1
|
Wang Y, Ma D, Wang C, Zhang X, Tang M, Hu J, Li F, Gao J, Wu Y. The Relationship Between the Heterogeneity of Lumbar Vertebral Trabecular Bone Mineral Density Distribution and Osteoporotic Vertebral Fractures. Calcif Tissue Int 2025; 116:49. [PMID: 40067443 DOI: 10.1007/s00223-025-01342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/06/2025] [Indexed: 05/13/2025]
Abstract
This study aims to investigate the relationship between the spatial distribution and heterogeneity of lumbar vertebral trabecular volumetric bone mineral density (vBMD) and osteoporotic vertebral fractures(OVF). This retrospective study included the L1 and L2 vertebrae of 143 participants with osteoporotic vertebral fractures and 429 age- and sex-matched no-fractured controls. Spatial distribution was assessed using the superior/middle and inferior/middle ratios, while heterogeneity was indicated by the quartile coefficient of variation (QCV) and interquartile range (IQR). We used QCT to measure the integral vBMD of the vertebra and the regional vBMD in the superior, middle, and inferior subregions. QCV and IQR were computed for both integral vertebrae and three subregions using voxel values from CT images. Differences between fracture and control groups were analyzed after stratification by age and sex. T-tests and Wilcoxon rank-sum tests assessed differences in spatial distribution and heterogeneity between fracture and control groups. Conditional logistic regression was employed to evaluate the associations between spatial distribution and heterogeneity with osteoporotic vertebral fractures. Trabecular vBMD was higher in the middle subregion of the vertebrae than the superior and inferior subregions. The fracture group had lower mean integral vBMD than controls. In terms of the spatial distribution, significant differences in the superior/middle and inferior/middle ratios of the L1 vertebra were observed between the fracture and control groups in the female 40-60 years group. The superior/middle ratio of the L1 vertebra in males was positively correlated with the fracture risk. Regarding heterogeneity, the fracture group had a higher QCV than the control group. QCV was positively correlated with fracture risk, with no significant variation between sexes. The spatial distribution and heterogeneity of trabecular vBMD are crucial for predicting vertebral fracture risk. These indicators are essential for fracture risk assessment and may inform prevention and treatment strategies.
Collapse
Affiliation(s)
- Yan Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 4500052, China
| | - Duoshan Ma
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 4500052, China
| | - Chunyu Wang
- Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 4500052, China
| | - Xinxin Zhang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 4500052, China
| | - Mengna Tang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 4500052, China
| | - Jishuai Hu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 4500052, China
| | - Faxiang Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 4500052, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 4500052, China
| | - Yan Wu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 4500052, China.
| |
Collapse
|
2
|
Cavazzoni G, Pasini M, Le Maitre CL, Dall'Ara E, Palanca M. Degeneration of the nucleus pulposus affects the internal volumetric strains and failure location of adjacent human metastatic vertebral bodies. Acta Biomater 2025; 194:258-269. [PMID: 39798636 DOI: 10.1016/j.actbio.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Intervertebral disc (IVD) degeneration is suspected to affect the distribution of stress and strain near the vertebral endplates and in the underlying bone. This scenario is worsened by the presence of metastatic lesions on the vertebrae (primarily thoracic vertebrae (60-80 %)) which increase the risk of fracture. As such, this study aimed to evaluate the effect of IVD degeneration on the internal volumetric strains and failure modes of human metastatic vertebral bodies. Five human thoracic spinal segments including one vertebra with lytic metastases and one radiologically healthy vertebra (control) were in situ tested in pure compression within a μCT scanner (isotropic voxel size = 39μm). Each specimen was tested in the elastic regime before and after inducing mock IVD degeneration (enzymatic degeneration with collagenase); and at failure after IVD degeneration. The volumetric strain field was measured using a global Digital Volume Correlation approach (BoneDVC). After IVD degeneration, larger maximum (+187 %, P = 0.002, 95 % CI= [-4447, -1209]) and minimum (+174 %, P = 0.002, 95% CI= [1679, 4258]) principal strains were observed in both metastatic and control vertebrae, with peak differences in correspondence of the IVD anulus fibrosus. IVD degeneration caused a transversal fracture pattern in the vertebrae with failure location onset in the middle portion of the vertebral body and in the cortical shell. In conclusion, IVD degeneration was found to be a key factor in determining the failure mode, suggesting the clinical relevance of including IVD level of degeneration to assess patients' risk of spinal instability. STATEMENT OF SIGNIFICANCE: Vertebrae can be affected by pathologies, like bone metastases, while intervertebral discs tend to degenerate during life. Generally, these structures and pathologies are studied separately. In this study, we explored the effects of artificial intervertebral disc degeneration on the mineralised tissues of the vertebrae with metastases. We observed that the induced intervertebral disc degeneration changes the mechanical behaviour of the vertebral trabecular bone. We believe that the findings of this study may influence the scientific community to develop new clinical tools for the prediction of the risk of fracture in vertebrae with spinal metastases, including the degeneration of the intervertebral discs as a parameter.
Collapse
Affiliation(s)
- Giulia Cavazzoni
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Margherita Pasini
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Christine L Le Maitre
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Barber House, 387 Glossop Road, Sheffield S10 2HQ, UK; Insigneo Institute, The University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, UK
| | - Enrico Dall'Ara
- Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Barber House, 387 Glossop Road, Sheffield S10 2HQ, UK; Insigneo Institute, The University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, UK
| | - Marco Palanca
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
3
|
Luan S, Morgan EF. A data-driven framework for developing a unified density-modulus relationship for the human lumbar vertebral body. J Mech Behav Biomed Mater 2025; 163:106888. [PMID: 39823784 DOI: 10.1016/j.jmbbm.2025.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/20/2025]
Abstract
Despite the broad agreement that bone stiffness is heavily dependent on the underlying bone density, there is no consensus on a unified relationship that applies to both cancellous and cortical compartments. Bone from the two compartments is generally assessed separately, and few mechanical test data are available for samples from the transitional regions between them. In this study, we present a data-driven framework integrating experimental testing and numerical modeling of the human lumbar vertebra through an energy balance criterion, to develop a unified density-modulus relationship across the entire vertebral body, without the necessity of differentiation between trabecular and cortical regions. A dataset of 25 spinal segments harvested from fresh-frozen human spines consisting of L1 vertebrae with adjacent intervertebral disks and neighboring T12 and L2 endplates was examined through a systematic process. Each specimen was subjected to axial compression using a custom-designed radiolucent device, and the deformation at multiple points during the ramp was quantified using digital volume correlation applied to the time-lapse series of microcomputed tomography images acquired during loading. A finite element model of each specimen was constructed from quantitative computed tomography images, with the experimental displacement fields imposed to replicate the observed deformation. The optimal density-modulus relationship, both in exponential and polynomial forms, was then determined by using data-driven techniques to match the numerical strain energy with the experimental external work. The resulting relationships effectively recovered bone tissue modulus at the microscale. Subsequently, the unified relationships were applied to investigate the vertebral structure-property correlations at the macroscale: as expected, compressive stiffness exhibited a moderate correlation with bone mineral density, whereas bending stiffness was revealed to correlate strongly with bone mineral content. These findings support the accuracy of the developed density-modulus relationships for the vertebral body and indicate the potential of the proposed framework to extend to other properties of interest such as vertebral strength and toughness.
Collapse
Affiliation(s)
- Shengzhi Luan
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA; Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA 02215, USA.
| | - Elise F Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA; Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
4
|
Cavazzoni G, Dall’Ara E, Palanca M. Microstructure of the human metastatic vertebral body. Front Endocrinol (Lausanne) 2025; 15:1508504. [PMID: 39835261 PMCID: PMC11743553 DOI: 10.3389/fendo.2024.1508504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Bone spinal metastases disrupt the bone homeostasis, inducing a local imbalance in the bone formation and/or resorption, with consequent loss of the structural optimisation of the vertebrae and increase of the risk of fracture. Little is known about the microstructure of the metastatic tissue, the microstructure of the tissue surrounding the lesion, and how it does compare with vertebrae with no lesions observed on the biomedical images. A comprehensive assessment of the microstructural properties of the entire vertebral body can be obtained with micro computed tomography. In this study, we evaluated to what extent the vertebral body is affected by the presence of a metastatic lesion, the properties of the metastatic lesions, and whether the tissue surrounding the lesion has microstructural features similar to those of healthy tissue. Methods A total of 30 metastatic vertebrae, including lytic (N = 12), blastic (N = 10), and mixed (N = 8) metastases, and 20 control vertebrae with no visible lesions on computed tomography were scanned using micro computed tomography (voxel size = 39 mm). The images were segmented and analysed to evaluate the microstructural properties in the entire vertebral body, in the lesion, and in the bone surrounding the lesion. Results The microstructural properties evaluated on the entire vertebral bodies showed remarkable differences between metastatic and control vertebral bodies (p < 0.034) in terms of bone volume fraction, trabecular thickness, degree of anisotropy, connectivity density, and trabecular pattern factor. On the other hand, when the tissue surrounding the lesion was considered, no differences were found between metastatic and control vertebral bodies, except for differences in the degree of anisotropy (p = 0.008). All microstructural parameters measured in the regions including the lytic or the blastic metastases significantly differed (p < 0.001) from those in the tissues surrounding the lesions. The lytic lesions minimally affected the regions closest to the metastases, with significant differences only in the connectivity density. On the other hand, blastic metastases also affected the trabecular separation, the bone surface density, and the connectivity density in the closest tissue surrounding the lesion. Discussion Most of the microstructural features of the trabecular bone in metastatic vertebrae were locally affected by lytic and blastic metastases, whereas the surrounding tissue showed a microstructure similar to that of adjacent vertebrae without visible lesions.
Collapse
Affiliation(s)
- Giulia Cavazzoni
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Division of Clinical Medicine, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall’Ara
- Division of Clinical Medicine, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Marco Palanca
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Division of Clinical Medicine, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Murata K, Fujibayashi S, Otsuki B, Shimizu T, Matsuda S. Low hounsfield unit values at sagittal section on computed tomography predicts vertebral fracture following short spinal fusion. J Orthop Sci 2024; 29:726-733. [PMID: 36948903 DOI: 10.1016/j.jos.2023.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Preoperative identification of osteoporosis during spine surgery is of critical importance. Additionally, the Hounsfield units (HU) measured using computed tomography (CT) have gained considerable attention. This study aimed to propose a more accurate and convenient screening method for predicting vertebral fractures after spinal fusion in elderly patients by analyzing the HU value of different range of interests of thoracolumbar spine. METHODS Our sample pool for analysis consisted of 137 elderly female patients aged >70 years who underwent one- or two-level spinal fusion surgery with a diagnosis of adult degenerative lumbar disease. The HU values of the anterior 1/3 of the vertebral bodies based on sagittal plane and those of vertebral bodies based on axial plane at T11-L5 were measured using the perioperative CT. The incidence of postoperative vertebral fractures with respect to the HU value was investigated. RESULTS Vertebral fractures were identified in 16 patients during the mean follow-up period of 3.8 years. While no significant association was found between HU value of L1 vertebral body or minimum HU value from axial plane and the incidence of the postoperative vertebral fracture, the minimum vertebral HU value of the anterior 1/3 of vertebral body from sagittal plane was associated with the incidence of the postoperative vertebral fracture. Patients with a minimum anterior 1/3 vertebral HU value of <80 had a higher incidence of postoperative vertebral fractures. The adjacent vertebral fractures occurred at the level of the vertebra with the lowest HU value, with a high probability. The existence of the vertebra with a minimum HU value of <80 within two levels of upper instrumented vertebrae was a risk factor for adjacent vertebral fracture. CONCLUSION HU measurement of the anterior 1/3 of vertebral body predicts the risk of vertebral fracture after short spinal fusion surgery.
Collapse
Affiliation(s)
- Koichi Murata
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan.
| | - Shunsuke Fujibayashi
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Bungo Otsuki
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Takayoshi Shimizu
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, 606-8507, Japan
| |
Collapse
|
6
|
Murata K, Otsuki B, Shimizu T, Sono T, Fujibayashi S, Matsuda S. Sagittal Section Hounsfield Units of the Upper Instrumented Vertebrae as a Predictor of Proximal Junctional Vertebral Fractures Following Adult Spinal Deformity Surgery. Asian Spine J 2024; 18:209-217. [PMID: 38650092 PMCID: PMC11065512 DOI: 10.31616/asj.2023.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 04/25/2024] Open
Abstract
STUDY DESIGN A retrospective observational study. PURPOSE This study aimed to determine an accurate and convenient screening method for predicting proximal junctional fractures (PJFr) following surgery for adult spinal deformity (ASD) using computed tomography (CT)-based measurement of Hounsfield units (HUs). OVERVIEW OF LITERATURE CT-based measurement of HUs is an alternative tool for assessing bone mineral density. However, the optimal method for predicting adjacent vertebral fractures following spinal fusion using HUs remains unclear. METHODS This retrospective observational study included 42 patients who underwent reconstructive surgery for ASD. Elliptical regions of interest (ROIs) on the axial section and rectangular ROIs on the sagittal section were placed at the upper instrumented vertebrae (UIV), UIV+1, and UIV+2. In addition, the HU value of the L2 vertebra was used as the representative. RESULTS PJFr occurred in 28.6% of patients within 2 years following surgery. The HU values obtained from the axial sections of L2, UIV, UIV+1, and UIV+2 were not significantly associated with the incidence of PJFr within 2 years, except for the ROI set in the lower region of the L2 vertebra. However, the HU value of the anterior third of the UIV in the sagittal section was significantly lower in the PJFr group than in the nonPJFr group (87.0 vs. 160.3, p =0.001). A UIV HU value of <100 was associated with a higher incidence of PJFr than an HU vaue of >100 (p <0.05). CONCLUSIONS Measurements of HU in the anterior one-third of the UIV in the sagittal section demonstrated predictive ability for PJFr following ASD surgery. A UIV HU value of <100 emerged as a risk factor for PJFr.
Collapse
Affiliation(s)
- Koichi Murata
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto,
Japan
| | - Bungo Otsuki
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto,
Japan
| | - Takayoshi Shimizu
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto,
Japan
| | - Takashi Sono
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto,
Japan
| | - Shunsuke Fujibayashi
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto,
Japan
- Department of Orthopaedic Surgery, Kijunkai Yoshikawa Hospital, Kyoto,
Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto,
Japan
| |
Collapse
|
7
|
Umeda A, Murata K, Murotani Y, Fujii T, Onishi A, Murakami K, Onizawa H, Otsuki B, Shimizu T, Tanaka M, Morinobu A, Matsuda S. Low Hounsfield unit values on computed tomography as a potential predictor of vertebral fracture in patients with rheumatoid arthritis: The KURAMA cohort study. Int J Rheum Dis 2024; 27:e15146. [PMID: 38661342 DOI: 10.1111/1756-185x.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Hounsfield units (HU) measured using computed tomography (CT) have gained considerable attention for the detection of osteoporosis. This study aimed to investigate whether opportunistic CT could predict vertebral fractures in patients with rheumatoid arthritis (RA). METHODS A total of 233 patients with RA who underwent chest CT were included in this study. The HU values of the anterior 1/3 of the vertebral bodies based on the sagittal plane at T11-L2 after reconstruction were measured. The incidence of vertebral fractures was investigated with respect to the HU value. RESULTS Vertebral fractures were identified in 32 patients during a mean follow-up period of 3.8 years. In patients who experienced vertebral fractures within 2 years of CT imaging, the HU values of the vertebral bodies (T11-L2) were lower than those in patients who did not experience fractures. Receiver operating characteristic curve analysis identified that a T11 HU value of <125 was a risk factor for vertebral fracture within 2 years. Multivariate analysis showed that a T11 HU value of <125 and the existence of prevalent vertebral fractures were significant risk factors for fracture. CONCLUSION HU measurements of the anterior 1/3 of the vertebral body are a potential predictor for vertebral fractures in patients with RA.
Collapse
Affiliation(s)
- Akane Umeda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koichi Murata
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiki Murotani
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Fujii
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Onishi
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kosaku Murakami
- Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideo Onizawa
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Bungo Otsuki
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayoshi Shimizu
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
8
|
Yeni YN, Oravec D, Drost J, Zauel R, Flynn MJ. Stiffness and Strain Properties Derived From Digital Tomosynthesis-Based Digital Volume Correlation Predict Vertebral Strength Independently From Bone Mineral Density. J Biomech Eng 2023; 145:041009. [PMID: 36350266 PMCID: PMC9791669 DOI: 10.1115/1.4056196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Vertebral fractures are the most common osteoporotic fractures, but their prediction using standard bone mineral density (BMD) measurements from dual energy X-ray absorptiometry (DXA) is limited in accuracy. Stiffness, displacement, and strain distribution properties derived from digital tomosynthesis-based digital volume correlation (DTS-DVC) have been suggested as clinically measurable metrics of vertebral bone quality. However, the extent to which these properties correlate to vertebral strength is unknown. To establish this relationship, two independent experiments, one examining isolated T11 and the other examining L3 vertebrae within the L2-L4 segments from cadaveric donors were utilized. Following DXA and DTS imaging, the specimens were uniaxially compressed to fracture. BMD, bone mineral content (BMC), and bone area were recorded for the anteroposterior and lateromedial views from DXA, stiffness, endplate to endplate displacement and distribution statistics of intravertebral strains were calculated from DTS-DVC and vertebral strength was measured from mechanical tests. Regression models were used to examine the relationships of strength with the other variables. Correlations of BMD with vertebral strength varied between experimental groups (R2adj = 0.19-0.78). DTS-DVC derived properties contributed to vertebral strength independently from BMD measures (increasing R2adj to 0.64-0.95). DTS-DVC derived stiffness was the best single predictor (R2adj = 0.66, p < 0.0001) and added the most to BMD in models of vertebral strength for pooled T11 and L3 specimens (R2adj = 0.95, p < 0.0001). These findings provide biomechanical relevance to DTS-DVC calculated properties of vertebral bone and encourage further efforts in the development of the DTS-DVC approach as a clinical tool.
Collapse
Affiliation(s)
- Yener N. Yeni
- Bone & Joint Center, Henry Ford Hospital Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Daniel Oravec
- Bone & Joint Center, Henry Ford Hospital Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Joshua Drost
- Bone & Joint Center, Henry Ford Hospital Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Roger Zauel
- Bone & Joint Center, Henry Ford Hospital Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Michael J. Flynn
- Department of Radiology, Henry Ford Hospital, One Ford Place, Suite 2F, Detroit, MI 48202
| |
Collapse
|
9
|
Oravec D, Drost J, Zauel R, Flynn MJ, Yeni YN. Assessment of Intravertebral Mechanical Strains and Cancellous Bone Texture Under Load Using a Clinically Available Digital Tomosynthesis Modality. J Biomech Eng 2021; 143:101011. [PMID: 34041529 PMCID: PMC8299817 DOI: 10.1115/1.4051280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/14/2021] [Indexed: 11/08/2022]
Abstract
Vertebral fractures are the most common osteoporotic fractures, but clinical means for assessment of vertebral bone integrity are limited in accuracy, as they typically use surrogate measures that are indirectly related to mechanics. The objective of this study was to examine the extent to which intravertebral strain distributions and changes in cancellous bone texture generated by a load of physiological magnitude can be characterized using a clinically available imaging modality. We hypothesized that digital tomosynthesis-based digital volume correlation (DTS-DVC) and image texture-based metrics of cancellous bone microstructure can detect development of mechanical strains under load. Isolated cadaveric T11 vertebrae and L2-L4 vertebral segments were DTS imaged in a nonloaded state and under physiological load levels. Axial strain, maximum principal strain, maximum compressive and tensile principal strains, and von Mises equivalent strain were calculated using the DVC technique. The change in textural parameters (line fraction deviation, anisotropy, and fractal parameters) under load was calculated within the cancellous centrum. The effect of load on measured strains and texture variables was tested using mixed model analysis of variance, and relationships of strain and texture variables with donor age, bone density parameters, and bone size were examined using regression models. Magnitudes and heterogeneity of intravertebral strain measures correlated with applied loading and were significantly different from background noise. Image texture parameters were found to change with applied loading, but these changes were not observed in the second experiment testing L2-L4 segments. DTS-DVC-derived strains correlated with age more strongly than did bone mineral density (BMD) for T11.
Collapse
Affiliation(s)
- Daniel Oravec
- Bone & Joint Center, Henry Ford Hospital, Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Joshua Drost
- Bone & Joint Center, Henry Ford Hospital, Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Roger Zauel
- Bone & Joint Center, Henry Ford Hospital, Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Michael J. Flynn
- Department of Radiology, Henry Ford Hospital, One Ford Place, Suite 2F, Detroit, MI 48202
| | - Yener N. Yeni
- Bone & Joint Center, Henry Ford Hospital, Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| |
Collapse
|
10
|
Palanca M, Barbanti-Bròdano G, Marras D, Marciante M, Serra M, Gasbarrini A, Dall'Ara E, Cristofolini L. Type, size, and position of metastatic lesions explain the deformation of the vertebrae under complex loading conditions. Bone 2021; 151:116028. [PMID: 34087385 DOI: 10.1016/j.bone.2021.116028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Bone metastases may lead to spine instability and increase the risk of fracture. Scoring systems are available to assess critical metastases, but they lack specificity, and provide uncertain indications over a wide range, where most cases fall. The aim of this work was to use a novel biomechanical approach to evaluate the effect of lesion type, size, and location on the deformation of the metastatic vertebra. METHOD Vertebrae with metastases were identified from 16 human spines from a donation programme. The size and position of the metastases, and the Spine Instability Neoplastic Score (SINS) were evaluated from clinical Quantitative Computed Tomography images. Thirty-five spine segments consisting of metastatic vertebrae and adjacent healthy controls were biomechanically tested in four different loading conditions. The strain distribution over the entire vertebral bodies was measured with Digital Image Correlation. Correlations between the features of the metastasis (type, size, position and SINS) and the deformation of the metastatic vertebrae were statistically explored. RESULTS The metastatic type (lytic, blastic, mixed) characterizes the vertebral behaviour (Kruskal-Wallis, p = 0.04). In fact, the lytic metastases showed more critical deformation compared to the control vertebrae (average: 2-fold increase, with peaks of 14-fold increase). By contrast, the vertebrae with mixed or blastic metastases did not show a clear trend, with deformations similar or lower than the controls. Once the position of the lytic lesion with respect to the loading direction was taken into account, the size of the lesion was significantly correlated with the perturbation to the strain distribution (r2 = 0.72, p < 0.001). Conversely, the SINS poorly correlated with the mechanical evidence, and only in case of lytic lesions (r2 = 0.25, p < 0.0001). CONCLUSION These results highlight the relevance of the size and location of the lytic lesion, which are marginally considered in the current clinical scoring systems, in driving the spinal biomechanical instability. The strong correlation with the biomechanical evidence indicates that these parameters are representative of the mechanical competence of the vertebra. The improved explanatory power compared to the SINS suggests including them in future guidelines for the clinical practice.
Collapse
Affiliation(s)
- Marco Palanca
- Dept of Oncology and Metabolism, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK; Dept of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | | | - Daniele Marras
- Dept of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Mara Marciante
- Dept of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Michele Serra
- Dept of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | - Enrico Dall'Ara
- Dept of Oncology and Metabolism, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Luca Cristofolini
- Dept of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Fu J, Meng H, Zhang C, Liu Y, Chen D, Wang A, Main RP, Yang H. Effects of tissue heterogeneity on trabecular micromechanics examined by microCT-based finite element analysis and digital volume correlation. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Palanca M, De Donno G, Dall’Ara E. A novel approach to evaluate the effects of artificial bone focal lesion on the three-dimensional strain distributions within the vertebral body. PLoS One 2021; 16:e0251873. [PMID: 34061879 PMCID: PMC8168867 DOI: 10.1371/journal.pone.0251873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
The spine is the first site for incidence of bone metastasis. Thus, the vertebrae have a high potential risk of being weakened by metastatic tissues. The evaluation of strength of the bone affected by the presence of metastases is fundamental to assess the fracture risk. This work proposes a robust method to evaluate the variations of strain distributions due to artificial lesions within the vertebral body, based on in situ mechanical testing and digital volume correlation. Five porcine vertebrae were tested in compression up to 6500N inside a micro computed tomography scanner. For each specimen, images were acquired before and after the application of the load, before and after the introduction of the artificial lesions. Principal strains were computed within the bone by means of digital volume correlation (DVC). All intact specimens showed a consistent strain distribution, with peak minimum principal strain in the range -1.8% to -0.7% in the middle of the vertebra, demonstrating the robustness of the method. Similar distributions of strains were found for the intact vertebrae in the different regions. The artificial lesion generally doubled the strain in the middle portion of the specimen, probably due to stress concentrations close to the defect. In conclusion, a robust method to evaluate the redistribution of the strain due to artificial lesions within the vertebral body was developed and will be used in the future to improve current clinical assessment of fracture risk in metastatic spines.
Collapse
Affiliation(s)
- Marco Palanca
- Dept of Oncology and Metabolism and INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Giulia De Donno
- Dept of Oncology and Metabolism and INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Dept of Industrial Engineering, Alma Mater Studiorum, Università di Bologna, Bologna, Italy
| | - Enrico Dall’Ara
- Dept of Oncology and Metabolism and INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
13
|
Local and global microarchitecture is associated with different features of bone biomechanics. Bone Rep 2020; 13:100716. [PMID: 32995387 PMCID: PMC7516068 DOI: 10.1016/j.bonr.2020.100716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 11/21/2022] Open
Abstract
Purpose Beside areal bone mineral density (aBMD), evaluation of fragility fracture risk mostly relies on global microarchitecture. However, microarchitecture is not a uniform network. Therefore, this study aimed to compare local structural weakness to global microarchitecture on whole vertebral bodies and to evaluate how local and global microarchitecture was associated with bone biomechanics. Methods From 21 human L3 vertebrae, aBMD was measured using absorptiometry. Parameters of global microarchitecture were measured using HR-pQCT: trabecular bone volume fraction (Tb.BV/TVglobal), trabecular number, structure model index and connectivity density (Conn.D). Local minimal values of aBMD and Tb.BV/TV were identified in the total (Tt) or trabecular (Tb) area of each vertebral body. “Two dimensional (2D) local structural weakness” was defined as Tt.BMDmin, Tt.BV/TVmin and Tb.BV/TVmin. Mechanical testing was performed in 3 phases: 1/ initial compression until mild vertebral fracture, 2/ unloaded relaxation, and 3/ second compression until failure. Results Initial and post-fracture mechanics were significantly correlated with bone mass, global and local microarchitecture. Tt.BMDmin, Tt.BV/TVmin, Tb.BV/TVmin, and initial and post-fracture mechanics remained significantly correlated after adjustment for aBMD or Tb.BV/TVglobal (p < 0.001 to 0.038). The combination of the most relevant parameter of bone mass, global and local microarchitecture associated with failure load and stiffness demonstrated that global microarchitecture explained initial and post-fracture stiffness, while local structural weakness explained initial and post-fracture failure load (p < 0.001). Conclusion Local and global microarchitecture was associated with different features of vertebral bone biomechanics, with global microarchitecture controlling stiffness and 2D local structural weakness controlling strength. Therefore, determining both localized low density and impaired global microarchitecture could have major impact on vertebral fracture risk prediction. Global and local microarchitecture were associated with different features of bone biomechanics. Localized low density and/or impaired microarchitecture regions could have major impact on bone mechanical behavior. Global microarchitecture determined initial and post-fracture vertebral stiffness. Local microarchitecture determined initial and post-fracture vertebral failure load.
Collapse
|
14
|
Röhrich S, Hofmanninger J, Prayer F, Müller H, Prosch H, Langs G. Prospects and Challenges of Radiomics by Using Nononcologic Routine Chest CT. Radiol Cardiothorac Imaging 2020; 2:e190190. [PMID: 33778599 DOI: 10.1148/ryct.2020190190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/10/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Chest CT scans are one of the most common medical imaging procedures. The automatic extraction and quantification of imaging features may help in diagnosis, prognosis of, or treatment decision in cardiovascular, pulmonary, and metabolic diseases. However, an adequate sample size as a statistical necessity for radiomics studies is often difficult to achieve in prospective trials. By exploiting imaging data from clinical routine, a much larger amount of data could be used than in clinical trials. Still, there is only little literature on the implementation of radiomics in clinical routine chest CT scans. Reasons are heterogeneous CT scanning protocols and the resulting technical variability (eg, different slice thicknesses, reconstruction kernels or timings after contrast material administration) in routine CT imaging data. This review summarizes the recent state of the art of studies aiming to develop quantifiable imaging biomarkers at chest CT, such as for osteoporosis, chronic obstructive pulmonary disease, interstitial lung disease, and coronary artery disease. This review explains solutions to overcome heterogeneity in routine data such as the use of imaging repositories, the standardization of radiomic features, algorithmic approaches to improve feature stability, test-retest studies, and the evolution of deep learning for modeling radiomics features. Supplemental material is available for this article. © RSNA, 2020 See also the commentary by Kay in this issue.
Collapse
Affiliation(s)
- Sebastian Röhrich
- Computational Imaging Research Laboratory (J.H., G.L) of the Department of Biomedical Imaging and Image-guided Therapy (S.R., F.P., H.P.), Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Information Systems, University of Applied Sciences of Western Switzerland, Sierre, Switzerland (H.M.)
| | - Johannes Hofmanninger
- Computational Imaging Research Laboratory (J.H., G.L) of the Department of Biomedical Imaging and Image-guided Therapy (S.R., F.P., H.P.), Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Information Systems, University of Applied Sciences of Western Switzerland, Sierre, Switzerland (H.M.)
| | - Florian Prayer
- Computational Imaging Research Laboratory (J.H., G.L) of the Department of Biomedical Imaging and Image-guided Therapy (S.R., F.P., H.P.), Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Information Systems, University of Applied Sciences of Western Switzerland, Sierre, Switzerland (H.M.)
| | - Henning Müller
- Computational Imaging Research Laboratory (J.H., G.L) of the Department of Biomedical Imaging and Image-guided Therapy (S.R., F.P., H.P.), Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Information Systems, University of Applied Sciences of Western Switzerland, Sierre, Switzerland (H.M.)
| | - Helmut Prosch
- Computational Imaging Research Laboratory (J.H., G.L) of the Department of Biomedical Imaging and Image-guided Therapy (S.R., F.P., H.P.), Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Information Systems, University of Applied Sciences of Western Switzerland, Sierre, Switzerland (H.M.)
| | - Georg Langs
- Computational Imaging Research Laboratory (J.H., G.L) of the Department of Biomedical Imaging and Image-guided Therapy (S.R., F.P., H.P.), Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; and Department of Information Systems, University of Applied Sciences of Western Switzerland, Sierre, Switzerland (H.M.)
| |
Collapse
|
15
|
Kaiser J, Allaire B, Fein PM, Lu D, Adams A, Kiel DP, Jarraya M, Guermazi A, Demissie S, Samelson EJ, Bouxsein ML, Morgan EF. Heterogeneity and Spatial Distribution of Intravertebral Trabecular Bone Mineral Density in the Lumbar Spine Is Associated With Prevalent Vertebral Fracture. J Bone Miner Res 2020; 35:641-648. [PMID: 31886907 PMCID: PMC7145746 DOI: 10.1002/jbmr.3946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 01/25/2023]
Abstract
The spatial heterogeneity in trabecular bone density within the vertebral centrum is associated with vertebral strength and could explain why volumetric bone mineral density (vBMD) exhibits low sensitivity in identifying fracture risk. This study evaluated whether the heterogeneity and spatial distribution of trabecular vBMD are associated with prevalent vertebral fracture. We examined the volumetric quantitative computed tomography (QCT) scans of the L3 vertebra in 148 participants in the Framingham Heart Study Multidetector CT study. Of these individuals, 37 were identified as cases of prevalent fracture, and 111 were controls, matched on sex and age with three controls per case. vBMD was calculated within 5-mm contiguous cubic regions of the centrum. Two measures of heterogeneity were calculated: (i) interquartile range (IQR); and (ii) quartile coefficient of variation (QCV). Ratios in the spatial distributions of the trabecular vBMD were also calculated: anterior/posterior, central/outer, superior/mid-transverse, and inferior/mid-transverse. Heterogeneity and spatial distributions were compared between cases and controls using Wilcoxon rank sum tests and t tests and tested for association with prevalent fractures with conditional logistic regressions independent of integral vBMD. Prevalent fracture cases had lower mean ± SD integral vBMD (134 ± 38 versus165 ± 42 mg/cm3 , p < .001), higher QCV (0.22 ± 0.13 versus 0.17 ± 0.09, p = .003), and lower anterior/posterior rBMD (0.65 ± 0.13 versus 0.78 ± 0.16, p < .001) than controls. QCV was positively associated with increased odds of prevalent fracture (OR 1.61; 95% CI, 1.04 to 2.49; p = .034), but this association was not independent of integral vBMD (p = .598). Increased anterior/posterior trabecular vBMD ratio was associated with decreased odds of prevalent fracture independent of integral vBMD (OR 0.38; 95% CI, 0.20 to 0.71; p = .003). In conclusion, increased trabecular vBMD in the anterior versus posterior centrum, but not trabecular vBMD heterogeneity, was associated with decreased risk of prevalent fracture independent of integral vBMD. Regional measurements of trabecular vBMD could aid in determining the risk and underlying mechanisms of vertebral fracture. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jarred Kaiser
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Brett Allaire
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Paul M Fein
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Darlene Lu
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Alexander Adams
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Douglas P Kiel
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, USA
| | - Mohamed Jarraya
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Guermazi
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA
| | | | - Elizabeth J Samelson
- Department of Biostatistics, Boston University, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, USA
| | - Mary L Bouxsein
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Elise F Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
16
|
McKay M, Jackman TM, Hussein AI, Guermazi A, Liu J, Morgan EF. Association of vertebral endplate microstructure with bone strength in men and women. Bone 2020; 131:115147. [PMID: 31706053 PMCID: PMC6930346 DOI: 10.1016/j.bone.2019.115147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 11/26/2022]
Abstract
Epidemiological and biomechanical evidence indicates that the risk of vertebral fracture differs between men and women, and that vertebral fracture frequently involves failure of the endplate region. The goal of this study was to compare the bone microstructure of the endplate region-defined as the (bony) vertebral endplate and underlying subchondral trabecular bone-between sexes and to determine whether any such sex differences are associated with vertebral strength. The bone density (volume fraction, apparent density and tissue mineral density) of the superior-most 2 mm of the vertebra, and the bone density and trabecular architecture of the next 5 mm were quantified using micro-computed tomography in human T8 (12 female, 16 male) and L1 (13 female, 12 male) vertebrae. Average density of the vertebra (integral bone mineral density (BMD)) was determined by quantitative computed tomography and compressive strength by mechanical testing. Few differences were found between male and female vertebrae in the density of the endplate region; none were found in trabecular architecture. However, whereas endplate volume fraction was positively correlated with integral BMD in male vertebrae (r = 0.654, p < .001), no correlation was found in the female vertebrae (r = 0.157, p = .455). Accounting for the density of the endplate region improved predictions of vertebral strength (p < .034) and eliminated sex-specificity in the strength prediction that was based on integral BMD alone. These results suggest that the density of the endplate region influences vertebral fracture and that non-invasive assessment of this region's density can contribute to predictions of vertebral strength in men and women.
Collapse
Affiliation(s)
- MeiLissa McKay
- Department of Mechanical Engineering, 110 Cummington Mall, Boston University, Boston, MA 02215, USA
| | - Timothy M Jackman
- Department of Mechanical Engineering, 110 Cummington Mall, Boston University, Boston, MA 02215, USA
| | - Amira I Hussein
- Department of Mechanical Engineering, 110 Cummington Mall, Boston University, Boston, MA 02215, USA
| | - Ali Guermazi
- Department of Radiology, Boston University School of Medicine, 820 Harrison Avenue, FGH Building, 3rd Floor, Boston, MA 02118, USA
| | - Jingjiang Liu
- Department of Mechanical Engineering, 110 Cummington Mall, Boston University, Boston, MA 02215, USA
| | - Elise F Morgan
- Department of Mechanical Engineering, 110 Cummington Mall, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
17
|
Hussein AI, Louzeiro DT, Unnikrishnan GU, Morgan EF. Differences in Trabecular Microarchitecture and Simplified Boundary Conditions Limit the Accuracy of Quantitative Computed Tomography-Based Finite Element Models of Vertebral Failure. J Biomech Eng 2019; 140:2665235. [PMID: 29196764 DOI: 10.1115/1.4038609] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 11/08/2022]
Abstract
Vertebral fractures are common in the elderly, but efforts to reduce their incidence have been hampered by incomplete understanding of the failure processes that are involved. This study's goal was to elucidate failure processes in the lumbar vertebra and to assess the accuracy of quantitative computed tomography (QCT)-based finite element (FE) simulations of these processes. Following QCT scanning, spine segments (n = 27) consisting of L1 with adjacent intervertebral disks and neighboring endplates of T12 and L2 were compressed axially in a stepwise manner. A microcomputed tomography scan was performed at each loading step. The resulting time-lapse series of images was analyzed using digital volume correlation (DVC) to quantify deformations throughout the vertebral body. While some diversity among vertebrae was observed on how these deformations progressed, common features were large strains that developed progressively in the superior third and, concomitantly, in the midtransverse plane, in a manner that was associated with spatial variations in microstructural parameters such as connectivity density. Results of FE simulations corresponded qualitatively to the measured failure patterns when boundary conditions were derived from DVC displacements at the endplate. However, quantitative correspondence was often poor, particularly when boundary conditions were simplified to uniform compressive loading. These findings suggest that variations in trabecular microstructure are one cause of the differences in failure patterns among vertebrae and that both the lack of incorporation of these variations into QCT-based FE models and the oversimplification of boundary conditions limit the accuracy of these models in simulating vertebral failure.
Collapse
Affiliation(s)
- Amira I Hussein
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215 e-mail:
| | - Daniel T Louzeiro
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | | | - Elise F Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
18
|
Valentinitsch A, Trebeschi S, Kaesmacher J, Lorenz C, Löffler MT, Zimmer C, Baum T, Kirschke JS. Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos Int 2019; 30:1275-1285. [PMID: 30830261 PMCID: PMC6546649 DOI: 10.1007/s00198-019-04910-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/18/2019] [Indexed: 11/23/2022]
Abstract
UNLABELLED Our study proposed an automatic pipeline for opportunistic osteoporosis screening using 3D texture features and regional vBMD using multi-detector CT images. A combination of different local and global texture features outperformed the global vBMD and showed high discriminative power to identify patients with vertebral fractures. INTRODUCTION Many patients at risk for osteoporosis undergo computed tomography (CT) scans, usable for opportunistic (non-dedicated) screening. We compared the performance of global volumetric bone mineral density (vBMD) with a random forest classifier based on regional vBMD and 3D texture features to separate patients with and without osteoporotic fractures. METHODS In total, 154 patients (mean age 64 ± 8.5, male; n = 103) were included in this retrospective single-center analysis, who underwent contrast-enhanced CT for other reasons than osteoporosis screening. Patients were dichotomized regarding prevalent vertebral osteoporotic fractures (noFX, n = 101; FX, n = 53). Vertebral bodies were automatically segmented, and trabecular vBMD was calculated with a dedicated phantom. For 3D texture analysis, we extracted gray-level co-occurrence matrix Haralick features (HAR), histogram of gradients (HoG), local binary patterns (LBP), and wavelets (WL). Fractured vertebrae were excluded for texture-feature and vBMD data extraction. The performance to identify patients with prevalent osteoporotic vertebral fractures was evaluated in a fourfold cross-validation. RESULTS The random forest classifier showed a high discriminatory power (AUC = 0.88). Parameters of all vertebral levels significantly contributed to this classification. Importantly, the AUC of the proposed algorithm was significantly higher than that of volumetric global BMD alone (AUC = 0.64). CONCLUSION The presented classifier combining 3D texture features and regional vBMD including the complete thoracolumbar spine showed high discriminatory power to identify patients with vertebral fractures and had a better diagnostic performance than vBMD alone.
Collapse
Affiliation(s)
- A. Valentinitsch
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - S. Trebeschi
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - J. Kaesmacher
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - C. Lorenz
- Philips Research Hamburg, Hamburg, Germany
| | - M. T. Löffler
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - C. Zimmer
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - T. Baum
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - J. S. Kirschke
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| |
Collapse
|
19
|
Lai ZB, Bai R, Lei Z, Yan C. Interfacial mechanical behaviour of protein–mineral nanocomposites: A molecular dynamics investigation. J Biomech 2018; 73:161-167. [DOI: 10.1016/j.jbiomech.2018.03.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/02/2018] [Accepted: 03/24/2018] [Indexed: 01/04/2023]
|
20
|
Hernandez CJ. Bone Mechanical Function and the Gut Microbiota. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1033:249-270. [DOI: 10.1007/978-3-319-66653-2_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Baravalle R, Thomsen F, Delrieux C, Lu Y, Gómez JC, Stošić B, Stošić T. Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography. Med Phys 2017; 44:6404-6412. [PMID: 28972264 DOI: 10.1002/mp.12603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/20/2017] [Accepted: 09/24/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE An adequate understanding of bone structural properties is critical for predicting fragility conditions caused by diseases such as osteoporosis, and in gauging the success of fracture prevention treatments. In this work we aim to develop multiresolution image analysis techniques to extrapolate high-resolution images predictive power to images taken in clinical conditions. METHODS We performed multifractal analysis (MFA) on a set of 17 ex vivo human vertebrae clinical CT scans. The vertebrae failure loads (FFailure) were experimentally measured. We combined bone mineral density (BMD) with different multifractal dimensions, and BMD with multiresolution statistics (e.g., skewness, kurtosis) of MFA curves, to obtain linear models to predict FFailure. Furthermore we obtained short- and long-term precisions from simulated in vivo scans, using a clinical CT scanner. Ground-truth data - high-resolution images - were obtained with a High-Resolution Peripheral Quantitative Computed Tomography (HRpQCT) scanner. RESULTS At the same level of detail, BMD combined with traditional multifractal descriptors (Lipschitz-Hölder exponents), and BMD with monofractal features showed similar prediction powers in predicting FFailure (87%, adj. R2 ). However, at different levels of details, the prediction power of BMD with multifractal features raises to 92% (adj. R2) of FFailure. Our main finding is that a simpler but slightly less accurate model, combining BMD and the skewness of the resulting multifractal curves, predicts 90% (adj. R2) of FFailure. CONCLUSIONS Compared to monofractal and standard bone measures, multifractal analysis captured key insights in the conditions leading to FFailure. Instead of raw multifractal descriptors, the statistics of multifractal curves can be used in several other contexts, facilitating further research.
Collapse
Affiliation(s)
- Rodrigo Baravalle
- Group of Multimedia Signal Processing, CIFASIS-CONICET, Rosario, Argentina
| | - Felix Thomsen
- Imaging Sciences Lab, DIEC-CONICET, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Claudio Delrieux
- Imaging Sciences Lab, DIEC-CONICET, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Juan Carlos Gómez
- Group of Multimedia Signal Processing, CIFASIS-CONICET, Universidad Nacional de Rosario, Argentina
| | - Borko Stošić
- Department of Statistics and Informatics, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - Tatijana Stošić
- Department of Statistics and Informatics, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| |
Collapse
|
22
|
Zehra U, Flower L, Robson-Brown K, Adams MA, Dolan P. Defects of the vertebral end plate: implications for disc degeneration depend on size. Spine J 2017; 17:727-737. [PMID: 28108405 DOI: 10.1016/j.spinee.2017.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 12/21/2016] [Accepted: 01/12/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Bony vertebral end plates must be porous to allow metabolite transport into the disc, and yet strong to resist high intradiscal pressure (IDP). End plate defects may therefore have nutritional and mechanical consequences for the disc, depending on their size and type. We hypothesize that broad, diffuse defects are more closely associated with disc decompression and degeneration than are focal Schmorl's node-type defects. PURPOSE This study aimed to determine how the size and type of end plate defects are related to decompression and degeneration in the adjacent intervertebral disc. STUDY DESIGN Mechanical, histologic, and micro-computed tomographic investigations were carried out in cadaver spines. METHODS The study involved 40 motion segments (T8-T9 to L4-L5) dissected from 23 cadavers aged 48-98 years. Intradiscal stresses were measured, under 1 kN compression, by pulling a pressure transducer along the disc's midsagittal diameter. The resulting "stress profiles" revealed nucleus pressure (IDP) and maximum stresses in the anterior and posterior annulus. Micro-computed tomography was then used to examine all 40 discs, with 5 mm of adjacent bone on either side, so that end plate defects could be characterized at a resolution of 35 µm. Cross-sectional area (in the transverse plane), volume, location, and morphologic type were determined for all bony defects in the 80 end plates. Finally, discs from each motion segment (with hyaline cartilage and bone attached) were sectioned (undecalcified) at 7 µm for histology to allow degeneration to be assessed. RESULTS Substantial defects were identified in 24 of 40 specimens (35 of 80 end plates). Of these, 83% was centrally located, and 17% was laterally located. Defects occurred more frequently in male than female specimens (p=.043), and were more common in thoracic than lumbar end plates (p=.002), although lumbar defects were greater in volume (p=.05). Defect area and volume increased with decreasing IDP, with decreasing peak stress in the annulus, and with increasing tissue degeneration. Stepwise multiple regression showed that average defect area depended most strongly on IDP, whereas maximum defect area and volume depended most strongly on peak stress in the anterior annulus. Multiple end plate defects were associated with lower values of IDP and higher degeneration scores when compared with erosions and Schmorl's nodes. CONCLUSIONS Disc degeneration has a stronger association with large or multiple end plate defects than with small or single defects (of any type). Large end plate defects probably allow greater volume changes within the disc, leading to greater nucleus decompression.
Collapse
Affiliation(s)
- Uruj Zehra
- Centre for Applied Anatomy, University of Bristol, Southwell St, Bristol, BS2 8EJ, UK
| | - Luke Flower
- Centre for Applied Anatomy, University of Bristol, Southwell St, Bristol, BS2 8EJ, UK
| | - Katharine Robson-Brown
- School of Archaeology and Anthropology, University of Bristol, Woodland Rd, Bristol, BS8 1UU, UK
| | - Michael A Adams
- Centre for Applied Anatomy, University of Bristol, Southwell St, Bristol, BS2 8EJ, UK
| | - Patricia Dolan
- Centre for Applied Anatomy, University of Bristol, Southwell St, Bristol, BS2 8EJ, UK.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Osteoporosis and osteoarthritis are different diseases, with differences in risk factors, bone mineral density (BMD), BMI, phenotype, morbidity and mortality. We review new data on the role of bone metabolism in osteoporosis and osteoarthritis. RECENT FINDINGS The insights in the common convergent and divergent risk factors between osteoarthritis and osteoporosis have resulted in new findings on the role of BMD, BMI, falls, genetics and epigenetics in the pathophysiology of both diseases and on the increased fracture risk in osteoporosis and osteoarthritis. The relation between BMD, BMI and fracture risk in osteoarthritis is dependent on the stage, definition and location of the osteoarthritis and method of BMD measurement. It has been suggested that osteoarthritis should be further specified in terms of bone involvement. SUMMARY These new findings open the way to better understand the bone subtypes of osteoarthritis (osteoporotic, bone forming and erosive) and the common and different ways bone is involved in osteoporosis and osteoarthritis. Much can be expected from further prospective studies, when taking into account the heterogeneous nature of both osteoporosis and osteoarthritis.
Collapse
|
24
|
Thomsen FSL, Peña JA, Lu Y, Huber G, Morlock M, Glüer CC, Delrieux CA. A new algorithm for estimating the rod volume fraction and the trabecular thickness fromin vivocomputed tomography. Med Phys 2016; 43:6598. [DOI: 10.1118/1.4967479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM, Augat P. Bone mechanical properties and changes with osteoporosis. Injury 2016; 47 Suppl 2:S11-20. [PMID: 27338221 PMCID: PMC4955555 DOI: 10.1016/s0020-1383(16)47003-8] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review will define the role of collagen and within-bone heterogeneity and elaborate the importance of trabecular and cortical architecture with regard to their effect on the mechanical strength of bone. For each of these factors, the changes seen with osteoporosis and ageing will be described and how they can compromise strength and eventually lead to bone fragility.
Collapse
Affiliation(s)
- Georg Osterhoff
- Division of Orthopaedic Trauma, Department of Orthopaedic Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elise F. Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Sandra J. Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Lamya Karim
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Laoise M. McNamara
- Centre for Biomechanics Research (BMEC), Department of Biomedical Engineering, NUI Galway, Galway, Republic of Ireland,National Centre for Biomedical Engineering Science (NCBES), NUI Galway, Galway, Republic of Ireland
| | - Peter Augat
- Institute of Biomechanics, Trauma Center Murnau, Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria,Corresponding author at: Institute of Biomechanics, Berufsgenossenschaftliche Unfallklinik, Murnau Prof.-Kuentscher-Str. 8, D-82418 Murnau am Staffelsee, Germany. Tel.: +49 8841 484563; fax: +49 8841 484573. (P. Augat)
| |
Collapse
|
26
|
Lu Y, Krause M, Bishop N, Sellenschloh K, Glüer CC, Püschel K, Amling M, Morlock MM, Huber G. The role of patient-mode high-resolution peripheral quantitative computed tomography indices in the prediction of failure strength of the elderly women's thoracic vertebral body. Osteoporos Int 2015; 26:237-44. [PMID: 25135580 DOI: 10.1007/s00198-014-2846-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/07/2014] [Indexed: 01/05/2023]
Abstract
UNLABELLED The correlations between the failure load of 20 T12 vertebral bodies, their patient-mode high-resolution peripheral quantitative computed tomography (HR-pQCT) indices, and the L1 areal bone mineral density (aBMD) were investigated. For the prediction of the T12 vertebral failure load, the T12 HR-pQCT microarchitectural parameters added significant information to that of L1 aBMD and to that of cortical BMD, but not to that of T12 vertebral BMD and not to that of T12 trabecular BMD. INTRODUCTION HR-pQCT is a new in vivo imaging technique for assessing the three-dimensional microarchitecture of cortical and trabecular bone at the distal radius and tibia. But little is known about this technique in the direct measurement of vertebral body. METHODS Twenty female donors with the mean age of 80.1 (7.6) years were included in the study. Dual X-ray absorptiometry of the lumbar spine and femur was performed. The spinal specimens (T11/T12/L1) were dissected, scanned using HR-pQCT scanner, and mechanically tested under 4° wedge compression. The L1 aBMD, T12 patient-mode HR-pQCT indices, and T12 vertebral failure loads were analyzed. RESULTS For the prediction of vertebral failure load, the inclusion of BV/TV into L1 aBMD was the best model (R (2) = 0.52), Tb.N and Tb.Sp added significant information to the L1 aBMD and to the cortical BMD, but none of the vertebral microarchitectural parameters yielded additional significant information to the trabecular BMD (or BV/TV) and to the vertebral BMD. CONCLUSION Vertebral microarchitectural parameters obtained from the patient-mode HR-pQCT analysis provide significant information on bone strength complementary to that of aBMD and to that of cortical BMD, but not to that of vertebral BMD and not to that of trabecular BMD.
Collapse
Affiliation(s)
- Y Lu
- Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Briggs AM, Perilli E, Codrington J, Reynolds KJ, Parkinson IH, Wark JD. Subregional DXA-derived vertebral bone mineral measures are stronger predictors of failure load in specimens with lower areal bone mineral density, compared to those with higher areal bone mineral density. Calcif Tissue Int 2014; 95:97-107. [PMID: 24858710 DOI: 10.1007/s00223-014-9866-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
Measurement of areal bone mineral density (aBMD) in intravertebral subregions may increase the diagnostic sensitivity of dual-energy X-ray absorptiometry (DXA)-derived parameters for vertebral fragility. This study investigated whether DXA-derived bone parameters in vertebral subregions were better predictors of vertebral bone strength in specimens with low aBMD, compared to those with higher aBMD. Twenty-five lumbar vertebrae (15 embalmed and 10 fresh-frozen) were scanned with posteroanterior- (PA) and lateral-projection DXA, and then mechanically tested in compression to ultimate failure. Whole-vertebral aBMD and bone mineral content (BMC) were measured from the PA- and lateral-projection scans and within 6 intravertebral subregions. Multivariate regression was used to predict ultimate failure load by BMC, adjusted for vertebral size and specimen fixation status across the whole specimen set, and when subgrouped into specimens with low aBMD and high aBMD. Adjusted BMC explained a substantial proportion of variance in ultimate vertebral load, when measured over the whole vertebral area in lateral projection (adjusted R (2) 0.84) and across the six subregions (ROIs 2-7) (adjusted R (2) range 0.58-0.78). The association between adjusted BMC, either measured subregionally or across the whole vertebral area, and vertebral failure load, was increased for the subgroup of specimens with identified 'low aBMD', compared to those with 'high aBMD', particularly in the anterior subregion where the adjusted R (2) differed by 0.44. The relative contribution of BMC measured in vertebral subregions to ultimate failure load is greater among specimens with lower aBMD, compared to those with higher aBMD, particularly in the anterior subregion of the vertebral body.
Collapse
Affiliation(s)
- Andrew M Briggs
- School of Physiotherapy and Exercise Science, Curtin University, Bentley, WA, Australia,
| | | | | | | | | | | |
Collapse
|
28
|
Yeni YN, Wu B, Huang L, Oravec D. Mechanical loading causes detectable changes in morphometric measures of trabecular structure in human cancellous bone. J Biomech Eng 2014; 135:54505. [PMID: 24231966 DOI: 10.1115/1.4024136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/04/2013] [Indexed: 11/08/2022]
Abstract
The relationships between mechanical loads and bone microstructure are of interest to those who seek to predict bone mechanical properties from microstructure or to predict how organization of bone microstructure is driven by mechanical loads. While strains and displacements in the material are inherently responsible for mechanically caused changes in the appearance of the microstructure, it is the morphometric measures of microstructural organization that are often available for assessment of bone quality. Therefore, an understanding of how strain history is reflected in morphometric measures of bone microstructure has practical implications in that it may provide clinically measurable indices of mechanical history in bone and improve interpretation of bone mechanical properties from microstructural information. The objective of the current study was to examine changes in morphometric measures of cancellous bone microstructure in response to varying levels of continuum level strains. The experimental approach included stereologic analysis of microcomputed tomography (μCT) images of human cancellous bone samples obtained at sequentially increasing levels of strain in a custom-made loading apparatus mounted in a μCT scanner. We found that the degree of anisotropy (DA) decreased from baseline to failure and from failure to postfailure. DA partially recovered from postfailure levels upon unloading; however, the final DA was less than at failure and less than at baseline. We also found that average trabecular thickness (Tb.Th.Av) increased with displacements at postfailure and did not recover when unloaded. Average trabecular number decreased when the specimens were unloaded. In addition, the heterogeneity of Tb.Th as measured by intra-specimen standard deviation (Tb.Th.SD) increased and that of trabecular number (Tb.N.SD) decreased with displacements at postfailure. Furthermore, the intraspecimen coefficient of variation of trabecular number decreased at postfailure displacements but did not recover upon unloading. Finally, the coefficient of variation of trabecular separation at unload was less than that at baseline. These measures can be developed into image-based indices to estimate strain history, damage, and residual mechanical properties where direct analysis of stresses and strains, such as through finite element modeling, may not be feasible. It remains to be determined how wide a time interval can be used to estimate strain history before remodeling becomes an overriding effect on the trabecular architecture.
Collapse
|
29
|
Jackman TM, Hussein AI, Adams AM, Makhnejia KK, Morgan EF. Endplate deflection is a defining feature of vertebral fracture and is associated with properties of the underlying trabecular bone. J Orthop Res 2014; 32:880-6. [PMID: 24700382 PMCID: PMC4450106 DOI: 10.1002/jor.22620] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 02/27/2014] [Indexed: 02/04/2023]
Abstract
Endplate deflection frequently occurs with vertebral failure, but the relationship between the two remains poorly defined. This study examined associations between endplate deflection under compressive loading and characteristics of the neighboring subchondral bone and intervertebral disc (IVD). Ten L1 vertebrae with adjacent IVDs were dissected, compressed axially in a stepwise manner to failure, and imaged with micro-computed tomography before each loading step. From the images, deflection was measured across the surface of each endplate at each step. Trabecular microstructure and endplate volume fraction were evaluated in 5 mm regions just under the superior endplate. IVDs were assessed using computed tomography and histology. A marked increase in superior endplate deflection coincided with a drop in the load-displacement curve. Endplate deflection was higher in regions with less robust bone microstructure (p < 0.009), though these associations tended to weaken as loading progressed. Immediately following the ultimate point, endplate deflection was higher in regions underlying the nucleus pulposus versus annulus fibrosus (p = 0.035), irrespective of disc grade (p = 0.346). These results indicate that a sudden increase in endplate deflection signals that the mechanical competence of the vertebra has been compromised. The mechanisms of endplate failure likely relate to anatomical features of the endplate, neighboring trabecular bone, and IVD.
Collapse
Affiliation(s)
- Timothy M Jackman
- Dept. of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Amira I Hussein
- Dept. of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Alexander M Adams
- Dept. of Biomedical Engineering, Boston University, Boston, MA, United States, Dept. of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Kamil K Makhnejia
- Dept. of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Elise F Morgan
- Dept. of Biomedical Engineering, Boston University, Boston, MA, United States, Dept. of Mechanical Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
30
|
Hussein AI, Jackman TM, Morgan SR, Barest GD, Morgan EF. The intravertebral distribution of bone density: correspondence to intervertebral disc health and implications for vertebral strength. Osteoporos Int 2013; 24:3021-30. [PMID: 23863990 PMCID: PMC4465501 DOI: 10.1007/s00198-013-2417-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED This study's goal was to determine associations among the intravertebral heterogeneity in bone density, bone strength, and intervertebral disc (IVD) health. Results indicated that predictions of vertebral strength can benefit from considering the magnitude of the density heterogeneity and the congruence between the spatial distribution of density and IVD health. INTRODUCTION This study aims to determine associations among the intravertebral heterogeneity in bone density, bone strength, and IVD health METHODS Regional measurements of bone density were performed throughout 30 L1 vertebral bodies using micro-computed tomography (μCT) and quantitative computed tomography (QCT). The magnitude of the intravertebral heterogeneity in density was defined as the interquartile range and quartile coefficient of variation in regional densities. The spatial distribution of density was quantified using ratios of regional densities representing different anatomical zones (e.g., anterior to posterior regional densities). Cluster analysis was used to identify groups of vertebrae with similar spatial distributions of density. Vertebral strength was measured in compression. IVD health was assessed using two scoring systems. RESULTS QCT- and μCT-based measures of the magnitude of the intravertebral heterogeneity in density were strongly correlated with each other (p < 0.005). Accounting for the interquartile range in regional densities improved predictions of vertebral strength as compared to predictions based only on mean density (R (2) = 0.59 vs. 0.43; F-test p-value = 0.018). Specifically, after adjustment for mean density, vertebral bodies with greater heterogeneity in density exhibited higher strength. No single spatial distribution of density was associated with high vertebral strength. Analyses of IVD scores suggested that the health of the adjacent IVDs may modulate the effect of a particular spatial distribution of density on vertebral strength. CONCLUSIONS Noninvasive measurements of the intravertebral distribution of bone density, in conjunction with assessments of IVD health, can aid in predictions of bone strength and in elucidating biomechanical mechanisms of vertebral fracture.
Collapse
Affiliation(s)
- A I Hussein
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA,
| | | | | | | | | |
Collapse
|
31
|
Thomsen JS, Niklassen AS, Ebbesen EN, Brüel A. Age-related changes of vertical and horizontal lumbar vertebral trabecular 3D bone microstructure is different in women and men. Bone 2013; 57:47-55. [PMID: 23899636 DOI: 10.1016/j.bone.2013.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/28/2022]
Abstract
The study presents a 3D method for subdividing a trabecular network into horizontal and vertical oriented bone. This method was used to investigate the age related changes of the bone volume fraction and thickness of horizontal and vertical trabeculae in human lumbar vertebral bone estimated with unbiased 3D methods in women and men over a large age-range. The study comprised second lumbar vertebral body bone samples from 40 women (aged 21.7-96.4years, median 56.6years) and 39 men (aged 22.6-94.6years, median 55.6years). The bone samples were μCT scanned and the 3D microstructure was quantified. A voxel based algorithm inspecting the local neighborhood is presented and used to segment the trabecular network into horizontal and vertical oriented bone. For both women and men BV/TV decreased significantly with age, Tb.Th* was independent of age, while SMI increased significantly with age. Vertical (BV.vert/TV) and horizontal (BV.horz/TV) bone volume fraction decreased significantly with age for both sexes. BV.vert/TV decreased significantly faster with age for women than for men. Vertical (Tb.Th*.vert) and horizontal (Tb.Th*.horz) trabecular thickness were independent of age, while Tb.Th*.horz/Tb.Th*.vert decreased significantly with age for both sexes. Additionally, the 95th percentile of the trabecular thickness distribution increased significantly with age for vertical trabeculae in women, whereas it was independent of age in men. In conclusion, we have shown that vertical and horizontal oriented bone density decreases with age in both women and men, and that vertical oriented bone is lost more quickly in women than in men. Furthermore, vertical and horizontal trabecular thickness were independent of age, whereas the horizontal to vertical trabecular thickness ratio decreased significantly with age indicating a relatively more pronounced thinning of horizontal trabeculae. Finally, the age-related loss of trabecular elements appeared to result in a compensatory hypertrophy of vertical trabeculae in women, but not in men.
Collapse
|