1
|
Czech A, Woś K, Pachciński K, Muszyński S, Świetlicki M, Tomaszewska E. Fermented Rapeseed Meal as a Dietary Intervention to Improve Mineral Utilization and Bone Health in Weaned Piglets. Animals (Basel) 2024; 14:2727. [PMID: 39335316 PMCID: PMC11428520 DOI: 10.3390/ani14182727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This study examined the effects of incorporating fermented rapeseed meal (FRSM) into the diet of newly weaned piglets on mineral digestibility and bone health. Experimental diets containing varying levels of FRSM (8%, 12%, 15%, and 25%) were introduced to the piglets at 18 days of age, prior to weaning at 28 days. These diets were continued until the piglets were euthanized at 42 days of age. Mineral absorption was assessed using the apparent total tract digestibility (ATTD) method and blood plasma element analysis, while bone mineral content and mechanical properties were evaluated through densitometry and three-point bending tests. The results showed that intermediate levels of FRSM (12-15%) significantly enhanced the digestibility of key minerals, including phosphorus, calcium, magnesium, copper, zinc, and iron. This improvement was linked to increased femoral mineral content and bone stiffness, as well as a higher yield point, likely due to enhanced collagen synthesis. Additionally, there was an increase in bone fracture load and fracture stress, potentially due to changes in the organization of the bone mineral phase, as no changes in bone mid-shaft mineral density or geometry were observed. These findings suggest FRSM as a promising dietary component for improving mineral bioavailability and bone health in piglets.
Collapse
Affiliation(s)
- Anna Czech
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Katarzyna Woś
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Karol Pachciński
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Michał Świetlicki
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
2
|
Alijani H, Vaughan TJ. Exploring the hierarchical structure of lamellar bone and its impact on fracture behaviour: A computational study using a phase field damage model. J Mech Behav Biomed Mater 2024; 153:106471. [PMID: 38458079 DOI: 10.1016/j.jmbbm.2024.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
Bone is a naturally occurring composite material composed of a stiff mineral phase and a compliant organic matrix of collagen and non-collagenous proteins (NCP). While diverse mineral morphologies such as platelets and grains have been documented, the precise role of individual constituents, and their morphology, remains poorly understood. To understand the role of constituent morphology on the fracture behaviour of lamellar bone, a damage based representative volume element (RVE) was developed, which considered various mineral morphologies and mineralised collagen fibril (MCF) configurations. This model framework incorporated a novel phase-field damage model to predict the onset and evolution of damage at mineral-mineral and mineral-MCF interfaces. It was found that platelet-based mineral morphologies had superior mechanical performance over their granular counterparts, owing to their higher load-bearing capacity, resulting from a higher aspect ratio. It was also found that MCFs had a remarkable capacity for energy dissipation under axial loading, with these fibrillar structures acting as barriers to crack propagation, thereby enhancing overall elongation and toughness. Interestingly, the presence of extrafibrillar platelet-based minerals also provided an additional toughening through a similar mechanism, whereby these structures also inhibited crack propagation. These findings demonstrate that the two primary constituent materials of lamellar bone play a key role in its toughening behaviour, with combined effect by both mineral and MCFs to inhibit crack propagation at this scale. These results have provided novel insight into the fracture behaviour of lamellar bone, enhancing our understanding of microstructure-property relationships at the sub-tissue level.
Collapse
Affiliation(s)
- Hamid Alijani
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland.
| |
Collapse
|
3
|
Wang Z, Zheng Y, Meng D, Li H, Ji C, Wang J. Anatomical Imaging Study on Uneven Settlement of the Proximal Tibia. Orthop Surg 2023; 15:239-246. [PMID: 36519383 PMCID: PMC9837255 DOI: 10.1111/os.13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Uneven settlement of the proximal tibia significantly contributes to the onset and progression of medial compartment knee OA; however, the specific location and variations of proximal tibial deformity remain unclear. Therefore, this study aimed to explore the effects of the anatomic morphology of different tibial regions on proximal tibial vara and proximal tibial microstructural changes with age in both sexes to reveal the pattern of uneven settlement of the proximal tibia. METHODS In this retrospective study, we reviewed the radiographs of 414 patients (789 legs) between May and September 2021. The medial proximal tibial angle (MPTA) and four anatomic angles of the tibia (i.e., the tibial plateau-epiphyseal line [PT-EL] angle, epiphyseal line-tibial platform [EL-PF] angle, epiphyseal axis inclination angle [EAIA], and subepiphyseal axis inclination angle [SAIA]) were measured. The effect of each angle on MPTA and their changes with age in both sexes were investigated using Pearson's correlation coefficient and multiple linear regression. RESULTS In females, PT-EL angle, EL-PF angle, and SAIA negatively correlated with MPTA (r = -0.325, -0.246, and -0.502; p < 0.05), and EAIA positively correlated with MPTA (r = 0.099, p < 0.05). Regression analysis showed that the correlations between MPTA and PT-EL angle, EL-PF angle, and SAIA were significant (β = -1.003, -0.013, and -0.971; adjusted R2 = 0.979). Furthermore, MPTA negatively correlated with age (r = -0.202, p < 0.05); PT-EL angle and EAIA positively correlated with age (r = 0.237 and 0.142, p < 0.05). Regression analysis showed that only the correlation between PT-EL angle and age was significant (β = 5.635, p < 0.05). In males, PT-EL angle, EL-PF angle, and SAIA negatively correlated with MPTA (r = -0.270, -0.267, and -0.533; p < 0.05), and EAIA positively correlated with MPTA (r = 0.135, p < 0.05). Regression analysis showed that the correlations between MPTA and PT-EL angle, EL-PF angle, and SAIA were significant (β = -0.992, -0.017, and -0.958; adjusted R2 = 0.970). However, there was no significant correlation between age and any of the measured angles (p > 0.05). CONCLUSIONS Proximal tibial vara is affected by the anatomic morphology of the epiphyseal and subepiphyseal regions. In females, the uneven settlement of the epiphysis progresses with age and may be responsible for dynamic varus deformity of the proximal tibia.
Collapse
Affiliation(s)
- Zhijie Wang
- Hebei Medical University Third Affiliated HospitalShijiazhuangChina
| | - Yi Zheng
- Hebei Medical University Third Affiliated HospitalShijiazhuangChina
| | - Decheng Meng
- Hebei Medical University Third Affiliated HospitalShijiazhuangChina
| | - Handi Li
- Hebei Medical University Third Affiliated HospitalShijiazhuangChina
| | - Chenni Ji
- Hebei Medical University Third Affiliated HospitalShijiazhuangChina
| | - Juan Wang
- Hebei Medical University Third Affiliated HospitalShijiazhuangChina
| |
Collapse
|
4
|
Iolascon G, Paoletta M, Liguori S, Gimigliano F, Moretti A. Bone fragility: conceptual framework, therapeutic implications, and COVID-19-related issues. Ther Adv Musculoskelet Dis 2022; 14:1759720X221133429. [PMID: 36317067 PMCID: PMC9614590 DOI: 10.1177/1759720x221133429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Bone fragility is the susceptibility to fracture even for common loads because of structural, architectural, or material alterations of bone tissue that result in poor bone strength. In osteoporosis, quantitative and qualitative changes in density, geometry, and micro-architecture modify the internal stress state predisposing to fragility fractures. Bone fragility substantially depends on the structural behavior related to the size and shape of the bone characterized by different responses in the load-deformation curve and on the material behavior that reflects the intrinsic material properties of the bone itself, such as yield and fatigue. From a clinical perspective, the measurement of bone density by DXA remains the gold standard for defining the risk of fragility fracture in all population groups. However, non-quantitative parameters, such as macro-architecture, geometry, tissue material properties, and microcracks accumulation can modify the bone's mechanical strength. This review provides an overview of the role of different contributors to bone fragility and how these factors might be influenced by the use of anti-osteoporotic drugs and by the COVID-19 pandemic.
Collapse
Affiliation(s)
- Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Marco Paoletta
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
| | - Sara Liguori
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| |
Collapse
|
5
|
Finnilä MAJ, Das Gupta S, Turunen MJ, Hellberg I, Turkiewicz A, Lutz-Bueno V, Jonsson E, Holler M, Ali N, Hughes V, Isaksson H, Tjörnstrand J, Önnerfjord P, Guizar-Sicairos M, Saarakkala S, Englund M. Mineral Crystal Thickness in Calcified Cartilage and Subchondral Bone in Healthy and Osteoarthritic Human Knees. J Bone Miner Res 2022; 37:1700-1710. [PMID: 35770824 PMCID: PMC9540032 DOI: 10.1002/jbmr.4642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 05/17/2022] [Accepted: 06/26/2022] [Indexed: 11/08/2022]
Abstract
Osteoarthritis (OA) is the most common joint disease, where articular cartilage degradation is often accompanied with sclerosis of the subchondral bone. However, the association between OA and tissue mineralization at the nanostructural level is currently not understood. In particular, it is technically challenging to study calcified cartilage, where relevant but poorly understood pathological processes such as tidemark multiplication and advancement occur. Here, we used state-of-the-art microfocus small-angle X-ray scattering with a 5-μm spatial resolution to determine the size and organization of the mineral crystals at the nanostructural level in human subchondral bone and calcified cartilage. Specimens with a wide spectrum of OA severities were acquired from both medial and lateral compartments of medial compartment knee OA patients (n = 15) and cadaver knees (n = 10). Opposing the common notion, we found that calcified cartilage has thicker and more mutually aligned mineral crystals than adjoining bone. In addition, we, for the first time, identified a well-defined layer of calcified cartilage associated with pathological tidemark multiplication, containing 0.32 nm thicker crystals compared to the rest of calcified cartilage. Finally, we found 0.2 nm thicker mineral crystals in both tissues of the lateral compartment in OA compared with healthy knees, indicating a loading-related disease process because the lateral compartment is typically less loaded in medial compartment knee OA. In summary, we report novel changes in mineral crystal thickness during OA. Our data suggest that unloading in the knee might be involved with the growth of mineral crystals, which is especially evident in the calcified cartilage. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Mikko A J Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center, University of Oulu, Oulu, Finland
| | - Shuvashis Das Gupta
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Mikael J Turunen
- Department of Applied Physics, Faculty of Science and Forestry, University of Eastern Finland, Kuopio, Finland
| | - Iida Hellberg
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Aleksandra Turkiewicz
- Clinical Epidemiology Unit, Orthopaedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Elin Jonsson
- Clinical Epidemiology Unit, Orthopaedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Mirko Holler
- Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Neserin Ali
- Clinical Epidemiology Unit, Orthopaedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Velocity Hughes
- Clinical Epidemiology Unit, Orthopaedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Jon Tjörnstrand
- Department of Orthopaedics, Skåne University Hospital, Lund, Sweden
| | - Patrik Önnerfjord
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Martin Englund
- Clinical Epidemiology Unit, Orthopaedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Abdelmoneim D, Porter GC, Coates DE, Duncan WJ, Waddell JN, Hammer N, Li KC. The Effect of Low-Processing Temperature on the Physicochemical and Mechanical Properties of Bovine Hydroxyapatite Bone Substitutes. MATERIALS 2022; 15:ma15082798. [PMID: 35454491 PMCID: PMC9025514 DOI: 10.3390/ma15082798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
Bovine bone grafts (BBX) require protein removal as part of the manufacturing process to reduce antigenicity and, in consequence, to be safely used in humans. Deproteinisation may have direct effects on the characteristics of the bone material and on in vivo material performance. This research aimed to comprehensively study the physicochemical and mechanical properties of BBX processed at low deproteinisation processing temperatures. Cubes of bovine bone (8 mm3) were treated with temperatures between 100 °C and 220 °C at 30 °C intervals and with pressures ranging from 1.01 to 24.58 Bar. The samples were characterised topographically and mechanically using scanning electron microscopy (SEM), atomic force microscopy (AFM), and uniaxial bending tests. The organic content and the chemical composition were determined using thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR). X-ray diffraction (XRD) and FTIR were also used to quantitatively determine the specimen crystallinity. Increasing temperature/pressure was associated with decreasing protein levels and compressive strength and increasing surface irregularities and crystallinity. The findings suggest that low-temperature processed bone is likely to exhibit a rapid in vivo degradation rate. The deproteinisation temperature can be adjusted to tailor the graft properties for specific applications.
Collapse
Affiliation(s)
- Dina Abdelmoneim
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (G.C.P.); (D.E.C.); (W.J.D.); (J.N.W.); (K.C.L.)
- Correspondence:
| | - Gemma Claire Porter
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (G.C.P.); (D.E.C.); (W.J.D.); (J.N.W.); (K.C.L.)
| | - Dawn Elizabeth Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (G.C.P.); (D.E.C.); (W.J.D.); (J.N.W.); (K.C.L.)
| | - Warwick John Duncan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (G.C.P.); (D.E.C.); (W.J.D.); (J.N.W.); (K.C.L.)
| | - John Neil Waddell
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (G.C.P.); (D.E.C.); (W.J.D.); (J.N.W.); (K.C.L.)
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria;
- Department of Orthopedic and Trauma Surgery, University of Leipzig, 04103 Leipzig, Germany
- Fraunhofer Fraunhofer Institute for Machine Tools and Forming Technology (IWU), Medical Branch, 01187 Dresden, Germany
| | - Kai Chun Li
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (G.C.P.); (D.E.C.); (W.J.D.); (J.N.W.); (K.C.L.)
| |
Collapse
|
7
|
Tomaszewska E, Rudyk H, Świetlicka I, Hułas-Stasiak M, Donaldson J, Arczewska M, Muszyński S, Dobrowolski P, Puzio I, Kushnir V, Brezvyn O, Muzyka V, Kotsyumbas I. The Influence of Prenatal Fumonisin Exposure on Bone Properties, as well as OPG and RANKL Expression and Immunolocalization, in Newborn Offspring Is Sex and Dose Dependent. Int J Mol Sci 2021; 22:ijms222413234. [PMID: 34948030 PMCID: PMC8705866 DOI: 10.3390/ijms222413234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 01/18/2023] Open
Abstract
The current study examined the effects of exposure of pregnant dams to fumonisins (FBs; FB1 and FB2), from the seventh day of pregnancy to parturition, on offspring bone metabolism and properties. The rats were randomly divided into three groups intoxicated with FBs at either 0, 60, or 90 mg/kg b.w. Body weight and bone length were affected by fumonisin exposure, irrespective of sex or dose, while the negative and harmful effects of maternal FBs’ exposure on bone mechanical resistance were sex and dose dependent. The immunolocalization of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-Β ligand (RANKL), in bone and articular cartilage, indicated that the observed bone effects resulted from the FB-induced alterations in bone metabolism, which were confirmed by the changes observed in the Western blot expression of OPG and RANKL. It was concluded that the negative effects of prenatal FB exposure on the general growth and morphometry of the offspring bones, as a result of the altered expression of proteins responsible for bone metabolism, were dose and sex dependent.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
- Correspondence: (E.T.); (I.Ś.)
| | - Halyna Rudyk
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donetska St. 11, 79000 Lviv, Ukraine; (H.R.); (V.K.); (O.B.); (V.M.); (I.K.)
| | - Izabela Świetlicka
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland; (M.A.); (S.M.)
- Correspondence: (E.T.); (I.Ś.)
| | - Monika Hułas-Stasiak
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland; (M.H.-S.); (P.D.)
| | - Janine Donaldson
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Marta Arczewska
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland; (M.A.); (S.M.)
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland; (M.A.); (S.M.)
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland; (M.H.-S.); (P.D.)
| | - Iwona Puzio
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Volodymyr Kushnir
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donetska St. 11, 79000 Lviv, Ukraine; (H.R.); (V.K.); (O.B.); (V.M.); (I.K.)
| | - Oksana Brezvyn
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donetska St. 11, 79000 Lviv, Ukraine; (H.R.); (V.K.); (O.B.); (V.M.); (I.K.)
| | - Viktor Muzyka
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donetska St. 11, 79000 Lviv, Ukraine; (H.R.); (V.K.); (O.B.); (V.M.); (I.K.)
| | - Ihor Kotsyumbas
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donetska St. 11, 79000 Lviv, Ukraine; (H.R.); (V.K.); (O.B.); (V.M.); (I.K.)
| |
Collapse
|
8
|
Changes in the Intestinal Histomorphometry, the Expression of Intestinal Tight Junction Proteins, and the Bone Structure and Liver of Pre-Laying Hens Following Oral Administration of Fumonisins for 21 Days. Toxins (Basel) 2021; 13:toxins13060375. [PMID: 34070555 PMCID: PMC8229214 DOI: 10.3390/toxins13060375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/12/2023] Open
Abstract
Fumonisins (FB) are metabolites found in cereal grains (including maize), crop products, and pelleted feed. There is a dearth of information concerning the effects of FB intoxication on the intestinal histomorphometry, the expression of intestinal tight junction proteins, and the bone structure and liver in pre-laying hens. The current experiment was carried out on hens from the 11th to the 14th week of age. The hens were orally administered an extract containing fumonisin B1 (FB1) and fumonisin B2 (FB2) at doses of 0.0 mg/kg b.w. (body weight), 1.0 mg/kg b.w., 4.0 mg/kg b.w., and 10.9 mg/kg b.w. for 21 days. Following FB intoxication, the epithelial integrity of the duodenum and jejunum was disrupted, and dose-dependent degenerative changes were observed in liver. An increased content of immature collagen was observed in the bone tissue of FB-intoxicated birds, indicating intensified bone turnover. A similar effect was observed with regards to the articular cartilage, where enhanced fibrillogenesis was observed mainly in the group of birds that received the FB extract at a dose of 10.9 mg/kg b.w. In conclusion, FB intoxication resulted in negative structural changes in the bone tissue of the hens, which could result in worsened bone mechanics and an increase in the risk of bone fractures. Fumonisin administration, even at a dose of 1.0 mg/kg b.w., can lead to degradation of the intestinal barrier and predispose hens to intestinal disturbances later in life.
Collapse
|
9
|
The Effect of Dietary Rye Inclusion and Xylanase Supplementation on Structural Organization of Bone Constitutive Phases in Laying Hens Fed a Wheat-Corn Diet. Animals (Basel) 2020; 10:ani10112010. [PMID: 33142930 PMCID: PMC7692776 DOI: 10.3390/ani10112010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/31/2022] Open
Abstract
This study was conducted to examine the effect of dietary rye inclusion and xylanase supplementation on the bone quality of ISA Brown laying hens. Ninety-six laying hens were assigned to four groups: fed with wheat-corn diet or rye-wheat-corn diet (25% of hybrid rye inclusion) or nonsupplemented or supplemented with xylanase (200 mg/kg of feed) for a period of 25 weeks, from the 26th to the 50th week of age. X-ray absorptiometry, X-ray diffraction, and Fourier-transform infrared spectroscopy were used to provide comprehensive information about the structural organization of bone constitutive phases of the tibia mid-diaphysis in hens from all treatment groups. Bone hydroxyapatite size was not affected by diet. Xylanase supplementation influenced the carbonate-to-phosphate ratio and crystallinity index in hens fed with both diets. Xylanase had more pronounced effects on bone mineral density and collagen maturity in hens fed with the rye-wheat-corn diet versus those fed with the wheat-corn diet. The results of this study showed that modern rye varieties, when supplemented with exogenous xylanase, can be introduced to the diet of laying hens without any adverse effects on bone structure.
Collapse
|
10
|
Fayolle C, Labrune M, Berteau JP. Raman spectroscopy investigation shows that mineral maturity is greater in CD-1 than in C57BL/6 mice distal femurs after sexual maturity. Connect Tissue Res 2020; 61:409-419. [PMID: 30922120 DOI: 10.1080/03008207.2019.1601184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim of the study mice are the most often used pre-clinical lab models for studying the pathologies of bone mineralization. However, recent evidence suggests that two of the most often used mice strains (C57BL/6J and CD-1) might show differences in the bone mineralization process. This study sought to investigate the main compositional properties of bone tissue between nonpathological C57BL/6J and CD-1 murine knee joints. Materials and Methods : to this end, medial and lateral condylar subchondral bones and the adjacent diaphyseal cortical bone of 13 murine femurs (n = 7 C57BL/6J and n = 6 CD-1 at eight weeks old, just after sexual maturation) were analyzed with ex vivo Raman spectroscopy. Results : regardless of the bone tissue analyzed, our results showed that CD-1 laboratory mice present a more mature mineral phase than C57BL/6J laboratory mice, but present no difference in maturity of the collagen phase. For both strains, the subchondral bone of the medial condylar and cortical bone from the diaphysis have similar compositional properties, and CD-1 presents less variation than C57BL/6J. Furthermore, we depict a novel parametric relationship between the crystallinity and carbonate-to-amide-I ratio that might help in deciphering the mineral maturation process that occurs during bone's mineralization. Conclusions : Our results suggest that the timing of bone maturation might be different between non-pathological C57BL/6J and CD-1 murine knee femurs.
Collapse
Affiliation(s)
- Clémence Fayolle
- Department of Physical Therapy, City University of New York, College of Staten Island , New York, NY, USA.,Department of Biomedical Engineering, Compiegne, Sorbonne University, Universite Technologique de Compiegne , France
| | - Mélody Labrune
- Department of Physical Therapy, City University of New York, College of Staten Island , New York, NY, USA.,Department of Biomedical Engineering, Compiegne, Sorbonne University, Universite Technologique de Compiegne , France
| | - Jean-Philippe Berteau
- Department of Physical Therapy, City University of New York, College of Staten Island , New York, NY, USA.,New York Center for Biomedical Engineering, City University of New York, City College , New York, NY, USA.,Nanoscience Initiatives, Advanced Science Research Center, City University of New York, City College , New York, NY, USA
| |
Collapse
|
11
|
Ma S, Goh EL, Tay T, Wiles CC, Boughton O, Churchwell JH, Wu Y, Karunaratne A, Bhattacharya R, Terrill N, Cobb JP, Hansen U, Abel RL. Nanoscale mechanisms in age-related hip-fractures. Sci Rep 2020; 10:14208. [PMID: 32848149 PMCID: PMC7450077 DOI: 10.1038/s41598-020-69783-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/13/2020] [Indexed: 01/12/2023] Open
Abstract
Nanoscale mineralized collagen fibrils may be important determinants of whole-bone mechanical properties and contribute to the risk of age-related fractures. In a cross-sectional study nano- and tissue-level mechanics were compared across trabecular sections from the proximal femora of three groups (n = 10 each): ageing non-fractured donors (Controls); untreated fracture patients (Fx-Untreated); bisphosphonate-treated fracture patients (Fx-BisTreated). Collagen fibril, mineral and tissue mechanics were measured using synchrotron X-Ray diffraction of bone sections under load. Mechanical data were compared across groups, and tissue-level data were regressed against nano. Compared to controls fracture patients exhibited significantly lower critical tissue strain, max strain and normalized strength, with lower peak fibril and mineral strain. Bisphosphonate-treated exhibited the lowest properties. In all three groups, peak mineral strain coincided with maximum tissue strength (i.e. ultimate stress), whilst peak fibril strain occurred afterwards (i.e. higher tissue strain). Tissue strain and strength were positively and strongly correlated with peak fibril and mineral strains. Age-related fractures were associated with lower peak fibril and mineral strain irrespective of treatment. Indicating earlier mineral disengagement and the subsequent onset of fibril sliding is one of the key mechanisms leading to fracture. Treatments for fragility should target collagen-mineral interactions to restore nano-scale strain to that of healthy bone.
Collapse
Affiliation(s)
- Shaocheng Ma
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, UK.,MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - En Lin Goh
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - Tabitha Tay
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - Crispin C Wiles
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK.,Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Oliver Boughton
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - John H Churchwell
- Department of Medical Physics and Biomedical Engineering, University College London, London, WCIE 6BT, UK
| | - Yong Wu
- Centre for Medicine, University of Leicester Medical School, Leicester, LE1 7HA, UK
| | - Angelo Karunaratne
- Department of Mechanical Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa, 10400, Sri Lanka
| | - Rajarshi Bhattacharya
- St. Mary's Hospital, North West London Major Trauma Centre, Imperial College, London, W2 1NY, UK
| | - Nick Terrill
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Justin P Cobb
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK
| | - Ulrich Hansen
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Richard L Abel
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR, UK.
| |
Collapse
|
12
|
Mariotti CE, Ramos‐Rivera L, Conti B, Boccaccini AR. Zein‐Based Electrospun Fibers Containing Bioactive Glass with Antibacterial Capabilities. Macromol Biosci 2020; 20:e2000059. [DOI: 10.1002/mabi.202000059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/26/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Camilla E. Mariotti
- Department of Drug SciencesPharmaceutical and Technology Law Laboratory (PTL)University of Pavia Viale Taramelli 12 Pavia 27100 Italy
- Institute of BiomaterialsDepartment of Materials Science and EngineeringUniversity of Erlangen‐Nuremberg Cauerstrasse 6 Erlangen 91058 Germany
| | - Laura Ramos‐Rivera
- Institute of BiomaterialsDepartment of Materials Science and EngineeringUniversity of Erlangen‐Nuremberg Cauerstrasse 6 Erlangen 91058 Germany
| | - Bice Conti
- Department of Drug SciencesPharmaceutical and Technology Law Laboratory (PTL)University of Pavia Viale Taramelli 12 Pavia 27100 Italy
| | - Aldo R. Boccaccini
- Institute of BiomaterialsDepartment of Materials Science and EngineeringUniversity of Erlangen‐Nuremberg Cauerstrasse 6 Erlangen 91058 Germany
| |
Collapse
|
13
|
Rajapakse CS, Farid AR, Kargilis DC, Jones BC, Lee JS, Johncola AJ, Batzdorf AS, Shetye SS, Hast MW, Chang G. MRI-based assessment of proximal femur strength compared to mechanical testing. Bone 2020; 133:115227. [PMID: 31926345 PMCID: PMC7096175 DOI: 10.1016/j.bone.2020.115227] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
Half of the women who sustain a hip fracture would not qualify for osteoporosis treatment based on current DXA-estimated bone mineral density criteria. Therefore, a better approach is needed to determine if an individual is at risk of hip fracture from a fall. The objective of this study was to determine the association between radiation-free MRI-derived bone strength and strain simulations compared to results from direct mechanical testing of cadaveric femora. Imaging was conducted on a 3-Tesla MRI scanner using two sequences: one balanced steady-state free precession sequence with 300 μm isotropic voxel size and one spoiled gradient echo with anisotropic voxel size of 234 × 234 × 1500 μm. Femora were dissected free of soft-tissue and 4350-ohm strain-gauges were securely applied to surfaces at the femoral shaft, inferior neck, greater trochanter, and superior neck. Cadavers were mechanically tested with a hydraulic universal test frame to simulate loading in a sideways fall orientation. Sideways fall forces were simulated on MRI-based finite element meshes and bone stiffness, failure force, and force for plastic deformation were computed. Simulated bone strength metrics from the 300 μm isotropic sequence showed strong agreement with experimentally obtained values of bone strength, with stiffness (r = 0.88, p = 0.0002), plastic deformation point (r = 0.89, p < 0.0001), and failure force (r = 0.92, p < 0.0001). The anisotropic sequence showed similar trends for stiffness, plastic deformation point, and failure force (r = 0.68, 0.70, 0.84; p = 0.02, 0.01, 0.0006, respectively). Surface strain-gauge measurements showed moderate to strong agreement with simulated magnitude strain values at the greater trochanter, superior neck, and inferior neck (r = -0.97, -0.86, 0.80; p ≤0.0001, 0.003, 0.03, respectively). The findings from this study support the use of MRI-based FE analysis of the hip to reliably predict the mechanical competence of the human femur in clinical settings.
Collapse
Affiliation(s)
- Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania, United States of America; Department of Orthopaedic Surgery, University of Pennsylvania, United States of America.
| | - Alexander R Farid
- Department of Radiology, University of Pennsylvania, United States of America
| | - Daniel C Kargilis
- Department of Radiology, University of Pennsylvania, United States of America
| | - Brandon C Jones
- Department of Radiology, University of Pennsylvania, United States of America
| | - Jae S Lee
- Department of Radiology, University of Pennsylvania, United States of America
| | - Alyssa J Johncola
- Department of Radiology, University of Pennsylvania, United States of America
| | | | - Snehal S Shetye
- Department of Orthopaedic Surgery, University of Pennsylvania, United States of America
| | - Michael W Hast
- Department of Orthopaedic Surgery, University of Pennsylvania, United States of America
| | - Gregory Chang
- Department of Radiology, New York University, United States of America
| |
Collapse
|
14
|
Tomaszewska E, Muszyński S, Dobrowolski P, Kamiński D, Czech A, Grela E, Wiącek D, Tomczyk-Warunek A. Dried fermented post-extraction rapeseed meal given to sows as an alternative protein source for soybean meal during pregnancy improves bone development of their offspring. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Abstract
Abstract
Fumonisins are strongly toxic metabolites of Fusarium proliferatum and Fusarium verticillioides commonly present in corn-based feed. The aim of the study was to evaluate bone homeostasis in experimental fumonisins B1 and B2 intoxication of rats, a vertebrate animal model of toxicological studies, as still little is known about the possible disturbing effect of fumonisins on bone homeostasis. Adolescent (5-week-old) male Wistar rats were randomly assigned into a control group and a group FB intoxicated with fumonisins by daily intragastric administration of fumonisins at the dose of 90 mg/kg of body weight per animal in the FB group for 21 days. The fumonisin intoxication did not affect body and bone mass, although the mechanical and geometric properties were decreased in fumonisin-intoxicated rats. Bone volumetric and mineral density did not differ between groups, but bone mineral content and bone ash percentage was lower in the FB group. Detailed analysis showed that Ca, Cu, Fe, Mn, Sr, and Zn bone content significantly decreased in fumonisin intoxicated rats and the alterations in structure of bone mineral phase (reduction of the apatite-bone crystals size) were noted. While the negative structural alterations in growth plate and articular cartilages were also observed, fumonisin intoxication improved histomorphometrical parameters of trabecular bone. Concluding, the dose of fumonisins used in the present study caused hepatotoxic effect, which was sufficient to trigger the disturbance in mineral homeostasis resulting in altered bone metabolism and decreased mechanical endurance.
Collapse
|
16
|
Nagaraj N, Boudreau RM, Danielson ME, Greendale GA, Karlamangla AS, Beck TJ, Cauley JA. Longitudinal changes in hip geometry in relation to the final menstrual period: Study of Women's Health Across the Nation (SWAN). Bone 2019; 122:237-245. [PMID: 30840919 PMCID: PMC6518417 DOI: 10.1016/j.bone.2019.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND In SWAN, we showed that accelerated loss of bone mineral density (BMD) begins 1 year before the final menstrual period (FMP) to 2 years after the FMP and slows thereafter. However, the risk of fracture depends on both BMD and bone geometry. The hip structural analysis (HSA) measures important geometric properties of bone. Changes in HSA parameters across the menopausal transition have not been previously assessed. METHODS The current analysis uses data from SWAN, 5 years before to 5 years after FMP (N = 900, Age (mean(SD)) = 46.85(2.60), 44% White). HSA parameters at the femoral narrow neck were obtained from 2D DXA scans and normalized to baseline values. FMP was determined from annual interviews. Changes in HSA were assessed over 3 periods, 5 to 2 years before FMP (pre-transmenopausal), 2 years before to 1 years after FMP (transmenopausal), 1 to 5 years after FMP (postmenopausal). Mixed linear models with random slopes were used to estimate the rate of change in HSA parameters relative to FMP. RESULTS Loss of BMD, cross-sectional area (CSA), and section modulus (SM) and increases in outer diameter (OD) were greatest in the transmenopausal period (p for all<0.05). Changes continued in the postmenopausal period but were not statistically significant. The cumulative percentage changes over 10 years in BMD (-10.67%), CSA (-9.01), SM (-7.03) and OD (+1.95) were statistically significant. CONCLUSION Changes in hip geometry across the menopause transition parallel changes in BMD and provide insight into mechanisms that may increase risk of fragility fracture.
Collapse
Affiliation(s)
- Nayana Nagaraj
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert M Boudreau
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michelle E Danielson
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gail A Greendale
- Division of Geriatrics, Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Arun S Karlamangla
- Division of Geriatrics, Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Thomas J Beck
- Beck Radiological Innovations Inc., Cantonsville, MD, USA
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Muszyński S, Tomaszewska E, Dobrowolski P, Kwiecień M, Wiącek D, Świetlicka I, Skibińska M, Szymańska-Chargot M, Orzeł J, Świetlicki M, Arczewska M, Szymanek M, Zhyla M, Hułas-Stasiak M, Rudyk H, Tomczyk-Warunek A. Analysis of bone osteometry, mineralization, mechanical and histomorphometrical properties of tibiotarsus in broiler chickens demonstrates a influence of dietary chickpea seeds (Cicer arietinum L.) inclusion as a primary protein source. PLoS One 2018; 13:e0208921. [PMID: 30533027 PMCID: PMC6289425 DOI: 10.1371/journal.pone.0208921] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
This study was focused on analyzing the effects of dietary inclusion of raw chickpea seed as a replacement of soybean meal as a primary protein source on bone structure in broiler chickens. Broiler chickens (n = 160) received in their diet either soybean meal (SBM) or raw chickpea seeds (CPS) as a primary protein source throughout the whole rearing period (n = 80 in each group). On the 42th day randomly selected chickens from each group (n = 8) were slaughtered. Collected tibiotarsus were subjected to examination of the biomechanical characteristics of bone mid-diaphysis, microstructure of the growth plate and articular cartilages; the analysis of mineral content and crystallinity of mineral phase, and the measurements of thermal stability of collagen in hyaline cartilage were also carried out. The inclusion of chickpea seeds resulted in increase of bone osteometric parameters (weight, length and mid-diaphysis cross-sectional area) and mechanical endurance (yield load, ultimate load, stiffness, Young modulus). However, when loads were adjusted to bone shape (yield and ultimate stress) both groups did not differ. Mineral density determined by means of densitometric measurements did not differ between groups, however the detailed analysis revealed the differences in the macro- and microelements composition. The results of FT-IR and XRD analyses showed no effect of diet type on mineral phase crystallinity and hydroxyapatite nanocrystallites size. In trabecular bone, the increase of real bone volume (BV/TV) and number of trabeculae was observed in the CPS group. Total thickness of articular cartilage was the same in both groups, save the transitional zone, which was thicker in the SBM group. The total thickness of the growth plate cartilage was significantly increased in the CPS group. The area of the most intense presence of proteoglycans was wider in the SBM group. The structural analysis of fibrous components of bone revealed the increase of fraction of thin, immature collagen content in articular cartilage, trabeculae and compact bone in the CPS group. The dietary inclusion of CPS affected the thermal stability of collagen, as decrease of net denaturation enthalpy was observed. This study showed a beneficial effect of CPS on the skeletal development, improving the overall bone development and the microarchitecture of cancellous bone. It suggests that CPS can be a promising replacement for SBM in broilers feeding in the aspect of animal welfare related to the development of the skeletal system.
Collapse
Affiliation(s)
- Siemowit Muszyński
- Department of Physics, Faculty of Production Engineering, University of Life Sciences, Lublin, Poland
- * E-mail: (SM); (ET)
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
- * E-mail: (SM); (ET)
| | - Piotr Dobrowolski
- Department of Comparative Anatomy and Anthropology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromathology, Faculty of Biology, Animal Science and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| | - Dariusz Wiącek
- Bohdan Dobrzański Institute of Agrophysics of the Polish Academy of Sciences, Lublin, Poland
| | - Izabela Świetlicka
- Department of Physics, Faculty of Production Engineering, University of Life Sciences, Lublin, Poland
| | - Małgorzata Skibińska
- Department of Crystallography, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Jolanta Orzeł
- Department of Radiochemistry and Colloid Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Michał Świetlicki
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
| | - Marta Arczewska
- Department of Physics, Faculty of Production Engineering, University of Life Sciences, Lublin, Poland
| | - Mariusz Szymanek
- Department of Agricultural, Horticultural and Forest Machinery, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Mykola Zhyla
- Laboratory of Clinical Biological Research, State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Lviv, Ukraine
| | - Monika Hułas-Stasiak
- Department of Comparative Anatomy and Anthropology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Halyna Rudyk
- Laboratory of Clinical Biological Research, State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Lviv, Ukraine
| | - Agnieszka Tomczyk-Warunek
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
18
|
Stifler CA, Wittig NK, Sassi M, Sun CY, Marcus MA, Birkedal H, Beniash E, Rosso KM, Gilbert PUPA. X-ray Linear Dichroism in Apatite. J Am Chem Soc 2018; 140:11698-11704. [DOI: 10.1021/jacs.8b05547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cayla A. Stifler
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Nina Kølln Wittig
- Department of Chemistry and iNANO, Aarhus University, Aarhus, 8000, Denmark
| | - Michel Sassi
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Chang-Yu Sun
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Matthew A. Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Henrik Birkedal
- Department of Chemistry and iNANO, Aarhus University, Aarhus, 8000, Denmark
| | - Elia Beniash
- Departments of Oral Biology and Bioengineering, Center for Craniofacial Regeneration, McGowan Institute for Regenerative Medicine, School of Dental Medicine, UPitt, Pittsburgh, Pennsylvania 15261, United States
| | - Kevin M. Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Pupa U. P. A. Gilbert
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
- Departments of Chemistry, Materials Science, and Geoscience, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
19
|
Imbert L, Gourion-Arsiquaud S, Villarreal-Ramirez E, Spevak L, Taleb H, van der Meulen MCH, Mendelsohn R, Boskey AL. Dynamic structure and composition of bone investigated by nanoscale infrared spectroscopy. PLoS One 2018; 13:e0202833. [PMID: 30180177 PMCID: PMC6122783 DOI: 10.1371/journal.pone.0202833] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
Bone is a highly organized tissue in which each structural level influences the macroscopic and microscopic mechanical behavior. In particular, the quantity, quality, and distribution of the different bone components, i.e. collagen matrix and hydroxyapatite crystals, are associated with bone strength or fragility. Common spectroscopic techniques used to assess bone composition have resolutions limited to the micrometer range. In this study, our aims were two-fold: i) to develop and validate the AFM-IR methodology for skeletal tissues and ii) to apply the methodology to sheep cancellous bone with the objective to obtain novel findings on the composition and structure of trabecular packets.To develop the methodology, we assessed spatial and temporal reproducibility using a known homogeneous material (polymethylmethacrylate, PMMA). We verified that the major peak positions were similar and not shifted when compared to traditional Fourier Transform Infrared imaging (FTIRI). When AFM-IR was applied to sheep cancellous bone, the mineral-to-matrix ratio increased and the acid phosphate substitution ratio decreased as a function of tissue maturity. The resolution of the technique enabled visualization of different stages of the bone maturation process, particularly newly-formed osteoid prior to mineralization. We also observed alternating patterns of IR parameters in line and imaging measurements, suggesting the apposition of layers of alternating structure and / or composition that were not visible with traditional spectroscopic methods. In conclusion, nanoscale IR spectroscopy demonstrates novel compositional and structural changes within trabecular packets in cancellous bone. Based on these results, AFM-IR is a valuable tool to investigate cancellous bone at the nanoscale and, more generally, to analyze small dynamic areas that are invisible to traditional spectroscopic methods.
Collapse
Affiliation(s)
- Laurianne Imbert
- Hospital for Special Surgery, Research Institute, New York, New York, United States of America
- * E-mail:
| | | | - Eduardo Villarreal-Ramirez
- Tissue Bioengineering Laboratory, DEPeI, Faculty of Dentistry, National Autonomous University of Mexico, Mexico Distrito Federal, Mexico
| | - Lyudmila Spevak
- Hospital for Special Surgery, Research Institute, New York, New York, United States of America
| | - Hayat Taleb
- Hospital for Special Surgery, Research Institute, New York, New York, United States of America
| | - Marjolein C. H. van der Meulen
- Hospital for Special Surgery, Research Institute, New York, New York, United States of America
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Richard Mendelsohn
- Department of Chemistry, Newark College of Arts and Science, Rutgers University, New Jersey, United States of America
| | - Adele L. Boskey
- Hospital for Special Surgery, Research Institute, New York, New York, United States of America
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, United States of America
| |
Collapse
|
20
|
Jovanovic M, Schmidt FN, Guterman-Ram G, Khayyeri H, Hiram-Bab S, Orenbuch A, Katchkovsky S, Aflalo A, Isaksson H, Busse B, Jähn K, Levaot N. Perturbed bone composition and integrity with disorganized osteoblast function in zinc receptor/Gpr39-deficient mice. FASEB J 2018; 32:2507-2518. [PMID: 29295862 DOI: 10.1096/fj.201700661rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Changes in bone matrix composition are frequently found with bone diseases and may be associated with increased fracture risk. Bone is rich in the trace element zinc. Zinc was established to play a significant role in the growth, development, and maintenance of healthy bones; however, the mechanisms underlying zinc effects on the integrity of the skeleton are poorly understood. Here, we show that the zinc receptor (ZnR)/Gpr39 is required for normal bone matrix deposition by osteoblasts. Initial analysis showed that Gpr39-deficient ( Gpr39-/-) mice had weaker bones as a result of altered bone composition. Fourier transform infrared spectroscopy analysis showed high mineral-to-matrix ratios in the bones of Gpr39-/- mice. Histologic analysis showed abnormally high numbers of active osteoblasts but normal osteoclast numbers on the surfaces of bones from Gpr39-/- mice. Furthermore, Gpr39-/- osteoblasts had disorganized matrix deposition in vitro with cultures exhibiting abnormally low collagen and high mineral contents, findings that demonstrate a cell-intrinsic role for ZnR/Gpr39 in these cells. We show that both collagen synthesis and deposition by Gpr39-/- osteoblasts are perturbed. Finally, the expression of the zinc transporter Zip13 and a disintegrin and metalloproteinase with thrombospondin motifs family of zinc-dependent metalloproteases that regulate collagen processing was downregulated in Gpr39-/- osteoblasts. Altogether, our results suggest that zinc sensing by ZnR/Gpr39 affects the expression levels of zinc-dependent enzymes in osteoblasts and regulates collagen processing and deposition.-Jovanovic, M., Schmidt, F. N., Guterman-Ram, G., Khayyeri, H., Hiram-Bab, S., Orenbuch, A., Katchkovsky, S., Aflalo, A., Isaksson, H., Busse, B., Jähn, K., Levaot, N. Perturbed bone composition and integrity with disorganized osteoblast function in zinc receptor/Gpr39-deficient mice.
Collapse
Affiliation(s)
- Milena Jovanovic
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gali Guterman-Ram
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hanifeh Khayyeri
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; and
| | - Ayelet Orenbuch
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Svetlana Katchkovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anastasia Aflalo
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hanna Isaksson
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Jähn
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Noam Levaot
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
21
|
Ortinau LC, Linden MA, Dirkes R, Rector RS, Hinton PS. Obesity and type 2 diabetes, not a diet high in fat, sucrose, and cholesterol, negatively impacts bone outcomes in the hyperphagic Otsuka Long Evans Tokushima Fatty rat. Bone 2017; 105:200-211. [PMID: 28893629 DOI: 10.1016/j.bone.2017.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/14/2017] [Accepted: 09/08/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Obesity and type 2 diabetes (T2D) increase fracture risk; however, the association between obesity/T2D may be confounded by consumption of a diet high in fat, sucrose, and cholesterol (HFSC). OBJECTIVE The study objective was to determine the main and interactive effects of obesity/T2D and a HFSC diet on bone outcomes using hyperphagic Otuska Long Evans Tokushima Fatty (OLETF) rats and normophagic Long Evans Tokushima Otsuka (LETO) controls. METHODS At 8weeks of age, male OLETF and LETO rats were randomized to either a control (CON, 10 en% from fat as soybean oil) or HFSC (45 en% from fat as soybean oil/lard, 17 en% sucrose, and 1wt%) diet, resulting in four treatment groups. At 32weeks, total body bone mineral content (BMC) and density (BMD) and body composition were measured by dual-energy X-ray absorptiometry, followed by euthanasia and collection of blood and tibiae. Bone turnover markers and sclerostin were measured using ELISA. Trabecular microarchitecture of the proximal tibia and geometry of the tibia mid-diaphysis were measured using microcomputed tomography; whole-bone and tissue-level biomechanical properties were evaluated using torsional loading of the tibia. Two-factor ANOVA was used to determine main and interactive effects of diet (CON vs. HFSC) and obesity/T2D (OLETF vs. LETO) on bone outcomes. RESULTS Hyperphagic OLEFT rats had greater final body mass, body fat, and fasting glucose than normophagic LETO, with no effect of diet. Total body BMC and serum markers of bone formation were decreased, and bone resorption and sclerostin were increased in obese/T2D OLETF rats. Trabecular bone volume and microarchitecture were adversely affected by obesity/T2D, but not diet. Whole-bone and tissue-level biomechanical properties of the tibia were not affected by obesity/T2D; the HFSC diet improved biomechanical properties only in LETO rats. CONCLUSIONS Obesity/T2D, regardless of diet, negatively impacted the balance between bone formation and resorption and trabecular bone volume and microarchitecture in OLETF rats.
Collapse
Affiliation(s)
- Laura C Ortinau
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Melissa A Linden
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Research Service-Harry S Truman Memorial Veterans Medical Center, Columbia, MO, United States
| | - Rebecca Dirkes
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Department of Medicine, Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States; Research Service-Harry S Truman Memorial Veterans Medical Center, Columbia, MO, United States
| | - Pamela S Hinton
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
22
|
Nanoscale modifications in the early heating stages of bone are heterogeneous at the microstructural scale. PLoS One 2017; 12:e0176179. [PMID: 28423023 PMCID: PMC5397064 DOI: 10.1371/journal.pone.0176179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 04/06/2017] [Indexed: 11/19/2022] Open
Abstract
Nanoscale studies of bone provide key indicators to evidence subtle structural changes that may occur in the biomedical, forensic and archaeological contexts. One specific problem encountered in all those disciplines, for which the identification of nanostructural cues could prove useful, is to properly monitor the effect of heating on bone tissue. In particular, the mechanisms at work at the onset of heating are still relatively unclear. Using a multiscale approach combining Raman microspectroscopy, transmission electron microscopy (TEM), synchrotron quantitative scanning small-angle X-ray scattering imaging (qsSAXSI) and polarized light (PL) microscopy, we investigate the ultrastructure of cortical bovine bone heated at temperatures < 300°C, from the molecular to the macroscopic scale. We show that, despite limited changes in crystal structure, the mineral nanoparticles increase in thickness and become strongly disorganized upon heating. Furthermore, while the nanostructure in distinct anatomical quadrants appears to be statistically different, our results demonstrate this stems from the tissue histology, i.e. from the high degree of heterogeneity of the microstructure induced by the complex cellular processes involved in bone tissue formation. From this study, we conclude that the analysis of bone samples based on the structure and organization of the mineral nanocrystals requires performing measurements at the histological level, which is an advantageous feature of qsSAXSI. This is a critical aspect that extends to a much broader range of questions relating to nanoscale investigations of bone, which could also be extended to other classes of nanostructured heterogeneous materials.
Collapse
|
23
|
Role of cortical bone in hip fracture. BONEKEY REPORTS 2017; 6:867. [PMID: 28277562 DOI: 10.1038/bonekey.2016.82] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/03/2016] [Indexed: 12/23/2022]
Abstract
In this review, I consider the varied mechanisms in cortical bone that help preserve its integrity and how they deteriorate with aging. Aging affects cortical bone in two ways: extrinsically through its effects on the individual that modify its mechanical loading experience and 'milieu interieur'; and intrinsically through the prolonged cycle of remodelling and renewal extending to an estimated 20 years in the proximal femur. Healthy femoral cortex incorporates multiple mechanisms that help prevent fracture. These have been described at multiple length scales from the individual bone mineral crystal to the scale of the femur itself and appear to operate hierarchically. Each cortical bone fracture begins as a sub-microscopic crack that enlarges under mechanical load, for example, that imposed by a fall. In these conditions, a crack will enlarge explosively unless the cortical bone is intrinsically tough (the opposite of brittle). Toughness leads to microscopic crack deflection and bridging and may be increased by adequate regulation of both mineral crystal size and the heterogeneity of mineral and matrix phases. The role of osteocytes in optimising toughness is beginning to be worked out; but many osteocytes die in situ without triggering bone renewal over a 20-year cycle, with potential for increasing brittleness. Furthermore, the superolateral cortex of the proximal femur thins progressively during life, so increasing the risk of buckling during a fall. Besides preserving or increasing hip BMD, pharmaceutical treatments have class-specific effects on the toughness of cortical bone, although dietary and exercise-based interventions show early promise.
Collapse
|
24
|
Chappard C, André G, Daudon M, Bazin D. Analysis of hydroxyapatite crystallites in subchondral bone by Fourier transform infrared spectroscopy and powder neutron diffraction methods. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Heilmeier U, Cheng K, Pasco C, Parrish R, Nirody J, Patsch JM, Zhang CA, Joseph GB, Burghardt AJ, Schwartz AV, Link TM, Kazakia G. Cortical bone laminar analysis reveals increased midcortical and periosteal porosity in type 2 diabetic postmenopausal women with history of fragility fractures compared to fracture-free diabetics. Osteoporos Int 2016; 27:2791-2802. [PMID: 27154435 PMCID: PMC6687459 DOI: 10.1007/s00198-016-3614-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/20/2016] [Indexed: 02/08/2023]
Abstract
UNLABELLED We investigated the characteristics and spatial distribution of cortical bone pores in postmenopausal women with type 2 diabetes (T2D). High porosity in the midcortical and periosteal layers in T2D subjects with fragility fractures suggests that these cortical zones might be particularly susceptible to T2D-induced toxicity and may reflect cortical microangiopathy. INTRODUCTION Elevated cortical porosity is regarded as one of the main contributors to the high skeletal fragility in T2D. However, to date, it remains unclear if diabetic cortical porosity results from vascular cortical changes or from an expansion in bone marrow space. Here, we used a novel cortical laminar analysis technique to investigate the characteristics and spatial radial distribution of cortical pores in a T2D group with prior history of fragility fractures (DMFx, assigned high-risk group) and a fracture-free T2D group (DM, assigned low-risk group) and to compare their results to non-diabetic controls with (Fx) and without fragility fractures (Co). METHODS Eighty postmenopausal women (n = 20/group) underwent high-resolution peripheral quantitative computed tomography (HR-pQCT) of the distal tibia and radius. Cortical bone was divided into three layers of equal width including an endosteal, midcortical, and periosteal layer. Within each layer, total pore area (TPA), total pore number (TPN), and average pore area (APA) were calculated. Statistical analysis employed Mann-Whitney tests and ANOVA with post hoc tests. RESULTS Compared to the DM group, DMFx subjects exhibited +90 to +365 % elevated global porosity (p = 0.001). Cortical laminar analysis revealed that this increased porosity was for both skeletal sites confined to the midcortical layer, followed by the periosteal layer (midcortical +1327 % TPA, p ≤ 0.001, periosteal +634 % TPA, p = 0.002), and was associated in both layers and skeletal sites with high TPN (+430 % TPN, p < 0.001) and high APA (+71.5 % APA, p < 0.001). CONCLUSION High porosity in the midcortical and periosteal layers in the high-risk T2D group suggests that these cortical zones might be particularly susceptible to T2D-induced toxicity and may reflect cortical microangiopathy.
Collapse
Affiliation(s)
- U Heilmeier
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA.
| | - K Cheng
- Department of Bioengineering, University of California Berkeley, 306 Stanley Hall, Berkeley, CA, 94720, USA
| | - C Pasco
- Department of Bioengineering, University of California Berkeley, 306 Stanley Hall, Berkeley, CA, 94720, USA
| | - R Parrish
- Department of Bioengineering, University of California Berkeley, 306 Stanley Hall, Berkeley, CA, 94720, USA
| | - J Nirody
- Biophysics Graduate Group, University of California Berkeley, 574 Stanley Hall, MC 3220, Berkeley, CA, 94720, USA
| | - J M Patsch
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - C A Zhang
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
| | - G B Joseph
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA
| | - A J Burghardt
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA
| | - A V Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
| | - T M Link
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA
| | - G Kazakia
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA
| |
Collapse
|
26
|
Seref-Ferlengez Z, Suadicani SO, Thi MM. A new perspective on mechanisms governing skeletal complications in type 1 diabetes. Ann N Y Acad Sci 2016; 1383:67-79. [PMID: 27571221 DOI: 10.1111/nyas.13202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/11/2016] [Accepted: 07/18/2016] [Indexed: 12/29/2022]
Abstract
This review focuses on bone mechanobiology in type 1 diabetes (T1D), an area of research on diabetes-associated skeletal complications that is still in its infancy. We first provide a brief overview of the deleterious effects of diabetes on the skeleton and of the knowledge gained from studies with rodent models of T1D. Second, we discuss two specific hallmarks of T1D, low insulin and high glucose, and address the extent to which they affect skeletal health. Third, we highlight the mechanosensitive nature of bone tissue and the importance of mechanical loading for bone health. We also summarize recent advances in bone mechanobiology that implicate osteocytes as the mechanosensors and major regulatory cells in the bone. Finally, we discuss recent evidence indicating that the diabetic bone is "deaf" to mechanical loading and that osteocytes are central players in mechanisms that lead to bone loss in T1D.
Collapse
Affiliation(s)
- Zeynep Seref-Ferlengez
- Department of Orthopaedic Surgery.,Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE)
| | - Sylvia O Suadicani
- Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE).,Department of Neuroscience.,Department of Urology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Mia M Thi
- Department of Orthopaedic Surgery.,Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE).,Department of Neuroscience
| |
Collapse
|
27
|
Impacts of Ultra-early Hyperbaric Oxygen Therapy on Bone Mass of Rats With Complete Spinal Cord Transection. Spine (Phila Pa 1976) 2016; 41:E837-E843. [PMID: 26780615 DOI: 10.1097/brs.0000000000001458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Seventy-five SD rats were randomly assigned to four groups: sham-operated group (Sham, n = 15), complete spinal cord transection (CSCT, n = 20) group, hyperbaric oxygenation group 1 (HBO1, n = 20), and hyperbaric oxygenation group 2 (HBO2, n = 20). OBJECTIVE The aim of this study was to analyze the impacts of ultra-early hyperbaric oxygen therapy on bone mass of rats with CSCT. SUMMARY OF BACKGROUND DATA Treatment of patients with complete SCI is still an unresolved medical issue and needs to be further investigated. Studies on changes in bone mass as well as osteoporosis prevention after SCI have important clinical significance. METHODS Rats in the sham group only underwent T10 laminectomy, without damaging the spinal cord. Rats in CSCT, HBO1, and HBO2 groups underwent T10 laminectomy and spinal cord transection at T10 level. Rats in HBO1 and HBO2 groups received three courses of hyperbaric oxygen therapy with 10 days per course starting at 3 and 12 hours after spinal cord injury, respectively. The femoral biomechanical characteristics, the bone calcium, and the bone hydroxyproline (B-HYP) contents were determined. Morphology of the femur bone trabecula and the bone collagen were observed by HE staining and by masson triad color staining, respectively. RESULTS After 6 weeks of treatment, rats in the CSCT group showed significant decreases in femur structural and material mechanics parameters, calcium and B-HYP contents, (P < 0.01), as well as sparse, fractured, malaligned trabecular bone and collagen compared with rats in the sham group. After treatments, compared with rats in the CSCT and HBO2 groups, rats in HBO1 group showed enhancement in femur structural and material mechanics parameters, calcium and B-HYP contents, (P < 0.05), as well as trabecular bone and collagen with better continuity and neater arrangement. CONCLUSION Ultra-early HBO therapy can significantly improve bone mass in CSCT rats. LEVEL OF EVIDENCE N/A.
Collapse
|
28
|
Dorozhkin SV. Calcium orthophosphates (CaPO 4): occurrence and properties. Prog Biomater 2015; 5:9-70. [PMID: 27471662 PMCID: PMC4943586 DOI: 10.1007/s40204-015-0045-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/05/2015] [Indexed: 01/02/2023] Open
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates (CaPO4). This type of materials is of the special significance for the human beings because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with CaPO4, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenorthophosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of CaPO4. Similarly, dental caries and osteoporosis might be considered as in vivo dissolution of CaPO4. In addition, natural CaPO4 are the major source of phosphorus, which is used to produce agricultural fertilizers, detergents and various phosphorus-containing chemicals. Thus, there is a great significance of CaPO4 for the humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
29
|
Garcia JAD, Souza ALT, Cruz LHC, Marques PP, Camilli JA, Nakagaki WR, Esteves A, Rossi-Junior WC, Fernandes GJM, Guerra FD, Soares EA. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs. BRAZ J BIOL 2015; 75:983-8. [PMID: 26675916 DOI: 10.1590/1519-6984.04814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/11/2014] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179 ± 2.5 g. The rats were divided into three groups (n=06): CT (control), AC (chronic alcoholic), DT (detoxification). After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT) allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC) presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC - UNIFENAS.
Collapse
Affiliation(s)
- J A D Garcia
- Faculdade de Medicina Veterinária, Universidade José do Rosário Vellano, Alfenas, MG, Brazil
| | - A L T Souza
- Escola de Enfermagem, Universidade Federal de Alfenas, Alfenas, Brazil
| | - L H C Cruz
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - P P Marques
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - J A Camilli
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - W R Nakagaki
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - A Esteves
- Instituto de Biociências, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - W C Rossi-Junior
- Instituto de Biociências, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - G J M Fernandes
- Instituto de Biociências, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - F D Guerra
- Instituto de Biociências, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - E A Soares
- Instituto de Biociências, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| |
Collapse
|
30
|
Soares EA, Novaes RD, Nakagaki WR, Fernandes GJM, Garcia JAD, Camilli JA. Metabolic and structural bone disturbances induced by hyperlipidic diet in mice treated with simvastatin. Int J Exp Pathol 2015; 96:261-8. [PMID: 26175225 PMCID: PMC4561563 DOI: 10.1111/iep.12134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 05/15/2015] [Indexed: 12/23/2022] Open
Abstract
Simvastatin can modulate lipid and bone metabolism. However, information related to the interaction between diet and simvastatin on bone structure and biomechanics is scarce. Thus, this study evaluated the effects of simvastatin on femoral biomechanics and cortical/trabecular bone structure in wild-type mice nourished with a hyperlipidic diet. Three-month-old male wild-type mice (C57BL6 strain) were divided into four groups: (1) group W, nourished with a standard diet; (2) group WH, fed a hyperlipidic diet; (3) group WS, nourished with a standard diet plus oral simvastatin (20 mg/kg/day); and (4) group WHS, fed a hyperlipidic diet plus oral simvastatin (20 mg/kg/day). All animals received only their specific diet and water for 60 days. Blood samples were collected for the analysis of calcium, triglycerides, total cholesterol (TC) and fraction serum levels. Diet manipulation was able to induce a dyslipidaemic status in mice, characterized by triglyceride and TC rise in WH animals. Simvastatin prevented hypercholesterolaemia and reduced TC and LDL serum levels, but did not prevent hypertriglyceridaemia and HDL serum levels in the WHS group. In the WH mice the hyperlipidaemia was associated with reduction in trabecular bone thickness, femur structural and material property alterations. Simvastatin prevented these morphological alterations and minimized femur biomechanical changes in WHS mice. Taken together, the results indicated that the hyperlipidic diet intake acts as a risk factor for bone integrity, generating bones with reduced resistance and more susceptible to fractures, an effect attenuated by simvastatin that is potentially related to the modulatory action of this drug on lipid and bone metabolism.
Collapse
Affiliation(s)
| | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas (UNIFAL), Alfenas, Brazil
| | - Wilson Romero Nakagaki
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | - José Antônio Dias Garcia
- Nucleus of Experimental Research in Pharmacology and Experimental Surgery, University José Rosário Vellano (UNIFENAS), Alfenas, Brazil
| | - José Angelo Camilli
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
31
|
Pritchard ZJ, Cary RL, Yang C, Novack DV, Voor MJ, Sankar U. Inhibition of CaMKK2 reverses age-associated decline in bone mass. Bone 2015; 75:120-7. [PMID: 25724145 PMCID: PMC4737584 DOI: 10.1016/j.bone.2015.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 02/07/2023]
Abstract
Decline in bone formation is a major contributing factor to the loss of bone mass associated with aging. We previously showed that the genetic ablation of the tissue-restricted and multifunctional Ca(2+)/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) stimulates trabecular bone mass accrual, mainly by promoting anabolic pathways and inhibiting catabolic pathways of bone remodeling. In this study, we investigated whether inhibition of this kinase using its selective cell-permeable inhibitor STO-609 will stimulate bone formation in 32 week old male WT mice and reverse age-associated of decline in bone volume and strength. Tri-weekly intraperitoneal injections of saline or STO-609 (10 μM) were performed for six weeks followed by metabolic labeling with calcein and alizarin red. New bone formation was assessed by dynamic histomorphometry whereas micro-computed tomography was employed to measure trabecular bone volume, microarchitecture and femoral mid-shaft geometry. Cortical and trabecular bone biomechanical properties were assessed using three-point bending and punch compression methods respectively. Our results reveal that as they progress from 12 to 32 weeks of age, WT mice sustain a significant decline in trabecular bone volume, microarchitecture and strength as well as cortical bone strength. However, treatment of the 32 week old WT mice with STO-609 stimulated apposition of new bone and completely reversed the age-associated decrease in bone volume, quality, as well as trabecular and cortical bone strength. We also observed that regardless of age, male Camkk2(-/-) mice possessed significantly elevated trabecular bone volume, microarchitecture and compressive strength as well as cortical bone strength compared to age-matched WT mice, implying that the chronic loss of this kinase attenuates age-associated decline in bone mass. Further, whereas STO-609 treatment and/or the absence of CaMKK2 significantly enhanced the femoral mid-shaft geometry, the mid-shaft cortical wall thickness and material bending stress remained similar among the cohorts, implying that regardless of treatment, the material properties of the bone remain similar. Thus, our cumulative results provide evidence for the pharmacological inhibition of CaMKK2 as a bone anabolic strategy in combating age-associated osteoporosis.
Collapse
Affiliation(s)
- Zachary J Pritchard
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Rachel L Cary
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Chang Yang
- Department of Medicine and Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Deborah V Novack
- Department of Medicine and Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J Voor
- Department of Orthopaedic Surgery, University of Louisville School of Medicine, Louisville, KY, USA; Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, USA.
| | - Uma Sankar
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
32
|
Sotiropoulou P, Fountos G, Martini N, Koukou V, Michail C, Kandarakis I, Nikiforidis G. Bone calcium/phosphorus ratio determination using dual energy X-ray method. Phys Med 2015; 31:307-13. [PMID: 25726476 DOI: 10.1016/j.ejmp.2015.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 11/16/2022] Open
Abstract
Non-invasive dual energy methods have been used extensively on osteoporosis diagnosis estimating parameters, such as, Bone Mineral Density (BMD) and Bone Mineral Content (BMC). In this study, an X-ray dual energy method (XRDE) was developed for the estimation of the bone Calcium-to-Phosphorous (Ca/P) mass ratio, as a bone quality index. The optimized irradiation parameters were assessed by performing analytical model simulations. X-ray tube output, filter material and thickness were used as input parameters. A single exposure technique, combined with K-edge filtering, was applied. The optimal X-ray spectra were selected according to the resulted precision and accuracy values. Experimental evaluation was performed on an XRDE system incorporating a Cadmium Telluride (CdTe) photon counting detector and three bone phantoms with different nominal mass Ca/P ratios. Additionally, the phantoms' mass Ca/P ratios were validated with energy-dispersive X-ray spectroscopy (EDX). Simulation results showed that the optimum filter atomic number (Z) ranges between 57 and 70. The optimum spectrum was obtained at 100 kVp, filtered with Cerium (Ce), with a surface density of 0.88 g/cm(2). All Ca/P ratio measurements were found to be accurate to within 1.6% of the nominal values, while the precision ranged between 0.91 and 1.37%. The accuracy and precision values of the proposed non-invasive method contributes to the assessment of the bone quality state through the mass Ca/P ratio determination.
Collapse
Affiliation(s)
- P Sotiropoulou
- Department of Medical Physics, Medical School, University of Patras, Rion, 265 00 Patras, Greece
| | - G Fountos
- Radiation Physics, Materials Technology and Biomedical Imaging Laboratory, Department of Biomedical Engineering, Technological Educational Institute of Athens, Egaleo, 122 10 Athens, Greece.
| | - N Martini
- Department of Medical Physics, Medical School, University of Patras, Rion, 265 00 Patras, Greece
| | - V Koukou
- Department of Medical Physics, Medical School, University of Patras, Rion, 265 00 Patras, Greece
| | - C Michail
- Radiation Physics, Materials Technology and Biomedical Imaging Laboratory, Department of Biomedical Engineering, Technological Educational Institute of Athens, Egaleo, 122 10 Athens, Greece
| | - I Kandarakis
- Radiation Physics, Materials Technology and Biomedical Imaging Laboratory, Department of Biomedical Engineering, Technological Educational Institute of Athens, Egaleo, 122 10 Athens, Greece
| | - G Nikiforidis
- Department of Medical Physics, Medical School, University of Patras, Rion, 265 00 Patras, Greece
| |
Collapse
|
33
|
Geissler JR, Bajaj D, Fritton JC. American Society of Biomechanics Journal of Biomechanics Award 2013: cortical bone tissue mechanical quality and biological mechanisms possibly underlying atypical fractures. J Biomech 2015; 48:883-94. [PMID: 25683519 PMCID: PMC4380555 DOI: 10.1016/j.jbiomech.2015.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/20/2015] [Indexed: 01/15/2023]
Abstract
The biomechanics literature contains many well-understood mechanisms behind typical fracture types that have important roles in treatment planning. The recent association of “atypical” fractures with long-term use of drugs designed to prevent osteoporosis has renewed interest in the effects of agents on bone tissue-level quality. While this class of fracture was recognized prior to the introduction of the anti-resorptive bisphosphonate drugs and recently likened to stress fractures, the mechanism(s) that lead to atypical fractures have not been definitively identified. Thus, a causal relationship between these drugs and atypical fracture has not been established. Physicians, bioengineers and others interested in the biomechanics of bone are working to improve fracture-prevention diagnostics, and the design of treatments to avoid this serious side-effect in the future. This review examines the mechanisms behind the bone tissue damage that may produce the atypical fracture pattern observed increasingly with long-term bisphosphonate use. Our recent findings and those of others reviewed support that the mechanisms behind normal, healthy excavation and tunnel filling by bone remodeling units within cortical tissue strengthen mechanical integrity. The ability of cortical bone to resist the damage induced during cyclic loading may be altered by the reduced remodeling and increased tissue age resulting from long-term bisphosphonate treatment. Development of assessments for such potential fractures would restore confidence in pharmaceutical treatments that have the potential to spare millions in our aging population from the morbidity and death that often follow bone fracture.
Collapse
Affiliation(s)
- Joseph R Geissler
- Department of Orthopaedics, New Jersey Medical School, Rutgers University, 205 S. Orange Avenue, Newark, NJ 07103, USA; Joint Program in Biomedical Engineering, Rutgers Biomedical and Health Sciences, and the New Jersey Institute of Technology, Newark, NJ, USA.
| | - Devendra Bajaj
- Department of Orthopaedics, New Jersey Medical School, Rutgers University, 205 S. Orange Avenue, Newark, NJ 07103, USA.
| | - J Christopher Fritton
- Department of Orthopaedics, New Jersey Medical School, Rutgers University, 205 S. Orange Avenue, Newark, NJ 07103, USA; Joint Program in Biomedical Engineering, Rutgers Biomedical and Health Sciences, and the New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|
34
|
Camponeschi F, Atrei A, Rocchigiani G, Mencuccini L, Uva M, Barbucci R. New Formulations of Polysaccharide-Based Hydrogels for Drug Release and Tissue Engineering. Gels 2015; 1:3-23. [PMID: 30674162 PMCID: PMC6318688 DOI: 10.3390/gels1010003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/10/2014] [Accepted: 12/24/2014] [Indexed: 11/16/2022] Open
Abstract
Polysaccharide-based hydrogels are very promising materials for a wide range of medical applications, ranging from tissue engineering to controlled drug delivery for local therapy. The most interesting property of this class of materials is the ability to be injected without any alteration of their chemical, mechanical and biological properties, by taking advantage of their thixotropic behavior. It is possible to modulate the rheological and chemical-physical properties of polysaccharide hydrogels by varying the cross-linking agents and exploiting their thixotropic behavior. We present here an overview of our synthetic strategies and applications of innovative polysaccharide-based hydrogels: hyaluronan-based hydrogel and new derivatives of carboxymethylcellulose have been used as matrices in the field of tissue engineering; while guar gum-based hydrogel and hybrid magnetic hydrogels, have been used as promising systems for targeted controlled drug release. Moreover, a new class of materials, interpenetrating hydrogels (IPH), have been obtained by mixing various native thixotropic hydrogels.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Andrea Atrei
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
- Interuniversity Research Centre for Advanced Medical Systems (C.R.I.S.M.A.), Viale Giacomo Matteotti 15/16, 53034 Colle di Val d'Elsa, Italy.
| | - Giulia Rocchigiani
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Lorenzo Mencuccini
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Marianna Uva
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Rolando Barbucci
- Interuniversity Research Centre for Advanced Medical Systems (C.R.I.S.M.A.), Viale Giacomo Matteotti 15/16, 53034 Colle di Val d'Elsa, Italy.
| |
Collapse
|
35
|
Choi AH, Conway RC, Ben-Nissan B. Finite-element modeling and analysis in nanomedicine and dentistry. Nanomedicine (Lond) 2014; 9:1681-95. [DOI: 10.2217/nnm.14.75] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This article aims to provide a brief background to the current applications of finite-element analysis (FEA) in nanomedicine and dentistry. FEA was introduced in orthopedic biomechanics in the 1970s in order to assess the stresses and deformation in human bones during functional loadings and in the design and analysis of implants. Since then, it has been applied with great frequency in orthopedics and dentistry in order to analyze issues such as implant design, bone remodeling and fracture healing, the mechanical properties of biomedical coatings on implants and the interactions at the bone–implant interface. More recently, FEA has been used in nanomedicine to study the mechanics of a single cell and to gain fundamental insights into how the particulate nature of blood influences nanoparticle delivery.
Collapse
Affiliation(s)
- Andy H Choi
- School of Chemistry & Forensic Science, Faculty of Science, University of Technology, Sydney, Australia
| | - Richard C Conway
- School of Chemistry & Forensic Science, Faculty of Science, University of Technology, Sydney, Australia
- Department of Oral & Maxillofacial Surgery, Westmead Hospital, Sydney, NSW, Australia
| | - Besim Ben-Nissan
- School of Chemistry & Forensic Science, Faculty of Science, University of Technology, Sydney, Australia
| |
Collapse
|
36
|
Granke M, Coulmier A, Uppuganti S, Gaddy JA, Does MD, Nyman JS. Insights into reference point indentation involving human cortical bone: sensitivity to tissue anisotropy and mechanical behavior. J Mech Behav Biomed Mater 2014; 37:174-85. [PMID: 24929851 DOI: 10.1016/j.jmbbm.2014.05.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/13/2014] [Accepted: 05/17/2014] [Indexed: 01/20/2023]
Abstract
Reference point indentation (RPI) is a microindentation technique involving 20 cycles of loading in "force-control" that can directly assess a patient׳s bone tissue properties. Even though preliminary clinical studies indicate a capability for fracture discrimination, little is known about what mechanical behavior the various RPI properties characterize and how these properties relate to traditional mechanical properties of bone. To address this, the present study investigated the sensitivity of RPI properties to anatomical location and tissue organization as well as examined to what extent RPI measurements explain the intrinsic mechanical properties of human cortical bone. Multiple indents with a target force of 10N were done in 2 orthogonal directions (longitudinal and transverse) per quadrant (anterior, medial, posterior, and lateral) of the femoral mid-shaft acquired from 26 donors (25-101 years old). Additional RPI measurements were acquired for 3 orthogonal directions (medial only). Independent of age, most RPI properties did not vary among these locations, but they did exhibit transverse isotropy such that resistance to indentation is greater in the longitudinal (axial) direction than in the transverse direction (radial or circumferential). Next, beam specimens (~2mm×5mm×40mm) were extracted from the medial cortex of femoral mid-shafts, acquired from 34 donors (21-99 years old). After monotonically loading the specimens in three-point bending to failure, RPI properties were acquired from an adjacent region outside the span. Indent direction was orthogonal to the bending axis. A significant inverse relationship was found between resistance to indentation and the apparent-level mechanical properties. Indentation distance increase (IDI) and a linear combination of IDI and the loading slope, averaged over cycles 3 through 20, provided the best explanation of the variance in ultimate stress (r(2)=0.25, p=0.003) and toughness (r(2)=0.35, p=0.004), respectively. With a transverse isotropic behavior akin to tissue hardness and modulus as determined by micro- and nano-indentation and a significant association with toughness, RPI properties are likely influenced by both elastic and plastic behavior of bone tissue.
Collapse
Affiliation(s)
- Mathilde Granke
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University, Nashville, TN 37232, United States
| | - Aurélie Coulmier
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University, Nashville, TN 37232, United States; Polytech Marseille, Marseille 13288, France
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University, Nashville, TN 37232, United States
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States
| | - Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, United States; Department of Electrical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University, Nashville, TN 37232, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
37
|
Reeve J, Loveridge N. The fragile elderly hip: mechanisms associated with age-related loss of strength and toughness. Bone 2014; 61:138-48. [PMID: 24412288 PMCID: PMC3991856 DOI: 10.1016/j.bone.2013.12.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/24/2013] [Accepted: 12/31/2013] [Indexed: 01/23/2023]
Abstract
Every hip fracture begins with a microscopic crack, which enlarges explosively over microseconds. Most hip fractures in the elderly occur on falling from standing height, usually sideways or backwards. The typically moderate level of trauma very rarely causes fracture in younger people. Here, this paradox is traced to the decline of multiple protective mechanisms at many length scales from nanometres to that of the whole femur. With normal ageing, the femoral neck asymmetrically and progressively loses bone tissue precisely where the cortex is already thinnest and is also compressed in a sideways fall. At the microscopic scale of the basic remodelling unit (BMU) that renews bone tissue, increased numbers of actively remodelling BMUs associated with the reduced mechanical loading in a typically inactive old age augments the numbers of mechanical flaws in the structure potentially capable of initiating cracking. Menopause and over-deep osteoclastic resorption are associated with incomplete BMU refilling leading to excessive porosity, cortical thinning and disconnection of trabeculae. In the femoral cortex, replacement of damaged bone or bone containing dead osteocytes is inefficient, impeding the homeostatic mechanisms that match strength to habitual mechanical usage. In consequence the participation of healthy osteocytes in crack-impeding mechanisms is impaired. Observational studies demonstrate that protective crack deflection in the elderly is reduced. At the most microscopic levels attention now centres on the role of tissue ageing, which may alter the relationship between mineral and matrix that optimises the inhibition of crack progression and on the role of osteocyte ageing and death that impedes tissue maintenance and repair. This review examines recent developments in the understanding of why the elderly hip becomes fragile. This growing understanding is suggesting novel testable approaches for reducing risk of hip fracture that might translate into control of the growing worldwide impact of hip fractures on our ageing populations.
Collapse
Affiliation(s)
- Jonathan Reeve
- NIHR Musculoskeletal Biomedical Research Unit, Institute of Musculoskeletal Science, Nuffield Orthopaedic Centre, Oxford OX3 7HE, UK.
| | - Nigel Loveridge
- Orthopaedic Research Unit, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; MRC Human Nutrition Research, Cambridge, UK.
| |
Collapse
|
38
|
Boskey AL. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. BONEKEY REPORTS 2013; 2:447. [PMID: 24501681 DOI: 10.1038/bonekey.2013.181] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/27/2013] [Indexed: 02/06/2023]
Abstract
The composition of a bone can be described in terms of the mineral phase, hydroxyapatite, the organic phase, which consists of collagen type I, noncollagenous proteins, other components and water. The relative proportions of these various components vary with age, site, gender, disease and treatment. Any drug therapy could change the composition of a bone. This review, however, will only address those pharmaceuticals used to treat or prevent diseases of bone: fragility fractures in particular, and the way they can alter the composition. As bone is a heterogeneous tissue, its composition must be discussed in terms of the chemical makeup, properties of its chemical constituents and their distributions in the ever-changing bone matrix. Emphasis, in this review, is placed on changes in composition as a function of age and various diseases of bone, particularly osteoporosis. It is suggested that while some of the antiosteoporotic drugs can and do modify composition, their positive effects on bone strength may be balanced by negative ones.
Collapse
Affiliation(s)
- Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, affiliated with Weill Medical College of Cornell University , New York, NY, USA ; Department of Biophysics and Systems Biology, Weill Medical College of Cornell University , New York, NY, USA
| |
Collapse
|
39
|
Roncero-Ramos I, Delgado-Andrade C, Rufián-Henares JÁ, Carballo J, Navarro MP. Effects of model Maillard compounds on bone characteristics and functionality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:2816-2821. [PMID: 23420603 DOI: 10.1002/jsfa.6107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/10/2013] [Accepted: 02/18/2013] [Indexed: 06/01/2023]
Abstract
BACKGROUND Physical and biomechanical properties of bone can be affected by non-enzymatic crosslinks, which are implicated in bone pathologies such as osteoporosis. The purpose of this study was to analyse the effects of the consumption of model Maillard reaction product (MRP) from glucose-lysine heated for 90 min at 150 °C (GL90) on bone composition and features. Rats were fed either a control diet or a diet containing 30 g kg(-1) GL90 for 88 days. Food consumption and the animals' body weights were monitored. After sacrifice, the femur, pelvic bone and tibia were removed for analysis of their composition and physical and biomechanical properties. RESULTS The organic matrix of the femur and the density of the pelvic bone decreased after MRP intake, whereas pentosidine content increased greatly with respect to the control group (41.7 ± 9.9 vs 171.4 ± 3.3 mmol mol(-1) collagen). The rising level of C-telopeptide degradation products from type I collagen (β-CTX) suggested a possible situation of increased bone resorption and/or higher turnover. CONCLUSION In conjunction, the detrimental effect on the organic matrix, the situation of higher resorption and/or bone turnover indicated by the β-CTX values and the high pentosidine content in bone provoked negative consequences on certain mechanical properties such as the ability to withstand force and absorb energy without failure.
Collapse
Affiliation(s)
- Irene Roncero-Ramos
- Instituto de Nutrición Animal, Estación Experimental del Zaidín, CSIC, E-18100, Granada, Spain
| | | | | | | | | |
Collapse
|
40
|
Karampas IA, Orkoula MG, Kontoyannis CG. A quantitative bioapatite/collagen calibration method using Raman spectroscopy of bone. JOURNAL OF BIOPHOTONICS 2013; 6:573-86. [PMID: 22961694 DOI: 10.1002/jbio.201200053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 05/21/2023]
Abstract
Numerous calibration models were developed and tested for the quantitative analysis of collagen and bioapatite in bone using Raman spectroscopy. The ν1 phosphate vibration at 960 cm(-1) was used as indicator of the content of bioapatite while for collagen three markers were used: the C-H2 band at 2940 cm(-1) , the amide I band at 1667 cm(-1) and the vibrations of proline and hydroxyproline at 855 and 878 cm(-1) , respectively. Also a calibration model based on the PLS algorithm was developed, too. Validation of the derived calibration models indicated that the model that makes use of the height ratio of the peaks 960/(855+878) exhibits the best accuracy.
Collapse
Affiliation(s)
- I A Karampas
- Department of Pharmacy, University of Patras, 26500 Patras, Greece
| | | | | |
Collapse
|
41
|
Pasqui D, Torricelli P, De Cagna M, Fini M, Barbucci R. Carboxymethyl cellulose-hydroxyapatite hybrid hydrogel as a composite material for bone tissue engineering applications. J Biomed Mater Res A 2013; 102:1568-79. [PMID: 23720392 DOI: 10.1002/jbm.a.34810] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/07/2013] [Accepted: 05/16/2013] [Indexed: 11/11/2022]
Abstract
Natural bone is a complex inorganic-organic nanocomposite material, in which hydroxyapatite (HA) nanocrystals and collagen fibrils are well organized into hierarchical architecture over several length scales. In this work, we reported a new hybrid material (CMC-HA) containing HA drown in a carboxymethylcellulose (CMC)-based hydrogel. The strategy for inserting HA nanocrystals within the hydrogel matrix consists of making the freeze-dried hydrogel to swell in a solution containing HA microcrystals. The composite CMC-HA hydrogel has been characterized from a physicochemical and morphological point of view by means of FTIR spectroscopy, rheological measurements, and field emission scanning electron microscopy (FESEM). No release of HA was measured in water or NaCl solution. The distribution of HA crystal on the surface and inside the hydrogel was determined by time of flight secondary ion mass spectrometry (ToF-SIMS) and FESEM. The biological performance of CMC-HA hydrogel were tested by using osteoblast MG63 line and compared with a CMC-based hydrogel without HA. The evaluation of osteoblast markers and gene expression showed that the addition of HA to CMC hydrogel enhanced cell proliferation and metabolic activity and promoted the production of mineralized extracellular matrix.
Collapse
Affiliation(s)
- Daniela Pasqui
- C.R.I.S.M.A. University of Siena, 53034, Colle di Val d'Elsa, (SI), Italy; Prior at Department of Clinical and Molecular Science, Università Politecnica delle Marche, 60121, Ancona, Italy
| | | | | | | | | |
Collapse
|
42
|
Effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:457052. [PMID: 23762138 PMCID: PMC3666393 DOI: 10.1155/2013/457052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/29/2013] [Indexed: 12/17/2022]
Abstract
Formononetin is a naturally occurring isoflavone, which can be found in low concentrations in many dietary products, but the greatest sources of this substance are Astragalus membranaceus, Trifolium pratense, Glycyrrhiza glabra, and Pueraria lobata, which all belong to Fabaceae family. Due to its structural similarity to 17β-estradiol, it can mimic estradiol's effect and therefore is considered as a “phytoestrogen.” The aim of this study was to examine the effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. 12-week-old female rats were divided into 4 groups: sham-operated, ovariectomized, ovariectomized treated with estradiol (0.2 mg/kg) and ovariectomized treated with formononetin (10 mg/kg). Analyzed substances were administered orally for 4 weeks. Ovariectomy caused osteoporotic changes, which can be observed in bone biomechanical features (decrease of maximum load and fracture load and increase of displacements for maximum and fracture loads) and bone chemical composition (increase of water and organic fraction content, while a decrease of minerals takes place). Supplementation with formononetin resulted in slightly enhanced bone mechanical properties and bone chemistry improvement (significantly lower water content and insignificantly higher mineral fraction content).
To summarize, administration of formononetin to ovariectomized rats shows beneficial effect on bone biomechanical features and chemistry; thus, it can prevent osteoporosis development.
Collapse
|
43
|
Novel method to analyze post-yield mechanical properties at trabecular bone tissue level. J Mech Behav Biomed Mater 2013; 20:6-18. [DOI: 10.1016/j.jmbbm.2012.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/01/2012] [Accepted: 12/03/2012] [Indexed: 01/22/2023]
|
44
|
Carretta R, Lorenzetti S, Müller R. Towards patient-specific material modeling of trabecular bone post-yield behavior. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2013; 29:250-272. [PMID: 23386574 DOI: 10.1002/cnm.2516] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/21/2012] [Accepted: 09/04/2012] [Indexed: 06/01/2023]
Abstract
Bone diseases such as osteoporosis are one of the main causes of bone fracture and often result in hospitalization and long recovery periods. Researchers are aiming to develop new tools that consider the multiple determinants acting at the different scales of bone, and which can be used to clinically estimate patient-specific fracture risk and also assess the efficacy of new therapies. The main step towards this goal is a deep understanding of the bone organ, and is achieved by modeling the complexity of the structure and the high variability of the mechanical outcome. This review uses a hierarchical approach to evaluate bone mechanics at the macroscale, microscale, and nanoscale levels and the interactions between scales. The first section analyzes the experimental evidence of bone mechanics in the elastic and inelastic regions, microdamage generation, and post-yield toughening mechanisms from the organ level to the ultrastructural level. On the basis of these observations, the second section provides an overview of the constitutive models available to describe bone mechanics and predict patient-specific outcomes. Overall, the role of the hierarchical structure of bone and the interplay between each level is highlighted, and their effect is evaluated in terms of modeling biological variability and patient specificity.
Collapse
|
45
|
Blackburn G, Scott TG, Bayer IS, Ghosh A, Biris AS, Biswas A. Bionanomaterials for bone tumor engineering and tumor destruction. J Mater Chem B 2013; 1:1519-1534. [DOI: 10.1039/c3tb00536d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Gourion-Arsiquaud S, Lukashova L, Power J, Loveridge N, Reeve J, Boskey AL. Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls. J Bone Miner Res 2013; 28:150-61. [PMID: 22865771 PMCID: PMC3515703 DOI: 10.1002/jbmr.1724] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/13/2012] [Accepted: 07/16/2012] [Indexed: 12/23/2022]
Abstract
After the age of 60 years, hip fracture risk strongly increases, but only a fifth of this increase is attributable to reduced bone mineral density (BMD, measured clinically). Changes in bone quality, specifically bone composition as measured by Fourier transform infrared spectroscopic imaging (FTIRI), also contribute to fracture risk. Here, FTIRI was applied to study the femoral neck and provide spatially derived information on its mineral and matrix properties in age-matched fractured and nonfractured bones. Whole femoral neck cross sections, divided into quadrants along the neck's axis, from 10 women with hip fracture and 10 cadaveric controls were studied using FTIRI and micro-computed tomography. Although 3-dimensional micro-CT bone mineral densities were similar, the mineral-to-matrix ratio was reduced in the cases of hip fracture, confirming previous reports. New findings were that the FTIRI microscopic variation (heterogeneity) of the mineral-to-matrix ratio was substantially reduced in the fracture group as was the heterogeneity of the carbonate-to-phosphate ratio. Conversely, the heterogeneity of crystallinity was increased. Increased variation of crystallinity was statistically associated with reduced variation of the carbonate-to-phosphate ratio. Anatomical variation in these properties between the different femoral neck quadrants was reduced in the fracture group compared with controls. Although our treatment-naive patients had reduced rather than increased bending resistance, these changes in heterogeneity associated with hip fracture are in another way comparable to the effects of experimental bisphosphonate therapy, which decreases heterogeneity and other indicators of bone's toughness as a material.
Collapse
|
47
|
Delgado-Andrade C, Roncero-Ramos I, Carballo J, Rufián-Henares JÁ, Seiquer I, Navarro MP. Composition and functionality of bone affected by dietary glycated compounds. Food Funct 2013; 4:549-56. [DOI: 10.1039/c2fo30187c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Kim DG, Huja SS, Navalgund A, D'Atri A, Tee B, Reeder S, Lee HR. Effect of estrogen deficiency on regional variation of a viscoelastic tissue property of bone. J Biomech 2012; 46:110-5. [PMID: 23141522 DOI: 10.1016/j.jbiomech.2012.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/27/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
Estrogen deficiency changes the regional distribution of tissue mineral density leading to alteration of the mechanical properties of bone at the tissue level. Direct measurement of the regional variation of elastic modulus and viscosity, which is the capacity to resist time-dependent viscoelastic deformation, will aid in our understanding of how estrogen deficiency alters bone quality. It was observed that, compared to bone from other anatomical sites, the jaw bone is less sensitive to estrogen deficiency. Thus, the objective of this study was to examine the effect of estrogen deficiency on (1) the regional variations of tissue modulus and viscosity of bone using nanoindentation, and (2) the modulus-viscosity relationships in jaw and vertebral bones for comparison between different anatomical sites. Mandibular and vertebral bone specimens of sham surgery and ovariectomized (OVX) rat groups were subject to nanoindentation in hydration. Indentation modulus and viscosity were measured at relatively new (less mineralized) tissue regions and at the corresponding pre-existing old (more mineralized) tissue regions of mandibular and vertebral bones. In the mandibular bones, significant regional variations of indentation modulus and viscosity were observed (p<0.039) and OVX increased the indentation viscosity. While significant positive correlations were found between indentation modulus and viscosity (p<0.001), the correlation slopes for the mandibular and vertebral bones were significant different (p<0.001). The current results indicated that changes in viscoelastic property and its regional variation should be examined to obtain a better understanding of estrogen deficiency-dependent alteration of bone quality.
Collapse
Affiliation(s)
- Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210-1267, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Giannini C, Siliqi D, Bunk O, Beraudi A, Ladisa M, Altamura D, Stea S, Baruffaldi F. Correlative light and scanning X-ray scattering microscopy of healthy and pathologic human bone sections. Sci Rep 2012; 2:435. [PMID: 22666538 PMCID: PMC3364490 DOI: 10.1038/srep00435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/11/2012] [Indexed: 11/09/2022] Open
Abstract
Scanning small and wide angle X-ray scattering (scanning SWAXS) experiments were performed on healthy and pathologic human bone sections. Via crystallographic tools the data were transformed into quantitative images and as such compared with circularly polarized light (CPL) microscopy images. SWAXS and CPL images allowed extracting information of the mineral nanocrystalline phase embedded, with and without preferred orientation, in the collagen fibrils, mapping local changes at sub-osteon resolution. This favorable combination has been applied for the first time to biopsies of dwarfism syndrome and Paget's disease to shed light onto the cortical structure of natural bone in healthy and pathologic sections.
Collapse
Affiliation(s)
- C Giannini
- Istituto di Cristallografia-IC-CNR, via Amendola 122/O, I-70126 Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zoehrer R, Perilli E, Kuliwaba JS, Shapter JG, Fazzalari NL, Voelcker NH. Human bone material characterization: integrated imaging surface investigation of male fragility fractures. Osteoporos Int 2012; 23:1297-309. [PMID: 21695535 DOI: 10.1007/s00198-011-1688-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/27/2011] [Indexed: 02/06/2023]
Abstract
UNLABELLED The interrelation of calcium and phosphorus was evaluated as a function of bone material quality in femoral heads from male fragility fracture patients via surface analytical imaging as well as scanning microscopy techniques. A link between fragility fractures and increased calcium to phosphorus ratio was observed despite normal mineralization density distribution. INTRODUCTION Bone fragility in men has been recently recognized as a public health issue, but little attention has been devoted to bone material quality and the possible efficacy in fracture risk prevention. Clinical routine fracture risk estimations do not consider the quality of the mineralized matrix and the critical role played by the different chemical components that are present. This study uses a combination of different imaging and analytical techniques to gain insights into both the spatial distribution and the relationship of phosphorus and calcium in bone. METHODS X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry imaging techniques were used to investigate the relationship between calcium and phosphorus in un-embedded human femoral head specimens from fragility fracture patients and non-fracture age-matched controls. The inclusion of the bone mineral density distribution via backscattered scanning electron microscopy provides information about the mineralization status between the groups. RESULTS A link between fragility fracture and increased calcium and decreased phosphorus in the femoral head was observed despite normal mineralization density distribution. Results exhibited significantly increased calcium to phosphorus ratio in the fragility fracture group, whereas the non-fracture control group ratio was in agreement with the literature value of 1.66 M ratio in mature bone. CONCLUSIONS Our results highlight the potential importance of the relationship between calcium and phosphorus, especially in areas of new bone formation, when estimating fracture risk of the femoral head. The determination of calcium and phosphorus fractions in bone mineral density measurements may hold the key to better fracture risk assessment as well as more targeted therapies.
Collapse
Affiliation(s)
- R Zoehrer
- School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Bedford Park, Adelaide, SA 5042, Australia
| | | | | | | | | | | |
Collapse
|