1
|
Zhang S, Duitman J, Artigas A, Bos LD. The Complex Immune Cell Composition and Cellular Interaction in the Alveolar Compartment of Patients with Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2025; 72:233-243. [PMID: 39383858 PMCID: PMC11890076 DOI: 10.1165/rcmb.2024-0176tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by protein-rich edema due to alveolar-capillary barrier dysfunction caused by inflammatory processes. Currently, our understanding of the inflammatory response in patients with ARDS is mainly based on assessment of the systemic compartment and preclinical studies. Investigations into the intricate network of immune cells and their critical functions in the alveolar compartment remain limited. However, with recent improvements in single-cell analyses, our comprehensive understanding of the interactions between immune cells in the lungs has improved. In this review, we summarize the current knowledge about the cellular composition and interactions of different immune cell types within the alveolar space of patients with ARDS. Neutrophils and macrophages are the predominant immune cells in the alveolar space of patients with ARDS. Yet, all immune cells present, including lymphocytes, participate in complex interactions, coordinate recruitment, modulate the lifespan, and control apoptosis through various signaling pathways. Moreover, the cellular composition of alveolar immune cells is associated with the clinical outcomes of patients with ARDS. In conclusion, this synthesis advances our understanding of ARDS immunology, emphasizing the crucial role of immune cells within the alveolar space. Associations between cellular composition and clinical outcomes highlight the significance of exploring distinct alveolar immune cell subsets. Such exploration holds promise for uncovering novel therapeutic targets in ARDS pathophysiology, presenting avenues for enhancing clinical management and treatment strategies for patients with ARDS.
Collapse
Affiliation(s)
| | - JanWillem Duitman
- Department of Pulmonary Medicine
- Department of Experimental Immunology, and
| | - Antonio Artigas
- Corporacion Sanitaria Universitaria Parc Taulí, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), CIBER Enfermedades Respiratorias, Universitat Autónoma de Barcelona, Sabadell, Spain
| | - Lieuwe D.J. Bos
- Department of Intensive Care Medicine
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam University Medical Center, Location University of Amsterdam, Amsterdam, the Netherlands; and
| |
Collapse
|
2
|
Liu Q, Zhu X, Guo S. From pancreas to lungs: The role of immune cells in severe acute pancreatitis and acute lung injury. Immun Inflamm Dis 2024; 12:e1351. [PMID: 39023414 PMCID: PMC11256889 DOI: 10.1002/iid3.1351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a potentially lethal inflammatory pancreatitis condition that is usually linked to multiple organ failure. When it comes to SAP, the lung is the main organ that is frequently involved. Many SAP patients experience respiratory failure following an acute lung injury (ALI). Clinicians provide insufficient care for compounded ALI since the underlying pathophysiology is unknown. The mortality rate of SAP patients is severely impacted by it. OBJECTIVE The study aims to provide insight into immune cells, specifically their roles and modifications during SAP and ALI, through a comprehensive literature review. The emphasis is on immune cells as a therapeutic approach for treating SAP and ALI. FINDINGS Immune cells play an important role in the complicated pathophysiology ofSAP and ALI by maintaining the right balance of pro- and anti-inflammatory responses. Immunomodulatory drugs now in the market have low thepeutic efficacy because they selectively target one immune cell while ignoring immune cell interactions. Accurate management of dysregulated immune responses is necessary. A critical initial step is precisely characterizing the activity of the immune cells during SAP and ALI. CONCLUSION Given the increasing incidence of SAP, immunotherapy is emerging as a potential treatment option for these patients. Interactions among immune cells improve our understanding of the intricacy of concurrent ALI in SAP patients. Acquiring expertise in these domains will stimulate the development of innovative immunomodulation therapies that will improve the outlook for patients with SAP and ALI.
Collapse
Affiliation(s)
- Qi Liu
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| | - Xiaomei Zhu
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| |
Collapse
|
3
|
Saki N, Javan M, Moghimian-Boroujeni B, Kast RE. Interesting effects of interleukins and immune cells on acute respiratory distress syndrome. Clin Exp Med 2023; 23:2979-2996. [PMID: 37330918 DOI: 10.1007/s10238-023-01118-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a medical condition characterized by widespread inflammation in the lungs with consequent proportional loss of gas exchange function. ARDS is linked with severe pulmonary or systemic infection. Several factors, including secretory cytokines, immune cells, and lung epithelial and endothelial cells, play a role in the development and progression of this disease. The present study is based on Pubmed database information (1987-2022) using the words "Acute respiratory distress syndrome", "Interleukin", "Cytokines" and "Immune cells". Cytokines and immune cells play an important role in this disease, with particular emphasis on the balance between pro-inflammatory and anti-inflammatory factors. Neutrophils are one of several important mediators of Inflammation, lung tissue destruction, and malfunction during ARDS. Some immune cells, such as macrophages and eosinophils, play a dual role in releasing inflammatory mediators, recruitment inflammatory cells and the progression of ARDS, or releasing anti-inflammatory mediators, clearing the lung of inflammatory cells, and helping to improve the disease. Different interleukins play a role in the development or inhibition of ARDS by helping to activate various signaling pathways, helping to secrete other inflammatory or anti-inflammatory interleukins, and playing a role in the production and balance between immune cells involved in ARDS. As a result, immune cells and, inflammatory cytokines, especially interleukins play an important role in the pathogenesis of this disease Therefore, understanding the relevant mechanisms will help in the proper diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Javan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Bahareh Moghimian-Boroujeni
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, 61357-15794, Iran.
| | | |
Collapse
|
4
|
Al-Sofyani KA. Corticosteroids treatment for pediatric acute respiratory syndrome: A critical review. Saudi Med J 2023; 44:440-449. [PMID: 37182909 PMCID: PMC10187748 DOI: 10.15537/smj.2023.44.5.20220672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Approximately 25% of all pediatric consultations are due to respiratory conditions, 10% of which are for asthma. Regarding prevalence, bronchiolitis, acute bronchitis, and respiratory infections are other leading pediatric respiratory illnesses. Compared to the aforementioned diseases, pediatric acute respiratory distress syndrome (PARDS) is rare but lethal in the Intensive Care Unit patients. According to global studies, the mortality in PARDS ranges from 13.3% to 60.7%. Before the Pediatric Acute Lung Injury Consensus Conference (PALICC), adult acute respiratory distress syndrome (ARDS) management guidelines were used for PARDS. The PALICC set new criteria to identify PARDS with a different treatment and management approach. Steroids have been used to treat ARDS in some cases, although their effectiveness in treating pediatric patients is highly debated in the scientific community. This review examines steroid use in treating PARDS, emphasizes current developments in the field, and gives a broad overview of PARDS management.
Collapse
Affiliation(s)
- Khouloud A. Al-Sofyani
- From the Department of Pediatric, Pediatric Critical Care Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Gonçalves‐Pereira MH, Santiago L, Ravetti CG, Vassallo PF, de Andrade MVM, Vieira MS, de Fátima Souza de Oliveira F, Carobin NV, Li G, de Paula Sabino A, Nobre V, da Costa Santiago H. Dysfunctional phenotype of systemic and pulmonary regulatory T cells associate with lethal COVID-19 cases. Immunology 2023; 168:684-696. [PMID: 36349514 PMCID: PMC9877711 DOI: 10.1111/imm.13603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Severe cases of COVID-19 present hyperinflammatory condition that can be fatal. Little is known about the role of regulatory responses in SARS-CoV-2 infection. In this study, we evaluated the phenotype of regulatory T cells in the blood (peripheral blood mononuclear cell) and the lungs (broncho-alveolar) of adult patients with severe COVID-19 under invasive mechanical ventilation. Our results show important dynamic variation on Treg cells phenotype during COVID-19 with changes in number and functional parameters from the day of intubation (Day 1 of intensive care unit admission) to Day 7. We observed that compared with surviving patients, non-survivors presented lower numbers of Treg cells in the blood. In addition, lung Tregs of non-survivors also displayed higher PD1 and lower FOXP3 expressions suggesting dysfunctional phenotype. Further signs of Treg dysregulation were observed in non-survivors such as limited production of IL-10 in the lungs and higher production of IL-17A in the blood and in the lungs, which were associated with increased PD1 expression. These findings were also associated with lower pulmonary levels of Treg-stimulating factors like TNF and IL-2. Tregs in the blood and lungs are profoundly dysfunctional in non-surviving COVID-19 patients.
Collapse
Affiliation(s)
- Marcela Helena Gonçalves‐Pereira
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Luciana Santiago
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Hospital das ClínicasUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Cecilia Gómez Ravetti
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Paula Frizera Vassallo
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Marcus Vinicius Melo de Andrade
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Mariana Sousa Vieira
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | | | - Natália Virtude Carobin
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Guangzhao Li
- Department of MicrobiologyImmunology and Tropical Medicine, The George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Vandack Nobre
- Núcleo Interdisciplinar de Investigação em Medicina IntensivaDepartamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Helton da Costa Santiago
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| |
Collapse
|
6
|
Shafiee A, Rezaian S, Aliyu M, Shayeghpour A, Mokhames Z, Mohammadi H, Yaslianifard S, Soleimani A, Soleimanifar F, Tojari T, Qorbani M, Mozhgani SH. Immunologic Profile of Severe COVID-19 Patients in Alborz Province, Iran. Jundishapur J Microbiol 2023. [DOI: 10.5812/jjm-134264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Background: The coronavirus disease 2019 (COVID-19) pandemic has prompted researchers to look for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenicity in depth. Immune system dysregulation was one of the major mechanisms in its pathogenesis. The evidence regarding the levels of interferons (IFNs) and pro- and anti-inflammatory cytokines in COVID-19 patients is not well-established. Objectives: Therefore, this study evaluated the expression level of type-I, II, III IFNs, along with interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-10 (IL-10), and FOXP3 genes in patients with severe COVID-19 to provide additional insights regarding the regulation of these cytokines during COVID-19 infection. Methods: Peripheral blood mononuclear cells were isolated from two groups, including severe COVID-19 patients and healthy controls. Ribonucleic acid was extracted to evaluate the expression level of IFN-a, IFN-b, IFN-g, IFN-la, IL-1, IL-6, IL-10, and FOXP3 genes using real-time polymerase chain reaction. The correlations between the expression levels of these genes were also assessed. Results: A total of 40 samples were divided into two groups, with each group consisting of 20 samples. When comparing the severe COVID-19 group to the controls, the expression levels of IFN-g, tumor necrosis factor-alpha (TNF-α), IL-6, and IL-10 genes were significantly higher in the severe COVID-19 group. The two groups had no significant differences in IFN-a, IFN-b, IFN-la, IL-1, and FOXP3 expression. The correlation analysis revealed a negative correlation between type I and type III IFNs (i.e., IFN-a and IFN-la) and pro-inflammatory cytokines (i.e., IL-1 and IL-10). Conclusions: This study suggests the possible upregulation of IFN-g, IL-6, IL-10, and TNF-α during SARS-CoV-2 pathogenicity. The preliminary findings of this study and those reported previously show that the levels of IFNs and pro- and anti-inflammatory cytokines are not uniformly expressed among all COVID-19 patients and might differ as the disease progresses to the severe stage.
Collapse
|
7
|
Yang Z, Nicholson SE, Cancio TS, Cancio LC, Li Y. Complement as a vital nexus of the pathobiological connectome for acute respiratory distress syndrome: An emerging therapeutic target. Front Immunol 2023; 14:1100461. [PMID: 37006238 PMCID: PMC10064147 DOI: 10.3389/fimmu.2023.1100461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
The hallmark of acute respiratory distress syndrome (ARDS) pathobiology is unchecked inflammation-driven diffuse alveolar damage and alveolar-capillary barrier dysfunction. Currently, therapeutic interventions for ARDS remain largely limited to pulmonary-supportive strategies, and there is an unmet demand for pharmacologic therapies targeting the underlying pathology of ARDS in patients suffering from the illness. The complement cascade (ComC) plays an integral role in the regulation of both innate and adaptive immune responses. ComC activation can prime an overzealous cytokine storm and tissue/organ damage. The ARDS and acute lung injury (ALI) have an established relationship with early maladaptive ComC activation. In this review, we have collected evidence from the current studies linking ALI/ARDS with ComC dysregulation, focusing on elucidating the new emerging roles of the extracellular (canonical) and intracellular (non-canonical or complosome), ComC (complementome) in ALI/ARDS pathobiology, and highlighting complementome as a vital nexus of the pathobiological connectome for ALI/ARDS via its crosstalking with other systems of the immunome, DAMPome, PAMPome, coagulome, metabolome, and microbiome. We have also discussed the diagnostic/therapeutic potential and future direction of ALI/ARDS care with the ultimate goal of better defining mechanistic subtypes (endotypes and theratypes) through new methodologies in order to facilitate a more precise and effective complement-targeted therapy for treating these comorbidities. This information leads to support for a therapeutic anti-inflammatory strategy by targeting the ComC, where the arsenal of clinical-stage complement-specific drugs is available, especially for patients with ALI/ARDS due to COVID-19.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Susannah E. Nicholson
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tomas S. Cancio
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Leopoldo C. Cancio
- United States (US) Army Burn Center, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Yansong Li
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- The Geneva Foundation, Immunological Damage Control Resuscitation Program, Tacoma, WA, United States
- *Correspondence: Yansong Li,
| |
Collapse
|
8
|
Chu CM, Chung CJ, Huang CY, Yu CC, Wang CH, Li LF, Wu HP. Serial Increases in Human Leukocyte Antigen-DR Expression and Decreases in Interleukin-10 Expression in Alveolar Monocytes of Survivors of Pneumonia-Related Acute Respiratory Distress Syndrome. BIOLOGY 2022; 11:biology11121793. [PMID: 36552302 PMCID: PMC9775347 DOI: 10.3390/biology11121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
ARDS is a potentially lethal syndrome. HLA-DR expression in monocytes reflects their activation and antigen-presenting capacity. However, the correlation between clinical outcomes and HLA-DR expression in alveolar monocytes/macrophages in patients with pneumonia-related ARDS remains unclear. Thus, we determined the trends of HLA-DR and cytokine expressions in alveolar monocytes using repeated measurements to answer this question. Thirty-one pneumonia patients with respiratory failure and ARDS without coronavirus disease 2019 between November 2019 and November 2021 were enrolled in our intensive care unit and three without complete data were excluded. Interleukin (IL)-10, IL-12, and HLA-DR expression in bronchoalveolar lavage (BAL) monocytes were determined on days one and eight. Monocyte HLA-DR expression (mHLA-DR) and CD4 T lymphocytes percentages in BAL cells of survivors increased remarkably after seven days. Monocyte IL-10 expression and monocytes percentages in BAL cells of survivors decreased substantially after seven days. The mHLA-DR was negatively correlated with disease severity scores on day one and eight. In conclusion, serial increases in HLA-DR expression and decreases in IL-10 expression were observed in BAL monocytes of survivors of pneumonia-related ARDS. More studies are needed to confirm this point of view, and then development of a therapeutic agent restoring mHLA-DR and preventing IL-10 production can be considered.
Collapse
Affiliation(s)
- Chien-Ming Chu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Chia-Jung Chung
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Chih-Yu Huang
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chung-Chieh Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chao-Hung Wang
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Heart Failure Research Center, Division of Cardiology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Li-Fu Li
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Huang-Pin Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-2-24313131 (ext. 6204); Fax: +886-2-24335342
| |
Collapse
|
9
|
Singh G, Martin Rumende C, Sharma SK, Rengganis I, Amin Z, Loho T, Hermiyanti E, Harimurti K, Wibowo H. Low BALF CD4 T cells count is associated with extubation failure and mortality in critically ill covid-19 pneumonia. Ann Med 2022; 54:1894-1905. [PMID: 35786088 PMCID: PMC9258432 DOI: 10.1080/07853890.2022.2095012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Critically ill COVID-19 pneumonia is one of the main causes of extubation failure and mortality. Understanding clinical characteristics, laboratory profiles and bronchoalveolar lavage fluid (BALF) immunopathology may help improve outcomes in critically ill COVID-19 pneumonia. We aimed to describe clinical characteristics, laboratory profiles and BALF immunopathology based on lung severity in critically ill COVID-19 pneumonia patients. MATERIALS AND METHODS Forty critically ill severe pneumonia patients requiring invasive mechanical ventilation in Cipto Mangunkusumo General (National Tertiary Referral Hospital), Indonesia within November 2020-January 2021 were enrolled in this study. Early BALF collection was performed after patients' intubation. Clinical characteristics, laboratory profiles and BALF biomarkers (sTREM-1, alveolar macrophage amount and function, IL-6, IL-17, CD4 T-cells, Tregs, SP-A and Caspase-3) were observed and analysed. Outcomes were measured based on extubation failure (within 19 days) and 28-days mortality. Univariate and bivariate analyses were performed. RESULTS Early bronchoscopy was performed in an average of 4 h (SD = 0.82) after patients' intubation. Twenty-three and twenty-two patients had extubation failure (within 19 days) and 28-days mortality, respectively. In the baseline clinical characteristics of critically ill COVID-19 patients, we found no significant differences in the extubation and mortality status groups. In the laboratory profiles of critically ill COVID-19 patients, we found no significant differences in the extubation status groups. In critically ill COVID-19 pneumonia patients, there was a significant high D-dimer levels in survived group (p = .027), a significant low BALF CD4 T-cells count in the right lung (p = .001) and a significant low BALF CD4 T-cells count (p = .010 and p = .018) in severely affected lung with extubation failure and mortality. CONCLUSIONS BALF CD4 T-cells count evaluation of severely affected lung is associated with early extubation failure and mortality in critically ill COVID-19 pneumonia patients. KEY MESSAGEFew studies have been conducted during the peak COVID-19 period analysing combined bronchoalveolar lavage fluid (BALF) immunopathology biomarkers within four hours of intubation to assess extubation failure and mortality. In this study, we reported eight BALF immunopathology biomarkers (sTREM-1, alveolar macrophage, IL-6, IL-17, CD4 T-cells, Tregs, SP-A and Caspase-3).We found significantly low BALF CD4 T-cells count in the right lung, and low BALF CD4 T-cells count in severely affected lung of critically ill COVID-19 pneumonia patients in extubation failure and mortality.
Collapse
Affiliation(s)
- Gurmeet Singh
- Department of Internal Medicine, Faculty of Medicine, Division of Respirology and Critical Illness, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Cleopas Martin Rumende
- Department of Internal Medicine, Faculty of Medicine, Division of Respirology and Critical Illness, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Surendra K Sharma
- Department of Molecular Medicine, Jamia Hamdard Institute of Molecular Medicine, Hamdard University, New Delhi, India.,Department of General Medicine & Pulmonary Medicine, JNMC, Datta Meghe Institute of Medical Science, New Delhi, India
| | - Iris Rengganis
- Department of Internal Medicine, Faculty of Medicine, Division of Allergy and Clinical Immunology, Universitas Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Zulkifli Amin
- Department of Internal Medicine, Faculty of Medicine, Division of Respirology and Critical Illness, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Tonny Loho
- Department of Clinical Pathology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Emmy Hermiyanti
- Department of Internal Medicine, Faculty of Medicine, Division of Respirology and Critical Illness, Universitas Padjadjaran, Dr Hasan Sadikin Hospital Bandung, Bandung, Indonesia
| | - Kuntjoro Harimurti
- Department of Internal Medicine, Faculty of Medicine, Division of Geriatrics, Universitas Indonesia - Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Heri Wibowo
- Head of Integrated Laboratory, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
10
|
Zheng Z, Chang Z, Chen Y, Li J, Huang T, Huang Y, Fan Z, Gao J. Total bilirubin is associated with all-cause mortality in patients with acute respiratory distress syndrome: a retrospective study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1160. [PMID: 36467346 PMCID: PMC9708468 DOI: 10.21037/atm-22-1737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022]
Abstract
Background Acute respiratory distress syndrome (ARDS) is a life-threatening disease for which biomarkers to predict mortality are needed. Total bilirubin (TBIL), an end-product of hemoglobin catabolism in mammals reflecting liver dysfunction, has been demonstrated as an independent risk indicator for critically ill patients. This study aimed to examine whether TBIL on intensive care unit (ICU) admission is associated with ARDS mortality. Methods We analyzed the data of patients diagnosed with ARDS according to the Berlin definition from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The primary endpoint was 30-day ICU mortality after admission to the ICU, and the second endpoint was in-hospital mortality. Multivariable logistic analysis adjusted for potential confounders was used to determine the association between TBIL and short-term mortality. Results Of 1,539 ARDS patients enrolled, 261 patients died within 30 days of admission to the ICU. In the multivariable logistic analysis, each 1 g/dL increase in TBIL levels led to a 4% increase in the odds of 30-day ICU mortality [adjusted odds ratio (OR) =0.04; 95% confidence interval (CI): 0.01 to 0.08] and a 4% increase in the odds of in-hospital mortality (adjusted OR =0.04; 95% CI: 0.01 to 0.07). Furthermore, TBIL levels ≥2 mg/dL were significantly associated with 30-day ICU mortality (adjusted OR =1.51, 95% CI: 1.02 to 1.07) and in-hospital mortality (OR =1.41; 95% CI: 1.01 to 1.87). Similarly, associations between serum TBIL levels and 30-day ICU mortality were found in all subgroups stratified by comorbidities, the severity of ARDS, and other variables. Conclusions A higher serum TBIL on ICU admission was independently associated with mortality in ARDS patients. Intensive care and observation should be provided to ARDS patients with increased TBIL.
Collapse
Affiliation(s)
- Zhoude Zheng
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Zhen’ge Chang
- Department of Respiratory Medicine, Civil Aviation General Hospital, Beijing, China;,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxiong Chen
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Li
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Tingting Huang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yilin Huang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Zhongjie Fan
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jinming Gao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Rahman T, Khandakar A, Abir FF, Faisal MAA, Hossain MS, Podder KK, Abbas TO, Alam MF, Kashem SB, Islam MT, Zughaier SM, Chowdhury MEH. QCovSML: A reliable COVID-19 detection system using CBC biomarkers by a stacking machine learning model. Comput Biol Med 2022; 143:105284. [PMID: 35180500 PMCID: PMC8839805 DOI: 10.1016/j.compbiomed.2022.105284] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/31/2022]
Abstract
The reverse transcription-polymerase chain reaction (RT-PCR) test is considered the current gold standard for the detection of coronavirus disease (COVID-19), although it suffers from some shortcomings, namely comparatively longer turnaround time, higher false-negative rates around 20-25%, and higher cost equipment. Therefore, finding an efficient, robust, accurate, and widely available, and accessible alternative to RT-PCR for COVID-19 diagnosis is a matter of utmost importance. This study proposes a complete blood count (CBC) biomarkers-based COVID-19 detection system using a stacking machine learning (SML) model, which could be a fast and less expensive alternative. This study used seven different publicly available datasets, where the largest one consisting of fifteen CBC biomarkers collected from 1624 patients (52% COVID-19 positive) admitted at San Raphael Hospital, Italy from February to May 2020 was used to train and validate the proposed model. White blood cell count, monocytes (%), lymphocyte (%), and age parameters collected from the patients during hospital admission were found to be important biomarkers for COVID-19 disease prediction using five different feature selection techniques. Our stacking model produced the best performance with weighted precision, sensitivity, specificity, overall accuracy, and F1-score of 91.44%, 91.44%, 91.44%, 91.45%, and 91.45%, respectively. The stacking machine learning model improved the performance in comparison to other state-of-the-art machine learning classifiers. Finally, a nomogram-based scoring system (QCovSML) was constructed using this stacking approach to predict the COVID-19 patients. The cut-off value of the QCovSML system for classifying COVID-19 and Non-COVID patients was 4.8. Six datasets from three different countries were used to externally validate the proposed model to evaluate its generalizability and robustness. The nomogram demonstrated good calibration and discrimination with the area under the curve (AUC) of 0.961 for the internal cohort and average AUC of 0.967 for all external validation cohort, respectively. The external validation shows an average weighted precision, sensitivity, F1-score, specificity, and overall accuracy of 92.02%, 95.59%, 93.73%, 90.54%, and 93.34%, respectively.
Collapse
Affiliation(s)
- Tawsifur Rahman
- Department of Electrical Engineering, Qatar University, Doha, 2713, Qatar
| | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha, 2713, Qatar
| | - Farhan Fuad Abir
- Department of Electrical and Electronics Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Ahasan Atick Faisal
- Department of Electrical and Electronics Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Shafayet Hossain
- Dept. of Electrical, Electronics and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
| | - Kanchon Kanti Podder
- Department of Biomedical Physics & Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Tariq O Abbas
- Urology Division, Surgery Department, Sidra Medicine, Doha, 26999, Qatar
| | - Mohammed Fasihul Alam
- Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, 2713, Qatar
| | - Saad Bin Kashem
- Department of Computing Science, AFG College with the University of Aberdeen, Doha, Qatar
| | - Mohammad Tariqul Islam
- Dept. of Electrical, Electronics and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
| | - Susu M Zughaier
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, 2713, Qatar
| | | |
Collapse
|
12
|
PARP-1 Inhibition Repressed Imbalance of Th17 and Treg Cells in Preterm Rats with Intrauterine Infection-Induced Acute Respiratory Distress Syndrome by Reducing the Expression Level of IL-6. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1255674. [PMID: 35190759 PMCID: PMC8858042 DOI: 10.1155/2022/1255674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022]
Abstract
Background. Abundant reports have uncovered an imbalance of Treg and Th17 cells in pulmonary diseases. Hereon, we intend to explore the impact of PARP-1 on the imbalance of Th17/Treg and the potential mechanism in premature rats with acute respiratory distress syndrome (ARDS). Methods. Preterm ARDS infants and healthy term infants were enrolled in this investigation. To induce a rat model of ARDS, E.coli suspension was given to rats through two vaginal dilator-guided intramuscular injections. H&E staining was used to perform histopathological examination. Flow cytometry was employed to assess the proportion of Th17 or Treg cells accounted for CD4+ T cells. ELISA was applied to measure levels of IL-6, IL-17A, and IL-10 in the serum of ARDS patients. Moreover, the mRNA and protein expression levels of PARP-1, IL-6, IL-17A, and IL-10 were detected through qRT-PCR and western blotting. Results. An increased Th17/Treg ratio was observed in preterm infants and rats with ARDS. The PARP-1 expression level was raised in the lung tissues of ARDS rats, and PARP-1 downregulation alleviated E.coli-induced lung injury in preterm rats. Expression levels of PARP-1, IL-6, and IL-17A were raised, and the IL-10 level was reduced in the lung tissues of rats after E.coli treatment, which was all reversed by PARP-1 suppression. Importantly, the ratio of Th17/Treg differentiated from purified CD4+ T cells of the E.coli + PARP-1 inhibitor group was elevated by recombinant IL-6. Conclusion. PARP-1 downregulation repressed the imbalance of Th17 and Treg cells via reducing the expression level of IL-6, implying that PARP-1 may be a promising target for ARDS therapy.
Collapse
|
13
|
Yehya N. Potential therapeutics in pediatric acute respiratory distress syndrome: what does the immune system have to offer? A narrative review. Transl Pediatr 2021; 10:2689-2699. [PMID: 34765494 PMCID: PMC8578784 DOI: 10.21037/tp-20-341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/22/2021] [Indexed: 11/09/2022] Open
Abstract
Since first described, acute respiratory distress syndrome (ARDS) has been understood to be an inflammatory disease with a dysregulated hyperinflammatory response. While fewer investigations have studied these phenomena in pediatric ARDS (PARDS), similar pathways are believed to be involved. Significant attention has been paid to the innate immune system, particularly neutrophils and neutrophil-related signaling, more recent studies have provided additional nuance regarding the role of upstream damage-associated molecular patterns (DAMPs) and subsequent neutrophil-mediated inflammation, lung permeability, and alveolar epithelial damage. For example, neutrophil extracellular traps (NETs) and inflammasome signaling have been identified as critical mediators existing at the junction of DAMPs and downstream inflammation. We demonstrate how the conclusions obtained from pre-clinical studies of lung injury are highly dependent upon the model chosen, and how this can lead us astray when developing therapies. More recently the adaptive immune system, specifically select T cell subpopulations, have also been implicated in ARDS. This raises the possibility of antigen-specific immunomodulation as a potential therapeutic avenue in ARDS. Finally, we briefly review randomized controlled trials attempting to manipulate the immune dysregulation in ARDS, including pleiotropic immunomodulators like corticosteroids and interferon-β, and what these studies can teach us about the design of novel therapeutics and the design of future trials.
Collapse
Affiliation(s)
- Nadir Yehya
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Abdelhafiz AS, Fouad MA, Sayed-Ahmed MM, Kamel MM, Ali A, Fouda M, Khalil MA, Abdel-Moneim AS, Kamal LM. Upregulation of FOXP3 is associated with severity of hypoxia and poor outcomes in COVID-19 patients. Virology 2021; 563:74-81. [PMID: 34478955 PMCID: PMC8397927 DOI: 10.1016/j.virol.2021.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 01/08/2023]
Abstract
The levels of messenger RNA (mRNA) transcription of FOXP3, IFN-γ, TNF, IL-6 and COX-2 from both COVID-19 infected and control subjects were evaluated using SYBRTM green real-time polymerase chain reaction (RT-PCR). Severe/critical cases showed significantly lower lymphocyte counts and higher neutrophil counts than the mild or moderate cases. There were significantly lower levels of mRNA expressions of IFN-γ, TNFα and FOXP3 in COVID-19 patients than in the control group. On the other hand, IL-6 and COX-2 expressions were significantly higher in patients suffering from severe disease. FOXP3 expressions were correlated with the severities of hypoxia and were excellent in predicting the disease severity. This was followed by the IL-6, COX-2 and TNFα expressions. FOXP3 expression was the only biomarker to show a significant correlation with patient mortality. It was concluded that SARS-CoV-2 infection is associated with the downregulation of FOXP3 and upregulations of IL-6 and COX-2.
Collapse
Affiliation(s)
- Ahmed S Abdelhafiz
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mariam A Fouad
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt; Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Mohamed M Sayed-Ahmed
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mahmoud M Kamel
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Asmaa Ali
- Department of Pulmonary Medicine, Abbassia Chest Hospital, MOH, Cairo, Egypt
| | - Merhan Fouda
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mahmoud A Khalil
- Department of Tropical Medicine and Infectious Disease, Imbaba Fever Hospital, MOH, Cairo, Egypt
| | - Ahmed S Abdel-Moneim
- Microbiology Department, College of Medicine, Taif University, P.O. Box 1109, Taif, 21944, Saudi Arabia.
| | - Lamyaa M Kamal
- Department of Clinical and Chemical Pathology, Elsahel Teaching Hospital, MOH, Cairo, Egypt
| |
Collapse
|
15
|
Rahman T, Al-Ishaq FA, Al-Mohannadi FS, Mubarak RS, Al-Hitmi MH, Islam KR, Khandakar A, Hssain AA, Al-Madeed S, Zughaier SM, Chowdhury MEH. Mortality Prediction Utilizing Blood Biomarkers to Predict the Severity of COVID-19 Using Machine Learning Technique. Diagnostics (Basel) 2021; 11:1582. [PMID: 34573923 PMCID: PMC8469072 DOI: 10.3390/diagnostics11091582] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
Healthcare researchers have been working on mortality prediction for COVID-19 patients with differing levels of severity. A rapid and reliable clinical evaluation of disease intensity will assist in the allocation and prioritization of mortality mitigation resources. The novelty of the work proposed in this paper is an early prediction model of high mortality risk for both COVID-19 and non-COVID-19 patients, which provides state-of-the-art performance, in an external validation cohort from a different population. Retrospective research was performed on two separate hospital datasets from two different countries for model development and validation. In the first dataset, COVID-19 and non-COVID-19 patients were admitted to the emergency department in Boston (24 March 2020 to 30 April 2020), and in the second dataset, 375 COVID-19 patients were admitted to Tongji Hospital in China (10 January 2020 to 18 February 2020). The key parameters to predict the risk of mortality for COVID-19 and non-COVID-19 patients were identified and a nomogram-based scoring technique was developed using the top-ranked five parameters. Age, Lymphocyte count, D-dimer, CRP, and Creatinine (ALDCC), information acquired at hospital admission, were identified by the logistic regression model as the primary predictors of hospital death. For the development cohort, and internal and external validation cohorts, the area under the curves (AUCs) were 0.987, 0.999, and 0.992, respectively. All the patients are categorized into three groups using ALDCC score and death probability: Low (probability < 5%), Moderate (5% < probability < 50%), and High (probability > 50%) risk groups. The prognostic model, nomogram, and ALDCC score will be able to assist in the early identification of both COVID-19 and non-COVID-19 patients with high mortality risk, helping physicians to improve patient management.
Collapse
Affiliation(s)
- Tawsifur Rahman
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar; (T.R.); (K.R.I.); (A.K.)
| | - Fajer A. Al-Ishaq
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (F.A.A.-I.); (F.S.A.-M.); (R.S.M.); (M.H.A.-H.)
| | - Fatima S. Al-Mohannadi
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (F.A.A.-I.); (F.S.A.-M.); (R.S.M.); (M.H.A.-H.)
| | - Reem S. Mubarak
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (F.A.A.-I.); (F.S.A.-M.); (R.S.M.); (M.H.A.-H.)
| | - Maryam H. Al-Hitmi
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (F.A.A.-I.); (F.S.A.-M.); (R.S.M.); (M.H.A.-H.)
| | - Khandaker Reajul Islam
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar; (T.R.); (K.R.I.); (A.K.)
| | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar; (T.R.); (K.R.I.); (A.K.)
| | | | - Somaya Al-Madeed
- Department of Computer Science and Engineering, Qatar University, Doha 2713, Qatar;
| | - Susu M. Zughaier
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (F.A.A.-I.); (F.S.A.-M.); (R.S.M.); (M.H.A.-H.)
| | - Muhammad E. H. Chowdhury
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar; (T.R.); (K.R.I.); (A.K.)
| |
Collapse
|
16
|
Pseudomonas aeruginosa outer membrane vesicles ameliorates lung ischemia-reperfusion injury by regulating the balance of regulatory T cells and Th17 cells through Tim-3 and TLR4/NF-κB pathway. Inflamm Res 2021; 70:891-902. [PMID: 34223915 DOI: 10.1007/s00011-021-01483-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE Regulatory T cells (Tregs) and T helper (Th) 17 cells are two subsets of CD4 + T cells with opposite effects which play a crucial role in the pathogenesis of lung injury. In this study, we aim to investigate the protective effect of Pseudomonas aeruginosa outer membrane vesicles (OMVs) preconditioning on lung ischemia-reperfusion (I/R) injury and potential mechanisms. METHODS Pathogen-free C57BL/6 mice were randomly divided into four groups: control, Control + OMVs, I/R and I/R + OMVs groups. Bronchoalveolar lavage fluid (BALF), serum, and lung tissues were collected and analyzed for pathophysiology and immune mechanism. RESULTS OMVs not only attenuated tissue injury and respiratory physiologic function but also mediated the downregulation of lung wet-to-dry weight ratio and the reduction of total protein concentration. The numbers of total cells, macrophages, neutrophils, and lymphocytes were markedly decreased in the I/R mice following OMVs preconditioning. OMVs also decreased inflammatory cytokines associated with CD4 + T cells in both BALF and serum. In addition, the level of Tregs and its transcription factor forkhead box P3 (Foxp3) were significantly increased, while the level of Th17 cells and its transcription factor retinoid-related orphan receptor γ (RORγt) were significantly decreased following OMVs preconditioning. In the process of exploring the underlying protection mechanisms of OMVs, we found that OMVs preconditioning significantly reduced protein expression of Toll-like receptor 4 (TLR4), which in turn not only inactivated myeloid differentiation factor 88 (MyD88) and Phosphorylated nuclear factor kappa B (p-NF-κB), but also simultaneously increased the levels of T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3). CONCLUSIONS These results suggest that OMVs preconditioning may ameliorate lung I/R injury by regulating the balance of Tregs and Th17 cells through Tim-3 and TLR4/NF-κB pathway.
Collapse
|
17
|
Chowdhury MEH, Rahman T, Khandakar A, Al-Madeed S, Zughaier SM, Doi SAR, Hassen H, Islam MT. An Early Warning Tool for Predicting Mortality Risk of COVID-19 Patients Using Machine Learning. Cognit Comput 2021:1-16. [PMID: 33897907 PMCID: PMC8058759 DOI: 10.1007/s12559-020-09812-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 pandemic has created an extreme pressure on the global healthcare services. Fast, reliable, and early clinical assessment of the severity of the disease can help in allocating and prioritizing resources to reduce mortality. In order to study the important blood biomarkers for predicting disease mortality, a retrospective study was conducted on a dataset made public by Yan et al. in [1] of 375 COVID-19 positive patients admitted to Tongji Hospital (China) from January 10 to February 18, 2020. Demographic and clinical characteristics and patient outcomes were investigated using machine learning tools to identify key biomarkers to predict the mortality of individual patient. A nomogram was developed for predicting the mortality risk among COVID-19 patients. Lactate dehydrogenase, neutrophils (%), lymphocyte (%), high-sensitivity C-reactive protein, and age (LNLCA)-acquired at hospital admission-were identified as key predictors of death by multi-tree XGBoost model. The area under curve (AUC) of the nomogram for the derivation and validation cohort were 0.961 and 0.991, respectively. An integrated score (LNLCA) was calculated with the corresponding death probability. COVID-19 patients were divided into three subgroups: low-, moderate-, and high-risk groups using LNLCA cutoff values of 10.4 and 12.65 with the death probability less than 5%, 5-50%, and above 50%, respectively. The prognostic model, nomogram, and LNLCA score can help in early detection of high mortality risk of COVID-19 patients, which will help doctors to improve the management of patient stratification.
Collapse
Affiliation(s)
| | - Tawsifur Rahman
- Department of Biomedical Physics & Technology, University of Dhaka, 1000 Dhaka, Bangladesh
| | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, 2713 Doha, Qatar
| | - Somaya Al-Madeed
- Department of Computer Science and Engineering, Qatar University, 2713 Doha, Qatar
| | - Susu M. Zughaier
- Department of Basic Medical Sciences, College of Medicine, Qatar University, 2713 Doha, Qatar
| | - Suhail A. R. Doi
- Department of Population Medicine, College of Medicine, Qatar University, 2713 Doha, Qatar
| | - Hanadi Hassen
- Department of Computer Science and Engineering, Qatar University, 2713 Doha, Qatar
| | - Mohammad T. Islam
- Department of Electrical, Electronics and Systems Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| |
Collapse
|
18
|
Peng W, Chang M, Wu Y, Zhu W, Tong L, Zhang G, Wang Q, Liu J, Zhu X, Cheng T, Li Y, Chen X, Weng D, Liu S, Zhang H, Su Y, Zhou J, Li H, Song Y. Lyophilized powder of mesenchymal stem cell supernatant attenuates acute lung injury through the IL-6-p-STAT3-p63-JAG2 pathway. Stem Cell Res Ther 2021; 12:216. [PMID: 33781349 PMCID: PMC8008635 DOI: 10.1186/s13287-021-02276-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are syndromes of acute respiratory failure with extremely high mortality and few effective treatments. Mesenchymal stem cells (MSCs) may reportedly contribute to tissue repair in ALI and ARDS. However, applications of MSCs have been restricted due to safety considerations and limitations in terms of large-scale production and industrial delivery. Alternatively, the MSC secretome has been considered promising for use in therapeutic approaches and has been advanced in pre-clinical and clinical trials. Furthermore, the MSC secretome can be freeze-dried into a stable and ready-to-use supernatant lyophilized powder (SLP) form. Currently, there are no studies on the role of MSC SLP in ALI. METHODS Intratracheal bleomycin was used to induce ALI in mice, and intratracheal MSC SLP was administered as a treatment. Histopathological assessment was performed by hematoxylin and eosin, immunohistochemistry, and immunofluorescence staining. Apoptosis, inflammatory infiltration, immunological cell counts, cytokine levels, and mRNA- and protein-expression levels of relevant targets were measured by performing terminal deoxynucleotidyl transferase dUTP nick-end labeling assays, determining total cell and protein levels in bronchoalveolar lavage fluids, flow cytometry, multiple cytokine-detection techniques, and reverse transcriptase-quantitative polymerase chain reaction and western blot analysis, respectively. RESULTS We found that intratracheal MSC SLP considerably promoted cell survival, inhibited epithelial cell apoptosis, attenuated inflammatory cell recruitment, and reversed immunological imbalances induced by bleomycin. MSC SLP inhibited the interleukin 6-phosphorylated signal transducer and activator of transcription signaling pathway to activate tumor protein 63-jagged 2 signaling in basal cells, suppress T helper 17 cell differentiation, promote p63+ cell proliferation and lung damage repair, and attenuate inflammatory responses. CONCLUSIONS MSC SLP ameliorated ALI by activating p63 and promoting p63+ cell proliferation and the repair of damaged epithelial cells. The findings of this study also shed insight into ALI pathogenesis and imply that MSC SLP shows considerable therapeutic promise for treating ALI and ARDS.
Collapse
Affiliation(s)
- Wenjun Peng
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Meijia Chang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuanyuan Wu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wensi Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lin Tong
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ge Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qin Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jie Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoping Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Tingting Cheng
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yijia Li
- Public Translational Platform for Cell Therapy, Yangtze Delta Region Institute of Tsinghua University, Hangzhou, 311200, Zhejiang, China
| | - Xi Chen
- Yunnan Province Stem cell Bank, Kunming, 650101, Yunnan, China
| | - Dong Weng
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Sanhong Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongwei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yao Su
- Public Translational Platform for Cell Therapy, Yangtze Delta Region Institute of Tsinghua University, Hangzhou, 311200, Zhejiang, China
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, 200540, China.
| | - Huayin Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, 200540, China.
| |
Collapse
|
19
|
Xiong Y, Zhong Q, Palmer T, Benner A, Wang L, Suresh K, Damico R, D’Alessio FR. Estradiol resolves pneumonia via ERβ in regulatory T cells. JCI Insight 2021; 6:133251. [PMID: 33290273 PMCID: PMC7934849 DOI: 10.1172/jci.insight.133251] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
Current treatments for pneumonia (PNA) are focused on the pathogens. Mortality from PNA-induced acute lung injury (PNA-ALI) remains high, underscoring the need for additional therapeutic targets. Clinical and experimental evidence exists for potential sex differences in PNA survival, with males having higher mortality. In a model of severe pneumococcal PNA, when compared with male mice, age-matched female mice exhibited enhanced resolution characterized by decreased alveolar and lung inflammation and increased numbers of Tregs. Recognizing the critical role of Tregs in lung injury resolution, we evaluated whether improved outcomes in female mice were due to estradiol (E2) effects on Treg biology. E2 promoted a Treg-suppressive phenotype in vitro and resolution of PNA in vivo. Systemic rescue administration of E2 promoted resolution of PNA in male mice independent of lung bacterial clearance. E2 augmented Treg expression of Foxp3, CD25, and GATA3, an effect that required ERβ, and not ERα, signaling. Importantly, the in vivo therapeutic effects of E2 were lost in Treg-depleted mice (Foxp3DTR mice). Adoptive transfer of ex vivo E2-treated Tregs rescued Streptococcuspneumoniae–induce PNA-ALI, a salutary effect that required Treg ERβ expression. E2/ERβ was required for Tregs to control macrophage proinflammatory responses. Our findings support the therapeutic role for E2 in promoting resolution of lung inflammation after PNA via ERβ Tregs.
Collapse
|
20
|
Luteolin Regulates the Differentiation of Regulatory T Cells and Activates IL-10-Dependent Macrophage Polarization against Acute Lung Injury. J Immunol Res 2021; 2021:8883962. [PMID: 33532509 PMCID: PMC7834791 DOI: 10.1155/2021/8883962] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/08/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Objectives Inflammatory disease characterized by clinical destructive respiratory disorder is called acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Studies have shown that luteolin exerts anti-inflammatory effects by increasing regulatory T cells (Tregs). In this study, we aimed to determine the effects of luteolin on ALI/ARDS and Treg differentiation. Methods In this paper, we used cecal ligation puncture (CLP) to generate an ALI mouse model to determine the effects of luteolin on ALI/ARDS. Lung tissues were stained for interleukin- (IL-) 17A and myeloperoxidase (MPO) by immunohistochemical analysis. The levels of Treg-related cytokines in serum and bronchoalveolar lavage fluid (BALF) of mice were detected. The protein levels of NF-κB p65 in lung tissues were measured. Macrophage phenotypes in lung tissues were measured using immunofluorescence. The proportion of Tregs in splenic mononuclear cells and peripheral blood mononuclear cells (PBMCs) was quantified. Furthermore, in vitro, we evaluated the effects of luteolin on Treg differentiation, and the effects of IL-10 immune regulation on macrophage polarization were examined. Results Luteolin alleviated lung injury and suppressed uncontrolled inflammation and downregulated IL-17A, MPO, and NF-κB in the lungs of CLP-induced mouse models. At this time, luteolin upregulated the level of IL-10 in serum and BALF and the frequency of CD4+CD25+FOXP3+ Tregs in PBMCs and splenic mononuclear cells of CLP mice. Luteolin treatment decreased the proportion of M1 macrophages and increased the proportion of M2 macrophages in lungs of CLP-induced mouse models. In vitro, administration of luteolin significantly induced Treg differentiation, and IL-10 promoted the polarization of M2 macrophages but reduced the polarization of M1 macrophages. Conclusions Luteolin alleviated lung injury and suppressed uncontrolled inflammation by inducing the differentiation of CD4+CD25+FOXP3+ Tregs and upregulating the expression of IL-10. Furthermore, the anti-inflammatory cytokine IL-10 promoted polarization of M2 macrophages in vitro. Luteolin-induced Treg differentiation from naïve CD4+ T cells may be a potential mechanism for regulating IL-10 production.
Collapse
|
21
|
Su L, Peng Z, Jiang X, Zhang J, Yang C, Xie Q, Xiao G, Wang F, Shen S. Clinical Characteristics and Risk Factors of Liver Dysfunction in COVID-19 Patients. JOURNAL OF TRANSLATIONAL CRITICAL CARE MEDICINE 2021. [PMCID: PMC9070591 DOI: 10.4103/2665-9190.326914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Rahman T, Khandakar A, Hoque ME, Ibtehaz N, Kashem SB, Masud R, Shampa L, Hasan MM, Islam MT, Al-Maadeed S, Zughaier SM, Badran S, Doi SAR, Chowdhury MEH. Development and Validation of an Early Scoring System for Prediction of Disease Severity in COVID-19 Using Complete Blood Count Parameters. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:120422-120441. [PMID: 34786318 PMCID: PMC8545188 DOI: 10.1109/access.2021.3105321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/07/2021] [Indexed: 05/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) after outbreaking in Wuhan increasingly spread throughout the world. Fast, reliable, and easily accessible clinical assessment of the severity of the disease can help in allocating and prioritizing resources to reduce mortality. The objective of the study was to develop and validate an early scoring tool to stratify the risk of death using readily available complete blood count (CBC) biomarkers. A retrospective study was conducted on twenty-three CBC blood biomarkers for predicting disease mortality for 375 COVID-19 patients admitted to Tongji Hospital, China from January 10 to February 18, 2020. Machine learning based key biomarkers among the CBC parameters as the mortality predictors were identified. A multivariate logistic regression-based nomogram and a scoring system was developed to categorize the patients in three risk groups (low, moderate, and high) for predicting the mortality risk among COVID-19 patients. Lymphocyte count, neutrophils count, age, white blood cell count, monocytes (%), platelet count, red blood cell distribution width parameters collected at hospital admission were selected as important biomarkers for death prediction using random forest feature selection technique. A CBC score was devised for calculating the death probability of the patients and was used to categorize the patients into three sub-risk groups: low (<=5%), moderate (>5% and <=50%), and high (>50%), respectively. The area under the curve (AUC) of the model for the development and internal validation cohort were 0.961 and 0.88, respectively. The proposed model was further validated with an external cohort of 103 patients of Dhaka Medical College, Bangladesh, which exhibits in an AUC of 0.963. The proposed CBC parameter-based prognostic model and the associated web-application, can help the medical doctors to improve the management by early prediction of mortality risk of the COVID-19 patients in the low-resource countries.
Collapse
Affiliation(s)
- Tawsifur Rahman
- Department of Electrical EngineeringQatar University Doha Qatar
| | - Amith Khandakar
- Department of Electrical EngineeringQatar University Doha Qatar
| | - Md Enamul Hoque
- Department of Biomedical EngineeringMilitary Institute of Science and Technology Dhaka 1216 Bangladesh
| | - Nabil Ibtehaz
- Department of Computer Science and EngineeringBangladesh University of Engineering and Technology Dhaka 1205 Bangladesh
| | - Saad Bin Kashem
- Faculty of Robotics and Advanced ComputingQatar Armed Forces-Academic Bridge Program, Qatar Foundation Doha Qatar
| | - Reehum Masud
- COVID Isolation UnitUnited Hospitals, Ltd. Dhaka 1212 Bangladesh
| | - Lutfunnahar Shampa
- Department of Obstetrics and GynecologyDhaka Medical College Hospital (COVID UNIT) Dhaka 1000 Bangladesh
| | | | - Mohammad Tariqul Islam
- Department of Electrical, Electronics and Systems EngineeringUniversiti Kebangsaan Malaysia Bangi Selangor 43600 Malaysia
| | - Somaya Al-Maadeed
- Department of Computer Science and EngineeringQatar University Doha Qatar
| | - Susu M Zughaier
- Department of Basic Medical SciencesCollege of MedicineQU Health, Qatar University Doha Qatar
| | - Saif Badran
- Department of Plastic SurgeryHamad Medical Corporation Doha Qatar
- Department of Population MedicineCollege of MedicineQU Health, Qatar University Doha Qatar
| | - Suhail A R Doi
- Department of Population MedicineCollege of MedicineQU Health, Qatar University Doha Qatar
| | | |
Collapse
|
23
|
Maldonado V, Hernandez-Ramírez C, Oliva-Pérez EA, Sánchez-Martínez CO, Pimentel-González JF, Molina-Sánchez JR, Jiménez-Villalba YZ, Chávez-Alderete J, Loza-Mejía MA. Pentoxifylline decreases serum LDH levels and increases lymphocyte count in COVID-19 patients: Results from an external pilot study. Int Immunopharmacol 2020; 90:107209. [PMID: 33278747 PMCID: PMC7690298 DOI: 10.1016/j.intimp.2020.107209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023]
Abstract
Pentoxifylline could be beneficial for the treatment of COVID-19. Serum lactate dehydrogenase and lymphocyte count are accessible biomarkers that correlate with the severity of COVID-19. Pentoxifylline treatment was associated with an increase in the lymphocyte count and decreased LDH levels.
We have previously hypothesized that pentoxifylline could be beneficial for the treatment of COVID-19 given its potential to restore the immune response equilibrium, reduce the impact of the disease on the endothelium and alveolar epithelial cells, and improve the circulatory function. Serum lactate dehydrogenase (LDH) and lymphocyte count are accessible biomarkers that correlate with the severity of COVID-19, the need for hospitalization, and mortality, reflecting the host immune response’s contribution to the seriousness of SARS-CoV-2 infection. We carried out this external pilot study on 38 patients with moderate and severe COVID-19 to test the effect pentoxifylline on parameters such as LDH, lymphocyte count, days of hospitalization, mortality, and proportion of patients requiring intubation. Twenty-six patients were randomized to receive 400 mg of pentoxifylline t.i.d. plus standard therapy (pentoxifylline group), while the rest received the standard treatment (control group). Linear regression models were built for statistically significant parameters. Pentoxifylline treatment was associated with a 64.25% increase (CI95% 11.83, 116.68) in lymphocyte count and a 29.61% decrease (CI95% 15.11, 44.10) in serum LDH. Although a trend towards reduced days of hospitalization, mortality, and proportion of patients requiring intubation was observed, no statistically significant difference was found for these parameters. Our findings open the possibility of pentoxifylline being repositioned as a drug for COVID-19 treatment with the advantages of a proven safety profile, availability, and no risk of immunosuppression; however, this evidence needs to be confirmed in a pragmatic randomized controlled trial.
Collapse
Affiliation(s)
- Valente Maldonado
- Faculty of Chemical Sciences, Universidad La Salle-México, Cuauhtémoc, Mexico City 06140, Mexico; Department of Allergy and Clinical Immunology Internal Medicine, General Hospital of Zone 27 Mexican Institute of Social Security, Lerdo 311, Nonoalco Tlatelolco, Cuauhtémoc, Mexico City 6390, Mexico.
| | - Claudia Hernandez-Ramírez
- Department of Allergy and Clinical Immunology Internal Medicine, General Hospital of Zone 27 Mexican Institute of Social Security, Lerdo 311, Nonoalco Tlatelolco, Cuauhtémoc, Mexico City 6390, Mexico
| | - Eniel Alonso Oliva-Pérez
- Department of Internal Medicine, General Hospital of Zone 27 Mexican Institute of Social Security, Nonoalco Tlatelolco, Cuauhtémoc, Mexico City 6390, Mexico
| | - César Omar Sánchez-Martínez
- Department of Internal Medicine, General Hospital of Zone 27 Mexican Institute of Social Security, Nonoalco Tlatelolco, Cuauhtémoc, Mexico City 6390, Mexico
| | - Jorge Fabián Pimentel-González
- Department of Internal Medicine, General Hospital of Zone 27 Mexican Institute of Social Security, Nonoalco Tlatelolco, Cuauhtémoc, Mexico City 6390, Mexico
| | - José Raúl Molina-Sánchez
- Department of Internal Medicine, General Hospital of Zone 27 Mexican Institute of Social Security, Nonoalco Tlatelolco, Cuauhtémoc, Mexico City 6390, Mexico
| | - Yeimmy Zuyenn Jiménez-Villalba
- Department of Internal Medicine, General Hospital of Zone 27 Mexican Institute of Social Security, Nonoalco Tlatelolco, Cuauhtémoc, Mexico City 6390, Mexico
| | - Jaime Chávez-Alderete
- Department of Bronchial Hyperreactivity, National Institute of Respiratory Diseases Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico
| | - Marco A Loza-Mejía
- Faculty of Chemical Sciences, Universidad La Salle-México, Cuauhtémoc, Mexico City 06140, Mexico
| |
Collapse
|
24
|
Norton DL, Ceppe A, Tune MK, McCravy M, Devlin T, Drummond MB, Carson SS, Vincent BG, Hagan RS, Dang H, Doerschuk CM, Mock JR. Bronchoalveolar Tregs are associated with duration of mechanical ventilation in acute respiratory distress syndrome. J Transl Med 2020; 18:427. [PMID: 33176790 PMCID: PMC7656499 DOI: 10.1186/s12967-020-02595-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/29/2020] [Indexed: 02/02/2023] Open
Abstract
Background Foxp3+ regulatory T cells (Tregs) play essential roles in immune homeostasis and repair of damaged lung tissue. We hypothesized that patients whose lung injury resolves quickly, as measured by time to liberation from mechanical ventilation, have a higher percentage of Tregs amongst CD4+ T cells in either airway, bronchoalveolar lavage (BAL) or peripheral blood samples. Methods We prospectively enrolled patients with ARDS requiring mechanical ventilation and collected serial samples, the first within 72 h of ARDS diagnosis (day 0) and the second 48–96 h later (day 3). We analyzed immune cell populations and cytokines in BAL, tracheal aspirates and peripheral blood, as well as cytokines in plasma, obtained at the time of bronchoscopy. The study cohort was divided into fast resolvers (FR; n = 8) and slow resolvers (SR; n = 5), based on the median number of days until first extubation for all participants (n = 13). The primary measure was the percentage of CD4+ T cells that were Tregs. Results The BAL of FR contained more Tregs than SR. This finding did not extend to Tregs in tracheal aspirates or blood. BAL Tregs expressed more of the full-length FOXP3 than a splice variant missing exon 2 compared to Tregs in simultaneously obtained peripheral blood. Conclusion Tregs are present in the bronchoalveolar space during ARDS. A greater percentage of CD4+ cells were Tregs in the BAL of FR than SR. Tregs may play a role in the resolution of ARDS, and enhancing their numbers or functions may be a therapeutic target.
Collapse
Affiliation(s)
- Dustin L Norton
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Agathe Ceppe
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Miriya K Tune
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew McCravy
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Thomas Devlin
- Department of Respiratory Care, University of North Carolina, Chapel Hill, NC, USA
| | - M Bradley Drummond
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Shannon S Carson
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin G Vincent
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.,Division of Hematology/Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Claire M Doerschuk
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Jason R Mock
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA. .,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA. .,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA. .,Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina School of Medicine, Marsico Hall 7203, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
25
|
Maldonado V, Loza-Mejía MA, Chávez-Alderete J. Repositioning of pentoxifylline as an immunomodulator and regulator of the renin-angiotensin system in the treatment of COVID-19. Med Hypotheses 2020; 144:109988. [PMID: 32540603 PMCID: PMC7282759 DOI: 10.1016/j.mehy.2020.109988] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
Pentoxifylline (PTX) is a phosphodiesterase inhibitor that increases cyclic adenosine monophosphate levels, which in turn activate protein kinase, leading to a reduction in the synthesis of proinflammatory cytokines to ultimately influence the renin-angiotensin system (RAS) in vitro by inhibiting angiotensin 1 receptor (AT1R) expression. The rheological, anti-inflammatory, and renin-angiotensin axis properties of PTX highlight this drug as a therapeutic treatment alternative for patients with COVID-19 by helping reduce the production of the inflammatory cytokines without deleterious effects on the immune system to delay viral clearance. Moreover, PTX can restore the balance of the immune response, reduce damage to the endothelium and alveolar epithelial cells, improve circulation, and prevent microvascular thrombosis. There is further evidence that PTX can improve ventilatory parameters. Therefore, we propose repositioning PTX in the treatment of COVID-19. The main advantage of repositioning PTX is that it is an affordable drug that is already available worldwide with an established safety profile, further offering the possibility of immediately analysing the result of its use and associated success rates. Another advantage is that PTX selectively reduces the concentration of TNF-α mRNA in cells, which, in the case of an acute infectious state such as COVID-19, would seem to offer a more strategic approach.
Collapse
Affiliation(s)
- Valente Maldonado
- Faculty of Chemical Sciences, Universidad La Salle-México, Cuauhtémoc, Mexico City 06140, Mexico; Department of Allergy and Clinical Immunology Internal Medicine, General Hospital of Zone 27 Mexican Institute of Social Security, Col. Nonoalco Tlatelolco Cuauhtémoc, Mexico City 6390, Mexico.
| | - Marco A Loza-Mejía
- Faculty of Chemical Sciences, Universidad La Salle-México, Cuauhtémoc, Mexico City 06140, Mexico
| | - Jaime Chávez-Alderete
- Laboratory of Bronchial Hyperreactivity, National Institute of Respiratory Diseases Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico
| |
Collapse
|
26
|
Brown R, McKelvey MC, Ryan S, Creane S, Linden D, Kidney JC, McAuley DF, Taggart CC, Weldon S. The Impact of Aging in Acute Respiratory Distress Syndrome: A Clinical and Mechanistic Overview. Front Med (Lausanne) 2020; 7:589553. [PMID: 33195353 PMCID: PMC7649269 DOI: 10.3389/fmed.2020.589553] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with increased morbidity and mortality in the elderly population (≥65 years of age). Additionally, age is widely reported as a risk factor for the development of ARDS. However, the underlying pathophysiological mechanisms behind the increased risk of developing, and increased severity of, ARDS in the elderly population are not fully understood. This is compounded by the significant heterogeneity observed in patients with ARDS. With an aging population worldwide, a better understanding of these mechanisms could facilitate the development of therapies to improve outcomes in this population. In this review, the current clinical evidence of age as a risk factor and prognostic indicator in ARDS and the potential underlying mechanisms that may contribute to these factors are outlined. In addition, research on age-dependent treatment options and biomarkers, as well as future prospects for targeting these underlying mechanisms, are discussed.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Michael C McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Shannice Creane
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Dermot Linden
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Joseph C Kidney
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast, United Kingdom
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
27
|
Weng Z, Chen Q, Li S, Li H, Zhang Q, Lu S, Wu L, Xiong L, Mi B, Liu D, Lu M, Yang D, Jiang H, Zheng S, Zheng X. ANDC: an early warning score to predict mortality risk for patients with Coronavirus Disease 2019. J Transl Med 2020; 18:328. [PMID: 32867787 PMCID: PMC7457219 DOI: 10.1186/s12967-020-02505-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/26/2020] [Indexed: 01/08/2023] Open
Abstract
Background Patients with severe Coronavirus Disease 2019 (COVID-19) will progress rapidly to acute respiratory failure or death. We aimed to develop a quantitative tool for early predicting mortality risk of patients with COVID-19. Methods 301 patients with confirmed COVID-19 admitted to Main District and Tumor Center of the Union Hospital of Huazhong University of Science and Technology (Wuhan, China) between January 1, 2020 to February 15, 2020 were enrolled in this retrospective two-centers study. Data on patient demographic characteristics, laboratory findings and clinical outcomes was analyzed. A nomogram was constructed to predict the death probability of COVID-19 patients. Results Age, neutrophil-to-lymphocyte ratio, d-dimer and C-reactive protein obtained on admission were identified as predictors of mortality for COVID-19 patients by LASSO. The nomogram demonstrated good calibration and discrimination with the area under the curve (AUC) of 0.921 and 0.975 for the derivation and validation cohort, respectively. An integrated score (named ANDC) with its corresponding death probability was derived. Using ANDC cut-off values of 59 and 101, COVID-19 patients were classified into three subgroups. The death probability of low risk group (ANDC < 59) was less than 5%, moderate risk group (59 ≤ ANDC ≤ 101) was 5% to 50%, and high risk group (ANDC > 101) was more than 50%, respectively. Conclusion The prognostic nomogram exhibited good discrimination power in early identification of COVID-19 patients with high mortality risk, and ANDC score may help physicians to optimize patient stratification management.
Collapse
Affiliation(s)
- Zhihong Weng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.,Joint International Laboratory of Infection and Immunity, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaosen Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, 283 Jianghai Road, Guangzhou, 510310, China
| | - Sumeng Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Huadong Li
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Wuhan, China
| | - Qian Zhang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Sihong Lu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Li Wu
- Department of Gastroenterology, Loudi Central Hospital, Loudi, China
| | - Leiqun Xiong
- Department of Tuberculosis, Wuhan Pulmonary Hospital, Wuhan, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Liu
- Pritzker School of Medicine, University of Chicago, Chicago, USA
| | - Mengji Lu
- Joint International Laboratory of Infection and Immunity, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Institute of Virology, University Hospital Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.,Joint International Laboratory of Infection and Immunity, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, 283 Jianghai Road, Guangzhou, 510310, China.
| | - Shaoping Zheng
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China. .,Joint International Laboratory of Infection and Immunity, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
28
|
Li R, Zhang J, Pan S, Yuan Y, Qi H, Shu H, Hu Y, Ren L, Jiang Y, Yuan S. HMGB1 aggravates lipopolysaccharide-induced acute lung injury through suppressing the activity and function of Tregs. Cell Immunol 2020; 356:104192. [PMID: 32853967 DOI: 10.1016/j.cellimm.2020.104192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND CD4+CD25+FoxP3+ T helper cells (Tregs), a subgroup of CD4+ T helper cells, are critical effectors that protect against acute lung injury (ALI) by contact-dependent suppression or releasing anti-inflammatory cytokines including interleukin-10 (IL-10), and transforming growth factor (TGF-β). HMGB1 (High mobility group box 1 protein) was identified as a nuclear non-histone DNA-binding chromosomal protein, which participates in the regulation of lung inflammatory response and pathological processes in ALI. Previous studies have suggested that Tregs overexpresses the HMGB1-recognizing receptor. However, the interaction of HMGB1 with Tregs in ALI is still unclear. OBJECTIVE To investigate whether HMGB1 aggravates ALI by suppressing immunosuppressive function of Tregs. METHODS Anti-HMGB1 antibody and recombinant mouse HMGB1 (rHMGB1) were administered in lipopolysaccharide (LPS)-induced ALI mice and polarized LPS-primed Tregs in vitro. The Tregs pre-stimulated with or without rHMGB1 were adoptively transferred to ALI mice and depleted by Diphtheria toxin (DT). For coculture experiment, isolated Tregs were first pre-stimulated with or without rHMGB1 or anti-HMGB1 antibody, then they were cocultured with bone marrow-derived macrophages (BMMs) under LPS stimulation. RESULTS Tregs protected against acute lung pathological injury. HMGB1 modulated the suppressive function of Tregs as follows: reduction in the number of the cells and the activity of Tregs, the secretion of anti-inflammatory cytokines (IL-10, TGF-β) from Tregs, the production of IL-2 from CD4+ T cells and CD11c+ DCs, and the M2 polarization of macrophages, as well as inducing proinflammatory response of macrophages. CONCLUSIONS HMGB1 could aggravate LPS induced-ALI through suppressing the activity and function of Tregs.
Collapse
Affiliation(s)
- Ruiting Li
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Shangwen Pan
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Yin Yuan
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Hong Qi
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Huaqing Shu
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Yingying Hu
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Lehao Ren
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Yongxiang Jiang
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Shiying Yuan
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China.
| |
Collapse
|
29
|
Rump K, Rahmel T, Rustige AM, Unterberg M, Nowak H, Koos B, Schenker P, Viebahn R, Adamzik M, Bergmann L. The Aquaporin3 Promoter Polymorphism -1431 A/G is Associated with Acute Graft Rejection and Cytomegalovirus Infection in Kidney Recipients Due to Altered Immune Cell Migration. Cells 2020; 9:cells9061421. [PMID: 32521638 PMCID: PMC7349827 DOI: 10.3390/cells9061421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Major complications after kidney transplantation are graft rejection and cytomegalovirus (CMV) infection, which are related to T-cell function, which depends on aquaporin 3 (AQP3) expression. The impact of the AQP3 A(−1431)G promoter polymorphism in kidney transplant recipients was unelucidated and we explored the effect of AQP3 polymorphism on immune cell function and its association with graft rejection and CMV infection in 237 adult patients within 12 months after transplantation. AQP3 promoter polymorphism was molecular and functional characterized. Kaplan–Meier plots evaluated the relationship between genotypes and the incidence of CMV infection and graft rejection. AQP3 A(−1431)G A-allele was associated with enhanced immune cell migration and AQP3 expression in T-cells. The incidences of rejection were 45.4% for the A-allele and 27.1% for G-allele carriers (p = 0.005) and the A-allele was a strong risk factor (hazard ratio (HR): 1.95; 95% CI: 1.216 to 3.127; p = 0.006). The incidences for CMV infection were 21% for A-allele and 35% for G-allele carriers (p = 0.013) and G-allele was an independent risk factor (p = 0.023), with a doubled risk for CMV infection (HR: 1.9; 95% CI: 1.154 to 3.128; p = 0.012). Hence, A-allele confers more resistance against CMV infection, but susceptibility to graft rejection mediated by T-cells. Thus, AQP3-genotype adapted management of immunosuppression and antiviral prophylaxis after kidney transplantation seems prudent.
Collapse
Affiliation(s)
- Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum der Ruhr Universität Bochum Knappschaftskrankenhaus Bochum, 44801 Bochum, Germany; (T.R.); (A.-M.R.); (M.U.); (H.N.); (B.K.); (M.A.); (L.B.)
- Correspondence: ; Tel.: +49-23432-29242; Fax: +49-234299-3009
| | - Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum der Ruhr Universität Bochum Knappschaftskrankenhaus Bochum, 44801 Bochum, Germany; (T.R.); (A.-M.R.); (M.U.); (H.N.); (B.K.); (M.A.); (L.B.)
| | - Anna-Maria Rustige
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum der Ruhr Universität Bochum Knappschaftskrankenhaus Bochum, 44801 Bochum, Germany; (T.R.); (A.-M.R.); (M.U.); (H.N.); (B.K.); (M.A.); (L.B.)
| | - Matthias Unterberg
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum der Ruhr Universität Bochum Knappschaftskrankenhaus Bochum, 44801 Bochum, Germany; (T.R.); (A.-M.R.); (M.U.); (H.N.); (B.K.); (M.A.); (L.B.)
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum der Ruhr Universität Bochum Knappschaftskrankenhaus Bochum, 44801 Bochum, Germany; (T.R.); (A.-M.R.); (M.U.); (H.N.); (B.K.); (M.A.); (L.B.)
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum der Ruhr Universität Bochum Knappschaftskrankenhaus Bochum, 44801 Bochum, Germany; (T.R.); (A.-M.R.); (M.U.); (H.N.); (B.K.); (M.A.); (L.B.)
| | - Peter Schenker
- Chirurgische Universitätsklinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.S.); (R.V.)
| | - Richard Viebahn
- Chirurgische Universitätsklinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.S.); (R.V.)
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum der Ruhr Universität Bochum Knappschaftskrankenhaus Bochum, 44801 Bochum, Germany; (T.R.); (A.-M.R.); (M.U.); (H.N.); (B.K.); (M.A.); (L.B.)
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum der Ruhr Universität Bochum Knappschaftskrankenhaus Bochum, 44801 Bochum, Germany; (T.R.); (A.-M.R.); (M.U.); (H.N.); (B.K.); (M.A.); (L.B.)
| |
Collapse
|
30
|
Progranulin Improves Acute Lung Injury through Regulating the Differentiation of Regulatory T Cells and Interleukin-10 Immunomodulation to Promote Macrophage Polarization. Mediators Inflamm 2020; 2020:9704327. [PMID: 32565732 PMCID: PMC7281846 DOI: 10.1155/2020/9704327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
Progranulin (PGRN), which plays an anti-inflammatory role in acute lung injury (ALI), is promising as a potential drug. Studies have shown that regulatory T cells (Tregs) and interleukin- (IL-) 10 can repress inflammation and alleviate tissue damage during ALI. In this study, we built a lipopolysaccharide- (LPS-) induced ALI mouse model to illustrate the effect of PGRN on regulation of Treg differentiation and modulation of IL-10 promoting macrophage polarization. We found that the proportion of Tregs in splenic mononuclear cells and peripheral blood mononuclear cells was higher after treatment with PGRN. The increased proportion of Tregs after PGRN intratracheal instillation was consistent with the decreased severity of lung injury, the reduction of proinflammatory cytokines, and the increase of anti-inflammatory cytokines. In vitro, the percentages of CD4+CD25+FOXP3+ Tregs from splenic naïve CD4+ T cells increased after PGRN treatment. In further research, it was found that PGRN can regulate the anti-inflammatory factor IL-10 and affect the polarization of M1/M2 macrophages by upregulating IL-10. These findings show that PGRN likely plays a protective role in ALI by promoting Treg differentiation and activating IL-10 immunomodulation.
Collapse
|
31
|
van der Zee P, Rietdijk W, Somhorst P, Endeman H, Gommers D. A systematic review of biomarkers multivariately associated with acute respiratory distress syndrome development and mortality. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:243. [PMID: 32448370 PMCID: PMC7245629 DOI: 10.1186/s13054-020-02913-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
Background Heterogeneity of acute respiratory distress syndrome (ARDS) could be reduced by identification of biomarker-based phenotypes. The set of ARDS biomarkers to prospectively define these phenotypes remains to be established. Objective To provide an overview of the biomarkers that were multivariately associated with ARDS development or mortality. Data sources We performed a systematic search in Embase, MEDLINE, Web of Science, Cochrane CENTRAL, and Google Scholar from inception until 6 March 2020. Study selection Studies assessing biomarkers for ARDS development in critically ill patients at risk for ARDS and mortality due to ARDS adjusted in multivariate analyses were included. Data extraction and synthesis We included 35 studies for ARDS development (10,667 patients at risk for ARDS) and 53 for ARDS mortality (15,344 patients with ARDS). These studies were too heterogeneous to be used in a meta-analysis, as time until outcome and the variables used in the multivariate analyses varied widely between studies. After qualitative inspection, high plasma levels of angiopoeitin-2 and receptor for advanced glycation end products (RAGE) were associated with an increased risk of ARDS development. None of the biomarkers (plasma angiopoeitin-2, C-reactive protein, interleukin-8, RAGE, surfactant protein D, and Von Willebrand factor) was clearly associated with mortality. Conclusions Biomarker data reporting and variables used in multivariate analyses differed greatly between studies. Angiopoeitin-2 and RAGE in plasma were positively associated with increased risk of ARDS development. None of the biomarkers independently predicted mortality. Therefore, we suggested to structurally investigate a combination of biomarkers and clinical parameters in order to find more homogeneous ARDS phenotypes. PROSPERO identifier PROSPERO, CRD42017078957
Collapse
Affiliation(s)
- Philip van der Zee
- Department of Adult Intensive Care, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Wim Rietdijk
- Department of Adult Intensive Care, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Peter Somhorst
- Department of Adult Intensive Care, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Adult Intensive Care, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Diederik Gommers
- Department of Adult Intensive Care, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
32
|
Song M, Liu Y, Lu Z, Luo H, Peng H, Chen P. Prognostic factors for ARDS: clinical, physiological and atypical immunodeficiency. BMC Pulm Med 2020; 20:102. [PMID: 32326923 PMCID: PMC7179796 DOI: 10.1186/s12890-020-1131-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
Background Risk factors affecting the prognosis of acute respiratory distress syndrome (ARDS) in adults were investigated. The aim was to identify new predictors for ARDS patient prognosis, including those with clinical, pathophysiological, and atypical immunodeficiency. Methods ARDS patients were retrospectively included. The patients were grouped and analysed according to different oxygenation index grades and prognosis, and factors influencing prognosis and survival were examined. Adolescent patients, patients with typical immunodeficiency and patients who died within 24 h after being diagnosed with ARDS were excluded. The predictive value for mortality was determined by Cox proportional hazard analysis. Results In total, 201 patients who fulfilled the Berlin definition of ARDS were included. The severity of critical illness on the day of enrolment, as measured by the Acute Physiology and Chronic Health Evaluation (APACHE) II score (P = 0.016), Sequential Organ Failure Assessment (SOFA) score (P = 0.027), and PaO2/FiO2 (P = 0.000), worsened from mild to severe ARDS cases. Compared with survivors, non-survivors were significantly older and had higher APACHE II and SOFA scores. Moreover, significantly lower lymphocyte/neutrophil ratios and leukocyte counts were found among non-survivors than survivors (P = 0.008, P = 0.012). A moderate positive correlation between the lymphocyte/neutrophil and PaO2/FiO2 ratios (P = 0.023) was observed. In predicting 100-day survival in patients with ARDS, the area under the curve (AUC) for the lymphocyte/neutrophil ratio was significantly higher than those for the PaO2/FiO2 ratio alone, body mass index (BMI) alone, and the lymphocyte count alone (P = 0.0062, 0.0001, and 0.0154). Age (per log10 years), BMI < 24, SOFA score, leukocyte count, and the lymphocyte/neutrophil ratio were independent predictors of 28-day mortality in ARDS patients. Additionally, ARDS patients with a lymphocyte/neutrophil ratio < 0.0537 had increased 28-day mortality rates (P = 0.0283). Old age affected both 28-day and 100-day mortality rates (P = 0.0064,0.0057). Conclusions Age (per log10 years), BMI < 24, SOFA score, lymphocytes, and the lymphocyte/neutrophil ratio were independent predictors of 100-day mortality in patients with ARDS. The lymphocyte/neutrophil ratio may represent a potential molecular marker to evaluate atypical immunosuppression or impairment in patients with ARDS.
Collapse
Affiliation(s)
- Min Song
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, Hunan, China.,The Respiratory Disease Research Institute of Hunan Province; The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, No.139 Renmin Road, Changsha, 410011, Hunan, China
| | - Yijie Liu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, Hunan, China
| | - Zhiwen Lu
- School of Mathematics and Statistics, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, Hunan, China. .,The Respiratory Disease Research Institute of Hunan Province; The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, No.139 Renmin Road, Changsha, 410011, Hunan, China.
| | - Hong Peng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, Hunan, China.,The Respiratory Disease Research Institute of Hunan Province; The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, No.139 Renmin Road, Changsha, 410011, Hunan, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, Hunan, China.,The Respiratory Disease Research Institute of Hunan Province; The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, No.139 Renmin Road, Changsha, 410011, Hunan, China
| |
Collapse
|
33
|
Mesenchymal stem cells regulate the Th17/Treg cell balance partly through hepatocyte growth factor in vitro. Stem Cell Res Ther 2020; 11:91. [PMID: 32111238 PMCID: PMC7049226 DOI: 10.1186/s13287-020-01612-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) exert immunomodulatory functions by inducing the development and differentiation of naive T cells into T cells with an anti-inflammatory regulatory T cell (Treg) phenotype. Our previous study showed that hepatocyte growth factor (HGF) secreted by MSCs had immunomodulatory effects in the context of lipopolysaccharide (LPS) stimulation. We hypothesized that HGF is a key factor in the MSC-mediated regulation of the T helper 17 (Th17) cell/regulatory T (Treg) cell balance. Methods We investigated the effects of MSCs on the differentiation of CD4+ T cells and the functions of Th17/Treg cells in response to LPS stimulation by performing in vitro coculture experiments. MSCs were added to the upper chambers of cell culture inserts, and CD4+ T cells were plated in the lower chambers, followed by treatment with LPS or an anti-HGF antibody. Th17 (CD4+CD3+RORrt+) and Treg (CD4+CD25+Foxp3+) cell frequencies were analysed by flow cytometry, and the expression of Th17 cell- and Treg cell-related cytokines in the CD4+ T cells or culture medium was measured by quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Neutrophil functions were determined by flow cytometry after a coculture with Th17/Treg cells. Results The percentage of CD4+CD25+Foxp3+ cells was significantly increased in the CD4+ T cell population, while the percentage of CD4+CD3+RORrt+ cells was significantly decreased after MSC coculture. However, the MSC-induced effect was significantly inhibited by the anti-HGF antibody (p < 0.05). Furthermore, MSCs significantly inhibited the CD4+ T cell expression of IL-17 and IL-6 but increased the expression of IL-10 (p < 0.05 or p < 0.01); these effects were inhibited by the anti-HGF antibody (p < 0.05). In addition, CD4+ T cells cocultured with MSCs significantly inhibited neutrophil phagocytic and oxidative burst activities (p < 0.05 or p < 0.01); however, these MSC-induced effects were inhibited by the anti-HGF antibody (p < 0.05). Conclusion These data suggested that MSCs induced the conversion of fully differentiated Th17 cells into functional Treg cells and thereby modulated the Th17/Treg cell balance in the CD4+ T cell population, which was partly attributed to HGF secreted by the MSCs.
Collapse
|
34
|
Halter S, Aimade L, Barbié M, Brisson H, Rouby JJ, Langeron O, Klatzmann D, Rosenzwajg M, Monsel A. T regulatory cells activation and distribution are modified in critically ill patients with acute respiratory distress syndrome: A prospective single-centre observational study. Anaesth Crit Care Pain Med 2020; 39:35-44. [DOI: 10.1016/j.accpm.2019.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 12/28/2022]
|
35
|
Trent B, Fisher J, Soong L. Scrub Typhus Pathogenesis: Innate Immune Response and Lung Injury During Orientia tsutsugamushi Infection. Front Microbiol 2019; 10:2065. [PMID: 31555249 PMCID: PMC6742975 DOI: 10.3389/fmicb.2019.02065] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/22/2019] [Indexed: 01/28/2023] Open
Abstract
Scrub typhus is an understudied, potentially lethal disease caused by infection with Orientia tsutsugamushi. Despite causing an estimated 1 million cases per year and an increasing global presence, mechanisms of scrub typhus pathogenesis remain unclear. One of the most life-threatening conditions that can arise in scrub typhus patients is acute respiratory distress syndrome (ARDS). The development of ARDS is a complex process; some of its pathological hallmarks, including prolonged recruitment of inflammatory immune cells to the lung and vasculature damage, have been observed in humans and/or animal models of O. tsutsugamushi infection. Although different cell types and mechanisms may contribute to ARDS development during O. tsutsugamushi infection, this review highlights our current evidence of pulmonary endothelial activation and damage, the potential roles of neutrophils and macrophages in the lung, and the knowledge gaps in this field. Continued investigation of the lung microenvironment and cellular interactions will help elucidate disease pathogenesis and possible treatment during scrub typhus.
Collapse
Affiliation(s)
- Brandon Trent
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - James Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Lynn Soong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
36
|
Mock JR, Dial CF, Tune MK, Norton DL, Martin JR, Gomez JC, Hagan RS, Dang H, Doerschuk CM. Transcriptional analysis of Foxp3+ Tregs and functions of two identified molecules during resolution of ALI. JCI Insight 2019; 4:124958. [PMID: 30753170 DOI: 10.1172/jci.insight.124958] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/05/2019] [Indexed: 12/17/2022] Open
Abstract
Recovery from acute lung injury (ALI) is an active process. Foxp3+ Tregs contribute to recovery from ALI through modulating immune responses and enhancing alveolar epithelial proliferation and tissue repair. The current study investigates Treg transcriptional profiles during resolution of ALI in mice. Tregs from either lung or splenic tissue were isolated from uninjured mice or mice recovering from ALI and then examined for differential gene expression between these conditions. In mice with ALI, Tregs isolated from the lungs had hundreds of differentially expressed transcripts compared with those from the spleen, indicating that organ specificity and microenvironment are critical in Treg function. These regulated transcripts suggest which intracellular signaling pathways modulate Treg behavior. Interestingly, several transcripts having no prior recognized function in Tregs were differentially expressed by lung Tregs during resolution. Further investigation into 2 identified transcripts, Mmp12 and Sik1, revealed that Treg-specific expression of each plays a role in Treg-promoted ALI resolution. This study provides potentially novel information describing the signals that may expand resident Tregs, recruit or retain them to the lung during ALI, and modulate their function. The results provide insight into both tissue- and immune microenvironment-specific transcriptional differences through which Tregs direct their effects.
Collapse
Affiliation(s)
- Jason R Mock
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,Marsico Lung Institute, and
| | - Catherine F Dial
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,Marsico Lung Institute, and
| | - Miriya K Tune
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,Marsico Lung Institute, and
| | - Dustin L Norton
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,Marsico Lung Institute, and
| | - Jessica R Martin
- Marsico Lung Institute, and.,Center for Airways Disease, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - John C Gomez
- Marsico Lung Institute, and.,Center for Airways Disease, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,Marsico Lung Institute, and
| | | | - Claire M Doerschuk
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,Marsico Lung Institute, and.,Center for Airways Disease, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| |
Collapse
|
37
|
Wang Y, Wang H, Zhang C, Zhang C, Yang H, Gao R, Tong Z. Lung fluid biomarkers for acute respiratory distress syndrome: a systematic review and meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:43. [PMID: 30755248 PMCID: PMC6373030 DOI: 10.1186/s13054-019-2336-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/28/2019] [Indexed: 01/11/2023]
Abstract
Background With the development of new techniques to easily obtain lower respiratory tract specimens, bronchoalveolar lavage fluid and other lung fluids are gaining importance in pulmonary disease diagnosis. We aimed to review and summarize lung fluid biomarkers associated with acute respiratory distress syndrome diagnosis and mortality. Methods After searching PubMed, Embase, Web of Science, and the Cochrane Library for articles published prior to January 11, 2018, we performed a meta-analysis on biomarkers for acute respiratory distress syndrome diagnosis in at-risk patients and those related to disease mortality. From the included studies, we then extracted the mean and standard deviation of the biomarker concentrations measured in the lung fluid, acute respiratory distress syndrome etiologies, sample size, demographic variables, diagnostic criteria, mortality, and protocol for obtaining the lung fluid. The effect size was measured by the ratio of means, which was then synthesized by the inverse-variance method using its natural logarithm form and transformed to obtain a pooled ratio and 95% confidence interval. Results In total, 1156 articles were identified, and 49 studies were included. Increases in total phospholipases A2 activity, total protein, albumin, plasminogen activator inhibitor-1, soluble receptor for advanced glycation end products, and platelet activating factor-acetyl choline were most strongly associated with acute respiratory distress syndrome diagnosis. As for biomarkers associated with acute respiratory distress syndrome mortality, interleukin-1β, interleukin-6, interleukin-8, Kerbs von Lungren-6, and plasminogen activator inhibitor-1 were significantly increased in the lung fluid of patients who died. Decreased levels of Club cell protein and matrix metalloproteinases-9 were associated with increased odds for acute respiratory distress syndrome diagnosis, whereas decreased levels of Club cell protein and interleukin-2 were associated with increased odds for acute respiratory distress syndrome mortality. Conclusions This meta-analysis provides a ranking system for lung fluid biomarkers, according to their association with diagnosis or mortality of acute respiratory distress syndrome. The performance of biomarkers among studies shown in this article may help to improve acute respiratory distress syndrome diagnosis and outcome prediction. Electronic supplementary material The online version of this article (10.1186/s13054-019-2336-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yishan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Capital Medical University, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Huijuan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Capital Medical University, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Chunfang Zhang
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, 100012, China
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Capital Medical University, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Huqin Yang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Capital Medical University, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Ruiyue Gao
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Capital Medical University, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Beijing Engineering Research Center of Respiratory and Critical Care Medicine, Capital Medical University, NO. 8, Gong Ti South Road, Chao-Yang District, Beijing, 100020, China.
| |
Collapse
|
38
|
Rebetz J, Semple JW, Kapur R. The Pathogenic Involvement of Neutrophils in Acute Respiratory Distress Syndrome and Transfusion-Related Acute Lung Injury. Transfus Med Hemother 2018; 45:290-298. [PMID: 30498407 PMCID: PMC6257140 DOI: 10.1159/000492950] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is a serious and common complication of multiple medical and surgical interventions, with sepsis, pneumonia, and aspiration of gastric contents being common risk factors. ARDS develops within 1 week of a known clinical insult or presents with new/worsening respiratory symptoms if the clinical insult is unknown. Approximately 40% of the ARDS cases have a fatal outcome. Transfusion-related acute lung injury (TRALI), on the other hand, is characterized by the occurrence of respiratory distress and acute lung injury, which presents within 6 h after administration of a blood transfusion. In contrast to ARDS, acute lung injury in TRALI is not attributable to another risk factor for acute lung injury. 'Possible TRALI', however, may have a clear temporal relationship to an alternative risk factor for acute lung injury. Risk factors for TRALI include chronic alcohol abuse and systemic inflammation. TRALI is the leading cause of transfusion-related fatalities. There are no specific therapies available for ARDS or TRALI as both have a complex and incompletely understood pathogenesis. Neutrophils (polymorphonuclear leukocytes; PMNs) have been suggested to be key effector cells in the pathogenesis of both syndromes. In the present paper, we summarize the literature with regard to PMN involvement in the pathogenesis of both ARDS and TRALI based on both human data as well as on animal models. The evidence generally supports a strong role for PMNs in both ARDS and TRALI. More research is required to shed light on the pathogenesis of these respiratory syndromes and to more thoroughly establish the nature of the PMN involvement, especially considering the heterogeneous etiologies of ARDS.
Collapse
Affiliation(s)
| | - John W. Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | | |
Collapse
|
39
|
Wang L, Wang X, Tong L, Wang J, Dou M, Ji S, Bi J, Chen C, Yang D, He H, Bai C, Zhou J, Song Y. Recovery from acute lung injury can be regulated via modulation of regulatory T cells and Th17 cells. Scand J Immunol 2018; 88:e12715. [PMID: 30277586 DOI: 10.1111/sji.12715] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022]
Abstract
Acute lung injury (ALI) is a severe inflammatory disease, for which no specific treatment exists. The decreased ratio of regulatory T cells (CD4+ CD25+ FoxP3 Tregs) and Th17 cells is implicated in ALI and inflammation. We here investigated whether maintaining the balance of CD4+ CD25+ Foxp3+ Tregs and Th17 cells can alleviate lung injury. For CD4+ CD25+ FoxP3 Treg depletion, 200 μg of an anti-CD25 antibody was administered intraperitoneally per mouse on days -3 and -1 before lipopolysaccharide (LPS) instillation. And 150 μg of TGF-β was administered intraperitoneally per mouse on day 0 after LPS instillation. To down-regulate of Th17 cells, 200 μg per mouse of isotype, IL-17 or IL-22 antibodies were injected intraperitoneally into mice at days 0 after LPS instillation. We detected lung morphology; lung wet-to-dry weight ratio; protein concentration, the count of total cells, neutrophils and macrophages, and cytokines in bronchoalveolar lavage fluid (BALF). And we also evaluated the percentage of CD4+ CD25+ Foxp3+ Tregs in lung, and Th17 cells in lung. CD4+ CD25+ Foxp3+ Tregs depletion via anti-CD25 treatment or TGF-β neutralization delayed recovery of ALI. The prolonged inflammation was mainly dominated by neutrophils, macrophages and Th17 cells. Furthermore, inhibition of Th17 cells via monoclonal antibodies against IL-17 and IL-22 alleviated ALI inflammation by inhibiting the recruitment of neutrophils and macrophages, increasing the number of CD4+ CD25+ Foxp3+ Tregs. Our findings support a critical role for CD4+ CD25+ Foxp3+ Tregs in regulating from ALI pathophysiology, and a potential therapeutic role for the inhibition of Th17 cells in ALI treatment. These findings provide a rationale for treating patients with ALI by modulating CD4+ CD25+ Foxp3+ Tregs and Th17 cells.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaocen Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Tong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Maosen Dou
- Department of Infection Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shimeng Ji
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Bi
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dong Yang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong He
- Department of Anesthesiology, Cancer Center, Fudan University, Shanghai, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Shanghai, China.,Zhongshan Hospital, Qingpu Branch, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Walter JM, Helmin KA, Abdala-Valencia H, Wunderink RG, Singer BD. Multidimensional assessment of alveolar T cells in critically ill patients. JCI Insight 2018; 3:123287. [PMID: 30185658 DOI: 10.1172/jci.insight.123287] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022] Open
Abstract
Pneumonia represents the leading infectious cause of death in the United States. Foxp3+ regulatory T cells promote recovery from severe pneumonia in mice, but T cell responses in patients with pneumonia remain incompletely characterized because of the limited ability to serially sample the distal airspaces and perform multidimensional molecular assessments on the small numbers of recovered cells. As T cell function is governed by their transcriptional and epigenetic landscape, we developed a method to safely perform high-resolution transcriptional and DNA methylation profiling of T cell subsets from the alveoli of critically ill patients. Our method involves nonbronchoscopic bronchoalveolar lavage combined with multiparameter fluorescence-activated cell sorting, unsupervised low-input RNA-sequencing, and a modified reduced-representation bisulfite sequencing protocol. Here, we demonstrate the safety and feasibility of our method and use it to validate functional genomic elements that were predicted by mouse models. Because of its potential for widespread application, our techniques allow unprecedented insights into the biology of human pneumonia.
Collapse
Affiliation(s)
- James M Walter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Kathryn A Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | | | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine.,Department of Biochemistry and Molecular Genetics, and.,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
41
|
Li MM, Zhang WJ, Weng XF, Li MY, Liu J, Xiong Y, Xiong SE, Zou CC, Wang H, Lu MJ, Yang DL, Peng C, Zheng X. CD4 T cell loss and Th2 and Th17 bias are associated with the severity of severe fever with thrombocytopenia syndrome (SFTS). Clin Immunol 2018; 195:8-17. [PMID: 30036637 PMCID: PMC7185468 DOI: 10.1016/j.clim.2018.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/15/2018] [Accepted: 07/18/2018] [Indexed: 01/10/2023]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a newly emerging infectious disease caused by a novel bunyavirus with high mortality. Immune suppression is thought to be crucial in disease progression. However, data on immune responses during SFTS are scarce. This study aimed to evaluate the changes in CD4 T-cell subsets throughout the entirety of infection and analyse their relationships with disease severity in SFTS patients. In parallel with CD4 T-cell depletion, decreased Th1, Th2 and Treg numbers, but comparable Th17-cell numbers, were observed in deceased patients compared with those in surviving patients. Additionally, increased Th2 and Th17-cell percentages in the residual CD4 T-cell population led to aberrant Th2/Th1 and Th17/Treg ratios, which were positively correlated with disease severity. Collectively, our data indicated that CD4 T-cell deficiency, Th2 and Th17 bias were closely correlated with the severity of SFTS, indicating therapeutic potential of early immune interventions to ameliorate disease severity.
Collapse
Affiliation(s)
- Meng-Meng Li
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Jing Zhang
- Department of Paediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiu-Fang Weng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ming-Yue Li
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xiong
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-E Xiong
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Cong Zou
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wang
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Ji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| | - Dong-Liang Yang
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Cheng Peng
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xin Zheng
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
42
|
Rahmel T, Rump K, Adamzik M, Peters J, Frey UH. Increased circulating microRNA-122 is associated with mortality and acute liver injury in the acute respiratory distress syndrome. BMC Anesthesiol 2018; 18:75. [PMID: 29935532 PMCID: PMC6015662 DOI: 10.1186/s12871-018-0541-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
Background Acute liver injury in patients with ARDS decreases survival but early stages may be easily missed due to the lack of sufficient biomarkers signalling its onset. Accordingly, we tested in ARDS patients the hypotheses that microRNA-122, the foremost liver-related microRNA (miR), 1) is an sensitive and specific early predictor for potential liver injury and 2) analysed its impact on 30-day-survival. Methods We collected clinical data and analysed blood samples from 119 ARDS patients within the first 24 h of ICU admission and from 20 patients undergoing elective abdominal non-liver surgery serving as controls. Total circulating miR was isolated from serum and relative miR-122 expression was measured (using specific probes and spiked-in miR-54), as were liver function and 30-day survival. Acute liver injury was defined as a total bilirubin concentration ≥ 3.0 mg/dl, an ALT activity ≥350 U/l, and an INR ≥2.0. Results 30-day survival of the entire ARDS-cohort was 69% but differed between patients with normal liver function (77%) and acute liver injury (19% p < 0.001). miR-122 expression was 20fold higher in non-survivors (95%-CI 0.0149–0.0768; p = 0.001) and almost 4fold greater in survivors (95%-CI: 0.0037–0.0122; p = 0.005) compared to controls (95%-CI 0.0008–0.0034) and correlated with markers of liver cell integrity/function [ALT (p < 0.001, r = 0.495), AST (p < 0.001, r = 0.537), total bilirubin (p = 0.025, r = 0.206), INR (p = 0.001, r = 0.308), and GLDH (p < 0.001, r = 0.489)]. miR-122 serum expression discriminated survivors and non-survivors (AUC: 0.78) better than total bilirubin concentration (AUC: 0.66). Multivariable Cox-regression analysis revealed both acute liver injury (HR 7.6, 95%-CI 2.9–19.8, p < 0.001) and miR-122 (HR 4.4, 95%-CI 1.2–16.1, p = 0.02) as independent prognostic factors for 30-day mortality. Conclusions Increased miR-122 serum expression is an early and independent risk factor for 30-day mortality in ARDS patients and potentially reveal an acute liver injury earlier than the conventional markers of liver cell integrity. Electronic supplementary material The online version of this article (10.1186/s12871-018-0541-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, D-44892, Bochum, Germany.
| | - Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, D-44892, Bochum, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, D-44892, Bochum, Germany.,Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, D-45122, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, D-45122, Essen, Germany
| | - Ulrich H Frey
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, D-45122, Essen, Germany
| |
Collapse
|
43
|
Wang Y, Ju M, Chen C, Yang D, Hou D, Tang X, Zhu X, Zhang D, Wang L, Ji S, Jiang J, Song Y. Neutrophil-to-lymphocyte ratio as a prognostic marker in acute respiratory distress syndrome patients: a retrospective study. J Thorac Dis 2018; 10:273-282. [PMID: 29600057 DOI: 10.21037/jtd.2017.12.131] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Acute respiratory distress syndrome (ARDS) is the leading cause of high mortality in intensive care units (ICUs) worldwide. An effective marker for prognosis in ARDS is particularly important given the absence of effective treatment strategies aside from small tidal volume ventilation. Previous studies identified an association between the neutrophil-to-lymphocyte ratio (NLR) and prognosis in critical patients. In this study, we explored the prognostic and predictive value of the NLR in ARDS patients. Methods We retrospectively included 275 ARDS patients treated at a single institute from 2008 to 2015. After excluding patients with chronic lung disease, acute myocardial infarction and missing data, 247 patients were ultimately included in the analysis. Clinical characteristics and experimental test data, including the NLR, were collected from medical records at 24 hours after the ARDS diagnosis. Independent prognostic factors were determined by multivariate Cox regression analysis. Subgroup stratification was performed according to different factors, and the continuous factors were divided according to the median values. Results The NLR in survivors was significantly lower than that in non-survivors (P<0.001). We took the median NLR value as the cut-off point and further divided all patients into a high NLR group (NLR >14) and a low NLR group (NLR ≤14). We found that an NLR >14 was associated with a shorter overall survival (OS) (P=0.005). In the multivariate Cox regression model, we further identified an NLR >14 as an independent prognostic factor for OS [hazard ratio (HR) 1.532, (95% CI, 1.095-2.143), P=0.013]. Subgroup analysis showed that the prognostic value of the NLR was higher in hypertensive patients (P=0.009) and in patients with low red blood cell specific volume (P=0.013), high sodium (P=0.002) and high creatinine levels (P=0.017). Conclusions The NLR is potentially a predictive prognostic biomarker in ARDS patients.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Mohan Ju
- Department of Pulmonary Medicine, Huashan Hospital, Fudan University, Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Dong Yang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Dongni Hou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Xinjun Tang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Xiaodan Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Donghui Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Lilin Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Shimeng Ji
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Jinjun Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai Respiratory Research Institute, Shanghai 200032, China
| |
Collapse
|
44
|
Li GG, Cao YH, Run Y, Xu RX, Zheng ZD. Inhibition of CD8 + T cells and elimination of myeloid cells by CD4 + Foxp3 - T regulatory type 1 cells in acute respiratory distress syndrome. Clin Exp Pharmacol Physiol 2017; 43:1191-1198. [PMID: 27558304 DOI: 10.1111/1440-1681.12656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 11/28/2022]
Abstract
Acute lung injury and acute respiratory distress syndrome (ARDS) are caused by rapid-onset bilateral pulmonary inflammation. We therefore investigated the potential role of interleukin (IL)-10+ CD4+ Tr1 cells, a regulatory T cell subset with previously identified immunosuppressive functions, in ARDS patients. We first showed that circulating Tr1 cells were upregulated in active and resolved ARDS patients compared to healthy controls and pneumonia patient controls. A significant fraction of these Tr1 cells expressed granzyme B and perforin, while most Tr1 cells did not express interferon gamma (IFN-γ), IL-4, IL-17 or FOXP3, suggesting that the effector functions of these Tr1 cells were primarily mediated by IL-10, granzyme B, and perforin. Indeed, Tr1 cells effectively suppressed CD8+ T cell IFN-γ production and induced lysis of monocytes and dendritic cells in vitro. The elimination of myeloid antigen-presenting cells depended on granzyme B production. We also discovered that Tr1 cells could be identified in the bronchoalveolar lavage fluid collected from ARDS patients. All these results suggested that Tr1 cells possessed the capacity to downregulate inflammation in ARDS. In support of this, we found that ARDS patients who resolved the inflammation and survived the syndrome contained significantly higher levels of Tr1 cells than ARDS patients who succumbed to the syndrome. Overall, this report added a novel piece of evidence that ARDS could be intervened by regulatory T cell-mediated suppressive mechanisms.
Collapse
Affiliation(s)
- Guang-Gang Li
- Affiliated Bayi Brain Hospital, PLA Army General Hospital, Beijing, China
| | - Ying-Hua Cao
- Affiliated Bayi Brain Hospital, PLA Army General Hospital, Beijing, China
| | - Yue Run
- Department of Oncology, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Ru-Xiang Xu
- Affiliated Bayi Brain Hospital, PLA Army General Hospital, Beijing, China
| | - Zhen-Dong Zheng
- Department of Oncology, General Hospital of Shenyang Military Area Command, Shenyang, China
| |
Collapse
|
45
|
Gelman AE, Fisher AJ, Huang HJ, Baz MA, Shaver CM, Egan TM, Mulligan MS. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part III: Mechanisms: A 2016 Consensus Group Statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2017; 36:1114-1120. [PMID: 28818404 DOI: 10.1016/j.healun.2017.07.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/16/2017] [Indexed: 01/17/2023] Open
Affiliation(s)
- Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Andrew J Fisher
- Institute of Transplantation, Freeman Hospital and Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Howard J Huang
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Maher A Baz
- Departments of Medicine and Surgery, University of Kentucky, Lexington, Kentucky, USA
| | - Ciara M Shaver
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Thomas M Egan
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Micheal S Mulligan
- Department of Surgery, Division of Cardiothoracic Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
46
|
Liu CH, Kuo SW, Ko WJ, Tsai PR, Wu SW, Lai CH, Wang CH, Chen YS, Chen PL, Liu TT, Huang SC, Jou TS. Early measurement of IL-10 predicts the outcomes of patients with acute respiratory distress syndrome receiving extracorporeal membrane oxygenation. Sci Rep 2017; 7:1021. [PMID: 28432351 PMCID: PMC5430643 DOI: 10.1038/s41598-017-01225-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/22/2017] [Indexed: 12/31/2022] Open
Abstract
Patients diagnosed with acute respiratory distress syndrome are generally severely distressed and associated with high morbidity and mortality despite aggressive treatments such as extracorporeal membrane oxygenation (ECMO) support. To identify potential biomarker of predicting value for appropriate use of this intensive care resource, plasma interleukin-10 along with relevant inflammatory cytokines and immune cell populations were examined during the early and subsequent disease courses of 51 critically ill patients who received ECMO support. High interleukin-10 levels at the time of ECMO installation and during the first 6 hours after ECMO support of these patients stand as a promising biomarker associated with grave prognosis. The initial interleukin-10 level is correlated to other conventional risk evaluation scores as a predictive factor for survival, and furthermore, elevated interleukin-10 levels are also related to a delayed recovery of certain immune cell populations such as CD14+CD16+, CD14+TLR4+ monocytes, and T regulator cells. Genetically, high interleukin-10 is associated to two polymorphic nucleotides (−592 C and −819 C) at the interleukin-10 gene promoter area. Our finding provides prognostic and mechanistic information on the outcome of severely respiratory distressed patients, and potentially paves the strategy to develop new therapeutic modality based on the principles of precision medicine.
Collapse
Affiliation(s)
- Chia-Hsiung Liu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuenn-Wen Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Je Ko
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Pi-Ru Tsai
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Wei Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Heng Lai
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Hsien Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yih-Sharng Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Tze-Tze Liu
- Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Chien Huang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Tzuu-Shuh Jou
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
47
|
Gupta DL, Bhoi S, Mohan T, Galwnkar S, Rao DN. Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with post traumatic sepsis. Cytokine 2016; 88:214-221. [PMID: 27676155 DOI: 10.1016/j.cyto.2016.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Multiple organ dysfunction syndrome (MODS) developed due to the insult of trauma is a leading cause of death. The high mortality rate in these patients with and without sepsis has been reported up to 50%, throughout the world and thus required an urgent insight to overcome this problem. OBJECTIVE The aim of this study is to examine the differential changes in subsets of T cells, imbalance in cytokine profile, immune-paralysis (T cell anergy) in Trauma hemorrhagic shock (THS) and post traumatic sepsis patients. METHODOLOGY 114, THS patients and 50 healthy controls were recruited in the present study. We have measured the T cell proliferation assay using dominant antigens of both gram positive (LTA, 100ng/ml) and gram negative (LPS-100ng/ml) bacteria and PHA (4μg/ml) using radioactive thymidine (1H3) assay. Simultaneously, we have measured the culture supernatant level of cytokines using Cytokine bead assay (CBA). The other parts of this study include the analysis of different subsets of T cells. RESULTS AND CONCLUSION We observed significantly (P<0.05) reduced T cell proliferation in THS patients as compared to control. Our study also showed patients died due to sepsis/septic shock, had significantly (p<0.05) lower T cell response and had significantly elevated levels of IL-4, IL-10andTGF-β, but low level of IL-2andIFN-γ in culture supernatant. THS patients who developed sepsis complication had significantly higher T regulatory cells and lower Th17 cells in comparison to non-sepsis. In conclusion, our study showed an imbalance in cell mediated immune response and disturbance in Th1/Th2/Th17 and T reg population of T helper cells and also the shifts towards Th2 and T17 in THS patients who had developed sepsis and showed poor outcomes.
Collapse
Affiliation(s)
- Dublu Lal Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| | - Sanjeev Bhoi
- Department of Emergency Medicine, JPNATC, All India Institute of Medical Sciences, New Delhi, India.
| | - Teena Mohan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| | - Sagar Galwnkar
- Department of Emergency Medicine, Global Hospital, Mumbai, India.
| | - D N Rao
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW This review is being published to update the literature on the function of the adaptive immune system in critical illness, specifically sepsis and acute lung injury. We have focused on the role of T cells in these syndromes. RECENT FINDINGS The adaptive immune response becomes dysfunctional during sepsis and acute lung injury in very similar ways. Many of the abnormalities contribute to morbidity and mortality. Immunoparalysis captures the breadth of the dysfunction in that T-cell functions are broadly suppressed after the early proinflammatory stages of illness. Lymphocyte apoptosis, decreased antigen responsiveness, decreased and altered cytokine expression, upregulation of inhibitory molecules, and expansion of the suppressive regulatory T-cell population are mechanisms involved. Each of these abnormalities can be reversed with improvement in experimental outcomes. SUMMARY Immunoparalysis of the adaptive immune system occurs in sepsis and acute lung injury, and is critical to the outcome. Blocking the inhibited pathways and immunostimulant cytokines improved lymphocyte function and outcome. Many such blocking agents are already effective for other diseases and could be used for immunoparalysis. Unfortunately, there is no diagnostic marker yet. In order to provide the right therapy at the right time, advancements in immunomonitoring are necessary.
Collapse
|
49
|
Li Q, Hu X, Sun R, Tu Y, Gong F, Ni Y. Resolution acute respiratory distress syndrome through reversing the imbalance of Treg/Th17 by targeting the cAMP signaling pathway. Mol Med Rep 2016; 14:343-8. [PMID: 27176453 DOI: 10.3892/mmr.2016.5222] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 04/11/2016] [Indexed: 11/05/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe cause of respiratory failure with a mortality rate as high as 40‑46% and without any effective pharmacological treatment available. The present study provided a novel strategy for the treatment of ARDS by specifically interfering with cyclic adenosine monophosphate (cAMP) signaling. Pre-treatment with the phosphodiesterase antagonist pentoxifyllinum (PTX) obviously attenuated lung injury and reduced the mortality of mice with cecal ligature and puncture (CLP)‑induced ARDS, while raising cAMP levels. In addition, pre‑treatment with PTX attenuated CLP‑induced increases in the number of T‑regulatory cells (Tregs) and interleukin (IL)‑17‑producing T‑helper lymphocytes (Th17) among spleen lymphocytes, while partially restoring the Treg/Th17 ratio. Correspondingly, CLP‑induced increases in the secretion of IL‑2, IL‑6, IL‑10 and IL‑17 were attenuated. Furthermore, CLP‑induced increases in forkhead box p3 and RAR‑related orphan receptor γt (RORγt) expression as well as signal transducer and activator of transcription (STAT3) activation were attenuated by PTX. The results indicated that PTX‑induced increases in cAMP may have partly restored the Treg/Th17 balance by modulating the transcription of Foxp3 and RORγt through the STAT3 pathway. In conclusion, the present study provided a novel treatment strategy for ARDS by modulating the balance of Treg/Th17 and the subsequent immune response via cAMP signaling, which requires pre-clinical and clinical validation.
Collapse
Affiliation(s)
- Qian Li
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiuping Hu
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Renhua Sun
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Yuexing Tu
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Fangxiao Gong
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Yin Ni
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
50
|
Yan Z, Xiaoyu Z, Zhixin S, Di Q, Xinyu D, Jing X, Jing H, Wang D, Xi Z, Chunrong Z, Daoxin W. Rapamycin attenuates acute lung injury induced by LPS through inhibition of Th17 cell proliferation in mice. Sci Rep 2016; 6:20156. [PMID: 26888095 PMCID: PMC4757870 DOI: 10.1038/srep20156] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022] Open
Abstract
Th17 cells have been confirmed to increase neutrophils through cytokine secretions. ALI/ARDS are characterized as neutrophil infiltration in inflammation cases; however, there is conflicting information concerning the role of Th17 cells in ALI/ARDS, as well as their potential treatment value. We measured Th17-linear cytokines in the plasma of patients with sepsis-related ARDS. The consistently high levels of IL-17 and IL-22 in the nonsurvivors suggested that overreaction of the Th17-mediated immune response may be a risk factor for poor outcomes. Th17 linear cytokines were also increased in an LPS-induced murine model of acute lung injury, along with neutrophil accumulation. The mice that completely lacked IL-17 failed to accumulate and activate neutrophils. Lung inflammation was obviously attenuated in the IL-17(-)/(-) mice. Meanwhile, the neutrophil count was markedly increased in the healthy WT mice challenged with recombinant IL-22 and IL-17. Rapamycin attenuated lung injury by inhibiting the differentiation of Th17 cells through RORγt and STAT3 dysfunction. Furthermore, we demonstrated that SOCS3 and Gfi1, which were responsible for the molecular suppression of RORγt and STAT3, were up-regulated by rapamycin. These results point toward a pivotal view to treatment of ALI through weakening the proliferation of Th17 cells with rapamycin.
Collapse
Affiliation(s)
- Zhao Yan
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Zhang Xiaoyu
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Song Zhixin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400010, China
| | - Qi Di
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Deng Xinyu
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Xia Jing
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - He Jing
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Deng Wang
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Zhong Xi
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Zhang Chunrong
- Department of Emergency Medicine, the Yongchuan Affiliated Hospital of Chongqing Medical University, 439 Xuanhua Road, Yongchuan District, Chongqing 402160, China
| | - Wang Daoxin
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| |
Collapse
|