1
|
Amiresmaili S, Rajizadeh MA, Jafari E, Bejeshk MA, Salimi F, Moslemizadeh A, Najafipour H. Myrtenol ameliorates inflammatory, oxidative, apoptotic, and hyperplasic effects of urethane-induced atypical adenomatous hyperplasia in the rat lung. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1785-1797. [PMID: 39177787 DOI: 10.1007/s00210-024-03375-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Lung atypical adenomatous hyperplasia (AAH) is a forerunner of pulmonary adenocarcinoma. The drugs being utilized in the remediation of this type of hyperplasia have some adverse impacts. The present research focused on the potential anti-hyperplasia effect of myrtenol, an herbal terpenoid, on urethane-induced lung AAH in rats. Rats were injected with urethane (1.5 g/kg) thrice at 48 h intervals, and 20 weeks later, the animals were treated with 50 mg/kg myrtenol intraperitoneally once a day for 1 week. The ELISA method was used to measure inflammatory cytokines and oxidative parameters in the lung tissue and bronchoalveolar lavage fluid (BALF). The expression of NFκB and apoptotic/antiapoptotic factors (P53/Bcl-2) was evaluated by western blot and immunohistochemistry, respectively. H&E staining was performed for histopathological investigation. Histopathology confirmed the anti-hyperplasia effect of myrtenol, which was evidenced by the reduction of bronchoalveolar wall thickness and inflammation score. It also decreased hyperplasia progression by reducing Bcl-2, IL-10, p53, and Ki67. Compared with the urethane group, myrtenol normalized the activity of the oxidative stress markers malondialdehyde (MDA), total antioxidant capacity (TAC), glutathione peroxidase (GPX), and superoxide dismutase (SOD). Moreover, it showed an anti-inflammatory effect by decreasing lung and BALF IL-1β levels and NFκB expression. Myrtenol may have a promising effect on lung cancer treatment by counteracting lung hyperplasia via modulation of inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Department of Pathology, Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Department of Physiology, Bam University of Medical Sciences, Bam, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Fouzieh Salimi
- Department of Clinical Biochemistry, Medical Faculty, and Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhossein Moslemizadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Najafipour
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Yuan L, Wang L, Du X, Qin L, Yang M, Zhou K, Wu M, Yang Y, Zheng Z, Xiang Y, Qu X, Liu H, Qin X, Liu C. The DNA methylation of FOXO3 and TP53 as a blood biomarker of late-onset asthma. J Transl Med 2020; 18:467. [PMID: 33298101 PMCID: PMC7726856 DOI: 10.1186/s12967-020-02643-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Late-onset asthma (LOA) is beginning to account for an increasing proportion of asthma patients, which is often underdiagnosed in the elderly. Studies on the possible relations between aging-related genes and LOA contribute to the diagnosis and treatment of LOA. Forkhead Box O3 (FOXO3) and TP53 are two classic aging-related genes. DNA methylation varies greatly with age which may play an important role in the pathogenesis of LOA. We supposed that the differentially methylated sites of FOXO3 and TP53 associated with clinical phenotypes of LOA may be useful biomarkers for the early screening of LOA. METHODS The mRNA expression and DNA methylation of FOXO3 and TP53 in peripheral blood of 43 LOA patients (15 mild LOA, 15 moderate LOA and 13 severe LOA) and 60 healthy controls (HCs) were determined. The association of methylated sites with age was assessed by Cox regression to control the potential confounders. Then, the correlation between differentially methylated sites (DMSs; p-value < 0.05) and clinical lung function in LOA patients was evaluated. Next, candidate DMSs combining with age were evaluated to predict LOA by receiver operating characteristic (ROC) analysis and principal components analysis (PCA). Finally, HDM-stressed asthma model was constructed, and DNA methylation inhibitor 5-Aza-2'-deoxycytidine (5-AZA) were used to determine the regulation of DNA methylation on the expression of FOXO3 and TP53. RESULTS Compared with HCs, the mRNA expression and DNA methylation of FOXO3 and TP53 vary significantly in LOA patients. Besides, 8 DMSs from LOA patients were identified. Two of the DMSs, chr6:108882977 (FOXO3) and chr17:7591672 (TP53), were associated with the severity of LOA. The combination of the two DMSs and age could predict LOA with high accuracy (AUC values = 0.924). In HDM-stressed asthma model, DNA demethylation increased the expression of FOXO3 and P53. CONCLUSIONS The mRNA expression of FOXO3 and TP53 varies significantly in peripheral blood of LOA patients, which may be due to the regulation of DNA methylation. FOXO3 and TP53 methylation is a suitable blood biomarker to predict LOA, which may be useful targets for the risk diagnosis and clinical management of LOA.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Leyuan Wang
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Xizi Du
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Kai Zhou
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Mengping Wu
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Yu Yang
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Zhiyuan Zheng
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Yang Xiang
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Xiangping Qu
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Huijun Liu
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Xiaoqun Qin
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China.
- Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Hasan S, Alshaikh B, Yusuf K. Serum levels of soluble Fas and Fas ligand in pregnant women who smoke. Am J Reprod Immunol 2020; 85:e13382. [PMID: 33247994 DOI: 10.1111/aji.13382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
PROBLEM Cigarette smoking during pregnancy is associated with reduced incidence of preeclampsia. Mechanisms of this association are poorly understood. Cytokines, angiogenic, and anti-angiogenic factors are involved in the pathogenesis of preeclampsia. During normal pregnancy, Fas ligand (FasL) present on trophoblasts induces apoptosis of Fas bearing maternal immune cells. In preeclampsia, trophoblasts show increased apoptosis with reduced expression of FasL. We determined serum levels of cytokines, angiogenic (placental growth factor), anti-angiogenic factors (soluble endoglin, soluble fms-like tyrosine kinase-1), soluble Fas (sFas), and soluble FasL (sFasL) in smoking and non-smoking pregnant women. METHODS Using enzyme-linked immunosorbent and multiplex assays, we prospectively analyzed serum levels of angiogenic, anti-angiogenic factors, cytokines, sFas and sFasL in normotensive smoking and non-smoking mothers. Exclusion criteria included maternal hypertension, auto-immune disorders, rupture of membranes, evidence of labor, and drug use. RESULTS Of 100 women recruited to the study, 51 were in the non-smoking and 49 in the smoking group. Except for lower maternal age in the smoking group, there was no difference in gestation, BMI, gravidity, or ethnicity between the two groups. Levels of angiogenic, anti-angiogenic factors, cytokines, and sFas were similar between the two groups but sFasL levels were significantly higher in smoking group (38 pg/ml vs. 16 pg/ml, p < .001) and remained significant after controlling for confounders. CONCLUSION Our study demonstrates higher sFasL levels in pregnant women who smoke. Higher sFasL may explain the reduced incidence of preeclampsia in pregnant mothers who smoke by inducing apoptosis of immune cells which may otherwise induce trophoblast apoptosis.
Collapse
Affiliation(s)
- Sean Hasan
- Department of Pediatrics, Alberta Health Services, Calgary, AB, Canada
| | - Belal Alshaikh
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kamran Yusuf
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Korfei M, MacKenzie B, Meiners S. The ageing lung under stress. Eur Respir Rev 2020; 29:29/156/200126. [DOI: 10.1183/16000617.0126-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023] Open
Abstract
Healthy ageing of the lung involves structural changes but also numerous cell-intrinsic and cell-extrinsic alterations. Among them are the age-related decline in central cellular quality control mechanisms such as redox and protein homeostasis. In this review, we would like to provide a conceptual framework of how impaired stress responses in the ageing lung, as exemplified by dysfunctional redox and protein homeostasis, may contribute to onset and progression of COPD and idiopathic pulmonary fibrosis (IPF). We propose that age-related imbalanced redox and protein homeostasis acts, amongst others (e.g.cellular senescence), as a “first hit” that challenges the adaptive stress-response pathways of the cell, increases the level of oxidative stress and renders the lung susceptible to subsequent injury and disease. In both COPD and IPF, additional environmental insults such as smoking, air pollution and/or infections then serve as “second hits” which contribute to persistently elevated oxidative stress that overwhelms the already weakened adaptive defence and repair pathways in the elderly towards non-adaptive, irremediable stress thereby promoting development and progression of respiratory diseases. COPD and IPF are thus distinct horns of the same devil, “lung ageing”.
Collapse
|
5
|
Zeng H, Kong X, Zhang H, Chen Y, Cai S, Luo H, Chen P. Inhibiting DNA methylation alleviates cigarette smoke extract-induced dysregulation of Bcl-2 and endothelial apoptosis. Tob Induc Dis 2020; 18:51. [PMID: 32547354 PMCID: PMC7291961 DOI: 10.18332/tid/119163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/05/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION There is evidence that cigarette smoking participates in disease progression through endothelial apoptosis. Bcl-2 family proteins are essential and critical regulators of apoptosis. We explored whether Bcl-2 plays a role in cigarette smoke extract induced (CSE-induced) endothelial apoptosis. Furthermore, given the involvement of epigenetics in apoptosis and Bcl-2 expression, we hypothesized that CSE-induced apoptosis might be caused by gene methylation. METHODS Human umbilical vascular endothelial cells (HUVECs) were treated with CSE, CSE plus 5-aza-2'-deoxycytidine (AZA, an inhibitor of DNA methylation), or AZA and phosphate-buffered saline (PBS). Endothelial apoptosis was determined by Annexin-V and propidium iodide staining. The expression levels of Bcl-2, Bax, and cytochrome C (cyt C) were assessed by immunoblotting and RT-PCR. The methylation status of the Bcl-2 promoter was observed by bisulfite sequencing PCR (BSP). RESULTS The apoptotic index of endothelial cells in the CSE-treated group increased. Decreased expression of Bcl-2 and high methylation of the Bcl-2 promoter were observed after CSE treatment. AZA alleviated the endothelial apoptosis caused by CSE. AZA treatment also increased Bcl-2 expression along with decreased Bcl-2 promoter methylation. CONCLUSIONS Inhibiting DNA methylation alleviates CSE-induced endothelial apoptosis and Bcl-2 promoter methylation. Bcl-2 promoter methylation might be involved in CES-induced endothelial apoptosis.
Collapse
Affiliation(s)
- Huihui Zeng
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Diseases, Central South University, Changsha, China.,Hunan Centre for Evidence-based Medicine, Changsha, China
| | - Xianglong Kong
- Department of Respiratory Medicine, The First Hospital of Changsha, Changsha, China
| | - Hongliang Zhang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Diseases, Central South University, Changsha, China.,Hunan Centre for Evidence-based Medicine, Changsha, China
| | - Shan Cai
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Diseases, Central South University, Changsha, China.,Hunan Centre for Evidence-based Medicine, Changsha, China
| | - Hong Luo
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Diseases, Central South University, Changsha, China.,Hunan Centre for Evidence-based Medicine, Changsha, China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Diseases, Central South University, Changsha, China.,Hunan Centre for Evidence-based Medicine, Changsha, China
| |
Collapse
|
6
|
Xu L, Li X, Wang H, Xie F, Liu H, Xie J. Cigarette smoke triggers inflammation mediated by autophagy in BEAS-2B cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109617. [PMID: 31476449 DOI: 10.1016/j.ecoenv.2019.109617] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Cigarette smoking, as an individual consumption habit, is associated with a variety of related diseases. Exposure of cigarette smoke was reported to induce autophagy and inflammation in experimental animals and humans. However, the toxicity mechanism of cigarette smoke in organisms has not been entirely investigated. In this present study, we studied the role of autophagy played in the inflammation caused by cigarette smoke in human bronchial epithelial cells (BEAS-2B), as well as the role of the phosphatidylinositol 3-kinase (PI3K) signaling pathway and the mitogen-activated protein kinase (MAPK) signaling pathways underlying autophagy and inflammation. We found that cigarette smoke induced autophagy and inflammation in BEAS-2B, and the blockage of autophagy significantly reduced the release levels of IL-1β, IL-6 and IL-8 in BEAS-2B exposed to cigarette smoke for 24 h. Cigarette smoke downregulated the activity of PI3K/Akt/mTOR pathway and elevated the activity of MAPK pathways. Pretreatment of autophagic inhibitor could inhibit autophagy and the activity of JNK and p38 pathways. These results suggested that cigarette smoke-induced autophagy triggered inflammation through the activation of JNK and p38 pathways, which might contribute to understanding the adverse outcome pathways induced by cigarette smoke exposure and provide the information about the risk assessment of tobacco products.
Collapse
Affiliation(s)
- Liangtao Xu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China.
| | - Huiting Wang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China
| | - Huimin Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China
| | - Jianping Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Somborac-Bačura A, Rumora L, Novak R, Rašić D, Dumić J, Čepelak I, Žanić-Grubišić T. Differential expression of heat shock proteins and activation of mitogen-activated protein kinases in A549 alveolar epithelial cells exposed to cigarette smoke extract. Exp Physiol 2018; 103:1666-1678. [PMID: 30242929 DOI: 10.1113/ep087038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/20/2018] [Indexed: 01/24/2023]
Abstract
NEW FINDINGS What is the central question of this study? What is the effect of cigarette smoke on cell death, oxidative damage, expression of heat shock proteins (HSPs) and activation of mitogen-activated protein kinases (MAPKs) in A549 alveolar epithelial cells? What is the main finding and its importance? Cigarette smoke induces cytotoxicity and oxidative damage to A549 cells, increases expression of different HSPs and activates MAPK signalling pathways. This could be related to inflammatory response and apoptosis observed in lungs of patients with smoking-related diseases. ABSTRACT Cigarette smoking is one of the main risk factors for development of chronic obstructive pulmonary disease (COPD). We previously reported that cigarette smoke (CS) induces damage to proteins and their ineffective degradation. Here, we hypothesize that CS could induce oxidative stress and cytotoxicity in lung epithelial cells through alterations of heat shock protein (HSP) expression and mitogen-activated protein kinase (MAPK) signalling pathways. We exposed A549 alveolar epithelial cells to various concentrations of cigarette smoke extract (CSE). Higher concentrations of CSE caused apoptosis of A549 cells after 4 h, while after 24 h cell viability was decreased, and lactate dehydrogenase in cell culture medium was increased as well as the number of necrotic cells. Concentrations of malondialdehyde (MDA) were elevated, while total thiol groups were decreased. Changes in the expression of HSPs (HSP70, HSP32 and HSP27) were time-dependent. After 6 h, CSE caused an increase in the expression of HSP70 and HSP32, while after 8 h all examined HSPs were up-regulated and remained increased up to 48 h. Treatment of A549 cells with CSE stimulated phosphorylation of extracellular signal-regulated kinase and p38 in a dose-dependent manner, while c-Jun N-terminal kinase activation was not detected. By using specific inhibitors, we demonstrated that MAPKs and HSPs interplay in CSE effects. In conclusion, our results show that MAPKs and HSPs are involved in the mechanism underlying CSE-induced cytotoxicity and oxidative damage to A549 alveolar epithelial cells. These processes could be related to inflammatory response and apoptosis observed in lungs of patients with smoking-related diseases, such as COPD.
Collapse
Affiliation(s)
- Anita Somborac-Bačura
- Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology, University of Zagreb, Kneza Domagoja, Zagreb, Croatia
| | - Lada Rumora
- Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology, University of Zagreb, Kneza Domagoja, Zagreb, Croatia
| | - Ruđer Novak
- Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, University of Zagreb, Ante Kovačića, Zagreb, Croatia
| | - Dubravka Rašić
- Unit of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta, Zagreb, Croatia
| | - Jerka Dumić
- Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, University of Zagreb, Ante Kovačića, Zagreb, Croatia
| | - Ivana Čepelak
- Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology, University of Zagreb, Kneza Domagoja, Zagreb, Croatia
| | - Tihana Žanić-Grubišić
- Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology, University of Zagreb, Kneza Domagoja, Zagreb, Croatia
| |
Collapse
|
8
|
Mizuno S, Ishizaki T, Kadowaki M, Akai M, Shiozaki K, Iguchi M, Oikawa T, Nakagawa K, Osanai K, Toga H, Gomez-Arroyo J, Kraskauskas D, Cool CD, Bogaard HJ, Voelkel NF. p53 Signaling Pathway Polymorphisms Associated With Emphysematous Changes in Patients With COPD. Chest 2017; 152:58-69. [PMID: 28315337 DOI: 10.1016/j.chest.2017.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 02/10/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND The p53 signaling pathway may be important for the pathogenesis of emphysematous changes in the lungs of smokers. Polymorphism of p53 at codon 72 is known to affect apoptotic effector proteins, and the polymorphism of mouse double minute 2 homolog (MDM2) single nucleotide polymorphism (SNP)309 is known to increase MDM2 expression. The aim of this study was to assess polymorphisms of the p53 and MDM2 genes in smokers and confirm the role of SNPs in these genes in the pathogenesis of pulmonary emphysema. METHODS This study included 365 patients with a smoking history, and the polymorphisms of p53 and MDM2 genes were identified. The degree of pulmonary emphysema was determined by means of CT scanning. SNPs, MDM2 mRNA, and p53 protein levels were assessed in human lung tissues from smokers. Plasmids encoding p53 and MDM2 SNPs were used to transfect human lung fibroblasts (HLFs) with or without cigarette smoke extract (CSE), and the effects on cell proliferation and MDM2 promoter activity were measured. RESULTS The polymorphisms of the p53 and MDM2 genes were associated with emphysematous changes in the lung and were also associated with p53 protein and MDM2 mRNA expression in the lung tissue samples. Transfection with a p53 gene-coding plasmid regulated HLF proliferation, and the analysis of P2 promoter activity in MDM2 SNP309-coding HLFs showed the promoter activity was altered by CSE. CONCLUSIONS Our data demonstrated that p53 and MDM2 gene polymorphisms are associated with apoptotic signaling and smoking-related emphysematous changes in lungs from smokers.
Collapse
Affiliation(s)
- Shiro Mizuno
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan.
| | - Takeshi Ishizaki
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Maiko Kadowaki
- Department of Respiratory Medicine, University of Fukui, Fukui, Japan
| | - Masaya Akai
- Department of Respiratory Medicine, Fukui Red Cross Hospital, Fukui, Japan
| | - Kohei Shiozaki
- Department of Respiratory Medicine, Fukui Red Cross Hospital, Fukui, Japan
| | - Masaharu Iguchi
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Taku Oikawa
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Ken Nakagawa
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Kazuhiro Osanai
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Hirohisa Toga
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Jose Gomez-Arroyo
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| | - Donatas Kraskauskas
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| | - Carlyne D Cool
- Department of Pathology, University of Colorado Health Science Center, Lung Tissue Repository Consortium Repository, Aurora, CO
| | | | - Norbert F Voelkel
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
9
|
Gupta R, Ghosh S. JNK3 phosphorylates Bax protein and induces ability to form pore on bilayer lipid membrane. BIOCHIMIE OPEN 2017; 4:41-46. [PMID: 29450140 PMCID: PMC5801821 DOI: 10.1016/j.biopen.2017.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/01/2017] [Indexed: 11/15/2022]
Abstract
Bax is a pro-apoptotic cytosolic protein. In this work native (unphosphorylated) and JNK3 phosphorylated Bax proteins are studied on artificial bilayer membranes for pore formation. Phosphorylated Bax formed pore on the bilayer lipid membrane whereas native one does not. In cells undergoing apoptosis the pore formed by the phosphorylated Bax could be important in cytochrome c release from the mitochondrial intermembrane space to the cytosol. The low conductance (1.5 nS) of the open state of the phosphorylated Bax pore corresponds to pore diameter of 0.9 nm which is small to release cytochrome c (∼3.4 nm). We hypothesized that JNK3 phosphorylated Bax protein can form bigger pores after forming complexes with other mitochondrial proteins like VDAC, t-Bid etc. to release cytochrome c.
Collapse
Affiliation(s)
- Rajeev Gupta
- Department of Physiology, All India Institute of Medical Sciences, India
| | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, India
| |
Collapse
|
10
|
Zeng H, Shi Z, Kong X, Chen Y, Zhang H, Peng H, Luo H, Chen P. Involvement of B-cell CLL/lymphoma 2 promoter methylation in cigarette smoke extract-induced emphysema. Exp Biol Med (Maywood) 2016; 241:808-16. [PMID: 26924842 DOI: 10.1177/1535370216635759] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/02/2016] [Indexed: 12/26/2022] Open
Abstract
Abnormal apoptotic events play an important role in the pathogenesis of emphysema. The B-cell CLL/lymphoma 2 (Bcl-2) family proteins are essential and critical regulators of apoptosis. We determined whether the anti-apoptotic Bcl-2 play a role in the cigarette smoke extract (CSE)-induced emphysema. Furthermore, given the involvement of epigenetics in chronic obstructive pulmonary disease, we hypothesized that the deregulation of Bcl-2 might be caused by gene methylation. The emphysema in BALB/C mice was established by intraperitoneally injection of CSE. 5-aza-2'-deoxycytidine (AZA; a demethylation reagent) and phosphate-buffered saline were also administered intraperitoneally as CSE. TUNEL assay was used to assess apoptotic index of pulmonary cells. The methylation status of CpG dinucleotides within the Bcl-2 promoter was observed in all groups by bisulfite sequencing PCR. Pulmonary expression of Bcl-2, Bax, and cytochrome C were measured after four weeks of treatment. The apoptotic index of pulmonary cells in CSE injection group was much higher than control ((25.88 ± 7.55)% vs (6.28 ± 2.96)%). Compared to control mice, decreased expression of Bcl-2 and high methylation of Bcl-2 promoter was observed in CSE injected mice (0.88 ± 0.08 vs 0.49 ± 0.11, (3.82 ± 1.34)% vs (35.68 ± 5.99)%, P < 0.01).CSE treatment induced lung cell apoptosis and decreased lung function. AZA treatment increased Bcl-2 expression with Bcl-2 promoter demethylation. AZA also alleviated the lung cell apoptosis and function failure caused by CSE treatment. The decreased expression of anti-apoptotic Bcl-2 might account for the increased apoptosis in CSE induced-emphysema. Apparently, epigenetic alternation played a role in this deregulation of Bcl-2 expression, and it might support the involvement of epigenetic events in the pathogenesis of emphysema.
Collapse
Affiliation(s)
- Huihui Zeng
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhihui Shi
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xianglong Kong
- Department of Respiratory Medicine, The First Hospital of Changsha, Changsha, Hunan 410011, China
| | - Yan Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongliang Zhang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hong Peng
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hong Luo
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
11
|
Son ES, Kyung SY, Lee SP, Jeong SH, Shin JY, Ohba M, Yeo EJ, Park JW. Role of protein kinase C-η in cigarette smoke extract-induced apoptosis in MRC-5-cells. Hum Exp Toxicol 2015; 34:869-77. [PMID: 25504686 DOI: 10.1177/0960327114561343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cigarette smoke (CS) is a major risk factor for emphysema, which causes cell death in structural cells of the lung by mechanisms that are still not completely understood. We demonstrated previously that CS extract (CSE) induces caspase activation in MRC-5 human lung fibroblasts, activated protein kinase C-η (PKC-η), and translocated PKC-η from the cytosol to the membrane. The objective of this study was to investigate the involvement of PKC-η activation in a CSE-induced extrinsic apoptotic pathway. We determined that CSE increases expression of caspase 3 and 8 cleavage in MRC-5 cells and overexpression of PKC-η significantly increased expression of caspase 3 and 8 cleavage compared with control LacZ-infected cells. In contrast, dominant negative (dn) PKC-η inhibited apoptosis in MRC-5 cells exposed to CSE and decreased expression of caspase 3 and 8 compared with control cells. Exposure to 10% CSE for >8 h significantly increased lactate dehydrogenase release in PKC-η-infected cells compared with LacZ-infected cells. Additionally, PKC-η-infected cells had an increased number of Hoechst 33342 stained nuclei compared with LacZ-infected cells, while dn PKC-η-infected cells exhibited fewer morphological changes than LacZ-infected cells under phase-contrast microscopy. In conclusion, PKC-η activation plays a pro-apoptotic role in CSE-induced extrinsic apoptotic pathway in MRC-5 cells. These results suggest that modulation of PKC-η may be a useful tool for regulating the extrinsic apoptosis of MRC-5 cells by CSE and may have therapeutic potential in the treatment of CS-induced lung injury.
Collapse
Affiliation(s)
- E S Son
- Department of Pulmonary, Allergy and Critical Care Medicine, Gachon University, Gil Medical Center, Namdong-Gu, Incheon, Republic of Korea
| | - S Y Kyung
- Department of Pulmonary, Allergy and Critical Care Medicine, Gachon University, Gil Medical Center, Namdong-Gu, Incheon, Republic of Korea
| | - S P Lee
- Department of Pulmonary, Allergy and Critical Care Medicine, Gachon University, Gil Medical Center, Namdong-Gu, Incheon, Republic of Korea
| | - S H Jeong
- Department of Pulmonary, Allergy and Critical Care Medicine, Gachon University, Gil Medical Center, Namdong-Gu, Incheon, Republic of Korea
| | - J Y Shin
- Department of Pulmonary, Allergy and Critical Care Medicine, Gachon University, Gil Medical Center, Namdong-Gu, Incheon, Republic of Korea
| | - M Ohba
- Institute of Molecular Oncology, Showa University, Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - E J Yeo
- Department of Biochemistry, School of Medicine, Gachon University, Yeonsu-Gu, Incheon, Republic of Korea
| | - J W Park
- Department of Pulmonary, Allergy and Critical Care Medicine, Gachon University, Gil Medical Center, Namdong-Gu, Incheon, Republic of Korea
| |
Collapse
|
12
|
Wang Y, Zhu Y, Xing S, Ma P, Lin D. SIRT5 prevents cigarette smoke extract-induced apoptosis in lung epithelial cells via deacetylation of FOXO3. Cell Stress Chaperones 2015; 20:805-10. [PMID: 25981116 PMCID: PMC4529867 DOI: 10.1007/s12192-015-0599-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 12/18/2022] Open
Abstract
Cigarette smoking plays an important role in increased incidence of chronic obstructive pulmonary disease (COPD). The underlying mechanism in which cigarette smoking induced impairment of lung epithelial cells is still unknown. SIRT5 is a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase, which has been implicated in the regulation of metabolism, stress responses, and aging. Forkhead box O3 (FOXO3) belongs to the O subclass of the forkhead family of transcription factors. It is also involved in protection from oxidative stress by upregulating antioxidants in epithelial cells. Here, we show that cigarette smoke extract (CSE) induces SIRT5 to deacetylate FOXO3 at K271 and K290. Deacetylation of FOXO3 promotes its nuclear localization. Notably, transfection with FOXO3 K271R- or K290R-attenuated CSE-induced apoptosis in SIRT5 knocked down cells, suggesting the protective effects of SIRT5, is mediated by FOXO3. In contrast, CSE stress upregulates SIRT5, which activates FOXO3α leading to rescuing apoptosis. Thus, SIRT5 constitutes a determinant of apoptosis by CSE in lung epithelial cells.
Collapse
Affiliation(s)
- Yongfeng Wang
- />School of Medicine, Shandong University, No.44, Wenhua West Road, Lixia District, Ji’nan, Shandong Province 250012 People’s Republic of China
- />Department of Respiratory Medicine, Yishui Central Hospital, No.17, Jiankang Road, Linyi, Shandong Province 276400 People’s Republic of China
| | - Yuanbin Zhu
- />Department of Respiratory Medicine, Yishui Central Hospital, No.17, Jiankang Road, Linyi, Shandong Province 276400 People’s Republic of China
| | - Shigang Xing
- />Department of Respiratory Medicine, Yishui Central Hospital, No.17, Jiankang Road, Linyi, Shandong Province 276400 People’s Republic of China
| | - Ping Ma
- />Department of Respiratory Medicine, Yishui Central Hospital, No.17, Jiankang Road, Linyi, Shandong Province 276400 People’s Republic of China
| | - Dianjie Lin
- />School of Medicine, Shandong University, No.44, Wenhua West Road, Lixia District, Ji’nan, Shandong Province 250012 People’s Republic of China
- />Department of Respiratory Medicine, Shandong Provincial Hospital, No.324, Jingwu Weiqi Road, Jinan, Shandong Province 250021 People’s Republic of China
| |
Collapse
|
13
|
Kim BS, Serebreni L, Hamdan O, Wang L, Parniani A, Sussan T, Scott Stephens R, Boyer L, Damarla M, Hassoun PM, Damico R. Xanthine oxidoreductase is a critical mediator of cigarette smoke-induced endothelial cell DNA damage and apoptosis. Free Radic Biol Med 2013; 60:336-46. [PMID: 23380026 DOI: 10.1016/j.freeradbiomed.2013.01.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
Abstract
Cigarette smoke (CS) exposure is unquestionably the most frequent cause of emphysema in the United States. Accelerated pulmonary endothelial cell (EC) apoptosis is an early determinant of lung destruction in emphysema. One of the pathogenic causes of emphysema is an alveolar oxidant and antioxidant imbalance. The enzyme xanthine oxidoreductase (XOR) has been shown to be a source of reactive oxygen species (ROS) in a multitude of diseases (S. Sakao et al., FASEB J.21, 3640-3652; 2007). The contribution of XOR to CS-induced apoptosis is not well defined. Here we demonstrate that C57/bl6 mice exposed to CS have increased pulmonary XOR activity and protein levels compared to filtered-air-exposed controls. In addition, we demonstrate that primary pulmonary human lung microvascular endothelial cells exposed to cigarette smoke extract undergo increased rates of caspase-dependent apoptosis that are reliant on XOR activity, ROS production, and p53 function/expression. We also demonstrate that exogenous XOR is sufficient to increase p53 expression and induce apoptosis, suggesting that XOR is an upstream mediator of p53 in CS-induced EC apoptosis. Furthermore, we show that XOR activation results in DNA double-strand breaks that activate the enzyme ataxia telangiectasia mutated, which phosphorylates histone H2AX and upregulates p53. In conclusion, CS increases XOR expression, and the enzyme is both sufficient and necessary for p53 induction and CS-induced EC apoptosis.
Collapse
Affiliation(s)
- Bo S Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhou X, Qiu W, Sathirapongsasuti JF, Cho MH, Mancini JD, Lao T, Thibault DM, Litonjua G, Bakke PS, Gulsvik A, Lomas DA, Beaty TH, Hersh CP, Anderson C, Geigenmuller U, Raby BA, Rennard SI, Perrella MA, Choi AM, Quackenbush J, Silverman EK. Gene expression analysis uncovers novel hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells. Genomics 2013; 101:263-72. [PMID: 23459001 PMCID: PMC3659826 DOI: 10.1016/j.ygeno.2013.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/13/2013] [Accepted: 02/22/2013] [Indexed: 12/15/2022]
Abstract
Hedgehog interacting protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis.
Collapse
Affiliation(s)
- Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Weiliang Qiu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - J. Fah. Sathirapongsasuti
- Department of Biostatistics and Computational Biology, Dana-Faber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, U.S.A
| | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - John D. Mancini
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Taotao Lao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Derek M. Thibault
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Gus Litonjua
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Per S. Bakke
- Dept of Thoracic Medicine, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Amund Gulsvik
- Dept of Thoracic Medicine, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
- Department of Respiratory Medicine, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| | - David A. Lomas
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Terri H. Beaty
- Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Craig P. Hersh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher Anderson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Ute Geigenmuller
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin A. Raby
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephen I. Rennard
- Pulmonary and Critical Care Medicine, Nebraska Medical Center Omaha, NE, U.S.A
| | - Mark A. Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Augustine M.K. Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Faber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, U.S.A
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
de Oliveira Semenzati G, de Souza Salgado B, Rocha NS, Michelin Matheus SM, de Carvalho LR, Garcia Martins RH. Histological and immunohistochemical study of the expression of p53 and ki-67 proteins in the mucosa of the tongue, pharynx and larynx of rats exposed to cigarette smoke. Inhal Toxicol 2013; 24:723-31. [PMID: 22954396 DOI: 10.3109/08958378.2012.715317] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Head and neck cancers are linked to smoking. The most affected sites are the oral cavity, pharynx and larynx. Experimental studies show epithelial lesions caused by cigarette smoke. OBJECTIVES To investigate in rats the effects of acute cigarette smoke exposure on the mucosa of the tongue, pharynx and larynx. MATERIAL AND METHOD Wistar rats were allocated into two groups of 20 animals: CG (control) receiving food and water ad libitum and TG (Tobacco) exposed to the smoke of 40 cigarettes/day for 60 days. Biopsy of their tongues, pharynxes and larynxes were subjected to histopathological, histomorphometric and immunohistochemical studies of protein p53 and ki-67. RESULT The histological analysis of tongue from the Tobacco group revealed epithelial hyperplasia (90%), basal cell hyperplasia (95%) and mild to moderate dysplasia (85%). In pharynx showed basal cell hyperplasia (85%), dysplasia (25%) and vascular congestion (95%). In larynx showed basal cell hyperplasia (70%), epithelial hyperplasia (55%), congestion (100%) and inflammatory infiltrate (25%). Morphometric analysis revealed that keratin layer thickness was greater in the tobacco group. P53 immunoexpression was negative in both groups. Ki-67 immunoexpression was positive in basal cell nuclei but in parabasal cell nuclei it was positive only in the Tobacco group. CONCLUSIONS The exposure of animals to cigarette smoke for 60 days resulted in benign lesions. The duration of exposure was not enough to cause the development cancer, as confirmed by the negative expression of p53 protein in all slides examined. Analysis of ki-67 expression showed intense epithelial proliferation in response to damage.
Collapse
Affiliation(s)
- Graziela de Oliveira Semenzati
- Department of Ophthalmology, Otorhinolaryngology, Head and Neck Surgery, Student of Botucatu Medical School, São Paulo State University- UNESP, Botucatu, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Zhou Y, Tan X, Kuang W, Liu L, Wan L. Erythromycin ameliorates cigarette-smoke-induced emphysema and inflammation in rats. Transl Res 2012; 159:464-72. [PMID: 22633097 DOI: 10.1016/j.trsl.2011.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 10/15/2022]
Abstract
The exposure to cigarette smoke (CS) is associated with emphysema. In addition to chronic lung inflammation, emphysema is known mainly for the complex pathogenesis associated with imbalance of proteolytic and antiproteolytic activities, oxidative stress, and apoptosis of lung structural cells. Increasing evidence shows that erythromycin, which is a macrolide antibiotic, ameliorates chronic inflammation via mechanisms independent of its antibacterial activity. We hypothesize that erythromycin protects against CS-induced emphysema and inflammation in rats via its anti-inflammation and antiapoptosis action. Sprague-Dawley (SD) rats were administered lipopolysaccharide (LPS) intratracheally solution twice and exposed to the CS, the control rats were administered saline intratracheally and exposed to ambient air for 3 weeks. Then, all the CS rats were distributed randomly into 3 groups and, respectively, treated orally with saline (LPS + CS + saline), Guilongkechuanning capsule (450 mg/kg) (LPS + CS + GLKCN), or erythromycin (100 mg/kg) (LPS + CS + ERY) 0.5 h before CS exposure for 2 weeks. On day 36, the rats were killed. The cytokines in serum were measured by enzyme-linked immunosorbent assay (ELISA). The middle lobe of the right lung was removed for histology and apoptosis analyses, respectively. Emphysematous lesions and inflammatory cell infiltrations in the CS group were evident by a histologic analysis. Erythromycin protected significantly against the alveolar enlargement levels (P = 0.0017), reduced the pathologic apoptosis (P = 0.0023) related with Bcl-2 (P = 0.0002) and Bax (P = 0.0002), and inhibited the expressions of matrix metalloproteinase (MMP)-9 (P = 0.0019) and TIMP-1 protein (P = 0.04) and the MMP-9/TIMP-1 ratio (P = 0.0002) in the lungs of CS-induced emphysema in rats. The protective effect of erythromycin on CS-induced emphysema and inflammation in rats is associated with a reduction in inflammation, imbalance of MMP-9/TIMP-1, and apoptosis of lung structural cells. However, erythromycin did not recover completely the emphysematous morphologic changes to the levels when compared with control rats. This distinctive pattern implies that erythromycin might have the potential to suppress airway inflammation and maintain the integrity of airway epithelium to some extent.
Collapse
Affiliation(s)
- Yan Zhou
- Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | | | | | | | | |
Collapse
|
17
|
Acrolein induces endoplasmic reticulum stress and causes airspace enlargement. PLoS One 2012; 7:e38038. [PMID: 22675432 PMCID: PMC3364999 DOI: 10.1371/journal.pone.0038038] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/30/2012] [Indexed: 02/06/2023] Open
Abstract
Background Given the relative abundance and toxic potential of acrolein in inhaled cigarette smoke, it is surprising how little is known about the pulmonary and systemic effects of acrolein. Here we test the hypothesis whether systemic administration of acrolein could cause endoplasmic reticulum (ER) stress, and lung cell apoptosis, leading to the enlargement of the alveolar air spaces in rats. Methods Acute and chronic effects of intraperitoneally administered acrolein were tested. Mean alveolar airspace area was measured by using light microscopy and imaging system software. TUNEL staining and immunohistochemistry (IHC) for active caspase 3 and Western blot analysis for active caspase 3, and caspase 12 were performed to detect apoptosis. The ER-stress related gene expression in the lungs was determined by Quantitative real-time PCR analysis. Acrolein-protein adducts in the lung tissue were detected by IHC. Results Acute administration of acrolein caused a significant elevation of activated caspase 3, upregulation of VEGF expression and induced ER stress proteins in the lung tissue. The chronic administration of acrolein in rats led to emphysematous lung tissue remodeling. TUNEL staining and IHC for cleaved caspase 3 showed a large number of apoptotic septal cells in the acrolein-treated rat lungs. Chronic acrolein administration cause the endoplasmic reticulum stress response manifested by significant upregulation of ATF4, CHOP and GADd34 expression. In smokers with COPD there was a considerable accumulation of acrolein-protein adducts in the inflammatory, airway and vascular cells. Conclusions Systemic administration of acrolein causes endoplasmic reticulum stress response, lung cell apoptosis, and chronic administration leads to the enlargement of the alveolar air spaces and emphysema in rats. The substantial accumulation of acrolein-protein adducts in the lungs of COPD patients suggest a role of acrolein in the pathogenesis of emphysema.
Collapse
|
18
|
Zhang X, Xiao T, Cheng S, Tong T, Gao Y. Cigarette smoke suppresses the ubiquitin-dependent degradation of OLC1. Biochem Biophys Res Commun 2011; 407:753-7. [PMID: 21439932 DOI: 10.1016/j.bbrc.2011.03.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 03/19/2011] [Indexed: 02/07/2023]
Abstract
The newly identified gene, overexpressed in lung cancer 1 (OLC1), is highly expressed as OLC1 protein in the tumor tissues of lung cancer patients with histories of cigarette smoking. However, the underlying mechanisms of how the gene is affected by cigarette smoke have been poorly characterized. In this study, we investigated how OLC1 is regulated in lung cancer cells by cigarette smoke condensate (CSC). Compared to the controls, CSC treatment increased OLC1 protein levels in a dose- and time-dependent manner without affecting OLC1 mRNA levels in lung cancer cells. Ubiquitination of OLC1 protein was blocked upon CSC treatment. Biochemical analysis revealed that the ubiquitin E3 ligase anaphase promoting complex (APC) and its activators cell-division cycle protein 20 (CDC20) and cadherin-1 (CDH1) are responsible for the degradation of OLC1. However, upon introducing CSC the binding of OLC1 to the proteins CDC20, CDH1, and APC2 was impaired. These results demonstrate that CSC regulates OLC1 expression in lung cancer cells by compromising its ubiquitination and subsequent degradation through the ubiquitin E3 ligase APC.
Collapse
Affiliation(s)
- Xiaojing Zhang
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | | | | | | | | |
Collapse
|
19
|
Sangani RG, Ghio AJ. Lung injury after cigarette smoking is particle related. Int J Chron Obstruct Pulmon Dis 2011; 6:191-8. [PMID: 21660296 PMCID: PMC3107695 DOI: 10.2147/copd.s14911] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Indexed: 12/18/2022] Open
Abstract
The specific component responsible and the mechanistic pathway for increased human morbidity and mortality after cigarette smoking are yet to be delineated. We propose that 1) injury and disease following cigarette smoking are associated with exposure to and retention of particles produced during smoking and 2) the biological effects of particles associated with cigarette smoking share a single mechanism of injury with all particles. Smoking one cigarette exposes the human respiratory tract to between 15,000 and 40,000 μg particulate matter; this is a carbonaceous product of an incomplete combustion. There are numerous human exposures to other particles, and these vary widely in composition, absolute magnitude, and size of the particle. Individuals exposed to all these particles share a common clinical presentation with a loss of pulmonary function, increased bronchial hyperresponsiveness, pathologic changes of emphysema and fibrosis, and comorbidities, including cardiovascular disease, cerebrovascular disease, peripheral vascular disease, and cancers. Mechanistically, all particle exposures produce an oxidative stress, which is associated with a series of reactions, including an activation of kinase cascades and transcription factors, release of inflammatory mediators, and apoptosis. If disease associated with cigarette smoking is recognized to be particle related, then certain aspects of the clinical presentation can be predicted; this would include worsening of pulmonary function and progression of pathological changes and comorbidity (eg, emphysema and carcinogenesis) after smoking cessation since the particle is retained in the lung and the exposure continues.
Collapse
Affiliation(s)
- Rahul G Sangani
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC 27599-7315, USA
| | | |
Collapse
|
20
|
Kang SM, Yoon JY, Kim YJ, Lee SP, Jeong SH, Park JW. Inhibition of PKC Epsilon Attenuates Cigarette Smoke Extract-Induced Apoptosis in Human Lung Fibroblasts (MRC-5 Cells). Tuberc Respir Dis (Seoul) 2011. [DOI: 10.4046/trd.2011.71.2.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Shin Myung Kang
- Department of Pulmonary and Critical Care Medicine, Gachon University Gil Hospital, Gachon University of Medicine and Science, Incheon, Korea
| | - Jin Young Yoon
- Department of Pulmonary and Critical Care Medicine, Gachon University Gil Hospital, Gachon University of Medicine and Science, Incheon, Korea
| | - Yu Jin Kim
- Department of Pulmonary and Critical Care Medicine, Gachon University Gil Hospital, Gachon University of Medicine and Science, Incheon, Korea
| | - Sang Pyo Lee
- Department of Pulmonary and Critical Care Medicine, Gachon University Gil Hospital, Gachon University of Medicine and Science, Incheon, Korea
| | - Sung Hwan Jeong
- Department of Pulmonary and Critical Care Medicine, Gachon University Gil Hospital, Gachon University of Medicine and Science, Incheon, Korea
| | - Jeong-Woong Park
- Department of Pulmonary and Critical Care Medicine, Gachon University Gil Hospital, Gachon University of Medicine and Science, Incheon, Korea
| |
Collapse
|
21
|
Cornwell WD, Kim V, Song C, Rogers TJ. Pathogenesis of inflammation and repair in advanced COPD. Semin Respir Crit Care Med 2010; 31:257-66. [PMID: 20496295 DOI: 10.1055/s-0030-1254066] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic obstructive pulmonary disease is characterized by an abnormal persistent inflammatory response to noxious environmental stimuli, most commonly cigarette smoke. Although cigarette smoking elicits airway inflammation in all of those who smoke, persistent inflammation and clinically significant COPD occurs in only a minority of smokers. The pathogenesis of COPD involves the recruitment and regulation of neutrophils, macrophages, and lymphocytes to the lung, as well as the induction of oxidative stress, all of which result in lung parenchymal destruction and airway remodeling. Recent research has generated a greater understanding of the mechanisms responsible for COPD development, including new concepts in T cell biology and the increasing recognition that the processes governing lung cell apoptosis are upregulated. We are also starting to understand the reasons for continued inflammation even after smoking cessation, which accelerates the rate of lung function decline in COPD. Herein we review our current knowledge of the inflammatory pathways involved in COPD pathogenesis, as well as newer concepts that have begun to unfold in recent years.
Collapse
Affiliation(s)
- William D Cornwell
- Fels Institute for Cancer Research and Molecular Biology, Center for Substance Abuse Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
22
|
Damico R, Simms T, Kim BS, Tekeste Z, Amankwan H, Damarla M, Hassoun PM. p53 mediates cigarette smoke-induced apoptosis of pulmonary endothelial cells: inhibitory effects of macrophage migration inhibitor factor. Am J Respir Cell Mol Biol 2010; 44:323-32. [PMID: 20448056 DOI: 10.1165/rcmb.2009-0379oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Exposure to cigarette smoke (CS) is the most common cause of emphysema, a debilitating pulmonary disease histopathologically characterized by the irreversible destruction of lung architecture. Mounting evidence links enhanced endothelial apoptosis causally to the development of emphysema. However, the molecular determinants of human endothelial cell apoptosis and survival in response to CS are not fully defined. Such determinants could represent clinically relevant targets for intervention. We show here that CS extract (CSE) triggers the death of human pulmonary macrovascular endothelial cells (HPAECs) through a caspase 9-dependent apoptotic pathway. Exposure to CSE results in the increased expression of p53 in HPAECs. Using the p53 inhibitor, pifithrin-α (PFT-α), and RNA interference (RNAi) directed at p53, we demonstrate that p53 function and expression are required for CSE-mediated apoptosis. The expression of macrophage migration inhibitory factor (MIF), an antiapoptotic cytokine produced by HPAECs, also increases in response to CSE exposure. The addition of recombinant human MIF prevents cell death from exposure to CSE. Further, the suppression of MIF or its receptor/binding partner, Jun activation domain-binding protein 1 (Jab-1), with RNAi enhances the sensitivity of human pulmonary endothelial cells to CSE via a p53-dependent (PFT-α-inhibitable) pathway. Finally, we demonstrate that MIF is a negative regulator of p53 expression in response to CSE, placing MIF upstream of p53 as an antagonist of CSE-induced apoptosis. We conclude that MIF can protect human vascular endothelium from the toxic effects of CSE via the antagonism of p53-mediated apoptosis.
Collapse
Affiliation(s)
- Rachel Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Golovatch P, Mercer BA, Lemaître V, Wallace A, Foronjy RF, D'Armiento J. Role for cathepsin K in emphysema in smoke-exposed guinea pigs. Exp Lung Res 2010; 35:631-45. [PMID: 19895319 DOI: 10.3109/01902140902822304] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The protease-antiprotease imbalance in the lung plays an important role in the pathogenesis of smoke-induced emphysema. The aim of this study was to characterize the proteolytic responses leading to emphysema formation in the guinea pig smoke exposure model. Guinea pigs were exposed to cigarette smoke for 1, 2, 4, 8, and 12 weeks. Age-matched guinea pigs exposed to room air served as controls. Cigarette smoke induced inflammation after 4 weeks and generated emphysematous changes in the guinea pigs after 12 weeks of smoke exposure. Increased phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) mitogen-activated protein (MAP) kinases was demonstrated post cigarette smoke exposure. A decrease in elastin and collagen and the loss of type III collagen were observed in the alveolar wall of smoke-exposed guinea pigs. Interestingly, no change was seen in the expression of collagenolytic matrix metalloproteinases. Furthermore, the authors observed a 3-fold increase in cathepsin K activity in the lungs of smoke-exposed guinea pigs. The significance of this finding was supported by human studies that demonstrate increased expression of cathepsin K in the lungs of patients with emphysema. Elevation of cathepsin K in guinea pig lungs after smoke exposure likely constitutes a critical event leading to the disruption of lung extracellular matrix in this model.
Collapse
Affiliation(s)
- Polina Golovatch
- Division of Molecular Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
24
|
Park JW, Yoon JY, Kim YJ, Kyung SY, Lee SP, Jeong SH, Moon C. Extracellular signal-regulated kinase (ERK) inhibition attenuates cigarette smoke extract (CSE) induced-death inducing signaling complex (DISC) formation in human lung fibroblasts (MRC-5) cells. J Toxicol Sci 2010; 35:33-9. [PMID: 20118622 DOI: 10.2131/jts.35.33] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cigarette smoke (CS), a major risk factor in emphysema, causes cell death by incompletely understood mechanisms. Death-inducing signaling complex (DISC) formation is an initial event in Fas-mediated apoptosis. We demonstrated cigarette smoke extract (CSE) induced DISC formation in human lung fibroblasts (MRC-5). The aim of this study was to investigate the involvement of extracellular signal-regulated kinase (ERK) MAPK activation in CSE induced DISC formation. Immunoprecipitation (IP) for Fas and Western Immunoblot (IB) analysis for caspase 8 were then performed to show DISC. Lactate dehydrogenase (LDH) release was measured using a cytotoxicity detection kit. MTT assay was used as a measure of cell viability. We demonstrated that CSE induces DISC formation in MRC-5 using IP for Fas and IB for caspase 8. ERK was expressed in MRC-5 exposed to CSE. MEK-1 inhibitor (PD98059) decreased DISC formation in MRC-5 exposed to 20% CSE at 1 hr, and cell viability, as assessed by colorimetric MTT assay, was increased in MEK-1 inhibitor treated MRC-5 cells after 24 hr CSE exposure compared to the control. Inhibiting ERK significantly decreased the caspase-3,-8 activity in MEK-1 inhibitor treated MRC-5 cells compared to the control.The DISC formation, initial event of extrinsic apoptotic pathway, is a primary component of CSE- induced death in MRC-5, and ERK activation plays an active role in the DISC formation and downstream pathway. These results suggest that modulation of ERK may have therapeutic potential in the prevention of smoke-related lung injury.
Collapse
Affiliation(s)
- Jeong-Woong Park
- Department of Pulmonary and Critical Care Medicine, Gachon University, Korea.
| | | | | | | | | | | | | |
Collapse
|
25
|
Onizawa S, Aoshiba K, Kajita M, Miyamoto Y, Nagai A. Platinum nanoparticle antioxidants inhibit pulmonary inflammation in mice exposed to cigarette smoke. Pulm Pharmacol Ther 2009; 22:340-9. [PMID: 19166956 DOI: 10.1016/j.pupt.2008.12.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 09/30/2008] [Accepted: 12/19/2008] [Indexed: 02/02/2023]
Abstract
Recent evidence implicates increased oxidative stress as an important mechanism of the pulmonary inflammation that occurs in cigarette smokers. Since cigarette smoke (CS) contains and generates a large amount of reactive oxygen species (ROS) that elicit pulmonary inflammation, antioxidants may become effective therapeutic agents for CS-related inflammatory lung diseases, such as chronic obstructive pulmonary disease. Platinum nanoparticles stabilized with polyacrylate to form a stable colloid solution (PAA-Pt) are a new class of antioxidants that has been shown to efficiently quench ROS. In the present study we investigated the therapeutic effects of PAA-Pt on pulmonary inflammation in smoking mice. PAA-Pt or saline was administered intranasally to DBA/2 mice, which were then exposed to CS or control air daily for 3 days. Mice were sacrificed 4h after their final exposure to CS or control air. CS exposure caused depletion of antioxidant capacity, NFkappaB activation, and neutrophilic inflammation in the lungs of mice, and intranasal administration of PAA-Pt prior to CS exposure was found to inhibit these changes. Intranasal administration of PAA-Pt alone did not elicit pulmonary inflammation or toxicity. In in vitro experiments, treatment of alveolar-type-II-like A549 cells with PAA-Pt inhibited cell death after exposure to a CS extract. These results suggest that platinum nanoparticles act as antioxidants that inhibit pulmonary inflammation induced by acute cigarette smoking.
Collapse
Affiliation(s)
- Shigemitsu Onizawa
- First Department of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
26
|
Huang P, Huang B, Weng H, Nakayama K, Morimoto K. Effects of lifestyle on micronuclei frequency in human lymphocytes in Japanese hard-metal workers. Prev Med 2009; 48:383-8. [PMID: 19463494 DOI: 10.1016/j.ypmed.2008.12.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/24/2008] [Accepted: 12/29/2008] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The risks of cardiovascular disease, cancer, and other major causes of mortality are largely attributable to lifestyle factors such as smoking, alcohol drinking, hours of working and sleeping, physical activity, diet, and stress. Earlier studies have suggested that an unhealthy lifestyle is also associated with increased lymphocyte sensitivity to mutagens, oxidative DNA damage level, and leukocyte DNA damage. In order to explore the genotoxicity of unhealthy lifestyle, we evaluated the effect of overall lifestyle as well as some individual lifestyle factors on micronuclei (MN) frequency in cultured human lymphocytes. METHOD The study was conducted among 208 healthy adult (19 to 59 years) male Japanese hard-metal workers. The subjects were divided into groups according to their self-reported good, moderate, and poor lifestyles based on their responses to a questionnaire regarding eight health practices (cigarette smoking, alcohol consumption, sleeping hours, working hours, physical exercise, eating breakfast, balanced nutrition, and mental stress), the presence or absence of each of which was summed to obtain a health practice index (HPI: range 0-8). Peripheral blood was taken and the cytokinesis-block micronuclei (CBMN) assay was performed. RESULTS Total lifestyle quality as measured by the HPI was strongly negatively associated with MN frequency in cultured human lymphocytes (p<0.01). Nutritional imbalance, lack of regular exercise (<2 times per week), insufficient sleep (< or =6 h per day), and overtime working (> or =9 h per day) each contributed significantly to higher MN frequency (all p<0.05). In the smoker group, a significantly higher MN frequency was only found in heavy smokers (p<0.05). On the other hand, mental stress, eating breakfast, and alcohol drinking had no effect on MN frequency. CONCLUSIONS Taken together, these findings indicate that poor lifestyle habits significantly increase MN frequency in human lymphocytes.
Collapse
Affiliation(s)
- Peixin Huang
- Department of Toxicology, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, P.R. China
| | | | | | | | | |
Collapse
|
27
|
Franco R, Sánchez-Olea R, Reyes-Reyes EM, Panayiotidis MI. Environmental toxicity, oxidative stress and apoptosis: ménage à trois. Mutat Res 2008; 674:3-22. [PMID: 19114126 DOI: 10.1016/j.mrgentox.2008.11.012] [Citation(s) in RCA: 363] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 11/27/2008] [Indexed: 12/21/2022]
Abstract
Apoptosis is an evolutionary conserved homeostatic process involved in distinct physiological processes including organ and tissue morphogenesis, development and senescence. Its deregulation is also known to participate in the etiology of several human diseases including cancer, neurodegenerative and autoimmune disorders. Environmental stressors (cytotoxic agents, pollutants or toxicants) are well known to induce apoptotic cell death and to contribute to a variety of pathological conditions. Oxidative stress seems to be the central element in the regulation of the apoptotic pathways triggered by environmental stressors. In this work, we review the established mechanisms by which oxidative stress and environmental stressors regulate the apoptotic machinery with the aim to underscore the relevance of apoptosis as a component in environmental toxicity and human disease progression.
Collapse
Affiliation(s)
- Rodrigo Franco
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, P. O. Box 12233, 111. T.W. Alexander Drive, Research Triangle Park, NC 27709, United States.
| | | | | | | |
Collapse
|
28
|
Borza A, Plöttner S, Wolf A, Behm C, Selinski S, Hengstler JG, Roos PH, Bolt HM, Kuhlmann J, Föllmann W. Synergism of aromatic amines and benzo[a]pyrene in induction of Ah receptor-dependent genes. Arch Toxicol 2008; 82:973-80. [DOI: 10.1007/s00204-008-0381-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 12/30/2022]
|
29
|
Most cited articles in the Archives of Toxicology: the debate about possibilities and limitations of in vitro toxicity tests and replacement of in vivo studies. Arch Toxicol 2008; 82:881-3. [DOI: 10.1007/s00204-008-0379-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Ter-Minassian M, Zhai R, Asomaning K, Su L, Zhou W, Liu G, Heist RS, Lynch TJ, Wain JC, Lin X, De Vivo I, Christiani DC. Apoptosis gene polymorphisms, age, smoking and the risk of non-small cell lung cancer. Carcinogenesis 2008; 29:2147-52. [PMID: 18757527 DOI: 10.1093/carcin/bgn205] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Apoptosis is important for targeting cancer cells for destruction. Various single-nucleotide polymorphisms (SNPs) in apoptotic genes have been associated with increased risks in lung cancer, particularly FAS -1377 G>A (rs2234767), FASLG -844 C>T (rs763110), IL1B +3954 C>T Phe105Phe (rs1143634) and BAT3 Ser625Pro (rs1052486). We studied the association of these SNPs with non-small cell lung cancer (NSCLC) in a large case-control study (N = 4263: 2644 cases and 1619 controls). No associations with NSCLC were observed in the main effects analysis for all four SNPs, adjusting for age, gender, smoking status, pack-years and years since smoking cessation. In subjects under age 60, for FASLG -844 C>T polymorphism, CT compared with the CC genotype, was significantly associated with increased risk of NSCLC, adjusted odds ratio (aOR) = 1.58 (1.22, 2.05), P = 0.0006 and TT aOR = 1.45 (1.01, 2.04), P = 0.04. In contrast, for those over age 60, the CT aOR = 0.91 (0.73, 1.13), P = 0.37 and TT aOR = 0.86 (0.64, 1.16), P = 0.32. The P-value for the age-genotype interaction was 0.004. For the IL1B +3954 C>T polymorphism, compared with the CC genotype, TT showed significant associations in former smokers and in men but tests of interaction were not significant (P(smoking) = 0.24, P(gender) = 0.17). No interactions were observed for FAS -1377 G>A and BAT3 Ser625Pro polymorphisms. Our findings indicate that age and smoking may modify the association of the FASLG -844 and IL1B + 3954 SNPs with the risk of NSCLC.
Collapse
Affiliation(s)
- Monica Ter-Minassian
- Department of Environmental Health, Harvard School of Public Health, Boston 02115, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kroening PR, Barnes TW, Pease L, Limper A, Kita H, Vassallo R. Cigarette smoke-induced oxidative stress suppresses generation of dendritic cell IL-12 and IL-23 through ERK-dependent pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:1536-47. [PMID: 18606709 PMCID: PMC2819390 DOI: 10.4049/jimmunol.181.2.1536] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
IL-12p70, a heterodimer composed of p35 and p40 subunits, is a key polarizing cytokine produced by maturing dendritic cells (DCs). We report that cigarette smoke extract (CSE), an extract of soluble cigarette smoke components, suppresses both p35 and p40 production by LPS or CD40L-matured DCs. Suppression of IL-12p70 production from maturing DCs was not observed in the presence of nicotine concentrations achievable in CSE or in the circulation of smokers. The suppressed IL-12p70 protein production by CSE-conditioned DCs was restored by pretreatment of DCs or CSE with the antioxidants N-acetylcysteine and catalase. Inhibition of DC IL-12p70 by CSE required activation of ERK-dependent pathways, since inhibition of ERK abrogated the suppressive effect of CSE on IL-12 secretion. Oxidative stress and sustained ERK phosphorylation by CSE enhanced nuclear levels of the p40 transcriptional repressor c-fos in both immature and maturing DCs. Suppression of the p40 subunit by CSE also resulted in diminished production of IL-23 protein by maturing DCs. Using a murine model of chronic cigarette smoke exposure, we observed that systemic and lung DCs from mice "smokers" produced significantly less IL-12p70 and p40 protein upon maturation. This inhibitory effect was selective, since production of TNF-alpha during DC maturation was enhanced in the smokers. These data imply that oxidative stress generated by cigarette smoke exposure suppresses the generation of key cytokines by maturing DCs through the activation of ERK-dependent pathways. Some of the cigarette smoke-induced inhibitory effects on DC function may be mitigated by antioxidants.
Collapse
Affiliation(s)
- Paula R Kroening
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care, Department of Internal Medicine, Mayo Clinic and Foundation, Rochester, Minnesota, 55905, USA
| | | | - Larry Pease
- Department of Immunology, Mayo Clinic and Foundation, Rochester, Minnesota, 55905, USA
| | - Andrew Limper
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care, Department of Internal Medicine, Mayo Clinic and Foundation, Rochester, Minnesota, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota, 55905, USA
| | - Hirohito Kita
- Department of Immunology, Mayo Clinic and Foundation, Rochester, Minnesota, 55905, USA
- Division of Allergic diseases, Mayo Clinic and Foundation, Rochester, Minnesota, 55905, USA
| | - Robert Vassallo
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care, Department of Internal Medicine, Mayo Clinic and Foundation, Rochester, Minnesota, 55905, USA
| |
Collapse
|
32
|
Morissette MC, Vachon-Beaudoin G, Parent J, Chakir J, Milot J. Increased p53 level, Bax/Bcl-x(L) ratio, and TRAIL receptor expression in human emphysema. Am J Respir Crit Care Med 2008; 178:240-7. [PMID: 18511705 DOI: 10.1164/rccm.200710-1486oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RATIONALE Emphysema is mainly known for the complex inflammatory processes associated with its development. In addition to lung inflammation, it is now accepted that increased alveolar cell apoptosis is also part of emphysema pathophysiology. However, little is known about the mechanisms involved in alveolar apoptosis. We postulate that oxidative stress and proinflammatory cytokines could lead to p53 accumulation, Bax/Bcl-x(L) ratio elevation, and higher tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor levels in the emphysematous lung. OBJECTIVES To evaluate the expression of p53, Bax, Bcl-x(L), TRAIL, and TRAIL receptors in lung parenchyma from nonemphysematous nonsmokers and smokers and emphysematous smokers and ex-smokers and to determine whether H2O2 and/or TNF can modulate the expression of these apoptotic proteins. METHODS p53, Bax, Bcl-x(L), and TRAIL receptor protein levels in lung parenchyma were measured by Western blot, and TRAIL mRNA levels were measured by real-time polymerase chain reaction. Changes in TRAIL receptor, Bax, Bcl-x(L), and p53 protein levels after in vitro H2O2 and/or TNF stimulation of A549 cells were also assessed by Western blot. MEASUREMENTS AND MAIN RESULTS The p53 protein levels, the Bax/Bcl-x(L) ratio, and TRAIL receptors 1, 2, and 3 protein levels were significantly higher in subjects with emphysema. Moreover, they were also increased after H2O2 and TNF treatments of A549 cells. CONCLUSIONS These findings suggest that oxidative stress and proinflammatory cytokines may be involved in the elevation of p53 levels, the Bax/Bcl-x(L) ratio, and TRAIL receptor levels, new mechanisms that may be implicated in the increased alveolar cell apoptosis that occurs in emphysema.
Collapse
Affiliation(s)
- Mathieu C Morissette
- Centre de Recherche de l'Hôpital Laval, Institut Universitaire de Cardiologie et de Pneumologie de l'Université Laval, Quebec City, Canada
| | | | | | | | | |
Collapse
|
33
|
Park JW, Kim HP, Lee SJ, Wang X, Wang Y, Ifedigbo E, Watkins SC, Ohba M, Ryter SW, Vyas YM, Choi AMK. Protein kinase C alpha and zeta differentially regulate death-inducing signaling complex formation in cigarette smoke extract-induced apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:4668-78. [PMID: 18354190 DOI: 10.4049/jimmunol.180.7.4668] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cigarette smoke, a major risk factor in emphysema, causes cell death by incompletely understood mechanisms. Death-inducing signaling complex (DISC) formation is an initial event in Fas-mediated apoptosis. We demonstrate that cigarette smoke extract (CSE) induces DISC formation in human lung fibroblasts (MRC-5) and promotes DISC trafficking from the Golgi complex to membrane lipid rafts. We demonstrate a novel role of protein kinase C (PKC) in the regulation of DISC formation and trafficking. The PKC isoforms, PKCalpha, zeta, epsilon, and eta, were activated by CSE exposure. Overexpression of wild-type PKCalpha inhibited, while PKCzeta promoted, CSE-induced cell death. Dominant-negative (dn)PKCzeta protected against CSE-induced cell death by suppressing DISC formation and caspase-3 activation, while dnPKCalpha enhanced cell death by promoting these events. DISC formation was augmented by wortmannin, an inhibitor of PI3K. CSE-induced Akt phosphorylation was reduced by dnPKCalpha, but it was increased by dnPKCzeta. Expression of PKCalpha in vivo inhibited DISC formation, caspase-3/8 activation, lung injury, and cell death after prolonged cigarette smoke exposure, whereas expression of PKCzeta promoted caspase-3 activation. In conclusion, CSE-induced DISC formation is differentially regulated by PKCalpha and PKCzeta via the PI3K/Akt pathway. These results suggest that modulation of PKC may have therapeutic potential in the prevention of smoke-related lung injury.
Collapse
Affiliation(s)
- Jeong-Woong Park
- Department of Pulmonary and Critical Care Medicine, Gachon Medical School, Gil Medical Center, Inchon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rumora L, Milevoj L, Popović-Grle S, Barišić K, Čepelak I, Grubišić TŽ. Levels changes of blood leukocytes and intracellular signalling pathways in COPD patients with respect to smoking attitude. Clin Biochem 2008; 41:387-94. [DOI: 10.1016/j.clinbiochem.2007.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 12/17/2007] [Accepted: 12/20/2007] [Indexed: 01/28/2023]
|
35
|
Yoshida T, Tuder RM. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol Rev 2007; 87:1047-82. [PMID: 17615396 DOI: 10.1152/physrev.00048.2006] [Citation(s) in RCA: 377] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary diseases (COPD), comprised of pulmonary emphysema, chronic bronchitis, and structural and inflammatory changes of small airways, is a leading cause of morbidity and mortality in the world. A better understanding of the pathobiology of COPD is critical for the developing of novel therapies, as the majority of patients with the disease have little therapeutic options at the present time. The pathobiology of COPD encompasses multiple injurious processes including inflammation (excessive or inappropriate innate and adaptive immunity), cellular apoptosis, altered cellular and molecular alveolar maintenance program, abnormal cell repair, extracellular matrix destruction (protease and anti-protease imbalance), and oxidative stress (oxidant and antioxidant imbalance). These processes are triggered by urban and rural air pollutants and active and/or passive cigarette smoke and modified by cellular senescence and infection. A series of receptor-mediated signal transduction pathways are activated by reactive oxygen species and tobacco components, resulting in impairment of a variety of cell signaling and cytokine networks, subsequently leading to chronic airway responses with mucus production, airway remodeling, and alveolar destruction. The authors provide an updated insight into the molecular and cellular pathobiology of COPD based on human and/or animal data.
Collapse
Affiliation(s)
- Toshinori Yoshida
- Division of Cardiopulmonary Pathology, Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
36
|
Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AMK. Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 2007; 9:49-89. [PMID: 17115887 DOI: 10.1089/ars.2007.9.49] [Citation(s) in RCA: 913] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen or nitrogen species (ROS/RNS) generated endogenously or in response to environmental stress have long been implicated in tissue injury in the context of a variety of disease states. ROS/RNS can cause cell death by nonphysiological (necrotic) or regulated pathways (apoptotic). The mechanisms by which ROS/RNS cause or regulate apoptosis typically include receptor activation, caspase activation, Bcl-2 family proteins, and mitochondrial dysfunction. Various protein kinase activities, including mitogen-activated protein kinases, protein kinases-B/C, inhibitor-of-I-kappaB kinases, and their corresponding phosphatases modulate the apoptotic program depending on cellular context. Recently, lipid-derived mediators have emerged as potential intermediates in the apoptosis pathway triggered by oxidants. Cell death mechanisms have been studied across a broad spectrum of models of oxidative stress, including H2O2, nitric oxide and derivatives, endotoxin-induced inflammation, photodynamic therapy, ultraviolet-A and ionizing radiations, and cigarette smoke. Additionally ROS generated in the lung and other organs as the result of high oxygen therapy or ischemia/reperfusion can stimulate cell death pathways associated with tissue damage. Cells have evolved numerous survival pathways to counter proapoptotic stimuli, which include activation of stress-related protein responses. Among these, the heme oxygenase-1/carbon monoxide system has emerged as a major intracellular antiapoptotic mechanism.
Collapse
Affiliation(s)
- Stefan W Ryter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | |
Collapse
|