAR stress in Fenugreek. Considering these observations, MT, GSH and TU can be utilized as efficient ROS scavengers, for improving growth and increasing antioxidant capacity in lead and SAR stressed seedlings.
Collapse
Affiliation(s)
- R Xalxo
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - S Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India.
| |
Collapse
|
17
|
Yuan H, Guo Z, Liu Q, Gu C, Yang Y, Zhang Y, Dhankher OP, Huang S. Exogenous glutathione increased lead uptake and accumulation in Iris lactea var. chinensis exposed to excess lead. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:1136-1143. [PMID: 30156917 DOI: 10.1080/15226514.2018.1460307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Long- and short-term hydroponic experiments were conducted to study the effect of different concentrations of exogenous glutathione (GSH) on Pb uptake, translocation, and gene expresses in Iris lactea var. chinensis exposed to excess lead (Pb). Exogenous GSH remarkedly promoted Pb uptake and translocation in long-term (14 d) experiment, and the GSH-dose-dependent increases in shoot and root Pb contents existed obviously when GSH concentrations were lower than 800 mg·L-1. The fresh weight in gradual rise in plants was observed with the increase of exogenous GSH concentration. In short-term (24 h) experiment, Pb contents in roots under Pb with L-buthionine sulfoximine (BSO, a known inhibitor of GSH biosynthesis) treatments were significantly lower than that under Pb exposure alone. The transcript levels of three genes (Ilγ-ECS, IlGS, and IlPCS) involved in GSH synthesis and metabolism, showed no significant change in expression pattern except that upregulation after 24 h of treatment with Pb and GSH in comparison with that of the single Pb treatment. Further, the level of IlGS transcript after exposure for 4 h was much higher than that of Ilγ-ECS and IlPCS transcripts. All these results obtained here suggest that exogenous GSH can increase Pb accumulation, detoxification, and translocation to the shoot.
Collapse
Affiliation(s)
- Haiyan Yuan
- a Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. SunYat-Sen , Nanjing , China
- b Stockbridge School of Agriculture, University of Massachusetts , Amherst , Massachusetts , USA
| | - Zhi Guo
- c Research Center for Recycling Agriculture, Jiangsu Province Academy of Agricultural Sciences , Nanjing , China
| | - Qingquan Liu
- a Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. SunYat-Sen , Nanjing , China
| | - Chunsun Gu
- a Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. SunYat-Sen , Nanjing , China
| | - Yongheng Yang
- a Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. SunYat-Sen , Nanjing , China
| | - Yongxia Zhang
- a Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. SunYat-Sen , Nanjing , China
| | - Om Parkash Dhankher
- b Stockbridge School of Agriculture, University of Massachusetts , Amherst , Massachusetts , USA
| | - Suzhen Huang
- a Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. SunYat-Sen , Nanjing , China
| |
Collapse
|
18
|
Modulating the antioxidant system by exogenous 2-(3,4-dichlorophenoxy) triethylamine in maize seedlings exposed to polyethylene glycol-simulated drought stress. PLoS One 2018; 13:e0203626. [PMID: 30183770 PMCID: PMC6124772 DOI: 10.1371/journal.pone.0203626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/23/2018] [Indexed: 12/18/2022] Open
Abstract
Maize (Zea mays L.), an important agricultural crop, suffers from drought stress frequently during its growth period, thus leading to a decline in yield. 2-(3,4-Dichlorophenoxy) triethylamine (DCPTA) regulates many aspects of plant development; however, its effects on crop stress tolerance are poorly understood. We pre-treated maize seedlings by adding DCPTA to a hydroponic solution and then subjected the seedlings to a drought condition [15% polyethylene glycol (PEG)-6000 treatment]. The activities of superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and glutathione reductase (GR) were enhanced under drought stress and further enhanced by the DCPTA application. The activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase (CAT) declined continuously under drought stress; however, the activities partially recovered with DCPTA application. Up-regulation of the activities and transcript levels of APX, GR, MDHAR and DHAR in the DCPTA treatments contributed to the increases in ascorbate (AsA) and glutathione (GSH) levels and inhibited the increased generation rate of superoxide anion radicals (O2·-), the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA), and the electrolyte leakage (EL) induced by drought. These results suggest that the enhanced antioxidant capacity induced by DCPTA application may represent an efficient mechanism for increasing the drought stress tolerance of maize seedlings.
Collapse
|
19
|
Zhang Y, Deng B, Li Z. Inhibition of NADPH oxidase increases defense enzyme activities and improves maize seed germination under Pb stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:187-192. [PMID: 29702459 DOI: 10.1016/j.ecoenv.2018.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/08/2018] [Accepted: 04/17/2018] [Indexed: 05/20/2023]
|
20
|
Wang J, Zhong X, Zhu K, Lv J, Lv X, Li F, Shi Z. Reactive oxygen species, antioxidant enzyme activity, and gene expression patterns in a pair of nearly isogenic lines of nicosulfuron-exposed waxy maize (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19012-19027. [PMID: 29721793 DOI: 10.1007/s11356-018-2105-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/23/2018] [Indexed: 05/18/2023]
Abstract
Nicosulfuron is a post-emergence herbicide used for weed control in maize fields (Zea mays L.). Here, the pair of nearly isogenic inbred lines SN509-R (nicosulfuron resistant) and SN509-S (nicosulfuron sensitive) was used to study the effect of nicosulfuron on growth, oxidative stress, and the activity and gene expression of antioxidant enzymes in waxy maize seedlings. Nicosulfuron treatment was applied at the five-leaf stage and water treatment was used as control. After nicosulfuron treatment, the death of SN509-S might be associated with increased oxidative stress. Compared with SN509-R, higher O2·- and H2O2 accumulations were observed in SN509-S, which can severely damage lipids and proteins, thus reducing membrane stability. The effects were exacerbated with extended exposure time. Both O2·- and H2O2 detoxification is regulated by enzymes. After nicosulfuron treatment, superoxide dismutase (SOD), catalase, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), and glutathione-S-transferase (GST) of SN509-S were significantly lower than those of SN509-R. Compared to SN509-R, ascorbate content (AA), glutathione (GSH) content, GSH to glutathione disulfide ratios, and AA to dehydroascorbate ratios significantly declined with increasing exposure time in SN509-S. Compared to SN509-S, nicosulfuron treatment increased the transcript levels of most of the APX genes except for APX1, and in contrast to Gst1, upregulated the transcription of sod9, MDHAR, DHAR, and GR genes in SN509-R. These results suggest that on a transcription level and in accordance with their responses, detoxifying enzymes play a vital role in the O2·- and H2O2 detoxification of maize seedlings under nicosulfuron exposure.
Collapse
Affiliation(s)
- Jian Wang
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Xuemei Zhong
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Kangning Zhu
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Jingbo Lv
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Xiangling Lv
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Fenghai Li
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| | - Zhensheng Shi
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| |
Collapse
|
21
|
Wang J, Zhong X, Li F, Shi Z. Effects of nicosulfuron on growth, oxidative damage, and the ascorbate-glutathione pathway in paired nearly isogenic lines of waxy maize (Zea mays L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 145:108-117. [PMID: 29482726 DOI: 10.1016/j.pestbp.2018.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Nicosulfuron is a postemergence herbicide used for weed control in maize fields (Zea mays L.). We used the pair of nearly isogenic inbred lines, SN509-R (nicosulfuron resistant) and SN509-S (nicosulfuron sensitive), to study the effect of nicosulfuron on growth, oxidative stress, and the ascorbate-glutathione (AA-GSH) cycle in waxy maize seedlings. Nicosulfuron treatment was applied when the fourth leaves were fully developed and the obtained effects were compared to water treatment as control. After nicosulfuron treatment, compared to SN509-R, the death of SN509-S might be associated with increased oxidative stress, since higher O2- and H2O2 accumulations were observed in SN509-S. This in turn might have caused severe damage to lipids and proteins, thus reducing membrane stability. These effects were exacerbated with increasing exposure time. After nicosulfuron treatment, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and guaiacol peroxidase of SN509-S were significantly lower than those of SN509-R. Compared to SN509-R, dehydroascorbate content, glutathione (GSH) content, and GSH to glutathione disulphide ratios significantly declined with increasing exposure time in SN509-S. Our results suggest that the rapid degradation of nicosulfuron in SN509-R results in only a small and transient increase in reactive oxygen species (ROS). In contrast, in SN509-S, reduced nicosulfuron degradation leads to increase ROS, while at the same time, the AA-GSH pathway is not activated.
Collapse
Affiliation(s)
- Jian Wang
- Department of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Xuemei Zhong
- Department of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Fenghai Li
- Department of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| | - Zhensheng Shi
- Department of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| |
Collapse
|
22
|
Nawaz F, Naeem M, Akram A, Ashraf MY, Ahmad KS, Zulfiqar B, Sardar H, Shabbir RN, Majeed S, Shehzad MA, Anwar I. Seed priming with KNO 3 mediates biochemical processes to inhibit lead toxicity in maize (Zea mays L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4780-4789. [PMID: 28369913 DOI: 10.1002/jsfa.8347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Accumulation of lead (Pb) in agricultural soils has become a major factor for reduced crop yields and poses serious threats to humans consuming agricultural products. The present study investigated the effects of KNO3 seed priming (0 and 0.5% KNO3 ) on growth of maize (Zea mays L.) seedlings exposed to Pb toxicity (0, 1300 and 2550 mg kg-1 Pb). RESULTS Pb exposure markedly reduced the growth of maize seedlings and resulted in higher Pb accumulation in roots than shoots. Pretreatment of seeds with KNO3 significantly improved the germination percentage and increased physiological indices. A stimulating effect of KNO3 seed priming was also observed on pigments (chlorophyll a, b, total chlorophyll and carotenoid contents) of Pb-stressed plants. Low translocation of Pb from roots to shoots caused an increased accumulation of total free amino acids and higher activities of catalase, peroxidase, superoxide dismutase and ascorbate peroxidase in roots as compared to shoot, which were further enhanced by exogenous KNO3 supply to prevent Pb toxicity. CONCLUSION Maize accumulates more Pb in roots than shoot at early growth stages. Priming of seeds with KNO3 prevents Pb toxicity, which may be exploited to improve seedling establishment in crop species grown under Pb contaminated soils. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fahim Nawaz
- Department of Agronomy, MNS University of Agriculture, Multan, Pakistan
| | - Muhammad Naeem
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| | - Asim Akram
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| | | | - Khawaja S Ahmad
- Department of Botany, University of Poonch, Rawalakot, Pakistan
| | - Bilal Zulfiqar
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| | - Hasan Sardar
- Department of Horticulture, Agriculture College, Bahauddin Zakariya University, Multan, Pakistan
| | - Rana N Shabbir
- Department of Agronomy, Agriculture College, Bahauddin Zakariya University, Multan, Pakistan
| | - Sadia Majeed
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| | | | - Irfan Anwar
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| |
Collapse
|
23
|
Ur Rehman MZ, Rizwan M, Ali S, Sabir M, Sohail MI. Contrasting Effects of Organic and Inorganic Amendments on Reducing Lead Toxicity in Wheat. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 99:642-647. [PMID: 28936541 DOI: 10.1007/s00128-017-2177-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/31/2017] [Indexed: 05/20/2023]
Abstract
Contamination of agricultural soils with lead (Pb) is a widespread problem which is mainly due to anthropogenic activities. The present study investigated the effect of organic and inorganic amendments on wheat growth and reducing Pb concentration in the plant. A greenhouse experiment was conducted on Pb spiked soil (500 mg kg-1 of soil) with the application of farmyard manure, poultry manure, gypsum and di-ammonium phosphate (DAP). Plants were harvested after 120 days of growth and analyzed for Pb concentration in different plant parts. Under Pb stress, amendments significantly (p < 0.05) increased grain yield and root dry weights compared to the control. Grain yield and dry weights of shoots and roots were maximum with DAP compared to the control and other amendments. Amendments increased transpiration rate, stomatal conductance, chlorophyll contents and photosynthetic rate. The lowest Pb concentration was found in DAP treated plants which were about 88%, 84%, and 85% lower in root, shoots and grains than control respectively. DAP fertilizer was the most effective in improving these parameters than control and other amendments and can be used to reduce Pb concentration in wheat and probably other crops.
Collapse
Affiliation(s)
- Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Sabir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad I Sohail
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
24
|
Samuilov S, Lang F, Djukic M, Djunisijevic-Bojovic D, Rennenberg H. Lead uptake increases drought tolerance of wild type and transgenic poplar (Populus tremula x P. alba) overexpressing gsh 1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:773-785. [PMID: 27396669 DOI: 10.1016/j.envpol.2016.06.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Growth and development of plants largely depends on their adaptation ability in a changing climate. This is particularly true on heavy metal contaminated soils, but the interaction of heavy metal stress and climate on plant performance has not been intensively investigated. The aim of the present study was to elucidate if transgenic poplars (Populus tremula x P. alba) with enhanced glutathione content possess an enhanced tolerance to drought and lead (Pb) exposure (single and in combination) and if they are good candidates for phytoremediation of Pb contaminated soil. Lead exposure reduced growth and biomass accumulation only in above-ground tissue of wild type poplar, although most of lead accumulated in the roots. Drought caused a decline of the water content rather than reduced biomass production, while Pb counteracted this decline in the combined exposure. Apparently, metals such as Pb possess a protective function against drought, because they interact with abscisic acid dependent stomatal closure. Lead exposure decreased while drought increased glutathione content in leaves of both plant types. Lead accumulation was higher in the roots of transgenic plants, presumably as a result of chelation by glutathione. Water deprivation enhanced Pb accumulation in the roots, but Pb was subject to leakage out of the roots after re-watering. Transgenic plants showed better adaptation under mild drought plus Pb exposure partially due to improved glutathione synthesis. However, the transgenic plants cannot be considered as a good candidate for phytoremediation of Pb, due to its small translocation to the shoots and its leakage out of the roots upon re-watering.
Collapse
Affiliation(s)
- Sladjana Samuilov
- Chair of Tree Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges-Koehler-Allee 53, 79110 Freiburg, Germany
| | - Friedericke Lang
- Chair of Soil Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Bertoldstr. 17, 79098 Freiburg, Germany
| | - Matilda Djukic
- Chair of Landscape Horticulture, Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Danijela Djunisijevic-Bojovic
- Chair of Landscape Horticulture, Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Heinz Rennenberg
- Chair of Tree Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges-Koehler-Allee 53, 79110 Freiburg, Germany; King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Sidhu GPS, Singh HP, Batish DR, Kohli RK. Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:290-296. [PMID: 27214085 DOI: 10.1016/j.plaphy.2016.05.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 05/18/2023]
Abstract
A screenhouse experiment was conducted to assay the effect of Lead (Pb) on oxidative status, antioxidative response and metal accumulation in Coronopus didymus after 6 weeks. Results revealed a good Pb tolerance and accumulation potential of C. didymus towards the increasing Pb concentrations (500, 900, 1800, 2900 mg kg(-1)) in soil. The content of Pb in roots and shoots elevated with higher Pb levels and reached a maximum of 3684.3 mg kg(-1) and 862.8 mg kg(-1) Pb dry weight, respectively, at 2900 mg kg(-1) treatment. Pb exposure stimulated electrolyte leakage, H2O2 level, MDA content and the activities of antioxidant machinery (SOD, CAT, APX, GPX and GR). However, at the highest Pb concentration, the activities of SOD and CAT declined. The H2O2 level and MDA content in roots increased significantly up to ∼500% and 213%, respectively, over the control, at 2900 mg kg(-1) Pb treatment. Likewise, concurrent findings were noticed in shoots of C. didymus, with the increasing Pb concentration. The present work suggests that C. didymus exhibited a good accumulation potential for Pb and can tolerate Pb-induced oxidative stress by an effective antioxidant defense mechanism.
Collapse
Affiliation(s)
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
26
|
Sytykiewicz H. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings. Int J Mol Sci 2016; 17:268. [PMID: 26907270 PMCID: PMC4813132 DOI: 10.3390/ijms17030268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/27/2016] [Accepted: 02/05/2016] [Indexed: 11/16/2022] Open
Abstract
Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans’ attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland.
| |
Collapse
|
27
|
Shen J, Song L, Müller K, Hu Y, Song Y, Yu W, Wang H, Wu J. Magnesium Alleviates Adverse Effects of Lead on Growth, Photosynthesis, and Ultrastructural Alterations of Torreya grandis Seedlings. FRONTIERS IN PLANT SCIENCE 2016; 7:1819. [PMID: 27965704 PMCID: PMC5127797 DOI: 10.3389/fpls.2016.01819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/18/2016] [Indexed: 05/18/2023]
Abstract
Magnesium (Mg2+) has been shown to reduce the physiological and biochemical stress in plants caused by heavy metals. To date our understanding of how Mg2+ ameliorates the adverse effects of heavy metals in plants is scarce. The potential effect of Mg2+ on lead (Pb2+) toxicity in plants has not yet been studied. This study was designed to clarify the mechanism of Mg2+-induced alleviation of lead (Pb2+) toxicity. Torreya grandis (T. grandis) seedlings were grown in substrate contaminated with 0, 700 and 1400 mg Pb2+ per kg-1 and with or without the addition of 1040 mg kg-1 Mg2+. Growth parameters, concentrations of Pb2+ and Mg2+ in the plants' shoots and roots, photosynthetic pigment, gas exchange parameters, the maximum quantum efficiency (Fv/Fm), root oxidative activity, ultrastructure of chloroplasts and root growth were determined to analyze the effect of different Pb2+ concentrations on the seedlings as well as the potential ameliorating effect of Mg2+ on the Pb2+ induced toxicity. All measurements were tested by a one-way ANOVA for the effects of treatments. The growth of T. grandis seedlings cultivated in soils treated with 1400 mg kg-1 Pb2+ was significantly reduced compared with that of plants cultivated in soils treated with 0 or 700 mg kg-1 Pb2+. The addition of 1040 mg kg-1 Mg2+ improved the growth of the Pb2+-stressed seedlings, which was accompanied by increased chlorophyll content, the net photosynthetic rate and Fv/Fm, and enhanced chloroplasts development. In addition, the application of Mg2+ induced plants to accumulate five times higher concentrations of Pb2+ in the roots and to absorb and translocate four times higher concentrations of Mg2+ to the shoots than those without Mg2+ application. Furthermore, Mg2+ addition increased root growth and oxidative activity, and protected the root ultrastructure. To the best of our knowledge, our study is the first report on the mechanism of Mg2+-induced alleviation of Pb2+ toxicity. The generated results may have important implications for understanding the physiological interactions between heavy metals and plants, and for successful management of T. grandis plantations grown on soils contaminated with Pb2+.
Collapse
Affiliation(s)
- Jie Shen
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F UniversityZhejiang, China
| | - Lili Song
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F UniversityZhejiang, China
| | - Karin Müller
- New Zealand Institute for Plant and Food Research Limited, Ruakura Research CentreHamilton, New Zealand
| | - Yuanyuan Hu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F UniversityZhejiang, China
| | - Yang Song
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F UniversityZhejiang, China
| | - Weiwu Yu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F UniversityZhejiang, China
| | - Hailong Wang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F UniversityZhejiang, China
| | - Jiasheng Wu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F UniversityZhejiang, China
- *Correspondence: Jiasheng Wu,
| |
Collapse
|