1
|
Lee ES, Baltsen CD, Stubblefield WB, Granfeldt A, Andersen A, Stannek K, Dudzinski DM, Kabrhel C, Lyhne MD. Intubation and Mechanical Ventilation in Patients with Acute Pulmonary Embolism: A Scoping Review. J Intensive Care Med 2024:8850666241285862. [PMID: 39318344 DOI: 10.1177/08850666241285862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
OBJECTIVES High-risk acute pulmonary embolism (PE) is associated with significant mortality and may require emergency endotracheal intubation and mechanical ventilation. Intubation and ventilation are thought to exacerbate cardiorespiratory instability. Our purpose was to conduct a systematic literature review to identify studies investigating peri-intubation events in acute PE. METHODS A systematic search of Medline, Embase, Web of Science, Cumulative Index to Nursing and Allied Health Literature, and Cochrane Library was performed. Results were screened by two independent observers. Studies reporting on intubation and positive pressure ventilation in acute PE patients were included. The primary outcome was adverse events during the peri-intubation period. Data was synthesized and an assessment of risk of bias was conducted. The review was registered on PROSPERO (CRD42023444483). RESULTS 4100 unique articles were screened. Three retrospective studies comprising 104 patients with acute PE met criteria and were included. Peri-intubation, hemodynamic collapse was observed in 19%-28% of cases. Patients with hemodynamic collapse exhibited higher rates of echocardiographic RV dysfunction. CONCLUSIONS Peri-intubation adverse events are common in patients with acute PE. Current evidence is limited and highlights the need for further research to optimize management of respiratory failure in acute PE and patient selection for intubation to improve patient outcomes.
Collapse
Affiliation(s)
- Eun Sang Lee
- Department of Emergency Medicine, Center for Vascular Emergencies, Massachusetts General Hospital, Boston, MA, USA
- UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Cecilie Dahl Baltsen
- Department of Emergency Medicine, Center for Vascular Emergencies, Massachusetts General Hospital, Boston, MA, USA
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - William B Stubblefield
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Asger Granfeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Asger Andersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Karsten Stannek
- Department of Emergency Medicine, Center for Vascular Emergencies, Massachusetts General Hospital, Boston, MA, USA
| | - David M Dudzinski
- Department of Emergency Medicine, Center for Vascular Emergencies, Massachusetts General Hospital, Boston, MA, USA
- Department of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher Kabrhel
- Department of Emergency Medicine, Center for Vascular Emergencies, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mads Dam Lyhne
- Department of Emergency Medicine, Center for Vascular Emergencies, Massachusetts General Hospital, Boston, MA, USA
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Low Molecular Weight Heparin Nebulization Attenuates Acute Lung Injury. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3169179. [PMID: 28589136 PMCID: PMC5447277 DOI: 10.1155/2017/3169179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/11/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND As acute lung injury (ALI) caused high mortality rate, it is important to explore the protection and treatment of ALI. The aim of the current study is to evaluate the effect of low molecular weight heparin (LMWH) nebulization on attenuating acute lung injury and the associated mechanism. METHODS The arterial blood gas, total protein content in bronchoalveolar lavage fluid, lung wet/dry weight ratio, malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, and Akt phosphorylation were evaluated after the ALI rabbits were treated with or without LMWH nebulization. RESULTS PaO2 was increased and lung wet/dry weight ratio as well as total protein content in BALF was decreased after LMWH nebulization. After the application of LMWH nebulization therapy, the SOD and GSH-Px activity was rebounded and the increase of MDA content was significantly inhibited. The Akt protein phosphorylation level was decreased after LMWH nebulization therapy. CONCLUSIONS LMWH nebulization treatment can relieve the traumatic ALI in rabbits and inhibit oxidative stress possibly by suppressing the Akt phosphorylation.
Collapse
|
3
|
Liu YY, Li LF, Fu JY, Kao KC, Huang CC, Chien Y, Liao YW, Chiou SH, Chang YL. Induced pluripotent stem cell therapy ameliorates hyperoxia-augmented ventilator-induced lung injury through suppressing the Src pathway. PLoS One 2014; 9:e109953. [PMID: 25310015 PMCID: PMC4195701 DOI: 10.1371/journal.pone.0109953] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/12/2014] [Indexed: 01/20/2023] Open
Abstract
Background High tidal volume (VT) mechanical ventilation (MV) can induce the recruitment of neutrophils, release of inflammatory cytokines and free radicals, and disruption of alveolar epithelial and endothelial barriers. It is proposed to be the triggering factor that initiates ventilator-induced lung injury (VILI) and concomitant hyperoxia further aggravates the progression of VILI. The Src protein tyrosine kinase (PTK) family is one of the most critical families to intracellular signal transduction related to acute inflammatory responses. The anti-inflammatory abilities of induced pluripotent stem cells (iPSCs) have been shown to improve acute lung injuries (ALIs); however, the mechanisms regulating the interactions between MV, hyperoxia, and iPSCs have not been fully elucidated. In this study, we hypothesize that Src PTK plays a critical role in the regulation of oxidants and inflammation-induced VILI during hyperoxia. iPSC therapy can ameliorate acute hyperoxic VILI by suppressing the Src pathway. Methods Male C57BL/6 mice, either wild-type or Src-deficient, aged between 2 and 3 months were exposed to high VT (30 mL/kg) ventilation with or without hyperoxia for 1 to 4 h after the administration of Oct4/Sox2/Parp1 iPSCs at a dose of 5×107 cells/kg of mouse. Nonventilated mice were used for the control groups. Results High VT ventilation during hyperoxia further aggravated VILI, as demonstrated by the increases in microvascular permeability, neutrophil infiltration, macrophage inflammatory protein-2 (MIP-2) and plasminogen activator inhibitor-1 (PAI-1) production, Src activation, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and malaldehyde (MDA) level. Administering iPSCs attenuated ALI induced by MV during hyperoxia, which benefited from the suppression of Src activation, oxidative stress, acute inflammation, and apoptosis, as indicated by the Src-deficient mice. Conclusion The data suggest that iPSC-based therapy is capable of partially suppressing acute inflammatory and oxidant responses that occur during hyperoxia-augmented VILI through the inhibition of Src-dependent signaling pathway.
Collapse
Affiliation(s)
- Yung-Yang Liu
- Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Li-Fu Li
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- * E-mail: (LFL); (YLC)
| | - Jui-Ying Fu
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Chin Kao
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chung-Chi Huang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yueh Chien
- Department of Medical Research & Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Wen Liao
- Department of Medical Research & Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research & Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Lih Chang
- Department of Medical Research & Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (LFL); (YLC)
| |
Collapse
|
4
|
Li LF, Liu YY, Kao KC, Wu CT, Chang CH, Hung CY, Yang CT. Mechanical ventilation augments bleomycin-induced epithelial-mesenchymal transition through the Src pathway. J Transl Med 2014; 94:1017-29. [PMID: 24955896 DOI: 10.1038/labinvest.2014.75] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/20/2014] [Accepted: 05/20/2014] [Indexed: 12/24/2022] Open
Abstract
Mechanical ventilation used in patients with acute respiratory distress syndrome (ARDS) can damage pulmonary epithelial cells by producing inflammatory cytokines and depositing excess collagen. Src participates in plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-β1(TGF-β1) production during the fibroproliferative phase of ARDS, which involves a process of epithelial-mesenchymal transition (EMT). The mechanisms regulating interactions between mechanical ventilation and EMT are unclear. We hypothesized that EMT induced by high-tidal volume (VT) mechanical stretch-augmented lung inflammation occurs through upregulation of the Src pathway. Five days after administering bleomycin to simulate acute lung injury (ALI), male C57BL/6 mice, either wild-type or Src-deficient, aged 3 months, weighing between 25 and 30 g, were exposed to low-VT (6 ml/kg) or high-VT (30 ml/kg) mechanical ventilation with room air for 1-5 h. Nonventilated mice were used as control subjects. We observed that high-VT mechanical ventilation increased microvascular permeability, PAI-1 and TGF-β1 protein levels, Masson's trichrome staining, extracellular collagen levels, collagen gene expression, fibroblast accumulation, positive staining of α-smooth muscle actin and type I collagen, activation of Src signaling and epithelial apoptotic cell death in wild-type mice (P<0.05). Decreased staining of the epithelial marker, Zonula occludents-1, was also observed. Mechanical stretch-augmented EMT and epithelial apoptosis were attenuated in Src-deficient mice and pharmacological inhibition of Src activity by PP2 (P<0.05). Our data suggest that high-VT mechanical ventilation-augmented EMT after bleomycin-induced ALI partially depends on the Src pathway.
Collapse
Affiliation(s)
- Li-Fu Li
- 1] Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan [2] Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Yang Liu
- 1] Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan [2] Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuo-Chin Kao
- 1] Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan [2] Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chen-Te Wu
- 1] Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan [2] Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Hao Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chen-Yiu Hung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Ta Yang
- 1] Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan [2] Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
5
|
Abstract
Mechanical ventilation (MV) is, by definition, the application of external forces to the lungs. Depending on their magnitude, these forces can cause a continuum of pathophysiological alterations ranging from the stimulation of inflammation to the disruption of cell-cell contacts and cell membranes. These side effects of MV are particularly relevant for patients with inhomogeneously injured lungs such as in acute lung injury (ALI). These patients require supraphysiological ventilation pressures to guarantee even the most modest gas exchange. In this situation, ventilation causes additional strain by overdistension of the yet non-injured region, and additional stress that forms because of the interdependence between intact and atelectatic areas. Cells are equipped with elaborate mechanotransduction machineries that respond to strain and stress by the activation of inflammation and repair mechanisms. Inflammation is the fundamental response of the host to external assaults, be they of mechanical or of microbial origin and can, if excessive, injure the parenchymal tissue leading to ALI. Here, we will discuss the forces generated by MV and how they may injure the lungs mechanically and through inflammation. We will give an overview of the mechanotransduction and how it leads to inflammation and review studies demonstrating that ventilator-induced lung injury can be prevented by blocking pathways of mechanotransduction or inflammation.
Collapse
Affiliation(s)
- Ulrike Uhlig
- Department of Pharmacology & Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
6
|
Cornet AD, Hofstra JJ, Vlaar AP, Tuinman PR, Levi M, Girbes AR, Schultz MJ, Groeneveld AB, Beishuizen A. Activated protein C attenuates pulmonary coagulopathy in patients with acute respiratory distress syndrome. J Thromb Haemost 2013; 11:894-901. [PMID: 23433188 PMCID: PMC9906436 DOI: 10.1111/jth.12179] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/15/2013] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Acute respiratory distress syndrome (ARDS) frequently complicates critical illness. We hypothesized that an infusion of recombinant human activated protein C (rh-APC), a natural anticoagulant, would attenuate pulmonary coagulopathy and injury. METHODS In this sub study of a multicenter open-label randomized controlled trial of patients with ARDS, we compared an intravenous (i.v.) infusion of rh-APC (24 mcg kg(-1) h(-1) for 96 h) with placebo. Patients with sepsis or septic shock were excluded. RESULTS In 27 patients serial non-directed bronchoalveolar lavage fluid (NBLF) samples were obtained: 16 patients were treated with rh-APC and 11 patients with placebo. The rh-APC infusion was associated with higher APC levels in plasma during the infusion period of 4 days (P = 0.001), as well as higher APC levels in NBLF up to day 5 after the start of the infusion (P = 0.028). An infusion of rh-APC was associated with lower levels of thrombin-antithrombin complexes (P = 0.009) and soluble tissue factor (P = 0.011) in NBLF, compared with treatment with placebo. An infusion of rh-APC affected fibrinolysis, as plasminogen activator activity levels in NBLF were higher in the patients treated with rh-APC (P = 0.01), presumably as a result of lower NBLF levels of plasminogen activator inhibitor 1, (P = 0.01). The rh-APC infusion decreased the lung injury score (P = 0.005) and simplified the acute physiology score (P = 0.013) on day 5, when compared with baseline. The rh-APC infusion was not associated with bleeding complications. CONCLUSION An infusion of rh-APC in patients with ARDS attenuates pulmonary coagulopathy and injury.
Collapse
Affiliation(s)
- A D Cornet
- Department of Intensive Care Medicine, VU University Medical Center Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Glas GJ, Van Der Sluijs KF, Schultz MJ, Hofstra JJH, Van Der Poll T, Levi M. Bronchoalveolar hemostasis in lung injury and acute respiratory distress syndrome. J Thromb Haemost 2013; 11:17-25. [PMID: 23114008 DOI: 10.1111/jth.12047] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Enhanced intrapulmonary fibrin deposition as a result of abnormal broncho-alveolar fibrin turnover is a hallmark of acute respiratory distress syndrome (ARDS), pneumonia and ventilator-induced lung injury (VILI), and is important to the pathogenesis of these conditions. The mechanisms that contribute to alveolar coagulopathy are localized tissue factor-mediated thrombin generation, impaired activity of natural coagulation inhibitors and depression of bronchoalveolar urokinase plasminogen activator-mediated fibrinolysis, caused by the increase of plasminogen activator inhibitors. There is an intense and bidirectional interaction between coagulation and inflammatory pathways in the bronchoalveolar compartment. Systemic or local administration of anticoagulant agents (including activated protein C, antithrombin and heparin) and profibrinolytic agents (such as plasminogen activators) attenuate pulmonary coagulopathy. Several preclinical studies show additional anti-inflammatory effects of these therapies in ARDS and pneumonia.
Collapse
Affiliation(s)
- G J Glas
- Laboratory for Experimental Intensive Care and Anesthesiology, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
8
|
SuPAR and PAI-1 in critically ill, mechanically ventilated patients. Intensive Care Med 2012; 39:489-96. [PMID: 23100007 DOI: 10.1007/s00134-012-2730-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/04/2012] [Indexed: 01/19/2023]
Abstract
PURPOSE SuPAR (soluble urokinase plasminogen activator receptor) and PAI-1 (plasminogen activator inhibitor 1) are active in the coagulation-fibrinolysis pathway. Both have been suggested as biomarkers for disease severity. We evaluated them in prediction of mortality, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), sepsis and renal replacement therapy (RRT) in operative and non-operative ventilated patients. METHODS We conducted a prospective, multicenter, observational study. Blood samples and data of intensive care were collected. Mechanically ventilated patients with baseline suPAR and PAI-1 measurements were included in the analysis, and healthy volunteers were analysed for comparison. Receiver operating characteristics (ROC), logistic regression, likelihood ratios and Kaplan-Meier analysis were performed. RESULTS Baseline suPAR was 11.6 ng/ml (quartiles Q1-Q3, 9.6-14.0), compared to healthy volunteers with suPAR of 0.6 ng/ml (0.5-11.0). PAI-1 concentrations were 2.67 ng/ml (1.53-4.69) and 0.3 ng/ml (0.3-0.4), respectively. ROC analysis for suPAR 90-day mortality areas under receiver operating characteristic curves (AUC) 0.61 (95 % confidence interval (CI): 0.55-0.67), sepsis 0.68 (0.61-0.76), ALI/ARDS 0.64 (0.56-0.73) and RRT 0.65 (0.56-0.73). Patients with the highest quartile of suPAR concentrations had an odds ratio of 2.52 (1.37-4.64, p = 0.003) for 90-day mortality and 3.16 (1.19-8.41, p = 0.02) for ALI/ARDS. In non-operative patients, the AUC's for suPAR were 90-day mortality 0.61 (0.54-0.68), RRT 0.73 (0.64-0.83), sepsis 0.70 (0.60-0.80), ALI/ARDS 0.61 (0.51-0.71). Predictive value of PAI-1 was negligible. CONCLUSIONS In non-operative patients, low concentrations of suPAR were predictive for survival and high concentrations for RRT and mortality. SuPAR may be used for screening for patients with potentially good survival. The association with RRT may supply an early warning sign for acute renal failure.
Collapse
|
9
|
Hofstra JJ, Vlaar APJ, Prins DJ, Koh G, Levi M, Schultz MJ, Binnekade JM, Juffermans NP. Early intravenous unfractionated heparin and outcome in acute lung injury and acute respiratory distress syndrome: a retrospective propensity matched cohort study. BMC Pulm Med 2012; 12:43. [PMID: 22894723 PMCID: PMC3517343 DOI: 10.1186/1471-2466-12-43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 07/28/2012] [Indexed: 11/07/2022] Open
Abstract
Background Acute lung injury (ALI) is characterized by a pro-coagulant state. Heparin is an anticoagulant with anti-inflammatory properties. Unfractionated heparin has been found to be protective in experimental models of ALI. We hypothesized that an intravenous therapeutic dose of unfractionated heparin would favorably influence outcome of critically ill patients diagnosed with ALI. Methods Patients admitted to the Intensive Care Unit (ICU) of a tertiary referral center in the Netherlands between November 2004 and October 2007 were screened. Patients who developed ALI (consensus definition) were included. In this cohort, the impact of heparin use on mortality was assessed by logistic regression analysis in a propensity matched case–control design. Results Of 5,561 admitted patients, 2,138 patients had a length of stay > 48 hours, of whom 723 were diagnosed with ALI (34%), of whom 164 received intravenous heparin. In a propensity score adjusted logistic regression analysis, heparin use did not influence 28-day mortality (odds ratio 1.23 [confidence interval 95% 0.80–1.89], nor did it affect ICU length of stay. Conclusions Administration of therapeutic doses of intravenous unfractionated heparin was not associated with reduced mortality in critically ill patients diagnosed with ALI. Heparin treatment did not increase transfusion requirements. These results may help in the design of prospective trials evaluating the use of heparin as adjunctive treatment for ALI.
Collapse
Affiliation(s)
- Jorrit J Hofstra
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, AZ, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Huang LT, Chou HC, Wang LF, Chen CM. Tissue plasminogen activator attenuates ventilator-induced lung injury in rats. Acta Pharmacol Sin 2012; 33:991-7. [PMID: 22796762 DOI: 10.1038/aps.2012.66] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM To test the hypothesis that the tissue plasminogen activator (tPA) may counteract the inhibitory effect of plasminogen activator inhibitors (PAI) and attenuate lung injury in a rat model of ventilator-induced lung injury (VILI). METHODS Adult male Sprague-Dawley rats were ventilated with a HVZP (high-volume zero PEEP) protocol for 2 h at a tidal volume of 30 mL/kg, a respiratory rate of 25 breaths/min, and an inspired oxygen fraction of 21%. The rats were divided into 3 groups (n=7 for each): HVZP+tPA group receiving tPA (1.25 mg/kg, iv) 15 min before ventilation, HVZP group receiving HVZP+vehicle injection, and a control group receiving no ventilation. After 2 h of ventilation, the rats were killed; blood and lungs were collected for biochemical and histological analyses. RESULTS HVZP ventilation significantly increased total protein content and the concentration of macrophage inflammatory protein-2 (MIP-2) in the bronchoalveolar lavage fluid (BALF) as well as the lung injury score. Rats that received HVZP ventilation had significantly higher lung PAI-1 mRNA expression, plasma PAI-1 and plasma D-dimer levels than the control animals. tPA treatment significantly reduced the BALF total protein and the lung injury score as compared to the HVZP group. tPA treatment also significantly decreased the plasma D-dimer levels and the HVZP ventilation-induced lung vascular fibrin thrombi. tPA treatment showed no effect on MIP-2 level in BALF. CONCLUSION These results demonstrate that VILI increases lung PAI-1 mRNA expression, plasma levels of PAI-1 and D-dimers, lung injury score and vascular fibrin deposition. tPA can attenuate VILI by decreasing capillary-alveolar protein leakage as well as local and systemic coagulation as shown by decreased lung vascular fibrin deposition and plasma D-dimers.
Collapse
|
11
|
Aslami H, Haitsma JJ, Hofstra JJ, Florquin S, Dos Santos C, Streutker C, Zhang H, Levi M, Slutsky AS, Schultz MJ. Plasma-derived human antithrombin attenuates ventilator-induced coagulopathy but not inflammation in a Streptococcus pneumoniae pneumonia model in rats. J Thromb Haemost 2012; 10:399-410. [PMID: 22236057 DOI: 10.1111/j.1538-7836.2012.04622.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mechanical ventilation exaggerates pneumonia-associated pulmonary coagulopathy and inflammation. We hypothesized that the administration of plasma-derived human antithrombin (AT), one of the natural inhibitors of coagulation, prevents ventilator-induced pulmonary coagulopathy, inflammation and bacterial outgrowth in a Streptococcus pneumoniae pneumonia model in rats. METHODS Forty-eight hours after induction of S. pneumoniae pneumonia rats were subjected to mechanical ventilation (tidal volume 12 mL kg(-1), positive end-expiratory pressure 0 cmH(2)O and inspired oxygen fraction 40%). Rats were randomized to systemic treatment with AT (250 IU administered intravenously (i.v.) before the start of mechanical ventilation) or placebo (saline). Non-ventilated, non-infected rats and non-ventilated rats with pneumonia served as controls. The primary endpoints were pulmonary coagulation and inflammation in bronchoalveolar lavage fluid (BALF). RESULTS Pneumonia was characterized by local activation of coagulation and inhibition of fibrinolysis, resulting in increased levels of fibrin degradation products and fibrin deposition in the lung. Mechanical ventilation exaggerated pulmonary coagulopathy and inflammation. Systemic administration of AT led to supra-normal BALF levels of AT and decreased ventilator-associated activation of coagulation. AT neither affected pulmonary inflammation nor bacterial outgrowth from the lungs or blood. CONCLUSIONS Plasma-derived human AT attenuates ventilator-induced coagulopathy, but not inflammation and bacterial outgrowth in a S. pneumoniae pneumonia model in rats.
Collapse
Affiliation(s)
- H Aslami
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Aslami H, Kuipers MT, Beurskens CJP, Roelofs JJTH, Schultz MJ, Juffermans NP. Mild hypothermia reduces ventilator-induced lung injury, irrespective of reducing respiratory rate. Transl Res 2012; 159:110-7. [PMID: 22243795 DOI: 10.1016/j.trsl.2011.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 10/15/2022]
Abstract
In the era of lung-protective mechanical ventilation using limited tidal volumes, higher respiratory rates are applied to maintain adequate minute volume ventilation. However, higher respiratory rates may contribute to ventilator-induced lung injury (VILI). Induced hypothermia reduces carbon dioxide production and might allow for lower respiratory rates during mechanical ventilation. We hypothesized that hypothermia protects from VILI and investigated whether reducing respiratory rates enhance lung protection in an in vivo model of VILI. During 4 h of mechanical ventilation, VILI was induced by tidal volumes of 18 mL/kg in rats, with respiratory rates set at 15 or 10 breaths/min in combination with hypothermia (32°C) or normothermia (37°C). Hypothermia was induced by external cooling. A physiologic model was established. VILI was characterized by increased pulmonary neutrophil influx, protein leak, wet weights, histopathology score, and cytokine levels compared with lung protective mechanical ventilation. Hypothermia decreased neutrophil influx, pulmonary levels, systemic interleukin-6 levels, and histopathology score, and it tended to decrease the pulmonary protein leak. Reducing the respiratory rate in combination with hypothermia did not reduce the parameters of the lung injury. In conclusion, hypothermia protected from lung injury in a physiologic VILI model by reducing inflammation. Decreasing the respiratory rate mildly did not enhance protection.
Collapse
Affiliation(s)
- Hamid Aslami
- Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Meibergdreef 9, Amsterdam, the Netherlands.
| | | | | | | | | | | |
Collapse
|
13
|
Relative Tissue Factor Deficiency Attenuates Ventilator-Induced Coagulopathy but Does Not Protect against Ventilator-Induced Lung Injury in Mice. Crit Care Res Pract 2011; 2012:130410. [PMID: 22195278 PMCID: PMC3238356 DOI: 10.1155/2012/130410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/17/2011] [Indexed: 11/21/2022] Open
Abstract
Preventing tissue-factor-(TF-) mediated systemic coagulopathy improves outcome in models of sepsis. Preventing TF-mediated pulmonary coagulopathy could attenuate ventilator-induced lung injury (VILI). We investigated the effect of relative TF deficiency on pulmonary coagulopathy and inflammation in a murine model of VILI.
Heterozygous TF knockout (TF+/−) mice and their wild-type (TF+/+) littermates were sedated (controls) or sedated, tracheotomized, and mechanically ventilated with either low or high tidal volumes for 5 hours.
Mechanical ventilation resulted in pulmonary coagulopathy and inflammation, with more injury after mechanical ventilation with higher tidal volumes. Compared with TF+/+ mice, TF+/− mice demonstrated significantly lower pulmonary thrombin-antithrombin complex levels in both ventilation groups. There were, however, no differences in lung wet-to-dry ratio, BALF total protein levels, neutrophil influx, and lung histopathology scores between TF+/− and TF+/+ mice. Notably, pulmonary levels of cytokines were significantly higher in TF+/− as compared to TF+/+ mice. Systemic levels of cytokines were not altered by the relative absence of TF. TF deficiency is associated with decreased pulmonary coagulation independent of the ventilation strategy. However, relative TF deficiency does not reduce VILI and actually results in higher pulmonary levels of inflammatory mediators.
Collapse
|
14
|
Plasminogen activator inhibitor-type I gene deficient mice show reduced influx of neutrophils in ventilator-induced lung injury. Crit Care Res Pract 2011; 2011:217896. [PMID: 21789277 PMCID: PMC3140778 DOI: 10.1155/2011/217896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/15/2011] [Accepted: 05/17/2011] [Indexed: 01/11/2023] Open
Abstract
Ventilator-induced lung injury (VILI) is associated with inhibition of the fibrinolytic system secondary to increased production of plasminogen activator inhibitor- (PAI-)1. To determine the role of PAI-1 on pulmonary coagulopathy and inflammation during mechanical ventilation, PAI-1 gene-deficient mice and their wild-type littermates were anesthetized (control), or anesthetized, tracheotomized and subsequently ventilated for 5 hours with either low tidal volumes (LVT) or high tidal volumes (HVT). VILI was assessed by pulmonary coagulopathy, lung wet-to-dry ratios, total protein level in bronchoalveolar lavage fluid, neutrophil influx, histopathology, and pulmonary and plasma cytokine levels. Ventilation resulted in pulmonary coagulopathy and inflammation, with more injury following ventilation with HVT as compared to LVT. In PAI-1 gene-deficient mice, the influx of neutrophils in the pulmonary compartment was attenuated, while increased levels of pulmonary cytokines were found. Other endpoints of VILI were not different between PAI-1 gene-deficient and wild-type mice. These data indicate that a defect fibrinolytic response attenuates recruitment of neutrophils in VILI.
Collapse
|
15
|
Jaecklin T, Otulakowski G, Kavanagh BP. Do soluble mediators cause ventilator-induced lung injury and multi-organ failure? Intensive Care Med 2010; 36:750-7. [PMID: 20232037 DOI: 10.1007/s00134-010-1850-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Significant advances in the management of patients with acute respiratory distress syndrome have been few in the recent past despite considerable efforts in clinical testing and experimental work. The biotrauma hypothesis of ventilator-associated lung injury (VALI), suggesting that mechanical ventilation induces the release of injurious mediators from the lung, implies that pharmaceutical interventions targeting these circulating pathogenic mediators would be clinically beneficial. Among the commonly reported classes of ventilation-associated mediators are cytokines, coagulation factors, hormones (e.g., angiotensin-II), lipid-derived mediators and oxidants, yet proof of their pathogenicity is lacking. DISCUSSION This review discusses evidence surrounding the roles of these mediators in VALI and describes how definitive proof could be provided based on Koch's postulates, using an isolated perfused lung model. According to this experimental concept, candidate mediators would fulfill certain criteria, including increased accumulation in perfusate during injurious ventilation and induction of injury during non-injurious ventilation. Accumulation of mediators in the perfusate would facilitate isolation and characterization by standard biochemical means, from broad determination of physical and chemical properties to precise identification of individual molecules (e.g., by modern "omic" approaches such as mass spectrometry). Finally, confirmation by exogenous administration of mediators or antagonists can assess effects on injury and its mechanisms such as cell permeability or cytotoxicity. CONCLUSIONS Adaptation of Koch's postulates to the biotrauma hypothesis of VALI could provide important insights. Translation of the acquired knowledge into clinical testing is challenged by the heterogeneity of the patient population (e.g., etiology, co-morbidity, genetics or concomitant therapy) and the specificity and efficacy of the therapeutic intervention on the cellular/molecular level.
Collapse
Affiliation(s)
- Thomas Jaecklin
- Physiology and Experimental Medicine Program, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
16
|
Vaschetto R, Kuiper JW, Musters RJP, Eringa EC, Della Corte F, Murthy K, Groeneveld ABJ, Plötz FB. Renal hypoperfusion and impaired endothelium-dependent vasodilation in an animal model of VILI: the role of the peroxynitrite-PARP pathway. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R45. [PMID: 20346119 PMCID: PMC2887157 DOI: 10.1186/cc8932] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 01/10/2010] [Accepted: 03/26/2010] [Indexed: 01/08/2023]
Abstract
Introduction Mechanical ventilation (MV) can injure the lungs and contribute to an overwhelming inflammatory response, leading to acute renal failure (ARF). We previously showed that poly(adenosine diphosphate-ribose) polymerase (PARP) is involved in the development of ventilator-induced lung injury (VILI) and the related ARF, but the mechanisms underneath remain unclear. In the current study we therefore tested the hypothesis that renal blood flow and endothelial, functional and tissue changes in the kidney of rats with lipopolysaccharide (LPS)-induced lung injury aggravated by MV, is caused, in part, by activation of PARP by peroxynitrite. Methods Anesthetized Sprague Dawley rats (n = 31), were subjected to intratracheal instillation of lipopolysaccharide at 10 mg/kg followed by 210 min of mechanical ventilation at either low tidal volume (6 mL/kg) with 5 cm H2O positive end-expiratory pressure or high tidal volume (19 mL/kg) with zero positive end-expiratory pressure in the presence or absence of a peroxynitrite decomposition catalyst, WW85 or a PARP inhibitor, PJ-34. During the experiment, hemodynamics and blood gas variables were monitored. At time (t) t = 0 and t = 180 min, renal blood flow was measured. Blood and urine were collected for creatinine clearance measurement. Arcuate renal arteries were isolated for vasoreactivity experiment and kidneys snap frozen for staining. Results High tidal volume ventilation resulted in lung injury, hypotension, renal hypoperfusion and impaired renal endothelium-dependent vasodilation, associated with renal dysfunction and tissue changes (leukocyte accumulation and increased expression of neutrophil gelatinase-associated lipocalin). Both WW85 and PJ-34 treatments attenuated lung injury, preserved blood pressure, attenuated renal endothelial dysfunction and maintained renal blood flow. In multivariable analysis, renal blood flow improvement was, independently from each other, associated with both maintained blood pressure and endothelium-dependent vasodilation by drug treatment. Finally, drug treatment improved renal function and reduced tissue changes. Conclusions The peroxynitrite-induced PARP activation is involved in renal hypoperfusion, impaired endothelium-dependent vasodilation and resultant dysfunction, and injury, in a model of lung injury.
Collapse
Affiliation(s)
- Rosanna Vaschetto
- Department of Clinical and Experimental Medicine, University of Eastern Piedmont Amedeo Avogadro, Corso Mazzini 18, Novara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu YY, Liao SK, Huang CC, Tsai YH, Quinn DA, Li LF. Role for nuclear factor-kappaB in augmented lung injury because of interaction between hyperoxia and high stretch ventilation. Transl Res 2009; 154:228-40. [PMID: 19840764 DOI: 10.1016/j.trsl.2009.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/18/2009] [Accepted: 06/19/2009] [Indexed: 12/21/2022]
Abstract
High-tidal-volume mechanical ventilation and hyperoxia used in patients with acute lung injury (ALI) can induce alveolar coagulopathy and fibrin depositions within the airways. Hyperoxia has been shown to increase ventilator-induced lung injury (VILI), but the mechanisms that regulate interaction between high-tidal-volume mechanical ventilation and hyperoxia are unclear. We hypothesized that mechanical stretch with hyperoxia synergistically augmented neutrophil infiltration and production of plasminogen activator inhibitor-1 (PAI-1) via the nuclear factor-kappaB (NF-kappaB) pathway. C57BL/6 mice (n=5 per group) were exposed to high-tidal-volume (30 mL/kg) or low-tidal-volume (6 mL/kg) mechanical ventilation with room air or hyperoxia for 1 to 5h after 2-microg/g NF-kappaB inhibitor (SN-50) administration. Nonventilated mice with room air or hyperoxia served as control groups. Evans blue dye, myeloperoxidase, electrophoretic mobility shifting of nuclear protein, and inflammatory cytokine were measured. The expression of tumor necrosis factor-alpha (TNF-alpha) and PAI-1 were studied by immunohistochemistry. The addition of hyperoxia to high-tidal-volume ventilation-augmented lung injury, as demonstrated by increased microvascular leak, neutrophil migration into the lung, TNF-alpha and active PAI-1 production, DNA binding activity of NF-kappaB, and NF-kappaB activation. No statistically significant increase of neutrophil infiltration and inflammatory cytokine production was found in the mice ventilated at 6 mL/kg using hyperoxia. Hyperoxia-induced augmentation of VILI was attenuated in mice with pharmacologic inhibition of NF-kappaB activity by SN-50. We conclude that hyperoxia increased high-tidal-volume-induced cytokine production and neutrophil influx through activation of the NF-kappaB pathway.
Collapse
Affiliation(s)
- Yung-Yang Liu
- Chest Department, Taipei Veterans General Hospital, and National Yang-Ming University, School of Medicine, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
18
|
Brander L, Sinderby C, Lecomte F, Leong-Poi H, Bell D, Beck J, Tsoporis JN, Vaschetto R, Schultz MJ, Parker TG, Villar J, Zhang H, Slutsky AS. Neurally adjusted ventilatory assist decreases ventilator-induced lung injury and non-pulmonary organ dysfunction in rabbits with acute lung injury. Intensive Care Med 2009; 35:1979-89. [PMID: 19760209 DOI: 10.1007/s00134-009-1626-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To determine if neurally adjusted ventilatory assist (NAVA) that delivers pressure in proportion to diaphragm electrical activity is as protective to acutely injured lungs (ALI) and non-pulmonary organs as volume controlled (VC), low tidal volume (Vt), high positive end-expiratory pressure (PEEP) ventilation. DESIGN Prospective, randomized, laboratory animal study. SUBJECTS Twenty-seven male New Zealand white rabbits. INTERVENTIONS Anesthetized rabbits with hydrochloric acid-induced ALI were randomized (n = 9 per group) to 5.5 h NAVA (non-paralyzed), VC (paralyzed; Vt 6-ml/kg), or VC (paralyzed; Vt 15-ml/kg). PEEP was adjusted to hemodynamic goals in NAVA and VC6-ml/kg, and was 1 cmH2O in VC15-ml/kg. MEASUREMENTS AND MAIN RESULTS PaO2/FiO2; lung wet-to-dry ratio; lung histology; interleukin-8 (IL-8) concentrations in broncho-alveolar-lavage (BAL) fluid, plasma, and non-pulmonary organs; plasminogen activator inhibitor type-1 and tissue factor in BAL fluid and plasma; non-pulmonary organ apoptosis rate; creatinine clearance; echocardiography. PEEP was similar in NAVA and VC6-ml/kg. During NAVA, Vt was lower (3.1 +/- 0.9 ml/kg), whereas PaO2/ FiO2, respiratory rate, and PaCO2 were higher compared to VC6-ml/kg (p<0.05 for all). Variables assessing ventilator-induced lung injury (VILI), IL-8 levels, non-pulmonary organ apoptosis rate, and kidney as well as cardiac performance were similar in NAVA compared to VC6-ml/kg. VILI and non-pulmonary organ dysfunction was attenuated in both groups compared to VC15-ml/kg. CONCLUSIONS In anesthetized rabbits with early experimental ALI, NAVA is as effective as VC6-ml/kg in preventing VILI, in attenuating excessive systemic and remote organ inflammation, and in preserving cardiac and kidney function.
Collapse
Affiliation(s)
- Lukas Brander
- Interdepartmental Division of Critical Care Medicine, Department of Critical Care Medicine, University of Toronto, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li LF, Huang CC, Lin HC, Tsai YH, Quinn DA, Liao SK. Unfractionated heparin and enoxaparin reduce high-stretch ventilation augmented lung injury: a prospective, controlled animal experiment. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R108. [PMID: 19580651 PMCID: PMC2750150 DOI: 10.1186/cc7949] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/02/2009] [Accepted: 07/06/2009] [Indexed: 01/09/2023]
Abstract
Introduction Dysregulation of coagulation and local fibrinolysis found in patients with acute lung injury often results in the need for the support of mechanical ventilation. High-tidal-volume mechanical ventilation can increase lung damage and suppression of fibrinolytic activity, but the mechanisms are unclear. We hypothesized that subcutaneous injections of unfractionated heparin and enoxaparin would decrease neutrophil infiltration, lung edema, and plasminogen-activator inhibitor-1 (PAI-1) production in mice exposed to high-tidal-volume ventilation. Methods Male C57BL/6 mice, weighing 20 to 25 g, were exposed to either high-tidal-volume (30 ml/kg) or low-tidal-volume (6 ml/kg) mechanical ventilation with room air for 1 to 5 hours after 200 IU/kg or 400 IU/kg unfractionated heparin and 4 mg/kg or 8 mg/kg enoxaparin administration. Nonventilated mice served as a control group. Evan blue dye, lung wet- to dry-weight ratio, histopathologic grading of epithelium, myeloperoxidase, and gene expression of PAI-1 were measured. The expression of PAI-1 was studied by immunohistochemistry. Results High-tidal-volume ventilation induced increased microvascular permeability, neutrophil influx, PAI-1 mRNA expression, production of PAI-1 protein, and positive staining of PAI-1 in epithelium in a dose-dependent manner. Lung injury induced by high-tidal-volume ventilation was attenuated with PAI-1-deficient mice and pharmacologic inhibition of PAI-1 activity by low-dose unfractionated heparin and enoxaparin. Conclusions We conclude that high-tidal-volume mechanical ventilation increased microvascular permeability, neutrophil influx, lung PAI-1 mRNA expression, production of active PAI-1. The deleterious effects were attenuated by low-dose unfractionated heparin or enoxaparin treatment. Understanding the protective mechanism of unfractionated heparin and enoxaparin related to the reduction of PAI-1 may afford further knowledge of the effects of mechanical forces in the lung and development of possible therapeutic strategies involved in acute lung injury.
Collapse
Affiliation(s)
- Li-Fu Li
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kweishan, Taoyuan 333, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
20
|
Wolthuis EK, Vlaar APJ, Choi G, Roelofs JJTH, Juffermans NP, Schultz MJ. Mechanical ventilation using non-injurious ventilation settings causes lung injury in the absence of pre-existing lung injury in healthy mice. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R1. [PMID: 19152704 PMCID: PMC2688111 DOI: 10.1186/cc7688] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 11/19/2008] [Accepted: 01/19/2009] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Mechanical ventilation (MV) may cause ventilator-induced lung injury (VILI). Present models of VILI use exceptionally large tidal volumes, causing gross lung injury and haemodynamic shock. In addition, animals are ventilated for a relative short period of time and only after a 'priming' pulmonary insult. Finally, it is uncertain whether metabolic acidosis, which frequently develops in models of VILI, should be prevented. To study VILI in healthy mice, the authors used a MV model with clinically relevant ventilator settings, avoiding massive damage of lung structures and shock, and preventing metabolic acidosis. METHODS Healthy C57Bl/6 mice (n = 66) or BALB/c mice (n = 66) were ventilated (tidal volume = 7.5 ml/kg or 15 ml/kg; positive end-expiratory pressure = 2 cmH2O; fraction of inspired oxygen = 0.5) for five hours. Normal saline or sodium bicarbonate were used to correct for hypovolaemia. Lung histopathology, lung wet-to-dry ratio, bronchoalveolar lavage fluid protein content, neutrophil influx and levels of proinflammatory cytokines and coagulation factors were measured. RESULTS Animals remained haemodynamically stable throughout the whole experiment. Lung histopathological changes were minor, although significantly more histopathological changes were found after five hours of MV with a larger tidal volume. Lung histopathological changes were no different between the strains. In both strains and with both ventilator settings, MV caused higher wet-to-dry ratios, higher bronchoalveolar lavage fluid protein levels and more influx of neutrophils, and higher levels of proinflammatory cytokines and coagulation factors. Also, with MV higher systemic levels of cytokines were measured. All parameters were higher with larger tidal volumes. Correcting for metabolic acidosis did not alter endpoints. CONCLUSIONS MV induces VILI, in the absence of a priming pulmonary insult and even with use of relevant (least injurious) ventilator settings. This model offers opportunities to study the pathophysiological mechanisms behind VILI and the contribution of MV to lung injury in the absence of pre-existing lung injury.
Collapse
Affiliation(s)
- Esther K Wolthuis
- Department of Intensive Care Medicine, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Finigan JH. The coagulation system and pulmonary endothelial function in acute lung injury. Microvasc Res 2009; 77:35-8. [PMID: 18938186 DOI: 10.1016/j.mvr.2008.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 09/08/2008] [Indexed: 01/04/2023]
Abstract
Acute lung injury (ALI) is a disease marked by diffuse endothelial injury and increased capillary permeability. The coagulation system is a major participant in ALI and activation of coagulation is both a consequence and contributor to ongoing lung injury. Increased coagulation and depressed fibrinolysis result in diffuse alveolar fibrin deposition which serves to amplify pulmonary inflammation. In addition, existing evidence demonstrates a direct role for different components of coagulation on vascular endothelial barrier function. In particular, the pro-coagulant protein thrombin disrupts the endothelial actin cytoskeleton resulting in increased endothelial leak. In contrast, the anti-coagulant activated protein C (APC) confers a barrier-protective actin configuration and enhances the vascular barrier in vitro and in vivo. However, recent studies suggest a complex landscape with receptor cross-talk, temporal heterogeneity and pro-coagulant/anti-coagulant protein interactions. In this article, the major signaling pathways governing endothelial permeability in lung injury are reviewed with a particular focus on the role that endothelial proteins, such as thrombin and APC, which play on the vascular barrier function.
Collapse
Affiliation(s)
- James H Finigan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
22
|
Allen GB, Cloutier ME, Larrabee YC, Tetenev K, Smiley ST, Bates JHT. Neither fibrin nor plasminogen activator inhibitor-1 deficiency protects lung function in a mouse model of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2008; 296:L277-85. [PMID: 19060228 DOI: 10.1152/ajplung.90475.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Fibrin impairs surfactant function in vitro, and inhibition of fibrinolysis by plasminogen activator inhibitor (PAI-1) is thought to promote fibrin accumulation in acute lung injury (ALI). This has led to speculation that impaired PAI-1 and fibrin accumulation should protect lung function in ALI. We tested this hypothesis by investigating ALI severity in fibrinogen-deficient (Fgn-/-) and PAI-1-deficient (PAI-1-/-) mice. PAI-1-/-, C57BL/6, Fgn-/-, and Fgn+/- females were anesthetized and allowed to aspirate 4 microl/g of hydrochloric acid (pH 1.0) and then reanesthetized and connected to a ventilator 48 h later. Naive C57BL/6 and Fgn+/- females served as controls. Following deep inflation (DI), forced oscillations were delivered periodically over 8 min to measure changes in elastance (H) as a surrogate of lung derecruitment, at positive end-expiratory pressures (PEEP) of 6, 3, and 1 cmH(2)O. Increases in H following DI in acid-injured mice were greater than naive strain-matched controls. Increases in H were no different between injured PAI-1-/- and C57BL/6, or between injured Fgn-/- and +/- mice, at any PEEP. Pressure-volume curves were no different between injured groups. Total lung fibrin was lower in injured PAI-1-/- and Fgn-/- mice relative to injured C57BL/6 and Fgn+/- mice, respectively, but indices of permeability were no different between strains. Unexpectedly, neither fibrin nor PAI-1 deficiency protects lung mechanical function in mice with acid-induced ALI. We speculate that in vivo lung function may be more closely tied to permeability and alveolar protein in general, rather than being linked specifically to fibrin.
Collapse
Affiliation(s)
- Gilman B Allen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Tsangaris I, Tsantes A, Bonovas S, Lignos M, Kopterides P, Gialeraki A, Rapti E, Orfanos S, Dimopoulou I, Travlou A, Armaganidis A. The impact of the PAI-1 4G/5G polymorphism on the outcome of patients with ALI/ARDS. Thromb Res 2008; 123:832-6. [PMID: 18804848 DOI: 10.1016/j.thromres.2008.07.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/23/2008] [Accepted: 07/29/2008] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Increased levels of plasminogen activator inhibitor-1 (PAI-1) have been associated with worse outcome in ALI/ARDS. A single guanosine insertion/deletion (4G/5G) polymorphism in the promoter region of the PAI-1 gene, may play an important role in the regulation of PAI-1 expression. The objective of the study was to evaluate the effect of this polymorphism on the outcome of critically ill patients with ALI/ARDS. MATERIALS AND METHODS 52 consecutive ventilated patients with ALI/ARDS were studied. Bronchoalveolar lavage was performed within 48 hours from diagnosis. Measurement of plasma and BALF PAI-1 activity and D-dimers levels, and 4G/5G genotyping of PAI-1 were carried out. The primary outcome was 28-day mortality, and secondary outcomes included organ dysfunction and ventilator-free days. RESULTS 17 patients were homozygotes for the 4G allele. Severity scores were not different between subgroups upon study enrollment. 28-day mortality was 70.6% and 42.9% for the 4G-4G and the non-4G-4G patients, respectively (p=0.06). PAI-1 activity levels and D-dimer in plasma and BALF were not significantly different between the 4G-4G and the non-4G-4G subgroups. In the multivariate analysis, genotype 4G/4G was the only variable independently associated with 28-day mortality (Odds Ratio=9.95, 95% CI: 1.79-55.28, p=0.009). Furthermore, genotype 4G/4G and plasma PAI-1 activity levels were independently negatively associated with ventilator free days (p=0.033 and p=0.008, respectively). CONCLUSIONS ALI/ARDS patients, homozygous for the 4G allele of the PAI-1 gene, experienced higher 28-day mortality. This genotype was associated with a reduction in the number of days of unassisted ventilation and was inversely associated with the number of days without organ failure.
Collapse
Affiliation(s)
- Iraklis Tsangaris
- 2nd Department of Critical Care Medicine, Attikon Hospital, Medical School, University of Athens, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Captopril decreases plasminogen activator inhibitor-1 in rats with ventilator-induced lung injury. Crit Care Med 2008; 36:1880-5. [DOI: 10.1097/ccm.0b013e31817c911d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Abstract
Among ventilated children, the incidence of acute lung injury (ALI) was 9%; of that latter group 80% developed the acute respiratory distress syndrome (ARDS). The population-based prevalence of pediatric ARDS was 5.5 cases/100.000 inhabitants. Underlying diseases in children were septic shock (34%), respiratory syncytial virus infections (16%), bacterial pneumonia (15%), near-drowning 9%, and others. Mortality ranged from 18% to 27% for ALI (including ALI-non ARDS and ARDS) and from 29% to 50% for ARDS. Mortality was only 3%-11% in children with ALI-non ARDS. As risk factors, oxygenation indices and multi-organ failure have been identified. New insights into the pathophysiology (for example the interplay between intraalveolar coagulation/fibrinolysis and inflammation and the genetic polymorphism for the angiotensin-converting enzyme) offer new therapeutic options. Lung protective mechanical ventilation with optimal lung recruitment is the mainstay of supportive therapy. New therapeutic modalities refer to corticosteroid and surfactant treatment. Well-designed follow up studies are needed.
Collapse
|
26
|
Schultz MJ, Levi M. Pulmonary coagulopathy: a potential therapeutic target in different forms of lung injury. Thorax 2007; 62:563-4. [PMID: 17600292 PMCID: PMC2117247 DOI: 10.1136/thx.2006.067256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Andrews P, Azoulay E, Antonelli M, Brochard L, Brun-Buisson C, Dobb G, Fagon JY, Gerlach H, Groeneveld J, Mancebo J, Metnitz P, Nava S, Pugin J, Pinsky M, Radermacher P, Richard C, Tasker R. Year in review in intensive care medicine, 2005. III. Nutrition, pediatric and neonatal critical care, and experimental. Intensive Care Med 2006; 32:490-500. [PMID: 16489423 DOI: 10.1007/s00134-006-0068-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Accepted: 01/08/2006] [Indexed: 01/15/2023]
Affiliation(s)
- Peter Andrews
- Intensive Care Unit, Western General Hospital, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pulmonary coagulopathy as a new target in therapeutic studies of acute lung injury or pneumonia—A review. Crit Care Med 2006. [DOI: 10.1097/01.ccm.0000201882.23917.b8] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Chan A, Jayasuriya K, Berry L, Roth-Kleiner M, Post M, Belik J. Volutrauma activates the clotting cascade in the newborn but not adult rat. Am J Physiol Lung Cell Mol Physiol 2005; 290:L754-L760. [PMID: 16326757 DOI: 10.1152/ajplung.00339.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Coagulopathy and alveolar fibrin deposition are common in sick neonates and attributed to the primary disease, as opposed to their ventilatory support. Hypothesizing that high tidal volume ventilation activates the extrinsic coagulation pathway, we air ventilated newborn and adult rats at low (10 ml/kg) or high (30 ml/kg) tidal volume and compared them with age-matched nonventilated controls. Blood was collected at the end of the experiment for measurement of clot time, tissue factor, and other coagulation factor content. Similar measurements were obtained from lung lavage material. The newborn clot time (44+/-1) was lower and plasma tissue factor content higher (103.4+/-0.4) than adults (88+/-4 s and 26.6+/-1.4 units; P<0.01). High, but not low, tidal volume ventilation of newborns for as little as 15 min significantly reduced clot time and increased plasma tissue factor content (P<0.01). High volume ventilation increased plasma factor Xa (0.1+/-0.1 to 1.6+/-0.4 nM; P<0.01) and thrombin (1.3+/-0.2 to 2.2+/-0.4 nM; P<0.05) and decreased antithrombin (0.12+/-0.01 to 0.05+/-0.01; P<0.01) in the newborn. Lung lavage material of high volume-ventilated newborns showed increased (P<0.01) factor Xa and thrombin. No changes in these parameters were observed in adult rats that were high volume ventilated for up to 90 min. Compared with adults, newborn rats have a greater propensity for volutrauma-activated intravascular coagulation. These data suggest that mechanical ventilation promotes neonatal thrombosis via lung tissue factor release.
Collapse
Affiliation(s)
- Anthony Chan
- Department of Pediatrics, Hospital for sick children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|