1
|
Microbiome Variability across the Native and Invasive Ranges of the Ascidian Clavelina oblonga. Appl Environ Microbiol 2021; 87:AEM.02233-20. [PMID: 33127817 DOI: 10.1128/aem.02233-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Ascidians are prolific colonizers of new environments and possess a range of well-studied features that contribute to their successful spread, but the role of their symbiotic microbial communities in their long-term establishment is mostly unknown. In this study, we utilized next-generation amplicon sequencing to provide a comprehensive description of the microbiome in the colonial ascidian Clavelina oblonga and examined differences in the composition, diversity, and structure of symbiont communities in the host's native and invasive ranges. To identify host haplotypes, we sequenced a fragment of the mitochondrial gene cytochrome c oxidase subunit I (COI). C. oblonga harbored a diverse microbiome spanning 42 bacterial and three archaeal phyla. Colonies in the invasive range hosted significantly less diverse symbiont communities and exhibited lower COI haplotype diversity than colonies in the native range. Differences in microbiome structure were also detected across colonies in the native and invasive range, driven largely by novel bacteria representing symbiont lineages with putative roles in nitrogen cycling. Variability in symbiont composition was also observed among sites within each range. Together, these data suggest that C. oblonga hosts a dynamic microbiome resulting from (i) reductions in symbiont diversity due to founder effects in host populations and (ii) environmental selection of symbiont taxa in response to new habitats within a range. Further investigation is required to document the mechanisms behind these changes and to determine how changes in microbiome structure relate to holobiont function and the successful establishment of C. oblonga worldwide.IMPORTANCE Nonnative species destabilize coastal ecosystems and microbial symbionts may facilitate their spread by enhancing host survival and fitness. However, we know little of the microorganisms that live inside invasive species and whether they change as the host spreads to new areas. In this study, we investigated the microbial communities of an introduced ascidian (Clavelina oblonga) and tracked symbiont changes across locations within the host's native and invasive ranges. Ascidians in the invasive range had less-diverse microbiomes, as well as lower host haplotype diversity, suggesting that specific colonies reach new locations and carry select symbionts from native populations (i.e., founder effects). Further, ascidians in the invasive range hosted a different composition of symbionts, including microbes with the potential to aid in processes related to invasion success (e.g., nutrient cycling). We conclude that the putative functionality and observed flexibility of this introduced ascidian microbiome may represent an underappreciated factor in the successful establishment of nonnative species in new environments.
Collapse
|
2
|
Abstract
Vibrio coralliilyticus and Vibrio mediterranei are important coral pathogens capable of inducing serious coral damage, which increases severely when they infect the host simultaneously. This has consequences related to the dispersion of these pathogens among different locations that could enhance deleterious effects on coral reefs. However, the mechanisms underlying this synergistic interaction are unknown. The work described here provides a new perspective on the complex interactions among these two Vibrio coral pathogens, suggesting that coral infection could be a collateral effect of interspecific competition. Major implications of this work are that (i) Vibrio virulence mechanisms are activated in the absence of the host as a response to interspecific competition and (ii) release of molecules by Vibrio coral pathogens produces changes in the coral microbiome that favor the pathogenic potential of the entire Vibrio community. Thus, our results highlight that social cues and competition sensing are crucial determinants of development of coral diseases. The increase in prevalence and severity of coral disease outbreaks produced by Vibrio pathogens, and related to global warming, has seriously impacted reef-building corals throughout the oceans. The coral Oculina patagonica has been used as a model system to study coral bleaching produced by Vibrio infection. Previous data demonstrated that when two coral pathogens (Vibrio coralliilyticus and Vibrio mediterranei) simultaneously infected the coral O. patagonica, their pathogenicity was greater than when each bacterium was infected separately. Here, to understand the mechanisms underlying this synergistic effect, transcriptomic analyses of monocultures and cocultures as well as experimental infection experiments were performed. Our results revealed that the interaction between the two vibrios under culture conditions overexpressed virulence factor genes (e.g., those encoding siderophores, the type VI secretion system, and toxins, among others). Moreover, under these conditions, vibrios were also more likely to form biofilms or become motile through induction of lateral flagella. All these changes that occur as a physiological response to the presence of a competing species could favor the colonization of the host when they are present in a mixed population. Additionally, during coral experimental infections, we showed that exposure of corals to molecules released during V. coralliilyticus and V. mediterranei coculture induced changes in the coral microbiome that favored damage to coral tissue and increased the production of lyso-platelet activating factor. Therefore, we propose that competition sensing, defined as the physiological response to detection of harm or to the presence of a competing Vibrio species, enhances the ability of Vibrio coral pathogens to invade their host and cause tissue necrosis.
Collapse
|
3
|
Andree KB, Carrasco N, Carella F, Furones D, Prado P. Vibrio mediterranei, a potential emerging pathogen of marine fauna: investigation of pathogenicity using a bacterial challenge in Pinna nobilis and development of a species-specific PCR. J Appl Microbiol 2020; 130:617-631. [PMID: 32592599 DOI: 10.1111/jam.14756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 11/30/2022]
Abstract
AIMS Extreme mortality events affecting Pinna nobilis, some associated to Vibrio mediterranei, have depleted many populations of this bivalve. The objective of this study was to demonstrate pathogenicity of V. mediterranei in the host P. nobilis by performing a bacterial challenge in P. nobilis to understand if V. mediterranei has specific virulence in this host. To assist this objective, a secondary objective was to develop a species-specific DNA diagnostic test. METHODS AND RESULTS Pinna nobilis collected from local bays were used in a challenge experiment with V. mediterranei (strain IRTA18-108). The virulence in the host background of P. nobilis was demonstrated at doses of 103 CFUs per animal. An alignment of published Vibrio sp. atpA sequences was used to design V. mediterranei-specific primers. Furthermore, data mining of published literature and V. mediterranei genomes identified multiple virulence-related genes (vir genes) from which specific primers were designed for PCR detection of selected genes. CONCLUSION Vibrio mediterranei strain IRTA18-108 is pathogenic in the host P. nobilis. The virulence genes sod, rtx and mshA were identified in this strain. Temperatures of 24°C or higher appear to trigger onset of virulence. Sensitivity and specificity of the Vm atpA PCR is useful for diagnosis of Vibriosis in shellfish. SIGNIFICANCE AND IMPACT OF THE STUDY The presence of previously described virulence genes have been confirmed in this strain. The specific Vm atpA PCR assay will aid management of future epizootics of this emerging pathogen of aquatic fauna, and improve surveillance capabilities for mortality events where Vibrios are suspect.
Collapse
Affiliation(s)
- K B Andree
- Institute for Research and Technology in Food and Agriculture, San Carlos de la Ràpita (Tarragona), Spain
| | - N Carrasco
- Institute for Research and Technology in Food and Agriculture, San Carlos de la Ràpita (Tarragona), Spain
| | - F Carella
- Department of Biology Naples, University of Naples Federico II, Complesso di MSA, Naples, Italy
| | - D Furones
- Institute for Research and Technology in Food and Agriculture, San Carlos de la Ràpita (Tarragona), Spain
| | - P Prado
- Institute for Research and Technology in Food and Agriculture, San Carlos de la Ràpita (Tarragona), Spain
| |
Collapse
|
4
|
Introduced ascidians harbor highly diverse and host-specific symbiotic microbial assemblages. Sci Rep 2017; 7:11033. [PMID: 28887506 PMCID: PMC5591302 DOI: 10.1038/s41598-017-11441-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/22/2017] [Indexed: 11/24/2022] Open
Abstract
Many ascidian species have experienced worldwide introductions, exhibiting remarkable success in crossing geographic borders and adapting to local environmental conditions. To investigate the potential role of microbial symbionts in these introductions, we examined the microbial communities of three ascidian species common in North Carolina harbors. Replicate samples of the globally introduced species Distaplia bermudensis, Polyandrocarpa anguinea, and P. zorritensis (n = 5), and ambient seawater (n = 4), were collected in Wrightsville Beach, NC. Microbial communities were characterized by next-generation (Illumina) sequencing of partial (V4) 16S rRNA gene sequences. Ascidians hosted diverse symbiont communities, consisting of 5,696 unique microbial OTUs (at 97% sequenced identity) from 44 bacterial and three archaeal phyla. Permutational multivariate analyses of variance revealed clear differentiation of ascidian symbionts compared to seawater bacterioplankton, and distinct microbial communities inhabiting each ascidian species. 103 universal core OTUs (present in all ascidian replicates) were identified, including taxa previously described in marine invertebrate microbiomes with possible links to ammonia-oxidization, denitrification, pathogenesis, and heavy-metal processing. These results suggest ascidian microbial symbionts exhibit a high degree of host-specificity, forming intimate associations that may contribute to host adaptation to new environments via expanded tolerance thresholds and enhanced holobiont function.
Collapse
|
5
|
Li J, Azam F, Zhang S. Outer membrane vesicles containing signalling molecules and active hydrolytic enzymes released by a coral pathogenVibrio shiloniiAK1. Environ Microbiol 2016; 18:3850-3866. [DOI: 10.1111/1462-2920.13344] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/14/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences; Guangzhou Guangdong P. R. China
| | - Farooq Azam
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego; La Jolla CA USA
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences; Guangzhou Guangdong P. R. China
| |
Collapse
|
6
|
Abstract
The tissue, skeleton, and secreted mucus of corals supports a highly dynamic and diverse community of microbes, which play a major role in the health status of corals such as the provision of essential nutrients or the metabolism of waste products. However, members of the Vibrio genus are prominent as causative agents of disease in corals. The aim of this chapter is to review our understanding of the spectrum of disease effects displayed by coral-associated vibrios, with a particular emphasis on the few species where detailed studies of pathogenicity have been conducted. The role of Vibrio shilonii in seasonal bleaching of Oculina patagonica and the development of the coral probiotic hypothesis is reviewed, pointing to unanswered questions about this phenomenon. Detailed consideration is given to studies of V. coralliilyticus and related pathogens and changes in the dominance of vibrios associated with coral bleaching. Other Vibrio-associated disease syndromes discussed include yellow band/blotch disease and tissue necrosis in temperate gorgonian corals. The review includes analysis of the role of enzymes, resistance to oxidative stress, and quorum sensing in virulence of coral-associated vibrios. The review concludes that we should probably regard most-possibly all-vibrios as "opportunistic" pathogens which, under certain environmental conditions, are capable of overwhelming the defense mechanisms of appropriate hosts, leading to rapid growth and tissue destruction.
Collapse
|
7
|
Choudhury JD, Pramanik A, Webster NS, Llewellyn LE, Gachhui R, Mukherjee J. The Pathogen of the Great Barrier Reef Sponge Rhopaloeides odorabile Is a New Strain of Pseudoalteromonas agarivorans Containing Abundant and Diverse Virulence-Related Genes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:463-78. [PMID: 25837832 DOI: 10.1007/s10126-015-9627-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/11/2015] [Indexed: 05/20/2023]
Abstract
Sponge diseases have increased dramatically, yet the causative agents of disease outbreaks have eluded identification. We undertook a polyphasic taxonomic analysis of the only confirmed sponge pathogen and identified it as a novel strain of Pseudoalteromonas agarivorans. 16S ribosomal RNA (rRNA) and gyraseB (gyrB) gene sequences along with phenotypic characteristics demonstrated that strain NW4327 was most closely related to P. agarivorans. DNA-DNA hybridization and in silico genome comparisons established NW4327 as a novel strain of P. agarivorans. Genes associated with type IV pili, mannose-sensitive hemagglutinin pili, and curli formation were identified in NW4327. One gene cluster encoding ATP-binding cassette (ABC) transporter, HlyD and TolC, and two clusters related to the general secretion pathway indicated the presence of type I secretion system (T1SS) and type II secretion system (T2SS), respectively. A contiguous gene cluster of at least 19 genes related to type VI secretion system (T6SS) which included all 13 core genes was found. The absence of T1SS and T6SS in nonpathogenic P. agarivorans S816 established NW4327 as the virulent strain. Serine proteases and metalloproteases of the classes S8, S9, M4, M6, M48, and U32 were identified in NW4327, many of which can degrade collagen. Collagenase activity in NW4327 and its absence in the nonpathogenic P. agarivorans KMM 255(T) reinforced the invasiveness of NW4327. This is the first report unambiguously identifying a sponge pathogen and providing the first insights into the virulence genes present in any pathogenic Pseudoalteromonas genome. The investigation supports a theoretical study predicting high abundance of terrestrial virulence gene homologues in marine bacteria.
Collapse
Affiliation(s)
- Jayanta D Choudhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700 032, India
| | | | | | | | | | | |
Collapse
|
8
|
Chimetto Tonon LA, Silva BSDO, Moreira APB, Valle C, Alves N, Cavalcanti G, Garcia G, Lopes RM, Francini-Filho RB, de Moura RL, Thompson CC, Thompson FL. Diversity and ecological structure of vibrios in benthic and pelagic habitats along a latitudinal gradient in the Southwest Atlantic Ocean. PeerJ 2015; 3:e741. [PMID: 25699199 PMCID: PMC4327252 DOI: 10.7717/peerj.741] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/05/2015] [Indexed: 01/19/2023] Open
Abstract
We analyzed the diversity and population structure of the 775 Vibrio isolates from different locations of the southwestern Atlantic Ocean (SAO), including St. Peter and St. Paul Archipelago (SPSPA), Abrolhos Bank (AB) and the St. Sebastian region (SS), between 2005 and 2010. In this study, 195 novel isolates, obtained from seawater and major benthic organisms (rhodoliths and corals), were compared with a collection of 580 isolates previously characterized (available at www.taxvibrio.lncc.br). The isolates were distributed in 8 major habitat spectra according to AdaptML analysis on the basis of pyrH phylogenetic reconstruction and ecological information, such as isolation source (i.e., corals: Madracis decactis, Mussismilia braziliensis, M. hispida, Phyllogorgia dilatata, Scolymia wellsi; zoanthids: Palythoa caribaeorum, P. variabilis and Zoanthus solanderi; fireworm: Hermodice carunculata; rhodolith; water and sediment) and sampling site regions (SPSPA, AB and SS). Ecologically distinct groups were discerned through AdaptML, which finds phylogenetic groups that are significantly different in their spectra of habitat preferences. Some habitat spectra suggested ecological specialization, with habitat spectra 2, 3, and 4 corresponding to specialization on SPSPA, AB, and SS, respectively. This match between habitat and location may reflect a minor exchange of Vibrio populations between geographically isolated benthic systems. Moreover, we found several widespread Vibrio species predominantly from water column, and different populations of a single Vibrio species from H. carunculata in ecologically distinct groups (H-1 and H-8 respectively). On the other hand, AdaptML detected phylogenetic groups that are found in both the benthos and in open water. The ecological grouping observed suggests dispersal and connectivity between the benthic and pelagic systems in AB. This study is a first attempt to characterize the biogeographic distribution of vibrios in both seawater and several benthic hosts in the SAO. The benthopelagic coupling observed here stands out the importance of vibrios in the global ocean health.
Collapse
Affiliation(s)
- Luciane A. Chimetto Tonon
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Brazilian Biosciences National Laboratory (LNBio), National Research Center Energy and Materials (CNPEM), Campinas, Brazil
| | - Bruno Sergio de O. Silva
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ana Paula B. Moreira
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cecilia Valle
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Nelson Alves
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Giselle Cavalcanti
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gizele Garcia
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rubens M. Lopes
- Institute of Oceanography, University of São Paulo (IO-USP), São Paulo, Brazil
| | - Ronaldo B. Francini-Filho
- Department of Environment and Engineering, Federal University of Paraíba (UFPB), Rio Tinto, PB, Brazil
| | - Rodrigo L. de Moura
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane C. Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L. Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Thompson JR, Rivera HE, Closek CJ, Medina M. Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol 2015; 4:176. [PMID: 25621279 PMCID: PMC4286716 DOI: 10.3389/fcimb.2014.00176] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/04/2014] [Indexed: 01/18/2023] Open
Abstract
In the last two decades, genetic and genomic studies have revealed the astonishing diversity and ubiquity of microorganisms. Emergence and expansion of the human microbiome project has reshaped our thinking about how microbes control host health-not only as pathogens, but also as symbionts. In coral reef environments, scientists have begun to examine the role that microorganisms play in coral life history. Herein, we review the current literature on coral-microbe interactions within the context of their role in evolution, development, and ecology. We ask the following questions, first posed by McFall-Ngai et al. (2013) in their review of animal evolution, with specific attention to how coral-microbial interactions may be affected under future environmental conditions: (1) How do corals and their microbiome affect each other's genomes? (2) How does coral development depend on microbial partners? (3) How is homeostasis maintained between corals and their microbial symbionts? (4) How can ecological approaches deepen our understanding of the multiple levels of coral-microbial interactions? Elucidating the role that microorganisms play in the structure and function of the holobiont is essential for understanding how corals maintain homeostasis and acclimate to changing environmental conditions.
Collapse
Affiliation(s)
- Janelle R. Thompson
- Civil and Environmental Engineering Department, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Hanny E. Rivera
- Civil and Environmental Engineering Department, Massachusetts Institute of TechnologyCambridge, MA, USA
- Department of Biology, Woods Hole Oceanographic InstitutionWoods Hole, MA, USA
| | - Collin J. Closek
- Department of Biology, Pennsylvania State UniversityUniversity Park, PA, USA
| | - Mónica Medina
- Department of Biology, Pennsylvania State UniversityUniversity Park, PA, USA
| |
Collapse
|
10
|
Roder C, Arif C, Daniels C, Weil E, Voolstra CR. Bacterial profiling of White Plague Disease across corals and oceans indicates a conserved and distinct disease microbiome. Mol Ecol 2014; 23:965-74. [PMID: 24350609 PMCID: PMC4285310 DOI: 10.1111/mec.12638] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 11/29/2022]
Abstract
Coral diseases are characterized by microbial community shifts in coral mucus and tissue, but causes and consequences of these changes are vaguely understood due to the complexity and dynamics of coral-associated bacteria. We used 16S rRNA gene microarrays to assay differences in bacterial assemblages of healthy and diseased colonies displaying White Plague Disease (WPD) signs from two closely related Caribbean coral species, Orbicella faveolata and Orbicella franksi. Analysis of differentially abundant operational taxonomic units (OTUs) revealed strong differences between healthy and diseased specimens, but not between coral species. A subsequent comparison to data from two Indo-Pacific coral species (Pavona duerdeni and Porites lutea) revealed distinct microbial community patterns associated with ocean basin, coral species and health state. Coral species were clearly separated by site, but also, the relatedness of the underlying bacterial community structures resembled the phylogenetic relationship of the coral hosts. In diseased samples, bacterial richness increased and putatively opportunistic bacteria were consistently more abundant highlighting the role of opportunistic conditions in structuring microbial community patterns during disease. Our comparative analysis shows that it is possible to derive conserved bacterial footprints of diseased coral holobionts that might help in identifying key bacterial species related to the underlying etiopathology. Furthermore, our data demonstrate that similar-appearing disease phenotypes produce microbial community patterns that are consistent over coral species and oceans, irrespective of the putative underlying pathogen. Consequently, profiling coral diseases by microbial community structure over multiple coral species might allow the development of a comparative disease framework that can inform on cause and relatedness of coral diseases.
Collapse
Affiliation(s)
- Cornelia Roder
- Red Sea Research Center, King Abdullah University of Science and Technology, 23955, Thuwal, Saudi Arabia
| | | | | | | | | |
Collapse
|
11
|
Multilocus sequence analysis of putative Vibrio mediterranei strains and description of Vibrio thalassae sp. nov. Syst Appl Microbiol 2014; 37:320-8. [DOI: 10.1016/j.syapm.2014.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/02/2014] [Accepted: 05/02/2014] [Indexed: 11/21/2022]
|
12
|
Culturable heterotrophic bacteria associated with healthy and bleached scleractinian Madracis decactis and the fireworm Hermodice carunculata from the remote St. Peter and St. Paul Archipelago, Brazil. Curr Microbiol 2013; 68:38-46. [PMID: 23979060 DOI: 10.1007/s00284-013-0435-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
We report on the first characterization of the culturable heterotrophic bacteria of the scleractinian Madracis decactis. In addition, we characterized the culturable bacteria associated with the fireworm Hermodice carunculata, observed predating partially bleached coral colonies. Our study was carried out in the remote St. Peter and St. Paul Archipelago (SPSPA), Mid-Atlantic Ridge, Brazil. We constituted a 403 isolates collection and subsequently characterized it by means of pyrH and 16S rRNA partial sequences. We identified Photobacterium, Bacillus, and Vibrio species as members of the culturable microbiota of healthy M. decactis. V. campbellii, V. harveyi, V. communis, and V. maritimus were the most commonly found Vibrio species in healthy corals, representing more than 60 % of all vibrio isolates. Most of the vibrios isolated from the fireworm's tissues (n = 143; >90 %) were identified as V. shiloi. However, we did not recover V. shiloi from bleached M. decactis. Instead, we isolated V. communis, a novel Photobacterium species, Bacillus, Kocuria, and Pseudovibrio, suggesting a possible role of other facultative anaerobic bacteria and/or environmental features (such as water quality) in the onset of bleaching in SPSPA's M. decactis.
Collapse
|
13
|
Roder C, Arif C, Bayer T, Aranda M, Daniels C, Shibl A, Chavanich S, Voolstra CR. Bacterial profiling of White Plague Disease in a comparative coral species framework. ISME JOURNAL 2013; 8:31-9. [PMID: 23924783 PMCID: PMC3869008 DOI: 10.1038/ismej.2013.127] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 06/19/2013] [Accepted: 07/01/2013] [Indexed: 11/17/2022]
Abstract
Coral reefs are threatened throughout the world. A major factor contributing to their decline is outbreaks and propagation of coral diseases. Due to the complexity of coral-associated microbe communities, little is understood in terms of disease agents, hosts and vectors. It is known that compromised health in corals is correlated with shifts in bacterial assemblages colonizing coral mucus and tissue. However, general disease patterns remain, to a large extent, ambiguous as comparative studies over species, regions, or diseases are scarce. Here, we compare bacterial assemblages of samples from healthy (HH) colonies and such displaying signs of White Plague Disease (WPD) of two different coral species (Pavona duerdeni and Porites lutea) from the same reef in Koh Tao, Thailand, using 16S rRNA gene microarrays. In line with other studies, we found an increase of bacterial diversity in diseased (DD) corals, and a higher abundance of taxa from the families that include known coral pathogens (Alteromonadaceae, Rhodobacteraceae, Vibrionaceae). In our comparative framework analysis, we found differences in microbial assemblages between coral species and coral health states. Notably, patterns of bacterial community structures from HH and DD corals were maintained over species boundaries. Moreover, microbes that differentiated the two coral species did not overlap with microbes that were indicative of HH and DD corals. This suggests that while corals harbor distinct species-specific microbial assemblages, disease-specific bacterial abundance patterns exist that are maintained over coral species boundaries.
Collapse
Affiliation(s)
- Cornelia Roder
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Chatchanit Arif
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Till Bayer
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Manuel Aranda
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Camille Daniels
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ahmed Shibl
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Suchana Chavanich
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Reef Biology Research Group, Bangkok, Thailand
| | - Christian R Voolstra
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
14
|
Krediet CJ, Ritchie KB, Paul VJ, Teplitski M. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc Biol Sci 2013; 280:20122328. [PMID: 23363627 DOI: 10.1098/rspb.2012.2328] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Over the last decade, significant advances have been made in characterization of the coral microbiota. Shifts in its composition often correlate with the appearance of signs of diseases and/or bleaching, thus suggesting a link between microbes, coral health and stability of reef ecosystems. The understanding of interactions in coral-associated microbiota is informed by the on-going characterization of other microbiomes, which suggest that metabolic pathways and functional capabilities define the 'core' microbiota more accurately than the taxonomic diversity of its members. Consistent with this hypothesis, there does not appear to be a consensus on the specificity in the interactions of corals with microbial commensals, even though recent studies report potentially beneficial functions of the coral-associated bacteria. They cycle sulphur, fix nitrogen, produce antimicrobial compounds, inhibit cell-to-cell signalling and disrupt virulence in opportunistic pathogens. While their beneficial functions have been documented, it is not certain whether or how these microbes are selected by the hosts. Therefore, understanding the role of innate immunity, signal and nutrient exchange in the establishment of coral microbiota and in controlling its functions will probably reveal ancient, evolutionarily conserved mechanisms that dictate the outcomes of host-microbial interactions, and impact the resilience of the host.
Collapse
Affiliation(s)
- Cory J Krediet
- Interdisciplinary Ecology, University of Florida-IFAS, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
15
|
Chapela MJ, Fajardo P, Garrido A, Cabado AG, Ferreira M, Lago J, Vieites JM. Comparison between a TaqMan polymerase chain reaction assay and a culture method for ctx-positive Vibrio cholerae detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4051-4055. [PMID: 20229998 DOI: 10.1021/jf903658k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The main objective of the present work was to evaluate a real-time polymerase chain reaction (PCR) method to detect toxigenic Vibrio cholerae in Pangasius hypophthalmus, a freshwater fish cultured mainly in South East Asia. A FDA traditional culture method and a real-time PCR method of the ctx gene were used for detection of V. cholerae in spiked samples of pangasius fish. After an overnight enrichment of samples at 37 degrees C in alkaline peptone water, 2 cfu/25 g of fish was detected with both methods. Although both methods were very sensitive, obtaining results with culture methods may take several days, while real-time PCR takes only a few hours. Furthermore, with traditional methods, complementary techniques such as serotyping, although not available for all serogroups, are needed to identify toxigenic V. cholerae. However, with real-time PCR, toxigenic serogroups are detected in only one step after overnight enrichment.
Collapse
|