1
|
Ellington AJ, Schult TJ, Reisch CR, Christner BC. The Genetic Determinants of Extreme UV Radiation and Desiccation Tolerance in a Bacterium Recovered from the Stratosphere. Microorganisms 2025; 13:756. [PMID: 40284593 PMCID: PMC12029717 DOI: 10.3390/microorganisms13040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Microbes that survive transport to and in the stratosphere endure extremes of low temperature, atmospheric pressure, and relative humidity, as well as high fluxes in ultraviolet radiation (UVR). The high atmosphere thus provides an ideal environment to explore the genetic and physiological determinants conveying high tolerance to desiccation and UVR. In this study, we examined Curtobacterium aetherium L6-1, an actinobacterium obtained from stratospheric aerosol sampling that displays high resistance to desiccation and UVR. We found that its phylogenetic relatives are resistant to desiccation, but only C. aetherium displayed a high tolerance to UVR. Comparative genome analysis and directed evolution experiments implicated genes encoding photolyase, DNA nucleases and helicases, and catalases as responsible for UVR resistance in C. aetherium. Differential gene expression analysis revealed the upregulation of DNA repair and stress response mechanisms when cells were exposed to UVR, while genes encoding sugar transporters, sugar metabolism enzymes, and antioxidants were induced upon desiccation. Based on changes in gene expression as a function of water content, C. aetherium can modulate its metabolism through transcriptional regulation at very low moisture levels (Xw < 0.25 g H2O per gram dry weight). Uncovering the genetic underpinnings of desiccation and UVR resistance in C. aetherium provides new insights into how bacterial DNA repair and antioxidant mechanisms function to exhibit traits at the extreme ends of phenotypic distributions.
Collapse
Affiliation(s)
- Adam J. Ellington
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL 32611, USA
- Meso Scale Diagnostics, LLC, Rockville, MD 20850, USA
| | - Tyler J. Schult
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL 32611, USA
| | - Christopher R. Reisch
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL 32611, USA
- Genomatica, San Diego, CA 92121, USA
| | - Brent C. Christner
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Chen Y, Liu G, Ali MR, Zhang M, Zhou G, Sun Q, Li M, Shirin J. Regulation of gut bacteria in silkworm (Bombyx mori) after exposure to endogenous cadmium-polluted mulberry leaves. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114853. [PMID: 37023650 DOI: 10.1016/j.ecoenv.2023.114853] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Soil cadmium (Cd) pollution presents a severe pollution burden to flora and fauna due to its non-degradability and transferability. The Cd in the soil is stressing the silkworm (Bombyx mori) out through a soil-mulberry-silkworm system. The gut microbiota of B.mori are reported to shape host health. However, earlier research had not reported the effect of endogenous Cd-polluted mulberry leaves on the gut microbiota of B.mori. In the current research, we compared the phyllosphere bacteria of endogenous Cd-polluted mulberry leaves at different concentrations. The investigation of the gut bacteria of B.mori fed with the mulberry leaves was done to evaluate the impact of endogenous Cd- polluted mulberry leaves on the gut bacteria of the silkworm. The results revealed a dramatic change in the gut bacteria of B.mori whereas, the changes in the phyllosphere bacteria of mulberry leaves in response to an increased Cd concentration were insignificant. It also increased the α-diversity and altered the gut bacterial community structure of B. mori. A significant change in the abundance of dominant phyla of gut bacteria of B.mori was recorded. At the genus level, the abundance of Enterococcus, Brachybacterium and Brevibacterium group related to disease resistance, and the abundance of Sphingomonas, Glutamicibacter and Thermus related to metal detoxification was significantly increased after Cd exposure. Meanwhile, there was a significant decrease in the abundance of the pathogenic bacteria Serratia and Enterobacter. The results demonstrated that endogenous Cd-polluted mulberry leaves caused perturbations in the gut bacterial composition of B.mori, which may driven by Cd content rather than phyllosphere bacteria. A significant variation in the specific bacterial community indicated the adaptation of B. mori gut for its role in heavy metal detoxification and immune function regulation. The results of this study help to understand the bacterial community associated with endogenous Cd-polluted resistance in the gut of B.mori, which proves to be a novel addition in describing its response in activating the detoxification mechanism and promoting its growth and development. This research work will help to explore the other mechanisms and microbiota associated with the adaptations to mitigate the Cd pollution problems.
Collapse
Affiliation(s)
- Yongjing Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Guijia Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Maria Rafraf Ali
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Mingzhu Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Guowei Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China.
| | - Mingjun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Jazbia Shirin
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| |
Collapse
|
3
|
Zheng H, Liu B, Xu Y, Zhang Z, Man H, Liu J, Chen F. An Inducible Microbacterium Prophage vB_MoxS-R1 Represents a Novel Lineage of Siphovirus. Viruses 2022; 14:v14040731. [PMID: 35458461 PMCID: PMC9030533 DOI: 10.3390/v14040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lytic and lysogenic infections are the main strategies used by viruses to interact with microbial hosts. The genetic information of prophages provides insights into the nature of phages and their potential influences on hosts. Here, the siphovirus vB_MoxS-R1 was induced from a Microbacterium strain isolated from an estuarine Synechococcus culture. vB_MoxS-R1 has a high replication capability, with an estimated burst size of 2000 virions per cell. vB_MoxS-R1 represents a novel phage genus-based genomic analysis. Six transcriptional regulator (TR) genes were predicted in the vB_MoxS-R1 genome. Four of these TR genes are involved in stress responses, virulence and amino acid transportation in bacteria, suggesting that they may play roles in regulating the host cell metabolism in response to external environmental changes. A glycerophosphodiester phosphodiesterase gene related to phosphorus acquisition was also identified in the vB_MoxS-R1 genome. The presence of six TR genes and the phosphorus-acquisition gene suggests that prophage vB_MoxS-R1 has the potential to influence survival and adaptation of its host during lysogeny. Possession of four endonuclease genes in the prophage genome suggests that vB_MoxS-R1 is likely involved in DNA recombination or gene conversion and further influences host evolution.
Collapse
Affiliation(s)
- Hongrui Zheng
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Binbin Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361000, China
- Correspondence: (Y.X.); (J.L.)
| | - Zefeng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Hongcong Man
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao 266237, China
- Correspondence: (Y.X.); (J.L.)
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA;
| |
Collapse
|
4
|
Li S, Zhu Q, Luo J, Shu Y, Guo K, Xie J, Xiao F, He S. Application Progress of Deinococcus radiodurans in Biological Treatment of Radioactive Uranium-Containing Wastewater. Indian J Microbiol 2021; 61:417-426. [PMID: 34744197 DOI: 10.1007/s12088-021-00969-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/03/2021] [Indexed: 02/04/2023] Open
Abstract
Radioactive uranium wastewater contains a large amount of radionuclide uranium and other heavy metal ions. The radioactive uranium wastewater discharged into the environment will not only pollute the natural environment, but also threat human health. Therefore, the treatment of radioactive uranium wastewater is a current research focus for many researchers. The treatment in radioactive uranium wastewater mainly includes physical, chemical and biological methods. At present, the using of biological treatment to treat uranium in radioactive uranium wastewater has been gradually shown its superiority and advantages. Deinococcus radiodurans is a famous microorganism with the most radiation resistant to ionizing radiation in the world, and can also resist various other extreme pressures. D. radiodurans can be directly used for the adsorption of uranium in radioactive waste water, and it can also transform other functional genes into D. radiodurans to construct genetically engineered bacteria, and then applied to the treatment of radioactive uranium containing wastewater. Radionuclides uranium in radioactive uranium-containing wastewater treated by D. radiodurans involves a lot of mechanisms. This article reviews currently the application of D. radiodurans that directly or construct genetically engineered bacteria in the treatment of radioactive uranium wastewater and discusses the mechanism of D. radiodurans in bioremediation of uranium. The application of constructing an engineered bacteria of D. radiodurans with powerful functions in uranium-containing wastewater is prospected.
Collapse
Affiliation(s)
- Shanshan Li
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| | - Qiqi Zhu
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| | - Jiaqi Luo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001 Hunan China
| | - Yangzhen Shu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001 Hunan China
| | - Kexin Guo
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| | - Jingxi Xie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001 Hunan China
| | - Fangzhu Xiao
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| | - Shuya He
- School of Public Health, University of South China, Hengyang, 421001 Hunan China
| |
Collapse
|
5
|
Rajpurohit YS, Sharma DK, Misra HS. PprA Protein Inhibits DNA Strand Exchange and ATP Hydrolysis of Deinococcus RecA and Regulates the Recombination in Gamma-Irradiated Cells. Front Cell Dev Biol 2021; 9:636178. [PMID: 33959605 PMCID: PMC8093518 DOI: 10.3389/fcell.2021.636178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 11/14/2022] Open
Abstract
DrRecA and PprA proteins function are crucial for the extraordinary resistance to γ-radiation and DNA strand break repair in Deinococcus radiodurans. DrRecA mediated homologous recombination help in DNA strand break repair and cell survival, while the PprA protein confers radio-resistance via its roles in DNA repair, genome maintenance, and cell division. Genetically recA and pprA genes interact and constitute an epistatic group however, the mechanism underlying their functional interaction is not clear. Here, we showed the physical and functional interaction of DrRecA and PprA protein both in solution and inside the cells. The absence of the pprA gene increases the recombination frequency in gamma-irradiated D. radiodurans cells and genomic instability in cells growing under normal conditions. PprA negatively regulates the DrRecA functions by inhibiting DrRecA mediated DNA strand exchange and ATPase function in vitro. Furthermore, it is shown that the inhibitory effect of PprA on DrRecA catalyzed DNA strand exchange was not due to sequestration of homologous dsDNA and was dependent on PprA oligomerization and DNA binding property. Together, results suggest that PprA is a new member of recombination mediator proteins (RMPs), and able to regulate the DrRecA function in γ-irradiated cells by protecting the D. radiodurans genome from hyper-recombination and associated negative effects.
Collapse
Affiliation(s)
- Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| |
Collapse
|
6
|
Lu H, Hua Y. PprI: The Key Protein in Response to DNA Damage in Deinococcus. Front Cell Dev Biol 2021; 8:609714. [PMID: 33537302 PMCID: PMC7848106 DOI: 10.3389/fcell.2020.609714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
Deoxyribonucleic acid (DNA) damage response (DDR) pathways are essential for maintaining the integrity of the genome when destabilized by various damaging events, such as ionizing radiation, ultraviolet light, chemical or oxidative stress, and DNA replication errors. The PprI–DdrO system is a newly identified pathway responsible for the DNA damage response in Deinococcus, in which PprI (also called IrrE) acts as a crucial component mediating the extreme resistance of these bacteria. This review describes studies about PprI sequence conservation, regulatory function, structural characteristics, biochemical activity, and hypothetical activation mechanisms as well as potential applications.
Collapse
Affiliation(s)
- Huizhi Lu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Cortesão M, de Haas A, Unterbusch R, Fujimori A, Schütze T, Meyer V, Moeller R. Aspergillus niger Spores Are Highly Resistant to Space Radiation. Front Microbiol 2020; 11:560. [PMID: 32318041 PMCID: PMC7146846 DOI: 10.3389/fmicb.2020.00560] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
The filamentous fungus Aspergillus niger is one of the main contaminants of the International Space Station (ISS). It forms highly pigmented, airborne spores that have thick cell walls and low metabolic activity, enabling them to withstand harsh conditions and colonize spacecraft surfaces. Whether A. niger spores are resistant to space radiation, and to what extent, is not yet known. In this study, spore suspensions of a wild-type and three mutant strains (with defects in pigmentation, DNA repair, and polar growth control) were exposed to X-rays, cosmic radiation (helium- and iron-ions) and UV-C (254 nm). To assess the level of resistance and survival limits of fungal spores in a long-term interplanetary mission scenario, we tested radiation doses up to 1000 Gy and 4000 J/m2. For comparison, a 360-day round-trip to Mars yields a dose of 0.66 ± 0.12 Gy. Overall, wild-type spores of A. niger were able to withstand high doses of X-ray (LD90 = 360 Gy) and cosmic radiation (helium-ion LD90 = 500 Gy; and iron-ion LD90 = 100 Gy). Drying the spores before irradiation made them more susceptible toward X-ray radiation. Notably, A. niger spores are highly resistant to UV-C radiation (LD90 = 1038 J/m2), which is significantly higher than that of other radiation-resistant microorganisms (e.g., Deinococcus radiodurans). In all strains, UV-C treated spores (1000 J/m2) were shown to have decreased biofilm formation (81% reduction in wild-type spores). This study suggests that A. niger spores might not be easily inactivated by exposure to space radiation alone and that current planetary protection guidelines should be revisited, considering the high resistance of fungal spores.
Collapse
Affiliation(s)
- Marta Cortesão
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Aram de Haas
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Rebecca Unterbusch
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Akira Fujimori
- Department of Basic Medical Sciences for Radiation Damages, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tabea Schütze
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Ralf Moeller
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| |
Collapse
|
8
|
Comparative Proteomics Analysis Reveals New Features of the Oxidative Stress Response in the Polyextremophilic Bacterium Deinococcus radiodurans. Microorganisms 2020; 8:microorganisms8030451. [PMID: 32210096 PMCID: PMC7143949 DOI: 10.3390/microorganisms8030451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Deinococcus radiodurans is known for its extreme resistance to ionizing radiation, oxidative stress, and other DNA-damaging agents. The robustness of this bacterium primarily originates from its strong oxidative resistance mechanisms. Hundreds of genes have been demonstrated to contribute to oxidative resistance in D. radiodurans; however, the antioxidant mechanisms have not been fully characterized. In this study, comparative proteomics analysis of D. radiodurans grown under normal and oxidative stress conditions was conducted using label-free quantitative proteomics. The abundances of 852 of 1700 proteins were found to significantly differ between the two groups. These differential proteins are mainly associated with translation, DNA repair and recombination, response to stresses, transcription, and cell wall organization. Highly upregulated expression was observed for ribosomal proteins such as RplB, Rpsl, RpsR, DNA damage response proteins (DdrA, DdrB), DNA repair proteins (RecN, RecA), and transcriptional regulators (members of TetR, AsnC, and GntR families, DdrI). The functional analysis of proteins in response to oxidative stress is discussed in detail. This study reveals the global protein expression profile of D. radiodurans in response to oxidative stress and provides new insights into the regulatory mechanism of oxidative resistance in D. radiodurans.
Collapse
|
9
|
Qi HZ, Wang WZ, He JY, Ma Y, Xiao FZ, He SY. Antioxidative system of Deinococcus radiodurans. Res Microbiol 2019; 171:45-54. [PMID: 31756434 DOI: 10.1016/j.resmic.2019.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Deinococcus radiodurans is famous for its extreme resistance to various stresses such as ionizing radiation (IR), desiccation and oxidative stress. The underlying mechanism of exceptional resistance of this robust bacterium still remained unclear. However, the antioxidative system of D. radiodurans has been considered to be the determinant factor for its unparalleled resistance and protects the proteome during stress, then the DNA repair system and metabolic system exert their functions to restore the cell to normal physiological state. The antioxidative system not only equipped with the common reactive oxygen species (ROS) scavenging enzymes (e.g., catalase and superoxide dismutase) but also armed with a variety of non-enzyme antioxidants (e.g., carotenoids and manganese species). And the small manganese complexes play an important role in the antioxidative system of D. radiodurans. Recent studies have characterized several regulators (e.g., PprI and PprM) in D. radiodurans, which play critical roles in the protection of the bacteria from various stresses. In this review, we offer a panorama of the progress regarding the characteristics of the antioxidative system in D. radiodurans and its application in the future.
Collapse
Affiliation(s)
- Hui-Zhou Qi
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Function Laboratory Center, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Wu-Zhou Wang
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Jun-Yan He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Fang-Zhu Xiao
- Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Shu-Ya He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China.
| |
Collapse
|
10
|
Hossein Helalat S, Bidaj S, Samani S, Moradi M. Producing alcohol and salt stress tolerant strain of Saccharomyces cerevisiae by heterologous expression of pprI gene. Enzyme Microb Technol 2019; 124:17-22. [DOI: 10.1016/j.enzmictec.2019.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/12/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023]
|
11
|
Ott E, Kawaguchi Y, Kölbl D, Chaturvedi P, Nakagawa K, Yamagishi A, Weckwerth W, Milojevic T. Proteometabolomic response of Deinococcus radiodurans exposed to UVC and vacuum conditions: Initial studies prior to the Tanpopo space mission. PLoS One 2017; 12:e0189381. [PMID: 29244852 PMCID: PMC5731708 DOI: 10.1371/journal.pone.0189381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/24/2017] [Indexed: 11/18/2022] Open
Abstract
The multiple extremes resistant bacterium Deinococcus radiodurans is able to withstand harsh conditions of simulated outer space environment. The Tanpopo orbital mission performs a long-term space exposure of D. radiodurans aiming to investigate the possibility of interplanetary transfer of life. The revealing of molecular machinery responsible for survivability of D. radiodurans in the outer space environment can improve our understanding of underlying stress response mechanisms. In this paper, we have evaluated the molecular response of D. radiodurans after the exposure to space-related conditions of UVC irradiation and vacuum. Notably, scanning electron microscopy investigations showed that neither morphology nor cellular integrity of irradiated cells was affected, while integrated proteomic and metabolomic analysis revealed numerous molecular alterations in metabolic and stress response pathways. Several molecular key mechanisms of D. radiodurans, including the tricarboxylic acid cycle, the DNA damage response systems, ROS scavenging systems and transcriptional regulators responded in order to cope with the stressful situation caused by UVC irradiation under vacuum conditions. These results reveal the effectiveness of the integrative proteometabolomic approach as a tool in molecular analysis of microbial stress response caused by space-related factors.
Collapse
Affiliation(s)
- Emanuel Ott
- Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Yuko Kawaguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Denise Kölbl
- Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Kazumichi Nakagawa
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Akihiko Yamagishi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
- * E-mail: (TM); (WW)
| | - Tetyana Milojevic
- Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
- * E-mail: (TM); (WW)
| |
Collapse
|
12
|
Kurth D, Amadio A, Ordoñez OF, Albarracín VH, Gärtner W, Farías ME. Arsenic metabolism in high altitude modern stromatolites revealed by metagenomic analysis. Sci Rep 2017; 7:1024. [PMID: 28432307 PMCID: PMC5430908 DOI: 10.1038/s41598-017-00896-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/16/2017] [Indexed: 11/09/2022] Open
Abstract
Modern stromatolites thrive only in selected locations in the world. Socompa Lake, located in the Andean plateau at 3570 masl, is one of the numerous extreme Andean microbial ecosystems described over recent years. Extreme environmental conditions include hypersalinity, high UV incidence, and high arsenic content, among others. After Socompa's stromatolite microbial communities were analysed by metagenomic DNA sequencing, taxonomic classification showed dominance of Proteobacteria, Bacteroidetes and Firmicutes, and a remarkably high number of unclassified sequences. A functional analysis indicated that carbon fixation might occur not only by the Calvin-Benson cycle, but also through alternative pathways such as the reverse TCA cycle, and the reductive acetyl-CoA pathway. Deltaproteobacteria were involved both in sulfate reduction and nitrogen fixation. Significant differences were found when comparing the Socompa stromatolite metagenome to the Shark Bay (Australia) smooth mat metagenome: namely, those involving stress related processes, particularly, arsenic resistance. An in-depth analysis revealed a surprisingly diverse metabolism comprising all known types of As resistance and energy generating pathways. While the ars operon was the main mechanism, an important abundance of arsM genes was observed in selected phyla. The data resulting from this work will prove a cornerstone for further studies on this rare microbial community.
Collapse
Affiliation(s)
- Daniel Kurth
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT Tucumán, CONICET, San Miguel de Tucumán, Argentina
| | - Ariel Amadio
- E.E.A. Rafaela, Instituto Nacional de Tecnología Agropecuaria (INTA), CCT Santa Fe, CONICET, Rafaela, Argentina
| | - Omar F Ordoñez
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT Tucumán, CONICET, San Miguel de Tucumán, Argentina
| | - Virginia H Albarracín
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT Tucumán, CONICET, San Miguel de Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Wolfgang Gärtner
- Max-Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - María E Farías
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT Tucumán, CONICET, San Miguel de Tucumán, Argentina.
| |
Collapse
|
13
|
Moissl-Eichinger C, Cockell C, Rettberg P. Venturing into new realms? Microorganisms in space. FEMS Microbiol Rev 2016; 40:722-37. [PMID: 27354346 DOI: 10.1093/femsre/fuw015] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
One of the biggest challenges of science is the determination of whether extraterrestrial life exists. Although potential habitable areas might be available for complex life, it is more likely that microbial life could exist in space. Many extremotolerant and extremophilic microbes have been found to be able to withstand numerous, combined environmental factors, such as high or low temperatures and pressures, high-salt conditions, high doses of radiation, desiccation or nutrient limitations. They may even survive the transit from one planet to another. Terrestrial Mars-analogue sites are one focus of researchers, in order to understand the microbial diversity in preparation for upcoming space missions aimed at the detection of life. However, such missions could also pose a risk with respect to contamination of the extraterrestrial environment by accidentally transferred terrestrial microorganisms. Closer to the Earth, the International Space Station is the most enclosed habitat, where humans work and live-and with them numerous microorganisms. It is still unknown how microbes adapt to this environment, possibly even creating a risk for the crew. Information on the microbiology of the ISS will have an impact on the planning and implementation of long-term human spaceflights in order to ensure a safe, stable and balanced microbiome on board.
Collapse
Affiliation(s)
- Christine Moissl-Eichinger
- Department for Internal Medicine, Medical University of Graz, 8036 Graz, Austria BioTechMed Graz, 8010 Graz, Austria
| | - Charles Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH10 4EP, UK
| | - Petra Rettberg
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| |
Collapse
|
14
|
Zhao P, Zhou Z, Zhang W, Lin M, Chen M, Wei G. Global transcriptional analysis of Escherichia coli expressing IrrE, a regulator from Deinococcus radiodurans, in response to NaCl shock. MOLECULAR BIOSYSTEMS 2015; 11:1165-71. [PMID: 25703007 DOI: 10.1039/c5mb00080g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Improving the microbial tolerance to stresses is very important for bioprocesses. Our previous study showed that IrrE, a global regulator from the extremely radioresistant bacterium Deinococcus radiodurans, dramatically enhanced the multi-stress tolerance of Escherichia coli when expressed exogenously. However, the function of IrrE is still unclear. In this study, we used whole-genome microarray assays to profile the global gene expression of the IrrE-expressing E. coli strain MGE and the control strain MGT with or without salt shock. The analysis showed that IrrE expression led to many differentially expressed genes in E. coli, which were responsible for the transport and metabolism of trehalose and glycerol, nucleotide biosynthesis, carbon source utilization, amino acid utilization, and acid resistance, including many RpoS-dependent genes, e.g., the trehalose biosynthesis genes otsAB, the acid-resistance genes gadABC and uspB, the osmotic and oxidative stress response genes katE (response to DNA damage stimulus and stress) and osmBC (response to stress), and gadWX (which controls the transcription of pH-inducible genes). The intracellular content of trehalose and glycerol increased significantly in the IrrE-expressing strain after NaCl treatment for 0 and 60 min as determined by HPLC. These results indicated the possibility that IrrE regulates the global regulator RpoS. Interestingly, we found that although IrrE did not affect the level of the rpoS transcript, it enhanced the accumulation of the RpoS protein by increasing the expression of the antiadaptors, AppY, IraM and IraD, which inhibit RpoS degradation, suggesting that the accumulation of RpoS due to IrrE regulation is an important way to improve tolerance to salt and other stresses in E. coli.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, China.
| | | | | | | | | | | |
Collapse
|
15
|
Dong X, Tian B, Dai S, Li T, Guo L, Tan Z, Jiao Z, Jin Q, Wang Y, Hua Y. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis. PLoS One 2015; 10:e0142918. [PMID: 26562776 PMCID: PMC4643010 DOI: 10.1371/journal.pone.0142918] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/28/2015] [Indexed: 11/23/2022] Open
Abstract
PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expressing PprI exhibited significantly improved resistance to oxidative stress and high osmotic pressure. This enhanced cellular tolerance to stressors might be due to the regulation of resistance-related genes (e.g., recA, recO, sodA, and nah) by pprI. Moreover, transformed L. lactis demonstrated increased lactic acid production, attributed to enhanced lactate dehydrogenase activity. These results suggest that pprI can improve the tolerance of L. lactis to environmental stresses, and this transformed bacterial strain is a promising candidate for industrial applications of lactic acid production.
Collapse
Affiliation(s)
- Xiangrong Dong
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Bing Tian
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Shang Dai
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Tao Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Linna Guo
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhongfang Tan
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhen Jiao
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Qingsheng Jin
- Institute of Crops and Utilization of Nuclear Technology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yanping Wang
- Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou, 450052, China
- * E-mail: (YW); (YH)
| | - Yuejin Hua
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
- * E-mail: (YW); (YH)
| |
Collapse
|
16
|
Kurth D, Belfiore C, Gorriti MF, Cortez N, Farias ME, Albarracín VH. Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3. Front Microbiol 2015; 6:328. [PMID: 25954258 PMCID: PMC4406064 DOI: 10.3389/fmicb.2015.00328] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022] Open
Abstract
Ultraviolet radiation can damage biomolecules, with detrimental or even lethal effects for life. Even though lower wavelengths are filtered by the ozone layer, a significant amount of harmful UV-B and UV-A radiation reach Earth's surface, particularly in high altitude environments. high-altitude Andean lakes (HAALs) are a group of disperse shallow lakes and salterns, located at the Dry Central Andes region in South America at altitudes above 3,000 m. As it is considered one of the highest UV-exposed environments, HAAL microbes constitute model systems to study UV-resistance mechanisms in environmental bacteria at various complexity levels. Herein, we present the genome sequence of Acinetobacter sp. Ver3, a gammaproteobacterium isolated from Lake Verde (4,400 m), together with further experimental evidence supporting the phenomenological observations regarding this bacterium ability to cope with increased UV-induced DNA damage. Comparison with the genomes of other Acinetobacter strains highlighted a number of unique genes, such as a novel cryptochrome. Proteomic profiling of UV-exposed cells identified up-regulated proteins such as a specific cytoplasmic catalase, a putative regulator, and proteins associated to amino acid and protein synthesis. Down-regulated proteins were related to several energy-generating pathways such as glycolysis, beta-oxidation of fatty acids, and electronic respiratory chain. To the best of our knowledge, this is the first report on a genome from a polyextremophilic Acinetobacter strain. From the genomic and proteomic data, an "UV-resistome" was defined, encompassing the genes that would support the outstanding UV-resistance of this strain.
Collapse
Affiliation(s)
- Daniel Kurth
- Laboratorio de Investigaciones Microbiologicas Lagunas Andinas, Centro Científico Tecnológico, Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán Argentina
| | - Carolina Belfiore
- Laboratorio de Investigaciones Microbiologicas Lagunas Andinas, Centro Científico Tecnológico, Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán Argentina
| | - Marta F Gorriti
- Laboratorio de Investigaciones Microbiologicas Lagunas Andinas, Centro Científico Tecnológico, Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán Argentina
| | - Néstor Cortez
- Centro Científico Tecnológico, IBR - CONICET, Universidad Nacional de Rosario Rosario, Argentina
| | - María E Farias
- Laboratorio de Investigaciones Microbiologicas Lagunas Andinas, Centro Científico Tecnológico, Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán Argentina
| | - Virginia H Albarracín
- Laboratorio de Investigaciones Microbiologicas Lagunas Andinas, Centro Científico Tecnológico, Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán Argentina ; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán Argentina
| |
Collapse
|
17
|
Santos AL, Oliveira V, Baptista I, Henriques I, Gomes NCM, Almeida A, Correia A, Cunha Â. Wavelength dependence of biological damage induced by UV radiation on bacteria. Arch Microbiol 2012; 195:63-74. [PMID: 23090570 DOI: 10.1007/s00203-012-0847-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/26/2012] [Accepted: 10/07/2012] [Indexed: 11/28/2022]
Abstract
The biological effects of UV radiation of different wavelengths (UVA, UVB and UVC) were assessed in nine bacterial isolates displaying different UV sensitivities. Biological effects (survival and activity) and molecular markers of oxidative stress [DNA strand breakage (DSB), generation of reactive oxygen species (ROS), oxidative damage to proteins and lipids, and the activity of antioxidant enzymes catalase and superoxide dismutase] were quantified and statistically analyzed in order to identify the major determinants of cell inactivation under the different spectral regions. Survival and activity followed a clear wavelength dependence, being highest under UVA and lowest under UVC. The generation of ROS, as well as protein and lipid oxidation, followed the same pattern. DNA damage (DSB) showed the inverse trend. Multiple stepwise regression analysis revealed that survival under UVA, UVB and UVC wavelengths was best explained by DSB, oxidative damage to lipids, and intracellular ROS levels, respectively.
Collapse
Affiliation(s)
- Ana L Santos
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bauermeister A, Hahn C, Rettberg P, Reitz G, Moeller R. Roles of DNA repair and membrane integrity in heat resistance of Deinococcus radiodurans. Arch Microbiol 2012; 194:959-66. [DOI: 10.1007/s00203-012-0834-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
|
19
|
Chen T, Wang J, Zeng L, Li R, Li J, Chen Y, Lin Z. Significant rewiring of the transcriptome and proteome of an Escherichia coli strain harboring a tailored exogenous global regulator IrrE. PLoS One 2012; 7:e37126. [PMID: 22792156 PMCID: PMC3390347 DOI: 10.1371/journal.pone.0037126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 04/17/2012] [Indexed: 12/25/2022] Open
Abstract
Cell reprogramming for microorganisms via engineered or artificial transcription factors and RNA polymerase mutants has presented a powerful tool for eliciting complex traits that are practically useful particularly for industrial strains, and for understanding at the global level the regulatory network of gene transcription. We previously further showed that an exogenous global regulator IrrE (derived from the extreme radiation-resistant bacterium Deinococcus radiodurans) can be tailored to confer Escherichia coli (E. coli) with significantly enhanced tolerances to different stresses. In this work, based on comparative transcriptomic and proteomic analyses of the representative strains E1 and E0, harboring the ethanol-tolerant IrrE mutant E1 and the ethanol-intolerant wild type IrrE, respectively, we found that the transcriptome and proteome of E. coli were extensively rewired by the tailored IrrE protein. Overall, 1196 genes (or approximately 27% of E. coli genes) were significantly altered at the transcriptomic level, including notably genes in the nitrate-nitrite-nitric oxide (NO) pathway, and genes for non-coding RNAs. The proteomic profile revealed significant up- or downregulation of several proteins associated with syntheses of the cell membrane and cell wall. Analyses of the intracellular NO level and cell growth under reduced temperature supported a close correlation between NO and ethanol tolerance, and also suggests a role for membrane fluidity. The significantly different omic profiles of strain E1 indicate that IrrE functions as a global regulator in E. coli, and that IrrE may be evolved for other cellular tolerances. In this sense, it will provide synthetic biology with a practical and evolvable regulatory “part” that operates at a higher level of complexity than local regulators. This work also suggests a possibility of introducing and engineering other exogenous global regulators to rewire the genomes of microorganism cells.
Collapse
Affiliation(s)
- Tingjian Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jianqing Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Lingli Zeng
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Rizong Li
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jicong Li
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yilu Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, China
| | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
20
|
Wang J, Zhang Y, Chen Y, Lin M, Lin Z. Global regulator engineering significantly improvedEscherichia colitolerances toward inhibitors of lignocellulosic hydrolysates. Biotechnol Bioeng 2012; 109:3133-42. [DOI: 10.1002/bit.24574] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/06/2012] [Accepted: 05/30/2012] [Indexed: 01/09/2023]
|
21
|
Maisch T, Shimizu T, Mitra A, Heinlin J, Karrer S, Li YF, Morfill G, Zimmermann JL. Contact-free cold atmospheric plasma treatment of Deinococcus radiodurans. J Ind Microbiol Biotechnol 2012; 39:1367-75. [PMID: 22584820 DOI: 10.1007/s10295-012-1137-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/18/2012] [Indexed: 01/10/2023]
Abstract
In this study we investigated the sensitivity of Deinococcus radiodurans to contact-free cold atmospheric plasma treatment as part of a project to establish new efficient procedures for disinfection of inanimate surfaces. The Gram-positive D. radiodurans is one of the most resistant microorganisms worldwide. Stationary phases of D. radiodurans were exposed to cold atmospheric plasma for different time intervals or to ultraviolet C (UVC) radiation at dose rates of 0.001-0.0656 J cm⁻², respectively. A methicillin-resistant Staphylococcus aureus strain (MRSA) served as control for Gram-positive bacteria. The surface microdischarge plasma technology was used for generation of cold atmospheric plasma. A plasma discharge was ignited using ambient air. Surprisingly, D. radiodurans was sensitive to the cold atmospheric plasma treatment in the same range as the MRSA strain. Survival of both bacteria decreased with increasing plasma exposure times up to 6 log₁₀ cycles (>99.999 %) within 20 s of plasma treatment. In contrast, UVC radiation of both bacteria demonstrated that D. radiodurans was more resistant to UVC treatment than MRSA. Cold atmospheric plasma seems to be a promising tool for industrial and clinical purposes where time-saving is a critical point to achieve efficient disinfection of inanimate surfaces and where protection from corrosive materials is needed.
Collapse
Affiliation(s)
- Tim Maisch
- Department of Dermatology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Borić M, Danevčič T, Stopar D. Prodigiosin from Vibrio sp. DSM 14379; a new UV-protective pigment. MICROBIAL ECOLOGY 2011; 62:528-36. [PMID: 21547449 DOI: 10.1007/s00248-011-9857-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 04/08/2011] [Indexed: 05/04/2023]
Abstract
Pigments such as melanin, scytonemin and carotenoids protect microbial cells against the harmful effects of ultraviolet (UV) radiation. The role in UV protection has never been assigned to the prodigiosin pigment. In this work, we demonstrate that prodigiosin provides a significant level of protection against UV stress in Vibrio sp. DSM 14379. In the absence of pigment production, Vibrio sp. was significantly more susceptible to UV stress, and there was no difference in UV survival between the wild-type strain and non-pigmented mutant. The pigment's protective role was more important at higher doses of UV irradiation and correlated with pigment concentration in the cell. Pigmented cells survived high UV exposure (324 J/m(2)) around 1,000-fold more successfully compared to the non-pigmented mutant cells. Resistance to UV stress was conferred to the non-pigmented mutant by addition of exogenous pigment extract to the growth medium. A level of UV protection equivalent to that exhibited by the wild-type strain was attained by the non-pigmented mutant once the prodigiosin concentration had reached comparable levels to those found in the wild-type strain. In co-culture experiments, prodigiosin acted as a UV screen, protecting both the wild-type and non-pigmented mutants. Our results suggest a new ecophysiological role for prodigiosin.
Collapse
Affiliation(s)
- Maja Borić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
23
|
Abstract
Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health.
Collapse
|
24
|
Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation. Arch Microbiol 2011; 193:797-809. [DOI: 10.1007/s00203-011-0718-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/13/2011] [Accepted: 05/18/2011] [Indexed: 12/11/2022]
|
25
|
Bauermeister A, Moeller R, Reitz G, Sommer S, Rettberg P. Effect of relative humidity on Deinococcus radiodurans' resistance to prolonged desiccation, heat, ionizing, germicidal, and environmentally relevant UV radiation. MICROBIAL ECOLOGY 2011; 61:715-722. [PMID: 21161207 DOI: 10.1007/s00248-010-9785-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/25/2010] [Indexed: 05/30/2023]
Abstract
To test the effect of humidity on the radiation resistance of Deinococcus radiodurans, air-dried cells were irradiated with germicidal 254 nm UV, and simulated environmental UV or γ-radiation and survival was compared to cells in suspension. It was observed that desiccated cells exhibited higher levels of resistance than cells in suspension toward UV or γ-radiation as well as after 85°C heat shock. It was also shown that low relative humidity improves survival during long-term storage of desiccated D. radiodurans cells. It can be concluded that periods or environments in which cells exist in a dehydrated state are beneficial for D. radiodurans' survival exposed to various other stresses.
Collapse
Affiliation(s)
- Anja Bauermeister
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne (Koeln), Germany
| | | | | | | | | |
Collapse
|
26
|
Chen T, Wang J, Yang R, Li J, Lin M, Lin Z. Laboratory-evolved mutants of an exogenous global regulator, IrrE from Deinococcus radiodurans, enhance stress tolerances of Escherichia coli. PLoS One 2011; 6:e16228. [PMID: 21267412 PMCID: PMC3022760 DOI: 10.1371/journal.pone.0016228] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/09/2010] [Indexed: 01/28/2023] Open
Abstract
Background The tolerance of cells toward different stresses is very important for industrial strains of microbes, but difficult to improve by the manipulation of single genes. Traditional methods for enhancing cellular tolerances are inefficient and time-consuming. Recently, approaches employing global transcriptional or translational engineering methods have been increasingly explored. We found that an exogenous global regulator, irrE from an extremely radiation-resistant bacterium, Deinococcus radiodurans, has the potential to act as a global regulator in Escherichia coli, and that laboratory-evolution might be applied to alter this regulator to elicit different phenotypes for E. coli. Methodology/Principal Findings To extend the methodology for strain improvement and to obtain higher tolerances toward different stresses, we here describe an approach of engineering irrE gene in E. coli. An irrE library was constructed by randomly mutating the gene, and this library was then selected for tolerance to ethanol, butanol and acetate stresses. Several mutants showing significant tolerances were obtained and characterized. The tolerances of E. coli cells containing these mutants were enhanced 2 to 50-fold, based on cell growth tests using different concentrations of alcohols or acetate, and enhanced 10 to 100-fold based on ethanol or butanol shock experiments. Intracellular reactive oxygen species (ROS) assays showed that intracellular ROS levels were sharply reduced for cells containing the irrE mutants. Sequence analysis of the mutants revealed that the mutations distribute cross all three domains of the protein. Conclusions To our knowledge, this is the first time that an exogenous global regulator has been artificially evolved to suit its new host. The successes suggest the possibility of improving tolerances of industrial strains by introducing and engineering exogenous global regulators, such as those from extremophiles. This new approach can be applied alone or in combination with other global methods, such as global transcriptional machinery engineering (gTME) for strain improvements.
Collapse
Affiliation(s)
- Tingjian Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jianqing Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Rong Yang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jicong Li
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Min Lin
- Key Laboratory of Crop Biotechnology, Ministry of Agriculture, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (ZL); (ML)
| | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- * E-mail: (ZL); (ML)
| |
Collapse
|
27
|
Roth S, Feichtinger J, Hertel C. Response of Deinococcus radiodurans to low-pressure low-temperature plasma sterilization processes. J Appl Microbiol 2010; 109:1521-30. [PMID: 20553346 DOI: 10.1111/j.1365-2672.2010.04771.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS Characterize the response of Deinococcus radiodurans R1 cells to low-pressure low-temperature nitrogen-oxygen microwave plasma and identify repair processes during recovery. METHODS AND RESULTS Cells coated onto glass slides exhibited a biphasic plasma inactivation kinetics. Treatment with various plasmas and subsequent incubation in recovery medium prolonged the lag phase in a part of the survivors, during which the ability to grow on stress medium was recovered. This recovery strongly depended on transcriptional and translational processes and cell wall synthesis, as revealed by addition of specific inhibitors to the recovery medium. Genes involved in DNA repair, oxidative stress response, and cell wall synthesis were induced during recovery, as determined by quantitative RT-PCR. Damage to chromosomal DNA caused by plasma agents and repair during recovery was directly shown by quantitative PCR. Plasmas with less UV radiation emission were also effective in killing D. radiodurans cells but resulted in less DNA damage and lower induction of the investigated genes. CONCLUSIONS The response of D. radiodurans to plasma indicates that DNA, proteins, and cell wall are primary targets of plasma finally leading to the cell death. Protein oxidation is more important for killing of D. radiodurans cells than of Bacillus subtilis spores. Thus, the contaminating biological material affects the plasma composition to be used for sterilization. SIGNIFICANCE AND IMPACT OF THE STUDY The results in this study provide new insight into the interaction of plasma with bacterial cells. This knowledge contributes to the definition of useful parameters for novel plasma sterilization equipment to control process safety.
Collapse
Affiliation(s)
- S Roth
- Institute of Food Science and Biotechnology, Section Food Microbiology, University of Hohenheim, Stuttgart, Germany
| | | | | |
Collapse
|
28
|
Moeller R, Douki T, Rettberg P, Reitz G, Cadet J, Nicholson WL, Horneck G. Genomic bipyrimidine nucleotide frequency and microbial reactions to germicidal UV radiation. Arch Microbiol 2010; 192:521-9. [PMID: 20454780 DOI: 10.1007/s00203-010-0579-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/13/2010] [Accepted: 04/17/2010] [Indexed: 11/29/2022]
Abstract
The role of the genomic bipyrimidine nucleotide frequency in pyrimidine dimer formation caused by germicidal UV radiation was studied in three microbial reference organisms (Escherichia coli K12, Deinococcus radiodurans R1, spores and cells of Bacillus subtilis 168). The sensitive HPLC tandem mass spectrometry assay was used to identify and quantify the different bipyrimidine photoproducts induced in the DNA of microorganisms by germicidal UV radiation. The yields of photoproducts per applied fluence were very similar among vegetative cells but twofold reduced in spores. This similarity in DNA photoreactivity greatly contrasted with the 11-fold range determined in the fluence causing a decimal reduction of survival. It was also found that the spectrum of UV-induced bipyrimidine lesions was species-specific and the formation rates of bi-thymine and bi-cytosine photoproducts correlated with the genomic frequencies of thymine and cytosine dinucleotides in the bacterial model systems.
Collapse
Affiliation(s)
- Ralf Moeller
- German Aerospace Center, Institute of Aerospace Medicine, Radiation Biology Department, Research Group 'Astrobiology', Linder Hoehe, 51147 Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Moeller R, Reitz G, Douki T, Cadet J, Horneck G, Stan-Lotter H. UV photoreactions of the extremely haloalkaliphilic euryarchaeon Natronomonas pharaonis. FEMS Microbiol Ecol 2010; 73:271-7. [PMID: 20491923 DOI: 10.1111/j.1574-6941.2010.00893.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The objective of this study was to investigate the photobiological responses of the haloalkaliphilic euryarchaeon Natronomonas pharaonis to environmentally relevant polychromatic UV radiation, simulating either the present UV radiation climate (lambda>290 nm) or that of the early Earth (lambda>220 nm), and to monochromatic UVC radiation (lambda=254 nm) for comparison with the literature data. UV-induced bipyrimidine DNA photoproducts were determined using a sensitive and accurate HPLC tandem mass spectrometry assay, allowing to identify and quantify each type of photoproducts formed in the DNA of a UV-irradiated halophilic archaeon. The thymine cytosine (TC) pyrimidine (6-4) pyrimidone photoproduct and the TC cyclobutane pyrimidine dimer accounted for almost 80% of the total induced DNA photolesions, regardless of the wavelength range tested. These prominent formation rates of TC photoproducts correlated with the genomic frequencies of TC dinucleotides in N. pharaonis.
Collapse
Affiliation(s)
- Ralf Moeller
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Chang X, Yang L, Zhao Q, Fu W, Chen H, Qiu Z, Chen JA, Hu R, Shu W. Involvement of recF in 254 nm Ultraviolet Radiation Resistance in Deinococcus radiodurans and Escherichia coli. Curr Microbiol 2010; 61:458-64. [DOI: 10.1007/s00284-010-9638-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 03/24/2010] [Indexed: 11/28/2022]
|