1
|
Lu S, Yuan Q, Wang L, Su D, Hu M, Guo L, Kang C, Zhou T, Zhang J. Aflatoxin B1 contamination reduces the saponins content and anti-osteoporosis efficacy of the traditional medicine Radix Dipsaci. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118857. [PMID: 39362329 DOI: 10.1016/j.jep.2024.118857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Radix Dipsaci, a traditional Chinese medicine with a history spanning over 2000 years in China, is widely recognized for its hepatorenal tonic properties, musculoskeletal fortifying effects, fracture healing capabilities, and its frequent application in the treatment of osteoporosis. Like many traditional Chinese herbal medicines, preparations from Radix Dipsaci are at risk of contamination by harmful mycotoxins such as aflatoxin B1. AIMS OF THE STUDY This study aims to evaluate the impact of aflatoxin B1 contamination on Radix Dipsaci in terms of changes in quality, efficacy of anti-osteoporosis and hepatorenal toxicity. MATERIALS AND METHODS The contamination rates and levels of major mycotoxins were determined in 45 batches of Radix Dipsaci samples using UPLC-MS/MS analysis. The total saponin content and the levels of akebia saponin D in Radix Dipsaci and its decoctions were evaluated through high-performance liquid chromatography (HPLC) analysis. Differences in secondary metabolites between samples without any mycotoxin contamination (N-RD) and those contaminated solely by aflatoxin B1 (AFB1-RD) were compared using metabolomics sequencing and analysis. The anti-osteoporotic efficacy of Radix Dipsaci contaminated with aflatoxin B1 was assessed in a murine model of retinoic acid-induced osteoporosis by quantifying bone mineral content and bone mineral density using dual-energy X-ray absorptiometry. Additionally, the hepatorenal toxicity of Radix Dipsaci contaminated with aflatoxin B1 was evaluated using hematoxylin-eosin staining and enzyme-linked immunosorbent assay (ELISA). RESULTS The results indicated that aflatoxin B1 (AFB1) was the most frequently detected mycotoxin, found in 37.7% of the Radix Dipsaci samples. AFB1 contamination significantly altered the secondary metabolites of Radix Dipsaci. Specifically, there was a notable decrease in the levels of total saponins and akebia saponin D in the AFB1-contaminated samples, which exhibited a negative correlation with the levels of AFB1 contamination. However, the administration of a water decoction from AFB1-contaminated Radix Dipsaci did not result in significant improvements in bone mineral density, bone mineral salt content, the trabecular number, trabecular area, proportion of trabecular bone volume/tissue volume and trabecular separation in an osteoporosis mouse model. Additionally, we observed that approximately 16.04% of AFB1 could migrate from the raw herbs into the decoction, leading to hepatocyte and kidney cell damage, as well as increased levels of the oxidative stress molecule malondialdehyde and pro-inflammatory cytokines in the liver and kidney tissues of the osteoporosis model mice. CONCLUSION In summary, Radix Dipsaci is highly susceptible to mycotoxin contamination, particularly aflatoxin B1. The contamination of Radix Dipsaci with AFB1 not only impacts their saponin content and anti-osteoporosis effect but also induces hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Shuqin Lu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Qingsong Yuan
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Lulu Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Dapeng Su
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Min Hu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Lanping Guo
- State Key Laboratory of Dao-di Herbs, Beijing, 100700, China.
| | - Chuanzhi Kang
- State Key Laboratory of Dao-di Herbs, Beijing, 100700, China.
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
2
|
Wu H, Lv Y, Tang R, Zhao M, Li Y, Wei F, Li C, Ge W, Du W. Analysis of Quality Differences in Radix Dipsaci before and after Processing with Salt Based on Quantitative Control of HPLC Multi-Indicator Components Combined with Chemometrics. Int J Anal Chem 2024; 2024:2109127. [PMID: 38357676 PMCID: PMC10866631 DOI: 10.1155/2024/2109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
Radix Dipsaci (RD) is the dry root of the Dipsacus asper Wall. ex DC., which is commonly used for tonifying the kidney and strengthening bone. The purpose of this study was to analyze the difference between raw and salt-processed RD from the chemical composition comprehensively. The fingerprints of raw and salt-processed RD were established by HPLC-DAD to determine the contents of loganin (LN), asperosaponin VI (AVI), caffeic acid (CaA), dipsanoside A (DA), dipsanoside B (DB), chlorogenic acid (CA), loganic acid (LA), isochlorogenic acid A (IA), isochlorogenic acid B (IB), and isochlorogenic acid C (IC). The results showed that after processing with salt, the components with increased contents were LA, CaA, DA, and AVI, and the components with decreased contents were CA, LN, IB, IA, IC, and DB. Then, the chemometric methods such as principal component analysis (PCA) and fisher discriminant analysis (FDA) were used to evaluate the quality of raw and salt-processed RD. In the classification of raw and salt-processed RD, the order of importance of each chemical component was LA > DB > IA > IC > IB > LN > CA > DA > AVI > CaA. These integrated methods successfully assessed the quality of raw and salt-processed RD, which will provide guidance for the development of RD as a clinical medication.
Collapse
Affiliation(s)
- Hangsha Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Yue Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Rui Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Mingfang Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Yafei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Feiyang Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weihong Ge
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
- Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou 311401, China
- Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd, Hangzhou 311401, China
| | - Weifeng Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
- Research Center of Traditional Chinese Medicine Processing Technology, Zhejiang Chinese Medical University, Hangzhou 311401, China
- Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd, Hangzhou 311401, China
| |
Collapse
|
3
|
Skała E, Szopa A. Dipsacus and Scabiosa Species-The Source of Specialized Metabolites with High Biological Relevance: A Review. Molecules 2023; 28:molecules28093754. [PMID: 37175164 PMCID: PMC10180103 DOI: 10.3390/molecules28093754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The genera Dipsacus L. and Scabiosa L. of the Caprifoliaceae family are widely distributed in Europe, Asia, and Africa. This work reviews the available literature on the phytochemical profiles, ethnomedicinal uses, and biological activities of the most popular species. These plants are rich sources of many valuable specialized metabolites with beneficial medicinal properties, such as triterpenoid derivatives, iridoids, phenolic acids, and flavonoids. They are also sources of essential oils. The genus Dipsacus has been used for centuries in Chinese and Korean folk medicines to treat bone (osteoporosis) and joint problems (rheumatic arthritis). The Korean Herbal Pharmacopoeia and Chinese Pharmacopoeia include Dipsaci radix, the dried roots of D. asperoides C.Y.Cheng & T.M.Ai. In addition, S. comosa Fisch. ex Roem & Schult. and S. tschiliiensis Grunning are used in traditional Mongolian medicine to treat liver diseases. The current scientific literature data indicate that these plants and their constituents have various biological properties, including inter alia antiarthritic, anti-neurodegenerative, anti-inflammatory, antioxidant, anticancer, and antimicrobial activities; they have also been found to strengthen tendon and bone tissue and protect the liver, heart, and kidney. The essential oils possess antibacterial, antifungal, and insecticidal properties. This paper reviews the key biological values of Dipsacus and Scabiosa species, as identified by in vitro and in vivo studies, and presents their potential pharmacological applications.
Collapse
Affiliation(s)
- Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
4
|
Niu YB, Zhang YH, Sun Y, Song XZ, Li ZH, Xie M, Mei QB, Li YH, Chen Q. Asperosaponin VI Protects Against Bone Loss Due to Hindlimb Unloading in Skeletally Growing Mice Through Regulating Microbial Dysbiosis Altering the 5-HT Pathway. Calcif Tissue Int 2023; 112:389-402. [PMID: 36595050 DOI: 10.1007/s00223-022-01057-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023]
Abstract
Osteoporosis is a complex multifactorial disease that can lead to an increased risk of fracture. However, selective and effective osteoporosis drugs are still lacking. We showed that Asperosaponin VI (AVI) has the implications to be further developed as an alternative supplement for the prevention and treatment of bone loss. AVI has been found to have beneficial effects on metabolic diseases such as bone loss, obesity, and atherosclerosis. Our study was designed to determine the effect and mechanism of action of AVI against bone loss through regulating microbial dysbiosis. A hindlimb unloading mouse model was established to determine the effect of AVI on bone microarchitecture, gut microbiota, and serum metabolites. Eighteen female C57BL/6 J mice were divided into three groups: control, hindlimb unloading with vehicle (HLU), and hindlimb unloading treated with AVI (HLU-AVI, 200 mg/kg/day). AVI was administrated orally for 4 weeks. The results demonstrated that AVI improved the bone microstructure by reversing the decrease in bone volume fraction and trabecular number, and the increase in trabecular separation and structure model index of cancellous bone in hindlimb suspension mice. The results of 16sRNA gene sequencing suggested that the therapeutic effect of AVI on bone loss may be achieved through it regulating the gut microbiota, especially certain specific microorganisms. Combined with the analysis of ELISA, immunohistochemistry, and serum metabolome results, it could be speculated that AVI played an important role in adjusting the balance of bone metabolism by influencing specific flora such as Clostridium and its metabolites to regulate the 5-hydroxytryptophan pathway. The study explored the novel mechanism of AVI against osteoporosis, and has implications for the further development of AVI as an alternative supplement for the prevention and treatment of bone loss.
Collapse
Affiliation(s)
- Y-B Niu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Y-H Zhang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Y Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - X-Z Song
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Z-H Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - M Xie
- Department of Pharmacy, The First Naval Force Hospital of Southern Theatre Command, Zhanjiang, 524005, Guangdong, People's Republic of China
| | - Q-B Mei
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Y-H Li
- Department of Pathology, The First Naval Force Hospital of Southern Theatre Command, Zhanjiang, 524005, Guangdong, People's Republic of China.
| | - Q Chen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Xu J, Hu Z, He H, Ou X, Yang Y, Xiao C, Yang C, Li L, Jiang W, Zhou T. Transcriptome analysis reveals that jasmonic acid biosynthesis and signaling is associated with the biosynthesis of asperosaponin VI in Dipsacus asperoides. FRONTIERS IN PLANT SCIENCE 2022; 13:1022075. [PMID: 36798802 PMCID: PMC9928152 DOI: 10.3389/fpls.2022.1022075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/01/2022] [Indexed: 05/27/2023]
Abstract
Dipsacus asperoides is a perennial herb, the roots of which are abundant in asperosaponin VI, which has important medicinal value. However, the molecular mechanism underlying the biosynthesis of asperosaponin VI in D. asperoides remains unclear. In present study, a comprehensive investigation of asperosaponin VI biosynthesis was conducted at the levels of metabolite and transcript during root development. The content of asperosaponin VI was significantly accumulated in two-leaf stage roots, and the spatial distribution of asperosaponin VI was localized in the xylem. The concentration of asperosaponin VI gradually increased in the root with the development process. Transcriptome analysis revealed 3916 unique differentially expressed genes (DEGs) including 146 transcription factors (TFs) during root development in D. asperoides. In addition, α-linolenic acid metabolism, jasmonic acid (JA) biosynthesis, JA signal transduction, sesquiterpenoid and triterpenoid biosynthesis, and terpenoid backbone biosynthesis were prominently enriched. Furthermore, the concentration of JA gradually increased, and genes involved in α-linolenic acid metabolism, JA biosynthesis, and triterpenoid biosynthesis were up-regulated during root development. Moreover, the concentration of asperosaponin VI was increased following methyl jasmonate (MeJA) treatment by activating the expression of genes in the triterpenoid biosynthesis pathway, including acetyl-CoA acetyltransferase (DaAACT), 3-hydroxy-3-methylglutaryl coenzyme A synthase (DaHMGCS), 3-hydroxy-3-methylglutaryl coenzyme-A reductase (DaHMGCR). We speculate that JA biosynthesis and signaling regulates the expression of triterpenoid biosynthetic genes and facilitate the biosynthesis of asperosaponin VI. The results suggest a regulatory network wherein triterpenoids, JA, and TFs co-modulate the biosynthesis of asperosaponin VI in D. asperoides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Zhou
- Resource Institute for Chinese Medicine and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
6
|
Xiang Z, Wang Y, Liu S. The chemical and metabolite profiles of Gualou-Xiebai-Banxia decoction, a classical traditional Chinese medicine formula, by using high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and in-house software. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114994. [PMID: 35033623 DOI: 10.1016/j.jep.2022.114994] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gualou-Xiebai-Banxia decoction (GXBD) was a classical traditional Chinese medicine formula for the treatment of coronary heart disease. However, the current study on the chemical and metabolite profiles of GXBD did not follow the ancient prescription and extraction method, which hindered the discovery of effective compounds and quality control. MATERIALS AND METHODS In this study, we prepared GXBD by ancient prescription and extraction methods, and then analysed the chemical components and xenobiotics of GXBD in vivo using high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and in-house software. RESULTS 49 chemical constituents were preliminarily identified, including 7 terpenoids, 6 flavonoids, 5 alkaloids, 17 organic acids, 8 steroids and steroidal saponins, 2 nucleosides and 4 other types of compounds, of which 10 constituents were confirmed unambiguously with authentic standards. Moreover, 129 metabolites were tentatively identified, including 83 metabolites in plasma, 39 metabolites in urine, 25 metabolites in bile and 9 metabolites in feces. Our study speculated that luteolin, adenosine, vanillic acid and curbitacin B might be possible effective components of GXBD for the treatment of coronary heart disease. Dehydration, deglycosylation, dehydrogenation, acetylation and taurine regulation were the main biotransformation reactions of GXBD. CONCLUSION Our results provided an important basis for the discovery of effective compounds and quality control of GXBD. In addition, in-house software was an useful tool for identifcation of metabolites.
Collapse
Affiliation(s)
- Zheng Xiang
- Medical School, Zhejiang University City College, Hangzhou, 310015, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Yuzhen Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shundi Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
7
|
Chen F, Liang Q, Mao L, Yin Y, Zhang L, Li C, Liu C. Synergy effects of Asperosaponin VI and bioactive factor BMP-2 on osteogenesis and anti-osteoclastogenesis. Bioact Mater 2022; 10:335-344. [PMID: 34901550 PMCID: PMC8636809 DOI: 10.1016/j.bioactmat.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoporosis is a reduction in skeletal mass due to the decrease of osteogenic ability and the activation of the osteoclastic function. Inhibiting bone resorption and accelerating the new bone formation is a promising strategy to repair the bone defect of osteoporosis. In this study, we first systematically investigated the roles of Chinese medicine Asperosaponin VI (ASP VI) on osteogenic mineralization of BMSCs and osteoclastogenesis of BMMs, and then explored the synergistic effect of ASP VI and BS (BMP-2 immobilized in 2-N, 6-O-sulfated chitosan) on bone formation. The result showed that ASP VI with the concentration lower than 10-4 M contributed to the expression of osteogenic gene and inhibited osteoclastic genes RANKL of BMSCs. Simultaneously, ASP VI significantly reduced the differentiation of mononuclear osteoclasts in the process of osteoclast formation induced by M-CSF and RANKL. Furthermore, by stimulating the SMADs, TGF-β1, VEGFA, and OPG/RANKL signaling pathways, ASBS (ASP VI and BS) substantially enhanced osteogenesis, greatly promoted angiogenesis, and suppressed osteoclastogenesis. The findings provide a new perspective on osteoporosis care and prevention.
Collapse
Affiliation(s)
- Fangping Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Qing Liang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lijie Mao
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yanrong Yin
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lixin Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Cuidi Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
8
|
Nasir NN, Sekar M, Fuloria S, Gan SH, Rani NNIM, Ravi S, Begum MY, Chidambaram K, Sathasivam KV, Jeyabalan S, Dhiravidamani A, Thangavelu L, Lum PT, Subramaniyan V, Wu YS, Azad AK, Fuloria NK. Kirenol: A Potential Natural Lead Molecule for a New Drug Design, Development, and Therapy for Inflammation. Molecules 2022; 27:734. [PMID: 35163999 PMCID: PMC8839644 DOI: 10.3390/molecules27030734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Kirenol, a potential natural diterpenoid molecule, is mainly found in Sigesbeckia species. Kirenol has received a lot of interest in recent years due to its wide range of pharmacological actions. In particular, it has a significant ability to interact with a wide range of molecular targets associated with inflammation. In this review, we summarise the efficacy and safety of kirenol in reducing inflammation, as well as its potential mechanisms of action and opportunities in future drug development. Based on the preclinical studies reported earlier, kirenol has a good therapeutic potential against inflammation involved in multiple sclerosis, inflammatory bowel disorders, diabetic wounds, arthritis, cardiovascular disease, bone damage, and joint disorders. We also address the physicochemical and drug-like features of kirenol, as well as the structurally modified kirenol-derived molecules. The inhibition of pro-inflammatory cytokines, reduction in the nuclear factor kappa-B (NF-κB), attenuation of antioxidant enzymes, stimulation of heme-oxygenase-1 (HO-1) expression, and nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation are among the molecular mechanisms contributing to kirenol's anti-inflammatory actions. Furthermore, this review also highlights the challenges and opportunities to improve the drug delivery of kirenol for treating inflammation. According to the findings of this review, kirenol is an active molecule against inflammation in numerous preclinical models, indicating a path to using it for new drug discovery and development in the treatment of a wide range of inflammations.
Collapse
Affiliation(s)
- Naurah Nabihah Nasir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, University Kuala Lumpur, Ipoh 30450, Perak, Malaysia; (N.N.N.); (P.T.L.)
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, University Kuala Lumpur, Ipoh 30450, Perak, Malaysia; (N.N.N.); (P.T.L.)
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, University Kuala Lumpur, Ipoh 30450, Perak, Malaysia;
| | - Subban Ravi
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India;
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | | | - Srikanth Jeyabalan
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 600116, Tamil Nadu, India; (S.J.); (A.D.)
| | - Arulmozhi Dhiravidamani
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 600116, Tamil Nadu, India; (S.J.); (A.D.)
| | - Lakshmi Thangavelu
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, University Kuala Lumpur, Ipoh 30450, Perak, Malaysia; (N.N.N.); (P.T.L.)
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia;
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia;
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Abul Kalam Azad
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia;
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai 600077, Tamil Nadu, India;
| |
Collapse
|
9
|
Lou F, Xian S, Shu Z, Zheng Z. Efficacy and safety of Xianling Gubao capsule in treating postmenopausal osteoporosis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e23965. [PMID: 33429758 PMCID: PMC7793410 DOI: 10.1097/md.0000000000023965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND postmenopausal osteoporosis is a systemic metabolic skeletal disease associated with menopause-related estrogen withdrawal. postmenopausal osteoporosis is characterized by low bone mass, bone microstructure destruction, leading to increased bone brittleness and be prone to fracture, resulting in disability and death. At present, the commonly used drugs are estrogen, calcium, bone formation promoter and bone resorption inhibitor, and the side effects are obvious. In Traditional Chinese medicine, kidney-tonifying differentiating medicine is guided by the whole concept, Xianling Gubao capsule as the representative, the treatment of postmenopausal osteoporosis has certain therapeutic advantages, but lacks evidence-based medicine evidence. The purpose of this study is to systematically study the efficacy and safety of Xianling Gubao capsule in the treatment of postmenopausal osteoporosis. METHODS use computer to search English databases (PubMed, Embase, Web of Science, the Cochrane Library) and Chinese databases (China Knowledge Network, Wanfang, Weipu, Chinese Biomedical Database), in addition manually search Baidu academic, Google academic, from the establishment of database to October 2020, for randomized controlled clinical study of postmenopausal osteoporosis in the Xianling Gubao capsule treatment. Two researchers independently did the data extraction and literature quality evaluation, using RevMan5.3 software to do meta-analysis of the included literature. RESULTS this study assessed the efficacy and safety of xianling gubao capsule in the treatment of postmenopausal osteoporosis by total effective rate, bone density after treatment, blood calcium level after treatment, blood phosphorus level after treatment, pain score, quality of life and so on. CONCLUSION this study will provide reliable evidence-based evidence for the clinical application of Xianling Gubao capsule in the treatment of postmenopausal osteoporosis. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/TP394.
Collapse
|
10
|
Preventive Effects of Chrysanthemum coronarium L. Extract on Bone Metabolism In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6975646. [PMID: 33293993 PMCID: PMC7688366 DOI: 10.1155/2020/6975646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/14/2020] [Accepted: 11/09/2020] [Indexed: 12/29/2022]
Abstract
Osteoporosis is characterized by decreased bone mass and bone microarchitectural failure, leading to an enhanced risk of bone fractures. Chrysanthemum coronarium L. (CC) is a natural plant with powerful antioxidant activity. This study investigated the antiosteoporotic effects of CC extracts in in vitro cell cultures and in vivo bone loss animal models. CC stimulated osteoblast differentiation and mineralized bone formation by osteoblasts by increasing the expression of bone formation markers (alkaline phosphatase, osteoprotegerin, and osteoprotegerin/receptor activator nuclear factor-κB ligand ratio) in the murine preosteoblastic cell line MC3T3-E1. Additionally, CC was found to inhibit osteoclast differentiation by downregulating bone resorption markers (tartrate-resistant acid phosphatase, cathepsin K, dendritic cell-specific transmembrane protein, and calcitonin receptor) in the murine macrophage-like cell line RAW264.7. CC prevented ovariectomy-induced bone loss, preserved trabecular microarchitecture, and improved serum bone turnover markers in an osteoporotic mouse model. These findings suggest that CC extract may be considered as a natural therapeutic or preventive agent for osteoporotic bone loss.
Collapse
|
11
|
Kuhtinskaja M, Bragina O, Kulp M, Vaher M. Anticancer Effect of the Iridoid Glycoside Fraction from Dipsacus fullonum L. Leaves. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20951417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Species of Dipsacus have been widely used in folk medicine for their neuroprotective, antiosteoporotic, antioxidative, anticomplementary, and antibacterial activities. However, there has been but a limited amount of research on the anticancer effect of one of the most popular representatives of this genus, D. fullonum. Also, the cytotoxic activity has not yet been investigated of the constituents of D. fullonum leaves. The purpose of this study was to evaluate the cytotoxic activity of the bis-iridoid glycosides isolated from D. fullonum leaves against murine fibroblast NIH/3T3, mouse melanoma B16F10, HeLa human cervical cancer, human breast cancer MCF7 and MDB-MB-231 cells. The bis-iridoids, obtained by chromatographic fractionation of the extract of D. fullonum leaves, were characterized by thin-layer chromatography and high-performance liquid chromatography-mass spectrometry (HPLC-MS)/MS analysis. The cytotoxicity of the iridoid fraction was evaluated by WST-1 assay, and the number of dead cells was determined by the propidium iodide test. HPLC-MS/MS analysis showed the isolated bis-iridoid fraction to consist mainly of sylvestroside III and/or sylvestroside IV. This fraction was applied to cell cultures and kept for 48 and 72 hours. The results demonstrated that the iridoid glycosides had a differential ability to induce cell death in normal and cancer cells. The study confirmed that the bis-iridoids extracted from D. fullonum leaves had a selective cytotoxic effect on human breast cancer cell lines MCF7 and MDB-MD-231, while their cytotoxic effect on noncancer cells was low.
Collapse
Affiliation(s)
- Maria Kuhtinskaja
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Olga Bragina
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- National Institute for Health Development, Tallinn, Estonia
| | - Maria Kulp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Merike Vaher
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
12
|
Wu J, Liu L, Hu H, Gao Z, Lu S. Bioinformatic analysis and experimental identification of blood biomarkers for chronic nonunion. J Orthop Surg Res 2020; 15:208. [PMID: 32503597 PMCID: PMC7275361 DOI: 10.1186/s13018-020-01735-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background Incomplete fracture healing may lead to chronic nonunion; thus, determining fracture healing is the primary issue in the clinical treatment. However, there are no validated early diagnostic biomarkers for assessing chronic nonunion. In this study, bioinformatics analysis combined with an experimental verification strategy was used to identify blood biomarkers for chronic nonunion. Methods First, differentially expressed genes in chronic nonunion were identified by microarray data analysis. Second, Dipsaci Radix (DR), a traditional Chinese medicine for fracture treatment, was used to screen the drug target genes. Third, the drug-disease network was determined, and biomarker genes were obtained. Finally, the potential blood biomarkers were verified by ELISA and qPCR methods. Results Fifty-five patients with open long bone fractures (39 healed and 16 nonunion) were enrolled in this study, and urgent surgical debridement and the severity of soft tissue injury had a significant effect on the prognosis of fracture. After the systems pharmacology analysis, six genes, including QPCT, CA1, LDHB, MMP9, UGCG, and HCAR2, were chosen for experimental validation. We found that all six genes in peripheral blood mononuclear cells (PBMCs) and serum were differentially expressed after injury, and five genes (QPCT, CA1, MMP9, UGCG, and HCAR2) were significantly lower in nonunion patients. Further, CA1, MMP9, and QPCT were markedly increased after DR treatment. Conclusion CA1, MMP9, and QPCT are biomarkers of nonunion patients and DR treatment targets. However, HCAR2 and UGCG are biomarkers of nonunion patients but not DR treatment targets. Therefore, our findings may provide valuable information for nonunion diagnosis and DR treatment. Trial registration ISRCTN, ISRCTN13271153. Registered 05 April 2020—Retrospectively registered.
Collapse
Affiliation(s)
- Jingwei Wu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Limin Liu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China.
| | - Huaijian Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Zhihua Gao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China.
| |
Collapse
|
13
|
Liu FL, Chen CL, Lai CC, Lee CC, Chang DM. Arecoline suppresses RANKL-induced osteoclast differentiation in vitro and attenuates LPS-induced bone loss in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153195. [PMID: 32200293 DOI: 10.1016/j.phymed.2020.153195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/13/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Areca nut has anti-inflammatory, antiparasitic, antihypertensive, and antidepressant properties. The pathological hallmarks of inflammatory joint diseases are an increased number of osteoclasts and impaired differentiation of osteoblasts, which may disrupt the bone remodeling balance and eventually lead to bone loss. PURPOSE The present study assessed the effects of arecoline, the main alkaloid found in areca nut, on osteoclast and osteoblast differentiation and function. METHOD M-CSF/RANKL-stimulated murine bone marrow-derived macrophages (BMMs) were incubated with several concentrations of arecoline, and TRAP staining and pit formation were assessed to monitor osteoclast formation. Quantitative real-time RT-PCR and western blot analyses were used to analyze the expression of osteoclast-associated genes and signaling pathways. The effects of arecoline on bone were investigated in an in vivo mouse model of lipopolysaccharide (LPS)-induced trabecular bone loss after oral administration of arecoline. Alizarin red S staining and assays to measure ALP activity and the transcription level of osteoblast-related genes were used to evaluate the effects of arecoline on osteoblast differentiation and bone mineralization. RESULTS In a dose-dependent manner, arecoline at concentrations of 50-100 μM reduced both the development of TRAP-positive multinucleated osteoclasts and the formation of resorption pits in M-CSF/RANKL-stimulated BMMs. In M-CSF/RANKL-stimulated BMMs, arecoline also suppressed the expression and translocation of c-Fos and NFATcl, and osteoclast differentiated-related genes via interference with the AKT, MAPK, and NF-kB activation pathways. Femur bone loss and microcomputed tomography parameters were recovered by oral administration of arecoline in the mouse LPS-induced bone loss model. Lastly, arecoline increased ALP activity, bone mineralization, and the expression of osteoblast differentiation-related genes, such as ALP and Runx2, in MC3T3-E1 cells. CONCLUSION Our data suggest that arecoline may attenuate or prevent bone loss by suppressing osteoclastogenesis and promoting osteoblastogenesis. These findings provide evidence supporting arecoline's use as a potential therapeutic agent in bone-loss disorders and diseases.
Collapse
Affiliation(s)
- Fei-Lan Liu
- Division of Allergy-Immunology-Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan; Biobank Management Center of the Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Liang Chen
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Chih Lai
- Division of Allergy-Immunology-Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Chung Lee
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Deh-Ming Chang
- Division of Allergy-Immunology-Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan; Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
14
|
He J, Li X, Wang Z, Bennett S, Chen K, Xiao Z, Zhan J, Chen S, Hou Y, Chen J, Wang S, Xu J, Lin D. Therapeutic Anabolic and Anticatabolic Benefits of Natural Chinese Medicines for the Treatment of Osteoporosis. Front Pharmacol 2019; 10:1344. [PMID: 31824310 PMCID: PMC6886594 DOI: 10.3389/fphar.2019.01344] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022] Open
Abstract
Osteoporosis is a bone disease characterized by increasing osseous fragility and fracture due to the reduced bone mass and microstructural degradation. Primary pharmacological strategies for the treatment of osteoporosis, hormone replacement treatment (HRT), and alendronate therapies may produce adverse side-effects and may not be recommended for long-term usage. Some classic and bone-specific natural Chinese medicine are very popularly used to treat osteoporosis and bone fracture effectively in clinical with their potential value in bone growth and development, but with few adverse side-effects. Current evidence suggests that the treatments appear to improve bone metabolism and attenuate the osteoporotic imbalance between bone formation and bone resorption at a cellular level by promoting osteoblast activity and inhibiting the effects of osteoclasts. The valuable therapies might, therefore, provide an effective and safer alternative to primary pharmacological strategies. Therefore, the purpose of this article is to comprehensively review these classic and bone-specific drugs in natural Chinese medicines for the treatment of osteoporosis that had been deeply and definitely studied and reported with both bone formation and antiresorption effects, including Gynochthodes officinalis (F.C.How) Razafim. & B.Bremer (syn. Morinda officinalis F.C.How), Curculigo orchioides Gaertn., Psoralea corylifolia (L.) Medik Eucommia ulmoides Oliv., Dipsacus inermis Wall. (syn. Dipsacus asperoides C.Y.Cheng & T.M.Ai), Cibotium barometz (L.) J. Sm., Velvet Antler, Cistanche deserticola Ma, Cuscuta chinensis Lam., Cnidium monnieri (L.) Cusson, Epimedium brevicornum Maxim, Pueraria montana (Lour.) Merr. and Salvia miltiorrhiza Bunge., thus providing evidence for the potential use of alternative Chinese medicine therapies to effectively treat osteoporosis.
Collapse
Affiliation(s)
- Jianbo He
- Guangzhou University of Chinese Medicine, Guangzhou, China.,The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaojuan Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ziyi Wang
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Samuel Bennett
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Kai Chen
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Zhifeng Xiao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiheng Zhan
- Guangzhou University of Chinese Medicine, Guangzhou, China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shudong Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yu Hou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Junhao Chen
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Shaofang Wang
- Centre for Legumes in Mediterranean Agriculture, University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- The School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Dingkun Lin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Zhang W, Xue K, Gao Y, Huai Y, Wang W, Miao Z, Dang K, Jiang S, Qian A. Systems pharmacology dissection of action mechanisms of Dipsaci Radix for osteoporosis. Life Sci 2019; 235:116820. [PMID: 31476308 DOI: 10.1016/j.lfs.2019.116820] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/17/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022]
Abstract
AIMS Osteoporosis (OP) is a systemic metabolic bone disease characterized by bone mass decrease and microstructural degradation, which may increase the risk of bone fracture and leading to high morbidity. Dipsaci Radix (DR), one typical traditional Chinese medicine (TCM), which has been applied in the treatment of OP with good therapeutic effects and few side effects. However, the underlying molecular mechanisms of DR to treat OP have not been fully elucidated. In this study, we aim to dissect the molecular mechanism of DR in the treatment of OP. MATERIALS AND METHODS A systems pharmacology approach was employed to comprehensively dissect the action mechanisms of DR for the treatment of OP. KEY FINDINGS 10 compounds were screened out as the potential active ingredients with excellent biological activity based on in silico ADME (absorption, distribution, metabolism and excretion) prediction model. Then, 36 key protein targets of 6 compounds were identified by systems drug targeting model (SysDT) and they were involved in several biological processes, such as osteoclast differentiation, osteoblast differentiation and anti-inflammation. The target-pathway network indicated that targets are mainly mapped in multiple signaling pathways, i.e., MAPK, Tumor necrosis factor α (TNF-α), NF-κb and Toll-like receptor pathways. The in vitro results indicated that the compounds ursolic acid and beta-sitosterol effectively inhibited the osteoclast differentiation. SIGNIFICANCE These results systematically dissected that DR exhibits the therapeutic effects of OP by the regulation of immune system-related pathways, which provide novel perspective to drug development of OP.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Kaiyue Xue
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yongguang Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ying Huai
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Wei Wang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zhiping Miao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Kai Dang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Shanfeng Jiang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
16
|
Sun X, Wei B, Peng Z, Fu Q, Wang C, Zhen J, Sun J. Protective effects of Dipsacus asper polysaccharide on osteoporosis in vivo by regulating RANKL/RANK/OPG/VEGF and PI3K/Akt/eNOS pathway. Int J Biol Macromol 2019; 129:579-587. [DOI: 10.1016/j.ijbiomac.2019.02.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 12/17/2022]
|
17
|
Liu L, Wang D, Qin Y, Xu M, Zhou L, Xu W, Liu X, Ye L, Yue S, Zheng Q, Li D. Astragalin Promotes Osteoblastic Differentiation in MC3T3-E1 Cells and Bone Formation in vivo. Front Endocrinol (Lausanne) 2019; 10:228. [PMID: 31040823 PMCID: PMC6476984 DOI: 10.3389/fendo.2019.00228] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Astragalin (AG) is a biologically active flavonoid compound that can be extracted from a number of medicinal plants. However, the effects of AG on osteoblastic differentiation in mouse MC3T3-E1 cells and on bone formation in vivo have not been studied fully. In this study, we found that the activities of alkaline phosphatase (ALP) and mineralized nodules in MC3T3-E1 cells were both significantly increased after treatment with AG (5, 10, and 20 μM). Meanwhile, the mRNA and protein levels of osteoblastic marker genes in MC3T3-E1 cells after AG treatment were markedly increased compared with a control group. In addition, the levels of BMP-2, p-Smad1/5/9, and Runx2 were significantly elevated in AG-treated MC3T3-E1 cells. Moreover, we found that the protein levels of Erk1/2, p-Erk1/2, p38, p-p38, and p-JNK were also significantly increased in AG-treated MC3T3-E1 cells compared to those in the control group. Finally, in vivo experiments demonstrated that AG significantly promoted bone formation in an ovariectomized (OVX)-induced osteoporotic mouse model. This was evidenced by significant increases in the values of osteoblast-related parameters (BFR/BS, MAR, Ob.S/BS, and Ob.N/B.Pm) and bone histomorphometric parameters (BMD, BV/TV, Tb.Th, and Tb.N.) in OVX mice after AG treatment (5, 10, and 20 mg/kg). Collectively, these results demonstrated that AG may promote osteoblastic differentiation in MC3T3-E1 cells via the activation of the BMP and MAPK pathways and promote bone formation in vivo. These novel findings indicated that AG may be a useful bone anabolic agent for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Li Liu
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Dan Wang
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Yao Qin
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Maolei Xu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ling Zhou
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Wenjuan Xu
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Xiaona Liu
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Lei Ye
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Shijun Yue
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiusheng Zheng
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Defang Li
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- *Correspondence: Defang Li
| |
Collapse
|
18
|
Cheng CF, Lin YJ, Tsai FJ, Li TM, Lin TH, Liao CC, Huang SM, Liu X, Li MJ, Ban B, Liang WM, Lin JCF. Effects of Chinese Herbal Medicines on the Risk of Overall Mortality, Readmission, and Reoperation in Hip Fracture Patients. Front Pharmacol 2019; 10:629. [PMID: 31244656 PMCID: PMC6581068 DOI: 10.3389/fphar.2019.00629] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Hip fracture is a major public health concern, with high incidence rates in the elderly worldwide. Hip fractures are associated with increased medical costs, patient dependency on families, and higher rates of morbidity and mortality. Chinese herbal medicine (CHM) is typically characterized as cost-effective and suitable for long-term use with few side effects. To better understand the effects of CHM on hip fracture patients, we utilized a population-based database to investigate the demographic characteristics, cumulative incidence of overall mortality, readmission, reoperation, and patterns of CHM prescription. We found that CHM usage was associated with a lower risk of overall mortality [P = 0.0009; adjusted hazard ratio (HR): 0.47, 95% confidence interval (CI): 0.30-0.73], readmission (P = 0.0345; adjusted HR: 0.67, 95% CI: 0.46-0.97), and reoperation (P = 0.0009; adjusted HR: 0.57, 95% CI: 0.40-0.79) after adjustment for age, type of hip fracture, surgical treatment type, and comorbidities. We also identified the herbal formulas, single herbs, and prescription patterns for the treatment of hip fracture by using association rule mining and network analysis. For hip fracture patients, the most common CHM coprescription pattern was Du-Zhong (DZ) → Xu-Duan (XD), followed by Du-Huo-Ji-Sheng-Tang (DHJST) → Shu-Jing-Huo-Xue-Tang (SJHXT), and Gu-Sui-Bu (GSB) → Xu-Duan (XD). Furthermore, XD was the core prescription, and DZ, GSB, SJHXT, and DHJST were important prescriptions located in cluster 1 of the prescription patterns. This study provides evidence for clinical CHM use as an adjunctive therapy that offers benefits to hip fracture patients.
Collapse
Affiliation(s)
- Chi-Fung Cheng
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Xiang Liu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ming-Ju Li
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Bo Ban
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Wen-Miin Liang
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
- *Correspondence: Wen-Miin Liang, ; Jeff Chien-Fu Lin,
| | - Jeff Chien-Fu Lin
- Department of Statistics, National Taipei University, Taipei, Taiwan
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Wen-Miin Liang, ; Jeff Chien-Fu Lin,
| |
Collapse
|
19
|
Xu H, Yin D, Liu T, Chen F, Chen Y, Wang X, Sheng J. Tea polysaccharide inhibits RANKL-induced osteoclastogenesis in RAW264.7 cells and ameliorates ovariectomy-induced osteoporosis in rats. Biomed Pharmacother 2018; 102:539-548. [DOI: 10.1016/j.biopha.2018.03.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 01/29/2023] Open
|
20
|
Qualitative and quantitative analysis of furofuran lignans, iridoid glycosides, and phenolic acids in Radix Dipsaci by UHPLC-Q-TOF/MS and UHPLC-PDA. J Pharm Biomed Anal 2018. [DOI: 10.1016/j.jpba.2018.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Zhao H, Zhao N, Zheng P, Xu X, Liu M, Luo D, Xu H, Ju D. Prevention and Treatment of Osteoporosis Using Chinese Medicinal Plants: Special Emphasis on Mechanisms of Immune Modulation. J Immunol Res 2018; 2018:6345857. [PMID: 29675436 PMCID: PMC5838472 DOI: 10.1155/2018/6345857] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/05/2017] [Accepted: 12/06/2017] [Indexed: 01/18/2023] Open
Abstract
Numerous studies have examined the pathogenesis of osteoporosis. The causes of osteoporosis include endocrine factors, nutritional status, genetic factors, physical factors, and immune factors. Recent osteoimmunology studies demonstrated that the immune system and immune factors play important regulatory roles in the occurrence of osteoporosis, and people should pay more attention to the relationship between immunity and osteoporosis. Immune and bone cells are located in the bone marrow and share numerous regulatory molecules, signaling molecules, and transcription factors. Abnormal activation of the immune system alters the balance between osteoblasts and osteoclasts, which results in an imbalance of bone remodeling and osteoporosis. The incidence of osteoporosis is also increasing with the aging of China's population, and traditional Chinese medicine has played a vital role in the prevention and treatment of osteoporosis for centuries. Chinese medicinal plants possess unique advantages in the regulation of the immune system and the relationships between osteoporosis and the immune system. In this review, we provide a general overview of Chinese medicinal plants in the prevention and treatment of osteoporosis, focusing on immunological aspects.
Collapse
Affiliation(s)
- Hongyan Zhao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Ning Zhao
- Institute of Clinical Basic Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Zheng
- Jilin Provincial Hospital of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Xiaohong Xu
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Meijie Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Dan Luo
- Traditional Chinese Medicine Hospital of Changping District, Beijing 102200, China
| | - Huihui Xu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dahong Ju
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing 100700, China
| |
Collapse
|
22
|
Wang Q, Zi CT, Wang J, Wang YN, Huang YW, Fu XQ, Wang XJ, Sheng J. Dendrobium officinale Orchid Extract Prevents Ovariectomy-Induced Osteoporosis in Vivo and Inhibits RANKL-Induced Osteoclast Differentiation in Vitro. Front Pharmacol 2018; 8:966. [PMID: 29379436 PMCID: PMC5775521 DOI: 10.3389/fphar.2017.00966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/19/2017] [Indexed: 02/04/2023] Open
Abstract
Background:Dendrobium officinale, a traditional Chinese medical herb with high value that is widely used in Asia, possesses many positive effects on human health, including anti-chronic inflammation, anti-obesity, and immune modulation properties; however, whether D. officinale has inhibitory effects on postmenopausal osteoporosis remains unknown. Objective: We investigated the effects of D. officinale extract (DOE) on ovariectomy-induced bone loss in vivo and on osteoclastogenesis in vitro. Methods:In vivo, female rats were divided into a sham-operated (sham) group and five ovariectomized (OVX) subgroups: OVX with vehicle (OVX), OVX with Xian-Ling-Gu-Bao capsule (240 mg/kg body weight/day), and OVX with low-, medium-, and high-dose DOE (150, 300, and 600 mg/kg body weight/day, respectively). Animals in each group were administered their corresponding treatments for 13 weeks. Body weight, serum biochemical parameters, uterine and femoral physical parameters, bone mineral density (BMD), bone biomechanical properties, and bone microarchitecture were obtained. In vitro, the effects of DOE on osteoclastogenesis were examined using RAW264.7 cells. The effects of DOE on osteoclastogenesis and the expression of osteoclast-specific marker genes and proteins were determined. Results: DOE effectively ameliorated serum biochemical parameters, especially alleviated estradiol (E2) deficiency and maintained calcium and phosphorus homeostasis. DOE improved uterine and femoral physical parameters. In addition, DOE improved femoral BMD and biomechanical properties. DOE significantly ameliorated bone microarchitecture. Moreover, DOE inhibited osteoclastogenesis independent of its cytoxicity and suppressed the expression of osteoclast-specific marker genes and proteins. Conclusion: DOE can effectively prevent ovariectomy-induced bone loss in vivo and inhibit osteoclastogenesis in vitro.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Cheng-Ting Zi
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Jing Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yu-Na Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ye-Wei Huang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xue-Qi Fu
- College of Life Sciences, Jilin University, Changchun, China
| | - Xuan-Jun Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Tea Science, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| |
Collapse
|
23
|
Du W, Li X, Yang Y, Yue X, Jiang D, Ge W, Cai B. Quantitative determination, principal component analysis and discriminant analysis of eight marker compounds in crude and sweated Dipsaci Radix by HPLC-DAD. PHARMACEUTICAL BIOLOGY 2017; 55:2129-2135. [PMID: 28969478 PMCID: PMC6130719 DOI: 10.1080/13880209.2017.1297469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 12/31/2016] [Accepted: 02/15/2017] [Indexed: 05/12/2023]
Abstract
CONTEXT Dipsaci Radix is derived from the dry root of Dipsacus asper Wall.ex Henry (Dipsacaceae). It has attracted increasing attention as one of the most popular and precious herbal medicines in clinical use. OBJECTIVE To develop a HPLC-DAD method for quantitative analysis and quality control of eight active components in crude and sweated Dipsaci Radix. MATERIALS AND METHODS The eight components in Dipsaci Radix were analyzed by HPLC-DAD on an Agilent Eclipse XDB-C18 column within a gradient elution of acetonitrile and 0.05% formic acid aqueous solution. ESI-MS spectra were acquired on a triple quadrupole mass spectrometer. Validation was performed in order to demonstrate linearity, precision, repeatability, stability, and accuracy of the method. The results were processed with principal component analysis (PCA) and discriminant analysis (DA). RESULTS The eight components showed good linearity (R2 > 0.9991) in the ranges of 60.40-1208.00, 151.00-3020.00, 3.06-61.20, 30.76-615.20, 5.13-102.60, 10.17-203.40, 10.20-204.00, and 151.60-3032.00 mg/mL, respectively. The overall recoveries were in the range of 99.03-102.38%, with RSDs ranging from 1.89% to 4.05%. Through PCA, the degree of importance of the eight components in sequence was CA > AVI > IA > LA > LN > IC > IB > CaA. The crude and sweated Dipsaci Radix were distinguished obviously by DA. DISCUSSION AND CONCLUSION The method, using HPLC-DAD analysis in combination with PCA and DA, could provide a more comprehensive and quantitative chemical pattern recognition and quality evaluation to crude and sweated Dipsaci Radix.
Collapse
Affiliation(s)
- Weifeng Du
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoning Li
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Yang
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianke Yue
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongjing Jiang
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weihong Ge
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Baochang Cai
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
24
|
Du W, Yang Y, Jiang D, Ge W, Cai B. Simultaneous Determination of Eight Bioactive Components of Radix Dipsaci by Near-infrared Spectroscopy. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1307384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Weifeng Du
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Yang
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongjing Jiang
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weihong Ge
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Baochang Cai
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
25
|
Gu C, Fu L, Yuan X, Liu Z. Promoting Effect of Pinostrobin on the Proliferation, Differentiation, and Mineralization of Murine Pre-osteoblastic MC3T3-E1 Cells. Molecules 2017; 22:molecules22101735. [PMID: 29035339 PMCID: PMC6151515 DOI: 10.3390/molecules22101735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 12/23/2022] Open
Abstract
Pinostrobin (PI), a natural flavonoid found in a variety of plants, is well known for its rich pharmacological activities. However, its osteogenic function remains unclear. The aim of this study is to evaluate the effect of PI on the proliferation, differentiation, and mineralization of murine pre-osteoblastic MC3T3-E1 cells in vitro using MTT, alkaline phosphatase (ALP) activity, the synthesis of collagen I (Col I) assay, and Von-Kossa staining, respectively. The expression of osteocalcin (OCN) mRNA in cells was detected by real-time PCR. The effect of PI on the differentiation of dexamethasone (DEX)-suppressed cells was also investigated. The results showed that PI greatly promoted the proliferation of MC3T3-E1 cells at 5–80 μg/mL (p < 0.05 or p < 0.01), and caused a significant elevation of ALP activity, Col I content, and mineralization of osteoblasts at 10–40 μg/mL (p < 0.05 or p < 0.01), and the expression levels of OCN gene were greatly upregulated after PI treatment (p < 0.01). Furthermore, PI could rescue the inhibition effect of cell differentiation induced by DEX. Taken together, these results indicated that PI could directly promote proliferation, differentiation, and mineralization of MC3T3-E1 cells and has potential for use as a natural treatment for osteoporosis.
Collapse
Affiliation(s)
- Chengbo Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Linan Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Xiaohan Yuan
- Life Science and Biotechnique Research Center, Northeast Agricultural University, Harbin 150030, China.
| | - Zhiguo Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
26
|
Abstract
OBJECTIVE Orthosiphon stamineus (OS) or Misai Kucing (Java tea) is a popular herbal supplement from Southeast Asia for various metabolic, age-related diseases. This study investigated the potential use of OS leaf extracts to ameliorate osteoporosis in ovariectomized rats. METHODS Fifty-six female Sprague-Dawley rats were randomly allocated into eight groups (n = 7): SHAM (healthy sham control); OVX (ovarietomized) nontreated rats (negative control); OVX + Remifemin (100 mg/kg body weight), and 2% green tea extract (positive controls); OVX + OS 50% ethanolic and aqueous extracts, both at either 150 or 300 mg/kg. After 16 weeks, the rats' bones and blood were evaluated for osteoporosis indicators (protein and mRNA expressions), micro-computed tomography for bone histomorphometry, and three-point bending test for tibia mechanical strength. RESULTS The extracts dose-dependently and significantly (P < 0.05) improved bone strength and flexibility, bone mineral density, bone formation protein markers (P1NP), and bone histomorphometry. All extracts reduced the inflammation biomarker (interleukin-6). The extracts up-regulated osteoblastogenesis (bone morphogenetic protein-2) and collagen-1 synthesis (collagen type 1 alpha-1) mRNA expressions, and down-regulated bone resorption (TNFSF11 and nuclear factor-kappa B) mRNA expressions. Both the water and 50% ethanolic extract were effective. The effective dose is equivalent to 25 to 50 mg/kg extract for humans. CONCLUSIONS The extract showed bone-protective and antiosteoporotic effects (improving bone strength, flexibility, bone density, and bone morphometry) by reducing inflammation and the bone resorption biomarkers, while enhancing bone formation biomarkers and collagen synthesis.
Collapse
|
27
|
Abstract
Drynariae Rhizoma is a kidney-tonifying herb that has a long history in clinical practice for the treatment of bone fractures and joint diseases in China. Flavonoids are considered to be its major active ingredients and are reported to ease bone loss in ovariectomized rats. However, the beneficial effects of the total flavonoids of Drynariae Rhizoma on osteoporosis caused by microgravity or mechanical inactivity remain unknown. This study assessed the effects of total Drynariae Rhizoma flavonoids (DRTF, Qihuang, Beijing, China, national medicine permit No. Z20030007, number of production: 04080081, content of DRTF ≥80%) against bone loss induced by simulated microgravity. A hindlimb unloading tail-suspended rat model was established to determine the effect of DRTF on bone mineral density (BMD), biomechanical strength and trabecular bone microarchitecture. Twenty-eight male Sprague-Dawley rats were divided into four groups: the baseline, control, hindlimb unloading with vehicle (HLU), and hindlimb unloading treated with DRTF (HLU-DRTF, 75 mg/kg/day) groups. Oral DRTF was administered for 4 weeks. The underlying mechanisms of the DRTF actions on disuse-induced osteoporosis are discussed. The results showed that DRTF treatment significantly increased the BMD and mechanical strength of tail-suspended rats. Enhanced bone turnover markers with HLU treatment were attenuated by DRTF administration. Deterioration of trabecular bone induced by HLU was prevented through elevated bone volume/tissue volume (BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th) and decreased trabecular separation (Tb. Sp). The present study provides the first evidence that DRTF prevents bone loss induced by HLU treatment, indicating its potential application in the treatment of disuse-induced osteoporosis.
Collapse
|
28
|
Monmaturapoj N, Srion A, Chalermkarnon P, Buchatip S, Petchsuk A, Noppakunmongkolchai W, Mai-Ngam K. Properties of poly(lactic acid)/hydroxyapatite composite through the use of epoxy functional compatibilizers for biomedical application. J Biomater Appl 2017; 32:175-190. [DOI: 10.1177/0885328217715783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Autcharaporn Srion
- National Metal and Materials Technology Center, Klong Luang, Pathumtani, Thailand
| | | | - Suthawan Buchatip
- National Metal and Materials Technology Center, Klong Luang, Pathumtani, Thailand
| | - Atitsa Petchsuk
- National Metal and Materials Technology Center, Klong Luang, Pathumtani, Thailand
| | | | - Katanchalee Mai-Ngam
- National Metal and Materials Technology Center, Klong Luang, Pathumtani, Thailand
| |
Collapse
|
29
|
Tao Y, Du Y, Li W, Cai B, Di L, Shi L, Hu L. Integrating UHPLC–MS/MS quantification and DAS analysis to investigate the effects of wine-processing on the tissue distributions of bioactive constituents of herbs in rats: Exemplarily shown for Dipsacus asper. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1055-1056:135-143. [DOI: 10.1016/j.jchromb.2017.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 12/24/2022]
|
30
|
Liu FL, Chen CL, Lee CC, Wu CC, Hsu TH, Tsai CY, Huang HS, Chang DM. The Simultaneous Inhibitory Effect of Niclosamide on RANKL-Induced Osteoclast Formation and Osteoblast Differentiation. Int J Med Sci 2017; 14:840-852. [PMID: 28824321 PMCID: PMC5562191 DOI: 10.7150/ijms.19268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/23/2017] [Indexed: 12/21/2022] Open
Abstract
The bone destruction disease including osteoporosis and rheumatoid arthritis are caused by the imbalance between osteoblastogenesis and osteoclastogenesis. Inhibition of the NF-κB pathway was responsible for decreased osteoclastogenesis. Recently many studies indicated that niclosamide, the FDA approved an antihelminth drug, inhibits prostate and breast cancer cells growth by targeting NF-κB signaling pathways. This study evaluated the effects of niclosamide on osteoclast and osteoblast differentiation and function in vitro. In RANKL-induced murine osteoclast precursor cell RAW264.7 and M-CSF/RANKL-stimulated primary murine bone marrow-derived macrophages (BMM), niclosamide dose-dependently inhibited the formation of TRAP-positive multinucleated osteoclasts and resorption pits formation between 0.5uM and 1uM. In addition, niclosamide suppressed the expression of nuclear factor of activated T cells c1 (NFATc1) and osteoclast differentiated-related genes in M-CSF/ RANKL-stimulated BMM by interference with TRAF-6, Erk1/2, JNK and NF-κB activation pathways. However, the cytotoxic effects of niclosamide obviously appeared at the effective concentrations for inhibiting osteoclastogenesis (0.5-1uM) with increase of apoptosis through caspase-3 activation in osteoblast precursor cell line, MC3T3-E1. Niclosamide also inhibited ALP activity, bone mineralization and osteoblast differentiation-related genes expression in MC3T3-E1. Therefore, our findings suggest the new standpoint that niclosamide's effects on bones must be considered before applying it in any therapeutic treatment.
Collapse
Affiliation(s)
- Fei-Lan Liu
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Chun-Liang Chen
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Chia-Chung Lee
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Cheng-Chi Wu
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China.,Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Teng-Hsu Hsu
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China
| | - Chang-Youh Tsai
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China
| | - Hsu-Shan Huang
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Deh-Ming Chang
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taiwan, Republic of China.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taiwan, Republic of China.,Graduate Institutes of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| |
Collapse
|
31
|
Zhang ND, Han T, Huang BK, Rahman K, Jiang YP, Xu HT, Qin LP, Xin HL, Zhang QY, Li YM. Traditional Chinese medicine formulas for the treatment of osteoporosis: Implication for antiosteoporotic drug discovery. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:61-80. [PMID: 27180315 DOI: 10.1016/j.jep.2016.05.025] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteoporosis is a chronic epidemic which can leads to enhanced bone fragility and consequent an increase in fracture risk. Traditional Chinese medicine (TCM) formulas have a long history of use in the prevention and treatment of osteoporosis. Antiosteoporotic TCM formulas have conspicuous advantage over single drugs. Systematic data mining of the existing antiosteoporotic TCM formulas database can certainly help the drug discovery processes and help the identification of safe candidates with synergistic formulations. In this review, the authors summarize the clinical use and animal experiments of TCM formulas and their mechanism of action, and discuss the potential antiosteoporotic activity and the active constituents of commonly used herbs in TCM formulas for the therapy of osteoporosis. MATERIALS AND METHODS The literature was searched from Medline, Pubmed, ScienceDirect, Spring Link, Web of Science, CNKI and VIP database from 1989 to 2015, and also collected from Chinese traditional books and Chinese Pharmacopoeia with key words such as osteoporosis, osteoblast, osteoclast, traditional Chinese medicine formulas to identify studies on the antiosteoporotic effects of TCM formulas, herbs and chemical constituents, and also their possible mechanisms. RESULTS Thirty-three TCM formulas were commonly used to treat osteoporosis, and showed significant antiosteoporotic effects in human and animal. The herb medicines and their chemical constituents in TCM formulas were summarized, the pharmacological effects and chemical constituents of commonly used herbs in TCM formulas were described in detail. The action mechanisms of TCM formulas and their chemical constituents were described. Finally, the implication for the discovery of antiosteoporotic leads and combinatory ingredients from TCM formulas were prospectively discussed. CONCLUSIONS Clinical practice and animal experiments indicate that TCM formulas provide a definite therapeutic effect on osteoporosis. The active constituents in TCM formulas are diverse in chemical structure, and include flavonoids, lignans, saponins and iridoid glycosides. Antiosteoporotic mechanism of TCM formulas and herbs involves multi regulatory pathways, such as Wnt/β-catenin, BMP/Smad, MAPK pathway and RANKL/OPG system. Phytochemicals from TCM formulas and their compositional herb medicines offer great potential for the development of novel antiosteoporotic drugs. The active ingredients in TCM formulas can be developed in combination as potent drugs, which may exhibit better antiosteoporotic effects compared to the individual compound.
Collapse
Affiliation(s)
- Nai-Dan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Bao-Kang Huang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, LiverpoolL3 3AF, UK
| | - Yi-Ping Jiang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hong-Tao Xu
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hai-Liang Xin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Qiao-Yan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yi-Min Li
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
32
|
Park MH, Kim S, Cheon J, Lee J, Kim BK, Lee SH, Kong C, Kim YY, Kim M. Effects of Scytosiphon lomentaria on osteoblastic proliferation and differentiation of MC3T3-E1 cells. Nutr Res Pract 2016; 10:148-53. [PMID: 27087897 PMCID: PMC4819124 DOI: 10.4162/nrp.2016.10.2.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/12/2015] [Accepted: 12/04/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND/OBJECTIVES Bone formation and bone resorption continuously occur in bone tissue to prevent the accumulation of old bone, this being called bone remodeling. Osteoblasts especially play a crucial role in bone formation through the differentiation and proliferation. Therefore, in this study, we investigated the effects of Scytosiphon lomentaria extract (SLE) on osteoblastic proliferation and differentiation in MC3T3-E1 cells. MATERIALS/METHODS A cell proliferation assay, alkaline phosphatase (ALP) activity assay, alizarin red staining and protein expression analysis of osteoblastic genes were carried out to assess the osteoblastic proliferation and differentiation. RESULTS The results indicated that treatment of SLE promoted the proliferation of MC3T3-E1 cells and improved ALP activity. And, SLE treatment significantly promoted mineralized nodule formation compared with control. In addition, cells treated with SLE significantly upregulated protein expression of ALP, type 1 collagen, bone morphogenetic protein 2, runt-related transcription factor 2, osterix, and osteoprotegerin. CONCLUSIONS The results demonstrate that SLE promote differentiation inducement and proliferation of osteoblasts and, therefore may help to elucidate the transcriptional mechanism of bone formation and possibly lead to the development of bone-forming drugs.
Collapse
Affiliation(s)
- Mi Hwa Park
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, 140 Baegyang-daero, 700beon-gil, Sasang-Gu, Busan 46958, Korea
| | - Seoyeon Kim
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, 140 Baegyang-daero, 700beon-gil, Sasang-Gu, Busan 46958, Korea
| | - Jihyeon Cheon
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, 140 Baegyang-daero, 700beon-gil, Sasang-Gu, Busan 46958, Korea
| | - Juyeong Lee
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, 140 Baegyang-daero, 700beon-gil, Sasang-Gu, Busan 46958, Korea
| | - Bo Kyung Kim
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, 140 Baegyang-daero, 700beon-gil, Sasang-Gu, Busan 46958, Korea
| | - Sang-Hyeon Lee
- Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University, Busan 46958, Korea
| | - Changsuk Kong
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, 140 Baegyang-daero, 700beon-gil, Sasang-Gu, Busan 46958, Korea
| | - Yuck Yong Kim
- ISFOOD Co. LTD., 7, Hoenggye-gil, Ilgwang-myeon, Gijang-gun, Busan 46048, Korea
| | - Mihyang Kim
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, 140 Baegyang-daero, 700beon-gil, Sasang-Gu, Busan 46958, Korea
| |
Collapse
|
33
|
Zong S, Zeng G, Fang Y, Peng J, Zou B, Gao T, Zhao J. The effects of α-zearalanol on the proliferation of bone-marrow-derived mesenchymal stem cells and their differentiation into osteoblasts. J Bone Miner Metab 2016; 34:151-60. [PMID: 25944420 DOI: 10.1007/s00774-015-0659-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 02/01/2015] [Indexed: 11/24/2022]
Abstract
The aim of this study was to explore the effects of α-zearalanol (α-ZAL) on the proliferation of mouse bone-marrow-derived mesenchymal stem cells (BMSCs) and their differentiation into osteoblasts. Six- to eight-week-old BALB/C mice were used either as recipients or as bone marrow donors. BMSCs were isolated and collected using a differential adhesion method, with use of 10 % fetal bovine serum and Iscove's modified Dulbecco's medium. After the third generation, the BMSCs were randomly placed into the following subgroups: a control group, an osteogenic medium (OM) group, a 17β-estradiol group, an α-ZAL 10(-7) mol/L group, an α-ZAL 10(-6) mol/L group, and an α-ZAL 10(-5) mol/L group. Flow cytometry was used to identify the BMSCs collected from the bone marrow. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test was performed, and markers of the osteoblasts were measured in the different subgroups. In addition, expression of osteoprotegerin and expression of receptor activator of nuclear factor κB ligand were examined using Western blot. In contrast to the control and OM groups, BMSCs in the α-ZAL groups exhibited long fusiform shapes, and contact inhibition was observed when the cells were closely packed. After induction, the BMSCs grew well and exhibited triangular, star, polygonal, or irregular shapes. Clumps and multiple cells were evident. The trends of the proliferation and differentiation for the control, OM, 17β-estradiol, and α-ZAL groups were similar. Compared with the control and OM groups, in the α-ZAL groups the expression levels of alkaline phosphatase, procollagen type I N-terminal propeptide, bone morphogenetic protein 2, and osteocalcin were significantly increased (p < 0.05). In addition, α-ZAL inhibited osteoclastogenesis by increasing the expression of osteoprotegerin and decreasing the expression of nuclear factor κB ligand. In conclusion, α-ZAL can increase the proliferation of BMSCs and their differentiation into osteoblasts and can effectively suppress osteoclastogenesis.
Collapse
Affiliation(s)
- Shaohui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Gaofeng Zeng
- College of Public Hygiene, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Ye Fang
- Graduate School, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jinzhen Peng
- Graduate School, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Bin Zou
- Graduate School, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Taihang Gao
- Graduate School, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jingmin Zhao
- Department of Osteopathia, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
34
|
Che CT, Wong MS, Lam CWK. Natural Products from Chinese Medicines with Potential Benefits to Bone Health. Molecules 2016; 21:239. [PMID: 26927052 PMCID: PMC6274145 DOI: 10.3390/molecules21030239] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 01/23/2023] Open
Abstract
Osteoporosis is a progressive, systemic bone disorder characterized by loss of bone mass and microstructure, leading to reduced bone strength and increased risk of fracture. It is often associated with reduced quality of life and other medical complications. The disease is common in the aging population, particularly among postmenopausal women and patients who receive long-term steroidal therapy. Given the rapid growth of the aging population, increasing life expectancy, the prevalence of bone loss, and financial burden to the healthcare system and individuals, demand for new therapeutic agents and nutritional supplements for the management and promotion of bone health is pressing. With the advent of global interest in complementary and alternative medicine and natural products, Chinese medicine serves as a viable source to offer benefits for the improvement and maintenance of bone health. This review summarizes the scientific information obtained from recent literatures on the chemical ingredients of Chinese medicinal plants that have been reported to possess osteoprotective and related properties in cell-based and/or animal models. Some of these natural products (or their derivatives) may become promising leads for development into dietary supplements or therapeutic drugs.
Collapse
Affiliation(s)
- Chun-Tao Che
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Man Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
35
|
Effects of "Danzhi Decoction" on Chronic Pelvic Pain, Hemodynamics, and Proinflammatory Factors in the Murine Model of Sequelae of Pelvic Inflammatory Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:547251. [PMID: 27087818 PMCID: PMC4806651 DOI: 10.1155/2015/547251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 11/01/2015] [Accepted: 12/07/2015] [Indexed: 12/13/2022]
Abstract
Objective. To evaluate the effect of Danzhi decoction (DZD) on chronic pelvic pain (CPP), hemodynamics, and proinflammatory factors of sequelae of pelvic inflammatory diseases (SPID) in murine model. Methods. SPID mice were randomly treated with high-dose DZD, mid-dose DZD, low-dose DZD, aspirin, and vehicle for 3 estrous circles. The Mouse Grimace Scale (MGS) was performed to evaluate CPP; blood flows of the upper genital tract, pelvic wall, and mesentery were used to assess hemodynamics in SPID mice; expressions of vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2), and osteopontin (OPN) were measured by Western blot and immunochemistry. Results. Treatment with dose-dependent DZD significantly decreased the MGS scores, accelerated blood flows of the pelvis, and reduced expressions of VEGF, Ang-2, and OPN in the upper genital tract. Conclusions and Discussions. DZD was effective in relieving CPP and improving hemodynamics of the pelvic blood-stasis microenvironment in SPID mice. There was a relationship between CPP and the pelvic blood-stasis microenvironment. Furthermore, DZD might play a positive role in the anti-inflammatory process.
Collapse
|
36
|
Weng ZB, Gao QQ, Wang F, Zhao GH, Yin FZ, Cai BC, Chen ZP, Li WD. Positive skeletal effect of two ingredients of Psoralea corylifolia L. on estrogen deficiency-induced osteoporosis and the possible mechanisms of action. Mol Cell Endocrinol 2015; 417:103-13. [PMID: 26419930 DOI: 10.1016/j.mce.2015.09.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/03/2015] [Accepted: 09/24/2015] [Indexed: 11/16/2022]
Abstract
Estrogen replacement therapy (ERT) is utilized as a major regime for treatment of postmenopausal osteoporosis at present. However, long-term supplement of estrogen may cause uterine hyperplasia and hypertension leading to a high risk of endometrial cancer and breast cancer. Psoralea corylifolia L. has long been used as tonic and food additives in many countries. Previous studies had found two ingredients in P. corylifolia L.: bavachin and bakuchiol exhibited osteoblastic activity. The present study was designed to investigate the protective effect of bakuchiol and bavachin on ovariectomy-induced bone loss and explore the possible mechanism. In vivo, bakuchiol and bavachin could prevented estrogen deficiency-induced bone loss in ovariectomized rats without uterotrophic activity. In vitro studies suggested that bakuchiol and bavachin induced primary human osteoblast differentiation by up-regulating the Wnt signalling pathway. This study suggests that such a bone-protective role makes them a promising and safe estrogen supplement for the ERT.
Collapse
Affiliation(s)
- Ze-Bin Weng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China; School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, China
| | - Qian-Qian Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing, 210046, China
| | - Fang Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Gen-Hua Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing, 210046, China
| | - Fang-Zhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing, 210046, China
| | - Bao-Chang Cai
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing, 210046, China
| | - Zhi-Peng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing, 210046, China.
| | - Wei-Dong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing, 210046, China.
| |
Collapse
|
37
|
Huang X, Huang S, Guo F, Xu F, Cheng P, Ye Y, Dong Y, Xiang W, Chen A. Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro. Mol Med Rep 2015; 13:613-22. [PMID: 26648136 PMCID: PMC4686069 DOI: 10.3892/mmr.2015.4627] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 06/23/2015] [Indexed: 12/30/2022] Open
Abstract
Zoledronic acid (ZA), which is one of the most potent and efficacious bisphosphonates, has been commonly used in clinical practice for the treatment of various bone disorders. The extensive use of ZA has been associated with increasing occurrence of jaw complications, now known as bisphosphonate-associated osteonecrosis of the jaw (BRONJ). However, the mechanism underlying BRONJ remains to be fully elucidated. The aim of the present study was to investigate the effects of different concentrations of ZA on the MC3T3-E1 murine preosteoblast cell line cells and examine the possible pathogenesis of BRONJ. In the present study, the effect of ZA on the viability, apoptosis, differentiation and maturation of MC3T3-E1 cells, as well as its relevant molecular mechanism, were examined The results of a Cell Counting Kit 8 assay, a flow cytometric Annexin-V/propidium iodide assay and western blot analysis demonstrated that ZA exhibited a significant inhibition of cell viability and induction of apoptosis at concentrations >10 µM. Subsequently, the effect of ZA on cell differentiation at concentrations <1 µM were investigated. In this condition, ZA inhibited bone nodule formation and decreased the activity of alkaline phosphatase. The results of reverse transcription-quantitative polymerase chain reaction and western blot analyses indicated that ZA downregulated the expression levels of the marker genes and proteins associated with osteogenic differentiation. Further investigation revealed that the suppression of differentiation by ZA was associated with decreased expression of bone morphogenetic protein-2 (BMP-2) and downregulation of the phosphorylation levels in the downstream extracellular signal-regulated kinase 1/2 and p38 pathways. These adverse effects of ZA were observed to be concentration-dependent. The results from the present study suggested that ZA at higher concentrations induces cytotoxicity towards osteoblasts, and ZA at lower concentrations suppresses osteoblast differentiation by downregulation of BMP-2. These results assist in further understanding the mechanisms of BRONJ.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Shilong Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fengjin Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fei Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yaping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yonghui Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wei Xiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
38
|
Liao HH, Yeh CC, Lin CC, Chen BC, Yeh MH, Chang KM, Sun MF, Yen HR. Prescription patterns of Chinese herbal products for patients with fractures in Taiwan: A nationwide population-based study. JOURNAL OF ETHNOPHARMACOLOGY 2015; 173:11-19. [PMID: 26187277 DOI: 10.1016/j.jep.2015.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has been used in the treatment of fracture for thousands of years. However, large-scale surveys examing the utilization of Chinese herbal products (CHPs) for treating fractures and their related symptoms are lacking. This study aimed to investigate the prescription patterns of CHPs among patients with fractures in Taiwan. MATERIALS AND METHODS The TCM usage in patients with fractures was analyzed using a sample of one million individuals randomly selected from the National Health Insurance Research Database who were newly diagnosis with fractures in 2001-2008, with a followed-up period through 2010. RESULTS We identified 115,327 patients who were newly diagnosed with fractures in the study population. Among them, 4.97% (n=5731) adjunctively utilized TCM for fracture treatment. TCM users were mostly young or middle-aged, female, and resided in highly urbanized areas. With regard to the comorbidities of fractures, TCM users had a lower prevalence of coronary artery disease, chronic obstructive lung disease, diabetes mellitus, hypertension and stroke than non-TCM users, except for osteoporosis. Shu-jing-huo-xue-tang was the most frequently prescribed Chinese herbal formula, while Rhizoma Drynariae (Gu-sui-bu) was the most common single herb for patients with fractures. The CHPs were found to cover not only bone healing but also fracture-related symptoms. TCM users had lower medical expenditure for hospitalization for the first six months after incident fractures than non-TCM users (1749±2650 versus 2274±3159 US dollars, p<0.0001). CONCLUSIONS Our study identified the TCM utilization for patients with fractures in Taiwan. Integration of TCM treatment reduced the medical costs for hospitalization. Further basic research and clinical studies to investigate the mechanism and clinical efficacies of CHPs are warranted.
Collapse
Affiliation(s)
- Hou-Hsun Liao
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
| | - Chia-Chou Yeh
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan; Department of Chinese Medicine, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
| | - Che-Chen Lin
- Health Data Management Office, China Medical University Hospital, Taichung, Taiwan
| | - Bor-Chyuan Chen
- Department of Chinese Medicine, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
| | - Ming-Hsien Yeh
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
| | - Kuo-Ming Chang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Mao-Feng Sun
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hung-Rong Yen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
39
|
Wang X, He Y, Guo B, Tsang MC, Tu F, Dai Y, Yao Z, Zheng L, Xie X, Wang N, Yao X, Zhang G, Qin L. In vivo screening for anti-osteoporotic fraction from extract of herbal formula Xianlinggubao in ovariectomized mice. PLoS One 2015; 10:e0118184. [PMID: 25695519 PMCID: PMC4335011 DOI: 10.1371/journal.pone.0118184] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/04/2015] [Indexed: 12/21/2022] Open
Abstract
Background and Objectives Traditional Chinese Medicine (TCM) Fufang or formula Xianlinggubao (XLGB) is a prescribed TCM drug in China registered for prevention and treatment of osteoporosis. Fufang in TCM is comprised of a group of herbal compounds contributing in group to the treatment efficacy. The present study aims to identify the bioactive fraction(s) in XLGB extract that account(s) dominantly for its osteogenic effects. Methods The extract of XLGB formula was separated into three fractions using chromatography, i.e., XLGB-A, XLGB-B and XLGB-C. They were administrated to 4-month old ovariectomized (OVX) mice for 6 weeks to determine which bioactive fraction(s) were more effective for preventing OVX-induced bone loss evaluated by microCT, biomechanical testing and biochemical markers. The main peaks of the key fraction were identified using reference compounds isolated from the fraction. In addition, the effects of the composite compounds in XLGB-B on osteoblasts’ proliferation and mineralization were evaluated in UMR 106 cells. Results XLGB-B with a yield of 13.0% from herbal Fufang XLGB was identified as the most potential one among the three fractions for prevention of OVX-induced bone loss confirmed with bone mass, bone microarchitecture, bone strength and bone turnover markers. Nine compounds in HPLC fingerprint were identified in the XLGB-B fraction, including phenylpropanoids from Herba Epimedii, terpenes from Radix Dipsaci and coumarins from Fructus Psoraleae. In addition, the identified compounds effectively promoted proliferation and/or mineralization of osteoblast-like UMR 106 cells in vitro. Conclusion XLGB-B with defined phytochemical structures was screened as the key fraction that demonstrated preventive effects on OVX-induced bone loss in mice. The present study laid down a foundation towards a new generation of herbal Fufang characterized with “less herbal materials for achieving equal treatment efficacy” in development strategy of TCM for prevention of OVX-induced osteoporosis.
Collapse
Affiliation(s)
- Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical Engineering and Health Tec, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yixin He
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Baosheng Guo
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Man-Ching Tsang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fengjuan Tu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yi Dai
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhihong Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xinhui Xie
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Nan Wang
- Translational Medicine R&D Center, Institute of Biomedical Engineering and Health Tec, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- * E-mail: (LQ); (XY); (GZ)
| | - Ge Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail: (LQ); (XY); (GZ)
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical Engineering and Health Tec, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail: (LQ); (XY); (GZ)
| |
Collapse
|
40
|
Niu YB, Kong XH, Li YH, Fan L, Pan YL, Li CR, Wu XL, Lu TL, Mei QB. Radix Dipsaci total saponins stimulate MC3T3-E1 cell differentiation via the bone morphogenetic protein-2/MAPK/Smad-dependent Runx2 pathway. Mol Med Rep 2015; 11:4468-72. [PMID: 25625570 DOI: 10.3892/mmr.2015.3249] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 12/09/2014] [Indexed: 11/06/2022] Open
Abstract
Radix Dipsaci total saponins (RTS) are primary active components of Radix Dipsaci, which is administered orally for the treatment of osteoporosis according to Chinese Medicine. RTS have also been shown to reduce the risk of bone fractures in rats. However, the detailed molecular mechanisms underlying their action remain elusive. In the present study, the ability of RTS to increase alkaline phosphatase activity, osteocalcin levels and the degree of mineralization was investigated in MC3T3‑E1 mouse osteoblast precursor cells. In addition, the associated molecular mechanism was detected. The results revealed that RTS exerted an effect on osteoblastic maturation and differentiation. Induction of differentiation by RTS was associated with an increase in the expression levels of bone morphogenetic protein‑2 (BMP‑2), phosphorylated (P)‑Smad1/5/8, P‑ERK1/2, P‑p38 and Runt‑related transcription factor 2 (Runx2). Blocking BMP‑2 expression with noggin significantly reduced the levels of osteoblastic differentiation and subsequently attenuated the expression levels of P‑Smad1/5/8, P‑ERK1/2, P‑p38 and Runx2. This indicated that RTS induced osteoblastic differentiation through BMP‑2/mitogen‑activated protein kinase/Smad1/5/8‑dependent Runx2 signaling pathways and that it may be a promising agent for enhancing bone formation.
Collapse
Affiliation(s)
- Yin-Bo Niu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Xiang-He Kong
- Graduate School of Chang'an University, Xi'an, Shaanxi 710064, P.R. China
| | - Yu-Hua Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Li Fan
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Ya-Lei Pan
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Chen-Rui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Xiang-Long Wu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Ting-Li Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Qi-Bing Mei
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| |
Collapse
|
41
|
Edouard MJ, Miao L, Fan GW, Ojong BBO, Zhen H, Zhang J, Gao XM, Zhu Y. Yang-tonifying traditional Chinese medicinal plants and their potential phytoandrogenic activity. Chin J Nat Med 2015; 12:321-34. [PMID: 24856755 DOI: 10.1016/s1875-5364(14)60040-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Indexed: 12/18/2022]
Abstract
The concept of phytoandrogens, plants that contain androgens or those that stimulate androgenic activity in men, is relatively new. In traditional Chinese medicine a number of phytoandrogens are classified in medicinal plant restoratives for reinforcing yang, and they find their application in the treatment of the kidney yang deficiency diseases. In this review, the phytoandrogens used in traditional Chinese medicine are listed, and their proven applications in the treatment of kidney yang deficiency diseases, such as sexual disorders, cancer, and obesity and associated metabolic syndromes are presented. As a background, the mechanism of action of androgens, their synthesis and metabolism, the interrelations of androgens and estrogens, as well as the state of art methods to detect and analyze these hormonal activities in medicinal plants are discussed.
Collapse
Affiliation(s)
- Munyangaju Jose Edouard
- Tianjin State Key Laboratory of Modern Chinese Medicine and Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Lin Miao
- Tianjin State Key Laboratory of Modern Chinese Medicine and Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Guan-Wei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine and Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Barnabas Bessem Orang Ojong
- Tianjin State Key Laboratory of Modern Chinese Medicine and Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Hu Zhen
- Tianjin State Key Laboratory of Modern Chinese Medicine and Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Ju Zhang
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xiu-Mei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine and Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine and Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Molecular Cardiology Research Institute, Tufts Medical Center, 750 Washington St., Boston, MA 02111, USA.
| |
Collapse
|
42
|
Liu BQ, Gong X, Jin Z. Effect of Danzhi decoction on expression of angiogenesis factors in patients with sequelae of pelvic inflammatory disease. ASIAN PAC J TROP MED 2014; 7:985-90. [PMID: 25479628 DOI: 10.1016/s1995-7645(14)60173-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/10/2014] [Accepted: 11/15/2014] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To investigate the effects of traditional Chinese medicine, Danzhi decoction, on the expression angiogenesis factors in human endometrial cells during the sequelae of pelvic inflammatory disease (SPID) and explore the role of Danzhi decction in improving the blood stasis microenvironment of SPID. METHODS A three-dimensional (3D) co-culture system including human vascular endothelial cells (VECs), endometrial stromal cells and glandular epithelial cells was established in vitro and treated with Danzhi decoction, sterilized water and aspirin respectively. A Milliplex multifunctional liquid chip technique was used to measure the expression levels of vascular endothelial growth factor (VEGF)-A/C/D, fibroblast growth factor -1/2, angiopoietin-2, epidermal growth factor (EGF), HB-EGF, bone morphogenetic protein-9, endoglin, endothelin-1, granulocyte colony stimulating factor, hepatocyte growth factor, interleukin-8, follistatin, placenta growth factor and leptin. The location of angiogenesis factors was monitored by immunofluorescence labeling and confocal laser scanning microscope 3D reconstruction. RESULTS Endometrial stromal cells and glandular epithelial cells were isolated and primary cultured for establishing a 3D co-culture system. The levels of VEGF-A/C/D in Danzhi decoction group and aspirin group were significantly lower than those in mock group (P<0.05), while there was no significant difference between Danzhi decoction group and aspirin group (P>0.05). Furthermore, the alterative location of VEGF-A/C/D was observed in the cytoplasm of endometrial glandular epithelial cells. CONCLUSIONS Danzhi decoction may inhibit the expression of VEGF in the blood stasis microenvironment of SPID by targeting the cytoplasm of endometrial glandular epithelial cell.
Collapse
Affiliation(s)
- Bao-Qin Liu
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xin Gong
- Department of Gynecology, Oriental Hospital of Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhe Jin
- Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
43
|
Kim MB, Song Y, Hwang JK. Kirenol stimulates osteoblast differentiation through activation of the BMP and Wnt/β-catenin signaling pathways in MC3T3-E1 cells. Fitoterapia 2014; 98:59-65. [DOI: 10.1016/j.fitote.2014.07.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/13/2014] [Accepted: 07/15/2014] [Indexed: 11/27/2022]
|
44
|
Geng JL, Dai Y, Yao ZH, Qin ZF, Wang XL, Qin L, Yao XS. Metabolites profile of Xian-Ling-Gu-Bao capsule, a traditional Chinese medicine prescription, in rats by ultra performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry analysis. J Pharm Biomed Anal 2014; 96:90-103. [DOI: 10.1016/j.jpba.2014.03.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 11/28/2022]
|
45
|
Effects of desalted duck egg white peptides and their products on calcium absorption in rats. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.03.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Antiosteoporosis effect of radix scutellariae extract on density and microstructure of long bones in tail-suspended sprague-dawley rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:753703. [PMID: 24223617 PMCID: PMC3809931 DOI: 10.1155/2013/753703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/11/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022]
Abstract
Radix Scutellariae (RS), a medicinal herb, is extensively employed in traditional Chinese medicines and modern herbal prescriptions. Two major flavonoids in RS were known to induce osteoblastic differentiation and inhibit osteoclast differentiation, respectively. This study aimed to investigate the effect of Radix Scutellariae extract (RSE) against bone loss induced by mechanical inactivity or weightlessness. A hindlimb unloading tail-suspended rat model (TS) was established to determine the effect of RSE on bone mineral density and bone microarchitecture. Treatment of RSE at 50 mg/kg/day and alendronate (ALE) at 2 mg/kg/day as positive control for 42 days significantly increased the bone mineral density and mechanical strength compared with TS group. Enhanced bone turnover markers by TS treatment were attenuated by RSE and ALE administration. Deterioration of bone trabecula induced by TS was prevented. Moreover, both treatments counteracted the reduction of bone volume fraction, trabecular thickness and number, and connectivity density. In conclusion, RSE was demonstrated for the first time to prevent osteoporosis induced by TS treatment, which suggests the potential application of RSE in the treatment of disuse-induced osteoporosis.
Collapse
|
47
|
Li J, Hou Y, Zhang S, Ji H, Rong H, Qu G, Liu S. Excess iron undermined bone load-bearing capacity through tumor necrosis factor-α-dependent osteoclastic activation in mice. Biomed Rep 2012; 1:85-88. [PMID: 24648899 DOI: 10.3892/br.2012.6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/31/2012] [Indexed: 12/17/2022] Open
Abstract
Iron overload has been associated with bone mass loss. To elucidate the effects of excess iron on bone metabolism, an iron-overloading mouse model was established by administering iron-dextran at 250 mg/kg to female BALB/c mice. After 4 weeks, the mice were sacrificed and the biomechanical properties of the femurs were examined. The results suggested a notable decrease of the maximal bending stress and the modulus of bending elasticity in the femurs obtained from the excess iron-treated mice compared to the control mice. The levels of the serum osteocalcin, C-telopeptide of type I collagen (CTX-1) and tumor necrosis factor-α (TNF-α) were measured in order to investigate the underlying mechanism responsible for the excess iron-induced bone strength reduction. Overall, the results suggested that iron overload resulted in a marked reduction of bone load-bearing capacity through a TNF-triggered osteoclast differentiation and resorption mechanism.
Collapse
Affiliation(s)
- Junping Li
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250062; ; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Yanli Hou
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250062; ; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Shuping Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Hong Ji
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250062
| | - Haiqin Rong
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250062
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| |
Collapse
|