1
|
Das S, Chatterjee A, Datta PP. Knockdown Experiment Reveals an Essential GTPase CgtA's Involvement in Growth, Viability, Motility, Morphology, and Persister Phenotypes in Vibrio cholerae. Microbiol Spectr 2023; 11:e0318122. [PMID: 36916969 PMCID: PMC10100748 DOI: 10.1128/spectrum.03181-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
CgtA is an essential bacterial GTPase consisting of a highly conserved N-terminal Spo0B-associated GTP-binding protein (Obg) domain, a central GTPase domain, and a variable C-terminal domain (CTD). This study reports global changes in the proteome and transcriptome of wild-type (Wt) versus full-length CgtA-depleted Vibrio cholerae in minimal media. Comparative transcriptome sequencing (RNA-Seq), followed by comparative proteomic analyses, revealed that the knockdown of cgtA significantly altered expressions of 311 proteins involved in diverse cellular activities, many of which are associated with the survival of V. cholerae. Various intracellular functional roles of CgtA in growth, viability, motility, morphology, and persister phenotypes in V. cholerae are revealed based on subsequent confirmatory experiments. Furthermore, a more sustained mRNA expression pattern of cgtA in a minimal medium than in a rich medium was also observed for Wt V. cholerae, where the highest level of mRNA expression of cgtA was observed during the logarithmic growth phase. Thereby, we propose that minimal medium-associated reduced growth rate coupled with cgtA depletion aggravates the intracellular stress in V. cholerae, interrupting vital cellular processes. The functional role of the CTD in V. cholerae is not fully understood. Hence, to specifically investigate the intracellular role of the 57-amino-acid-long CTD of CgtAVC, the CTD-only portion of CgtA was deleted. Subsequent proteomics studies revealed an altered expression of 240 proteins in the CgtA(ΔCTD) mutant, having major overlap with the full-length cgtA-deleted condition. Overall, our study reveals an alternative facet of the survival mechanism of V. cholerae during nutritional downshift as per the concomitant consequences of cgtA depletion. IMPORTANCE It is very important that we must find new drug target proteins from multidrug-resistant human-pathogenic organisms like V. cholerae. CgtA is among such potential candidates, and here, we are reporting about some newly identified cellular roles of it that are important for the survival of V. cholerae. Briefly, we knocked down the full-length cgtA gene, as well as did a partial deletion of this gene from the V. cholerae genome followed by RNA-Seq and proteomics studies. Results from our study revealed up- and downregulation of several known and unknown genes and proteins as the effect of the cgtA knockdown experiment. Also, we have presented some interesting observations that are linked with cgtA for growth, viability, motility, morphology, and persister phenotypes in V. cholerae. Our study enhances the importance of CgtA and paves the way for further exploration based on our provided data.
Collapse
Affiliation(s)
- Sagarika Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Partha Pratim Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| |
Collapse
|
2
|
IRC3 regulates mitochondrial translation in response to metabolic cues in Saccharomyces cerevisiae. Mol Cell Biol 2021; 41:e0023321. [PMID: 34398681 DOI: 10.1128/mcb.00233-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) enzymes are made up of dual genetic origin. Mechanisms regulating the expression of nuclear-encoded OXPHOS subunits in response to metabolic cues (glucose vs. glycerol), is significantly understood while regulation of mitochondrially encoded OXPHOS subunits is poorly defined. Here, we show that IRC3 a DEAD/H box helicase, previously implicated in mitochondrial DNA maintenance, is central to integrating metabolic cues with mitochondrial translation. Irc3 associates with mitochondrial small ribosomal subunit in cells consistent with its role in regulating translation elongation based on Arg8m reporter system. IRC3 deleted cells retained mitochondrial DNA despite growth defect on glycerol plates. Glucose grown Δirc3ρ+ and irc3 temperature-sensitive cells at 370C have reduced translation rates from majority of mRNAs. In contrast, when galactose was the carbon source, reduction in mitochondrial translation was observed predominantly from Cox1 mRNA in Δirc3ρ+ but no defect was observed in irc3 temperature-sensitive cells, at 370C. In support, of a model whereby IRC3 responds to metabolic cues to regulate mitochondrial translation, suppressors of Δirc3 isolated for restoration of growth on glycerol media restore mitochondrial protein synthesis differentially in presence of glucose vs. glycerol.
Collapse
|
3
|
Chen J, Wang L, Jin X, Wan J, Zhang L, Je BI, Zhao K, Kong F, Huang J, Tian M. Oryza sativa ObgC1 Acts as a Key Regulator of DNA Replication and Ribosome Biogenesis in Chloroplast Nucleoids. RICE (NEW YORK, N.Y.) 2021; 14:65. [PMID: 34251486 PMCID: PMC8275814 DOI: 10.1186/s12284-021-00498-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The Spo0B-associated GTP-binding protein (Obg) GTPase, has diverse and important functions in bacteria, including morphological development, DNA replication and ribosome maturation. Homologs of the Bacillus subtilis Obg have been also found in chloroplast of Oryza sativa, but their primary roles remain unknown. RESULTS We clarify that OsObgC1 is a functional homolog of AtObgC. The mutant obgc1-d1 exhibited hypersensitivity to the DNA replication inhibitor hydroxyurea. Quantitative PCR results showed that the ratio of chloroplast DNA to nuclear DNA in the mutants was higher than that of the wild-type plants. After DAPI staining, OsObgC1 mutants showed abnormal nucleoid architectures. The specific punctate staining pattern of OsObgC1-GFP signal suggests that this protein localizes to the chloroplast nucleoids. Furthermore, loss-of-function mutation in OsObgC1 led to a severe suppression of protein biosynthesis by affecting plastid rRNA processing. It was also demonstrated through rRNA profiling that plastid rRNA processing was decreased in obgc1-d mutants, which resulted in impaired ribosome biogenesis. The sucrose density gradient profiles revealed a defective chloroplast ribosome maturation of obgc1-d1 mutants. CONCLUSION Our findings here indicate that the OsObgC1 retains the evolutionarily biological conserved roles of prokaryotic Obg, which acts as a signaling hub that regulates DNA replication and ribosome biogenesis in chloroplast nucleoids.
Collapse
Affiliation(s)
- Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Li Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaowan Jin
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Wan
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lang Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Byoung Il Je
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 61005, China
| | - Ke Zhao
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fanlei Kong
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin Huang
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 61005, China.
| | - Mengliang Tian
- Institute for New Rural Development, Sichuan Agricultural University, Yaan, 625000, China.
| |
Collapse
|
4
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
5
|
GTP Binding is Necessary for the Activation of a Toxic Mutant Isoform of the Essential GTPase ObgE. Int J Mol Sci 2019; 21:ijms21010016. [PMID: 31861427 PMCID: PMC6982127 DOI: 10.3390/ijms21010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 11/29/2022] Open
Abstract
Even though the Obg protein is essential for bacterial viability, the cellular functions of this universally conserved GTPase remain enigmatic. Moreover, the influence of GTP and GDP binding on the activity of this protein is largely unknown. Previously, we identified a mutant isoform of ObgE (the Obg protein of Escherichia coli) that triggers cell death. In this research we explore the biochemical requirements for the toxic effect of this mutant ObgE* isoform, using cell death as a readily accessible read-out for protein activity. Both the absence of the N-terminal domain and a decreased GTP binding affinity neutralize ObgE*-mediated toxicity. Moreover, a deletion in the region that connects the N-terminal domain to the G domain likewise abolishes toxicity. Taken together, these data indicate that GTP binding by ObgE* triggers a conformational change that is transmitted to the N-terminal domain to confer toxicity. We therefore conclude that ObgE*–GTP, but not ObgE*–GDP, is the active form of ObgE* that is detrimental to cell viability. Based on these data, we speculate that also for wild-type ObgE, GTP binding triggers conformational changes that affect the N-terminal domain and thereby control ObgE function.
Collapse
|
6
|
Dewachter L, Verstraeten N, Fauvart M, Michiels J. An integrative view of cell cycle control in Escherichia coli. FEMS Microbiol Rev 2018; 42:116-136. [PMID: 29365084 DOI: 10.1093/femsre/fuy005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/19/2018] [Indexed: 11/14/2022] Open
Abstract
Bacterial proliferation depends on the cells' capability to proceed through consecutive rounds of the cell cycle. The cell cycle consists of a series of events during which cells grow, copy their genome, partition the duplicated DNA into different cell halves and, ultimately, divide to produce two newly formed daughter cells. Cell cycle control is of the utmost importance to maintain the correct order of events and safeguard the integrity of the cell and its genomic information. This review covers insights into the regulation of individual key cell cycle events in Escherichia coli. The control of initiation of DNA replication, chromosome segregation and cell division is discussed. Furthermore, we highlight connections between these processes. Although detailed mechanistic insight into these connections is largely still emerging, it is clear that the different processes of the bacterial cell cycle are coordinated to one another. This careful coordination of events ensures that every daughter cell ends up with one complete and intact copy of the genome, which is vital for bacterial survival.
Collapse
Affiliation(s)
- Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium.,Department of Life Sciences and Imaging, Smart Electronics Unit, imec, B-3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, B-3001 Leuven, Belgium.,VIB Center for Microbiology, B-3001 Leuven, Belgium
| |
Collapse
|
7
|
Dewachter L, Verstraeten N, Jennes M, Verbeelen T, Biboy J, Monteyne D, Pérez-Morga D, Verstrepen KJ, Vollmer W, Fauvart M, Michiels J. A Mutant Isoform of ObgE Causes Cell Death by Interfering with Cell Division. Front Microbiol 2017; 8:1193. [PMID: 28702018 PMCID: PMC5487468 DOI: 10.3389/fmicb.2017.01193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/12/2017] [Indexed: 01/14/2023] Open
Abstract
Cell division is a vital part of the cell cycle that is fundamental to all life. Despite decades of intense investigation, this process is still incompletely understood. Previously, the essential GTPase ObgE, which plays a role in a myriad of basic cellular processes (such as initiation of DNA replication, chromosome segregation, and ribosome assembly), was proposed to act as a cell cycle checkpoint in Escherichia coli by licensing chromosome segregation. We here describe the effect of a mutant isoform of ObgE (ObgE∗) that causes cell death by irreversible arrest of the cell cycle at the stage of cell division. Notably, chromosome segregation is allowed to proceed normally in the presence of ObgE∗, after which cell division is blocked. Under conditions of rapid growth, ongoing cell cycles are completed before cell cycle arrest by ObgE∗ becomes effective. However, cell division defects caused by ObgE∗ then elicit lysis through formation of membrane blebs at aberrant division sites. Based on our results, and because ObgE was previously implicated in cell cycle regulation, we hypothesize that the mutation in ObgE∗ disrupts the normal role of ObgE in cell division. We discuss how ObgE∗ could reveal more about the intricate role of wild-type ObgE in division and cell cycle control. Moreover, since Obg is widely conserved and essential for viability, also in eukaryotes, our findings might be applicable to other organisms as well.
Collapse
Affiliation(s)
- Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven - University of LeuvenLeuven, Belgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant Genetics, KU Leuven - University of LeuvenLeuven, Belgium
| | - Michiel Jennes
- Centre of Microbial and Plant Genetics, KU Leuven - University of LeuvenLeuven, Belgium
| | - Tom Verbeelen
- Centre of Microbial and Plant Genetics, KU Leuven - University of LeuvenLeuven, Belgium
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Daniel Monteyne
- Laboratory of Molecular Parasitology, Institut de Biologie et de Médecine Moléculaires, Université Libre de BruxellesGosselies, Belgium
| | - David Pérez-Morga
- Laboratory of Molecular Parasitology, Institut de Biologie et de Médecine Moléculaires, Université Libre de BruxellesGosselies, Belgium.,Center for Microscopy and Molecular Imaging, Université Libre de BruxellesGosselies, Belgium
| | - Kevin J Verstrepen
- Centre of Microbial and Plant Genetics, KU Leuven - University of LeuvenLeuven, Belgium.,Systems Biology Laboratory, VIB Center for MicrobiologyLeuven, Belgium
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven - University of LeuvenLeuven, Belgium.,Department of Life Sciences and Imaging, Smart Electronics Unit, ImecLeuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven - University of LeuvenLeuven, Belgium
| |
Collapse
|
8
|
Chen J, Deng F, Deng M, Han J, Chen J, Wang L, Yan S, Tong K, Liu F, Tian M. Identification and Characterization of a Chloroplast-Targeted Obg GTPase in Dendrobium officinale. DNA Cell Biol 2016; 35:802-811. [PMID: 27710025 DOI: 10.1089/dna.2016.3413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacterial homologous chloroplast-targeted Obg GTPases (ObgCs) belong to the plant-typical Obg group, which is involved in diverse physiological processes during chloroplast development. However, the evolutionarily conserved function of ObgC in plants remains elusive and requires further investigation. In this study, we identified DoObgC from an epiphytic plant Dendrobium officinale and demonstrated the characteristics of DoObgC. Sequence analysis indicated that DoObgC is highly conserved with other plant ObgCs, which contain the chloroplast transit peptide (cTP), Obg fold, G domain, and OCT regions. The C terminus of DoObgC lacking the chloroplast-targeting cTP region, DoObgCΔ1-160, showed strong similarity to ObgE and other bacterial Obgs. Overexpression of DoObgCΔ1-160 in Escherichia coli caused slow cell growth and an increased number of elongated cells. This phenotype was consistent with the phenotype of cells overexpressing ObgE. Furthermore, the expression of recombinant DoObgCΔ1-160 enhanced the cell persistence of E. coli to streptomycin. Results of transient expression assays revealed that DoObgC was localized to chloroplasts. Moreover, we demonstrated that DoObgC could rescue the embryotic lethal phenotype of the Arabidopsis obgc-t mutant, suggesting that DoObgC is a functional homolog to Arabidopsis AtObgC in D. officinale. Gene expression profiles showed that DoObgC was expressed in leaf-specific and light-dependent patterns and that DoObgC responded to wounding treatments. Our previous and present studies reveal that ObgC has an evolutionarily conserved role in ribosome biogenesis to adapt chloroplast development to the environment.
Collapse
Affiliation(s)
- Ji Chen
- 1 Agronomy College, Sichuan Agricultural University , Chengdu, China
| | - Feng Deng
- 1 Agronomy College, Sichuan Agricultural University , Chengdu, China
| | - Mengsheng Deng
- 1 Agronomy College, Sichuan Agricultural University , Chengdu, China
| | - Jincheng Han
- 1 Agronomy College, Sichuan Agricultural University , Chengdu, China
| | - Jianbin Chen
- 1 Agronomy College, Sichuan Agricultural University , Chengdu, China
| | - Li Wang
- 1 Agronomy College, Sichuan Agricultural University , Chengdu, China
| | - Shen Yan
- 1 Agronomy College, Sichuan Agricultural University , Chengdu, China
| | - Kai Tong
- 1 Agronomy College, Sichuan Agricultural University , Chengdu, China
| | - Fan Liu
- 1 Agronomy College, Sichuan Agricultural University , Chengdu, China
| | - Mengliang Tian
- 2 Institute for New Rural Development, Sichuan Agricultural University , Yaan, China
| |
Collapse
|
9
|
Lau CKY, Krewulak KD, Vogel HJ. Bacterial ferrous iron transport: the Feo system. FEMS Microbiol Rev 2015; 40:273-98. [PMID: 26684538 DOI: 10.1093/femsre/fuv049] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2015] [Indexed: 01/24/2023] Open
Abstract
To maintain iron homeostasis within the cell, bacteria have evolved various types of iron acquisition systems. Ferric iron (Fe(3+)) is the dominant species in an oxygenated environment, while ferrous iron (Fe(2+)) is more abundant under anaerobic conditions or at low pH. For organisms that must combat oxygen limitation for their everyday survival, pathways for the uptake of ferrous iron are essential. Several bacterial ferrous iron transport systems have been described; however, only the Feo system appears to be widely distributed and is exclusively dedicated to the transport of iron. In recent years, many studies have explored the role of the FeoB and FeoA proteins in ferrous iron transport and their contribution toward bacterial virulence. The three-dimensional structures for the Feo proteins have recently been determined and provide insight into the molecular details of the transport system. A highly select group of bacteria also express the FeoC protein from the same operon. This review will provide a comprehensive look at the structural and functional aspects of the Feo system. In addition, bioinformatics analyses of the feo operon and the Feo proteins have been performed to complement our understanding of this ubiquitous bacterial uptake system, providing a new outlook for future studies.
Collapse
Affiliation(s)
- Cheryl K Y Lau
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Karla D Krewulak
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
10
|
Murray H, Koh A. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis. PLoS Genet 2014; 10:e1004731. [PMID: 25340815 PMCID: PMC4207641 DOI: 10.1371/journal.pgen.1004731] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/03/2014] [Indexed: 11/18/2022] Open
Abstract
In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.
Collapse
Affiliation(s)
- Heath Murray
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- * E-mail:
| | - Alan Koh
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
11
|
Kint C, Verstraeten N, Hofkens J, Fauvart M, Michiels J. Bacterial Obg proteins: GTPases at the nexus of protein and DNA synthesis. Crit Rev Microbiol 2013; 40:207-24. [PMID: 23537324 DOI: 10.3109/1040841x.2013.776510] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Obg proteins (also known as ObgE, YhbZ and CgtA) are conserved P-loop GTPases, essential for growth in bacteria. Like other GTPases, Obg proteins cycle between a GTP-bound ON and a GDP-bound OFF state, thereby controlling cellular processes. Interestingly, the in vitro biochemical properties of Obg proteins suggest that they act as sensors for the cellular GDP/GTP pools and adjust their activity according to the cellular energy status. Obg proteins have been attributed a host of cellular functions, including roles in essential cellular processes (DNA replication, ribosome maturation) and roles in different stress adaptation pathways (stringent response, sporulation, general stress response). This review summarizes the current knowledge on Obg activity and function. Furthermore, we present a model that integrates the different functions of Obg by assigning it a fundamental role in cellular physiology, at the hub of protein and DNA synthesis. In particular, we believe that Obg proteins might provide a connection between different global pathways in order to fine-tune cellular processes in response to a given energy status.
Collapse
Affiliation(s)
- Cyrielle Kint
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven , Kasteelpark Arenberg 20, 3001 Heverlee , Kasteelpark Arenberg 20, 3001 Heverlee and
| | | | | | | | | |
Collapse
|
12
|
The universally conserved prokaryotic GTPases. Microbiol Mol Biol Rev 2012; 75:507-42, second and third pages of table of contents. [PMID: 21885683 DOI: 10.1128/mmbr.00009-11] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.
Collapse
|
13
|
Maciag M, Kochanowska M, Lyzeń R, Wegrzyn G, Szalewska-Pałasz A. ppGpp inhibits the activity of Escherichia coli DnaG primase. Plasmid 2009; 63:61-7. [PMID: 19945481 DOI: 10.1016/j.plasmid.2009.11.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/17/2009] [Accepted: 11/22/2009] [Indexed: 11/28/2022]
Abstract
DNA primase is an enzyme required for replication of both chromosomes and vast majority of plasmids. Guanosine tetra- and penta-phosphate (ppGpp and pppGpp, respectively) are alarmones of the bacterial stringent response to starvation and stress conditions, and act by modulation of the RNA polymerase activity. Recent studies indicated that the primase-catalyzed reaction is also inhibited by (p)ppGpp in Bacillus subtilis, where a specific regulation of DNA replication elongation, the replication fork arrest, was discovered. Although in Escherichia coli such a replication regulation was not reported to date, here we show that E. coli DnaG primase is directly inhibited by ppGpp and pppGpp. However, contrary to the B. subtilis primase response to the stringent control alarmones, the E, coli DnaG was inhibited more efficiently by ppGpp than by pppGpp.
Collapse
Affiliation(s)
- Monika Maciag
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | | | | | | | | |
Collapse
|
14
|
Persky NS, Ferullo DJ, Cooper DL, Moore HR, Lovett ST. The ObgE/CgtA GTPase influences the stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 2009; 73:253-66. [PMID: 19555460 PMCID: PMC2771346 DOI: 10.1111/j.1365-2958.2009.06767.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The stringent response is important for bacterial survival under stressful conditions, such as amino acid starvation, and is characterized by the accumulation of ppGpp and pppGpp. ObgE (CgtA, YhbZ) is an essential conserved GTPase in Escherichia coli and several observations have implicated the protein in the control of the stringent response. However, consequences of the protein on specific responses to amino acid starvation have not been noted. We show that ObgE binds to ppGpp with biologically relevant affinity in vitro, implicating ppGpp as an in vivo ligand of ObgE. ObgE mutants increase the ratio of pppGpp to ppGpp within the cell during the stringent response. These changes are correlated with a delayed inhibition of DNA replication by the stringent response, delayed resumption of DNA replication after release, as well as a decreased survival after amino acid deprivation. With these data, we place ObgE as an active effector of the response to amino acid starvation in vivo. Our data correlate the pppGpp/ppGpp ratio with DNA replication control under bacterial starvation conditions, suggesting a possible role for the relative balance of these two nucleotides.
Collapse
Affiliation(s)
- Nicole S. Persky
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| | - Daniel J. Ferullo
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| | - Deani L. Cooper
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| | - Hayley R. Moore
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| | - Susan T. Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA
| |
Collapse
|
15
|
Functional analysis of the essential GTP-binding-protein-coding gene cgtA of Vibrio cholerae. J Bacteriol 2008; 190:4764-71. [PMID: 18456812 DOI: 10.1128/jb.02021-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cgtA gene, coding for the conserved G protein CgtA, is essential in bacteria. In contrast to a previous report, here we show by using genetic analysis that cgtA is essential in Vibrio cholerae even in a Delta relA background. Depletion of CgtA affected the growth of V. cholerae and rendered the cells highly sensitive to the replication inhibitor hydroxyurea. Overexpression of V. cholerae CgtA caused distinct elongation of Escherichia coli cells. Deletion analysis indicated that the C-terminal end of CgtA plays a critical role in its proper function.
Collapse
|
16
|
Eng ET, Jalilian AR, Spasov KA, Unger VM. Characterization of a novel prokaryotic GDP dissociation inhibitor domain from the G protein coupled membrane protein FeoB. J Mol Biol 2008; 375:1086-97. [PMID: 18068722 PMCID: PMC2266681 DOI: 10.1016/j.jmb.2007.11.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 11/07/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
Abstract
The FeoB family of membrane embedded G proteins are involved with high affinity Fe(II) uptake in prokaryotes. Here, we report that FeoB harbors a novel GDP dissociation inhibitor-like domain that specifically stabilizes GDP-binding through an interaction with the switch I region of the G protein. We show that the stabilization of GDP binding is conserved between species despite a high degree of sequence variability in their guanine nucleotide dissociation inhibitor (GDI)-like domains, and demonstrate that the presence of the membrane embedded domain increases GDP-binding affinity roughly 150-fold over the level accomplished by action of the GDI-like domain alone. To our knowledge, this is the first example for a prokaryotic GDI, targeting a bacterial G protein-coupled membrane process. Our findings suggest that Fe(II) uptake in bacteria involves a G protein regulatory pathway reminiscent of signaling mechanisms found in higher-order organisms.
Collapse
Affiliation(s)
- Edward T. Eng
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, P.O. Box 208028, New Haven, CT 06520-8024
| | - Amir R. Jalilian
- Nuclear Medicine Group, Agriculture, Medicine and Industrial Research School (AMIRS), Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Krasimir A. Spasov
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, P.O. Box 208028, New Haven, CT 06520-8024
| | - Vinzenz M. Unger
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, P.O. Box 208028, New Haven, CT 06520-8024
| |
Collapse
|
17
|
Jiang M, Sullivan SM, Wout PK, Maddock JR. G-protein control of the ribosome-associated stress response protein SpoT. J Bacteriol 2007; 189:6140-7. [PMID: 17616600 PMCID: PMC1951942 DOI: 10.1128/jb.00315-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial response to stress is controlled by two proteins, RelA and SpoT. RelA generates the alarmone (p)ppGpp under amino acid starvation, whereas SpoT is responsible for (p)ppGpp hydrolysis and for synthesis of (p)ppGpp under a variety of cellular stress conditions. It is widely accepted that RelA is associated with translating ribosomes. The cellular location of SpoT, however, has been controversial. SpoT physically interacts with the ribosome-associated GTPase CgtA, and we show here that, under an optimized salt condition, SpoT is also associated with a pre-50S particle. Analysis of spoT and cgtA mutants and strains overexpressing CgtA suggests that the ribosome associations of SpoT and CgtA are mutually independent. The steady-state level of (p)ppGpp is increased in a cgtA mutant, but the accumulation of (p)ppGpp during amino acid starvation is not affected, providing strong evidence that CgtA regulates the (p)ppGpp level during exponential growth but not during the stringent response. We show that CgtA is not associated with pre-50S particles during amino acid starvation, indicating that under these conditions in which (p)ppGpp accumulates, CgtA is not bound either to the pre-50S particle or to SpoT. We propose that, in addition to its role as a 50S assembly factor, CgtA promotes SpoT (p)ppGpp degradation activity on the ribosome and that the loss of CgtA from the ribosome is necessary for maximal (p)ppGpp accumulation under stress conditions. Intriguingly, we found that in the absence of spoT and relA, cgtA is still an essential gene in Escherichia coli.
Collapse
Affiliation(s)
- Mengxi Jiang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109-1048, USA
| | | | | | | |
Collapse
|