1
|
Zhang MQ, Zhong X, Nan N, Xie AL, Lei YX, Liu YK, Guo R, Chen FJ, Long YM, Bao L. Orientational Assembly of Carbon Dots-Enabled Electrochemiluminescence Sensors for Ultrasensitive Detection of Halogenated Phenols. Anal Chem 2025; 97:9722-9730. [PMID: 40310940 DOI: 10.1021/acs.analchem.4c06619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Developing simple, sensitive, and miniaturized sensors is crucial for the prevention and control of halogenated phenolic pollutants exposed to the environment. In this work, oriented carbon dot assemblies are developed for the electrochemiluminescence (ECL) sensing of halogenated phenolic pollutants for the first time. Leveraging liquid-liquid phase separation during ternary solution evaporation, carbon dots (C-dots) self-organize into mesoporous structures (o-Cdots) and granular structures (r-Cdots) on the hydrophobic glass carbon surface, enabling immobilized C-dot ECL sensors. Their superior ECL performances are displayed upon cathodic potential scan in 0.1 mol/L pH 7.4 PBS with the coreactant S2O82-. Compared to hydrophilic o-Cdots, hydrophobic r-Cdots exhibit robust ECL. Physical adsorption of halogenated phenols onto the hydrophobic r-Cdot surface significantly elevates the resistance of interfacial charge transfer and disrupts the recombination of intermediate C-dot•- and SO4•- within the r-Cdot ECL, endowing a novel and broad-spectrum sensor development. The r-Cdot-based ECL sensor enables the detection of several typical halogenated phenolic compounds in a wide concentration range from 5 × 10-11 to 5 × 10-7 mol/L. Remarkably, the detection limit for 2-chlorophenol can even reach 10-14 mol/L. The developed ECL sensor also demonstrates outstanding stability and resistance to interference from common ions and natural metabolites in the environment. These peculiarities enable its superior performance in detecting halogenated phenols in lake water and tap water with ideal recoveries at different spike levels. This work offers significant insights into the relationship between C-dot assembly structures and their ECL behaviors, paving the way for the rational design of portable C-dot-based sensors for pollutant detections.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Xin Zhong
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Nan Nan
- School of Engineering, STEM College, RMIT University, Melbourne 3000, Australia
| | - Ai-Ling Xie
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Yi-Xin Lei
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Yan-Kang Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Rui Guo
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Feng-Jie Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Yan-Min Long
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Lei Bao
- School of Engineering, STEM College, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
2
|
Liao Y, Wang Y, Lin Y, Xiao Y, Mohan M, Jaman R, Dong H, Zhu J, Li X, Zhang C, Chen G, Zhou J. Molecular mechanisms of tetrabromobisphenol A (TBBPA) toxicity: Insights from various biological systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117418. [PMID: 39612681 DOI: 10.1016/j.ecoenv.2024.117418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is a ubiquitous brominated flame retardant extensively incorporated into a wide range of products. As its utilization has escalated, its environmental exposure risks have concomitantly increased. The molecular properties of TBBPA allow it to persist in the environment and within organisms. In this review, we comprehensively examine the toxicity of TBBPA across different organ systems and elucidate the underlying molecular mechanisms. We particularly emphasize TBBPA's impact on biological signaling pathways, protein functionality, cellular architecture, and epigenetic regulation, which collectively lead to disruptions in endocrine, hepatic, neurological, reproductive, and other biological systems. The analysis of these toxicological phenomena and their fundamental molecular mechanisms has substantially enhanced our understanding of TBBPA's hazardous characteristics. This review also examines potential avenues for future research, with a focus on uncovering novel molecular mechanisms and assessing the toxicological impacts of TBBPA exposure, particularly in relation to interactions with other environmental contaminants. We propose a greater focus on examining the toxic effects and molecular mechanisms of long-term TBBPA exposure at environmentally relevant concentrations to facilitate more accurate assessments of human health risks.
Collapse
Affiliation(s)
- Yuxing Liao
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Yilin Wang
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - YaJie Lin
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Yuxi Xiao
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Mohith Mohan
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Rummana Jaman
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Hao Dong
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Jiao Zhu
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Xuerui Li
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Conglin Zhang
- Department rehabilitation medicine, the First Affiliated Hospital of Dali University, Dali, Yunnan 671000, China
| | - Guiyuan Chen
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Jiaqi Zhou
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China.
| |
Collapse
|
3
|
Horie Y, Chihaya Y, Yap CK, Ríos JM, Ramaswamy BR, Uaciquete D. Effect of diisobutyl adipate on the expression of biomarker genes that respond to endocrine disruption and on gonadal sexual differentiation in Japanese medaka (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109836. [PMID: 38218565 DOI: 10.1016/j.cbpc.2024.109836] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Phthalate and non-phthalate plasticizers are used in polymer materials, such as plastic and rubber. It has recently been found that diisobutyl adipate (DIBA), which is considered an environmentally safe non-phthalate plasticizer, potentially acts as a thyroid disruptor in fish. Here, we investigated the sexual hormone effects of DIBA based on the expression levels of genes that respond to endocrine disruption and sexual hormone activity in the livers and gonads, and on gonadal sexual differentiation in Japanese medaka. Compared with the control group, the mRNA expression of chgH, vtg1, vtg2, and esr1 was significantly suppressed in the livers of DIBA exposed XX individuals. Furthermore, the mRNA expression of gsdf was significantly upregulated and downregulated in the gonads of XX and XY individuals, respectively. The mRNA expressions of esr1 and esr2b were significantly suppressed by DIBA exposure in the gonads of both XX and XY individuals. These observations suggest that DIBA has potential androgenic activity in Japanese medaka. However, normal testes and ovaries were observed in respective XY and XX medaka after DIBA exposure; therefore, these results suggest that DIBA may have weak androgenic activity.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
| | - Yuto Chihaya
- Faculty of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Juan Manuel Ríos
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CCT-CONICET), 5500 Mendoza, Argentina
| | - Babu Rajendran Ramaswamy
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Dorcas Uaciquete
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| |
Collapse
|
4
|
Yun X, Zhang L, Wang W, Gu J, Wang Y, He Y, Ji R. Composition, Release, and Transformation of Earthworm Tissue-Bound Residues of Tetrabromobisphenol A in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2069-2077. [PMID: 38237036 DOI: 10.1021/acs.est.3c09051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Earthworms accumulate organic pollutants to form earthworm tissue-bound residues (EBRs); however, the composition and fate of EBRs in soil remain largely unknown. Here, we investigated the fate of tetrabromobisphenol A (TBBPA)-derived EBRs in soil for 250 days using a 14C-radioactive isotope tracer and the geophagous earthworm Metaphire guillelmi. The EBRs of TBBPA in soil were rapidly transformed into nonextractable residues (NERs), mainly in the form of sequestered and ester-linked residues. After 250 days of incubation, 4.9% of the initially applied EBRs were mineralized and 69.3% were released to extractable residues containing TBBPA and its transformation products (TPs, generated mainly via debromination, O-methylation, and skeletal cleavage). Soil microbial activity and autolytic enzymes of earthworms jointly contributed to the release process. In their full-life period, the earthworms overall retained 24.1% TBBPA and its TPs in soil and thus prolonged the persistence of these pollutants. Our study explored, for the first time, the composition and fate of organic pollutant-derived EBRs in soil and indicated that the decomposition of earthworms may release pollutants and cause potential environmental risks of concern, which should be included in both environmental risk assessment and soil remediation using earthworms.
Collapse
Affiliation(s)
- Xiaoming Yun
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Lidan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Wenji Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Jianqiang Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Yongfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of The Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Yang Y, Li M, Zheng J, Zhang D, Ding Y, Yu HQ. Environmentally relevant exposure to tetrabromobisphenol A induces reproductive toxicity via regulating glucose-6-phosphate 1-dehydrogenase and sperm activation in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167820. [PMID: 37858812 DOI: 10.1016/j.scitotenv.2023.167820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a ubiquitous brominated flame-retardant environmental pollutant, has been reported to cause reproductive toxicity by chronic exposure. However, the acute reproductive risk and mechanisms of TBBPA toxicity to individuals, especially at environmentally relevant levels, remains a topic of debate. In this study, Caenorhabditis elegans was used to investigate the reproductive toxicity of acute exposure to TBBPA at environmentally relevant doses. The reproductive end points (embryonic lethality ratio and brood size), oxidative stress, sperm activation, and molecular docking were evaluated. Results showed that, after 24 h of TBBPA treatment, even at the lowest concentration (1 μg/L), the embryonic lethality ratio of C. elegans increased significantly, from 1.63 % to 3.03 %. Furthermore, TBBPA induced oxidative stress with significantly increased expression of sod-3 in C. elegans, which further raised the level of reproductive toxicity through inhibiting the activation of sperm in nematodes. In addition, molecular docking suggested TBBPA might compete for the glucose-6-phosphate-binding site of glucose-6-phosphate 1-dehydrogenase, resulting in oxidative stress generation. Accordingly, our findings indicate that even acute exposure to environmental concentrations of TBBPA may induce reproductive toxicity through reducing sperm activation in nematodes.
Collapse
Affiliation(s)
- Yaning Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui 243000, China
| | - Minghui Li
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Jun Zheng
- Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui 243000, China
| | - Dewei Zhang
- Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui 243000, China
| | - Yan Ding
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Pannetier P, Poulsen R, Gölz L, Coordes S, Stegeman H, Koegst J, Reger L, Braunbeck T, Hansen M, Baumann L. Reversibility of Thyroid Hormone System-Disrupting Effects on Eye and Thyroid Follicle Development in Zebrafish (Danio rerio) Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1276-1292. [PMID: 36920003 DOI: 10.1002/etc.5608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 03/10/2023] [Indexed: 05/27/2023]
Abstract
Early vertebrate development is partially regulated by thyroid hormones (THs). Environmental pollutants that interact with the TH system (TH system-disrupting chemicals [THSDCs]) can have massively disrupting effects on this essential phase. Eye development of fish is directly regulated by THs and can, therefore, be used as a thyroid-related endpoint in endocrine disruptor testing. To evaluate the effects of THSDC-induced eye malformations during early development, zebrafish (Danio rerio) embryos were exposed for 5 days postfertilization (dpf) to either propylthiouracil, a TH synthesis inhibitor, or tetrabromobisphenol A, which interacts with TH receptors. Subsequently, one half of the embryos were exposed further to the THSDCs until 8 dpf, while the other half of the embryos were raised in clean water for 3 days to check for reversibility of effects. Continued THSDC exposure altered eye size and pigmentation and induced changes in the cellular structure of the retina. This correlated with morphological alterations of thyroid follicles as revealed by use of a transgenic zebrafish line. Interestingly, effects were partly reversible after a recovery period as short as 3 days. Results are consistent with changes in TH levels measured in different tissues of the embryos, for example, in the eyes. The results show that eye development in zebrafish embryos is very sensitive to THSDC treatment but able to recover quickly from early exposure by effective repair mechanisms. Environ Toxicol Chem 2023;42:1276-1292. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Pauline Pannetier
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Rikke Poulsen
- Environmental Metabolomics Laboratory, Department of Environmental Science, University of Aarhus, Aarhus, Denmark
| | - Lisa Gölz
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Hanna Stegeman
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Johannes Koegst
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Luisa Reger
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Martin Hansen
- Environmental Metabolomics Laboratory, Department of Environmental Science, University of Aarhus, Aarhus, Denmark
| | - Lisa Baumann
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Amsterdam Institute for Life and Environment (A-LIFE), Section on Environmental Health & Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Yu Y, Zheng T, Li H, Hou Y, Dong C, Chen H, Wang C, Xiang M, Hu G, Dang Y. Growth inhibition of offspring larvae caused by the maternal transfer effects of tetrabromobisphenol A in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121143. [PMID: 36731738 DOI: 10.1016/j.envpol.2023.121143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is an industrial chemical and the most widely used brominated flame retardant, and has raised environmental health concerns. However, the maternal transfer toxicity of TBBPA is less studied in fish despite its frequency in the water environment, and limited evidence exists to confirm the major contributing factors. In this study, we performed a 28-d experiment on female and male zebrafish exposed to TBBPA (0, 5, 50, and 500 μg/L), and shortened body length of offspring larvae was observed at the maximum exposure concentration. By cross-mating control and exposed zebrafish (male or female), our results showed that the observed growth inhibition in the progeny was attributed to the maternal transfer effect. Although 28-d exposure resulted in the existence of TBBPA in ovaries and ova, the maternal transfer of TBBPA was not responsible for the shortened body length of offspring larvae, as evidenced through TBBPA embryo microinjection. Moreover, proteomic analyses in ova indicated that the abundance of apolipoproteins (apoa1, apoa1b, apoa2, apoa4b, and apoc1) was significantly downregulated in the ova, which may be partially responsible for the shortened body length of offspring larvae. Interestingly, these proteins did not differentially express in the ovaries. Therefore, our results demonstrate that TBBPA exposure disturbed maternal protein transfer from the ovaries to the ova, providing novel insights into the underlying maternal transfer effects.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hongyan Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yunbo Hou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Chenyin Dong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chuanhua Wang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
8
|
Gong D, Sun K, Yin K, Wang X. Selenium mitigates the inhibitory effect of TBBPA on NETs release by regulating ROS/MAPK pathways-induced carp neutrophil apoptosis and necroptosis. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108501. [PMID: 36566834 DOI: 10.1016/j.fsi.2022.108501] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most common and persistent organic pollutants found in the environment. When TBBPA is ingested by organisms through various pathways and stored in the body, it shows obvious harmful effects. Selenium (Se) works as an antioxidant in the body, allowing it to withstand the poisonous effects of dangerous substances. The effects and mechanisms of Se and TBBPA on carp neutrophil immune function, apoptosis, and necroptosis, however, are unknown. As a result, we created TBBPA exposure and Se antagonism models using carp neutrophils as study objects, and we investigated the expression of genes implicated in extracellular traps (NETs), cytokines, apoptosis, and necroptosis. The findings demonstrated that extracellular traps neutrophils in the TBBPA group displayed the inhibition of NETs, apoptosis, and necrosis, as well as an increase in Reactive oxygen species (ROS) levels and activation of the MAPK pathway. The expression of genes related to the mitochondrial apoptosis pathway (Bax, Cyt-c, Bcl-2 and Caspase-3) and necroptosis pathway (MLKL, RIPK1, RIPK3, Caspase-8 and FADD) were activated. The expression of inflammatory factors IL-1 and TNF-α were increased, and the expression of IL-2 and IFN-γ were decreased. But an appropriate concentration of Se can mitigate the effects of TBBPA. Our results suggest that Se can mitigate the inhibitory effect of TBBPA on NETs release by regulating apoptosis and necroptosis of carp neutrophil via ROS/MAPK pathways. These results provide a basis information for exploring the toxicity of TBBPA, and enrich the anti-toxicity mechanism of trace element Se in the body.
Collapse
Affiliation(s)
- Duqiang Gong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; College of Jilin Agricultural Science and Technology University, Jilin, 132101, PR China.
| | - Kexin Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kexin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
9
|
Sun K, Wang X, Zhang X, Shi X, Gong D. The antagonistic effect of melatonin on TBBPA-induced apoptosis and necroptosis via PTEN/PI3K/AKT signaling pathway in swine testis cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:2281-2290. [PMID: 35665993 DOI: 10.1002/tox.23595] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a widely used industrial brominated flame retardant, which can endanger animal and human health, including cytotoxicity, endocrine disruption, reproductive toxicity and so on. Melatonin (MT) is a noteworthy free radical scavenger and an antioxidant to alleviate oxidative stress. To investigate the cytotoxic of TBBPA on swine testis cells (ST cells), as well as the antagonistic effect of MT, we established TBBPA exposure and MT antagonistic models, used flow cytometry and AO/EB staining methods to detect apoptosis and necroptosis, used DCFH-DA method to examine the content of reactive oxygen species (ROS) and investigated the expression of associated genes using RT-PCR and Western blot. According to our findings, TBBPA exposure induced cell death in ST cells. TBBPA increased ROS levels, thus increasing PTEN expression and decreasing PI3K and AKT expression. Apoptosis-related factors (Caspase-3, Bax, Cyt-c, and Caspase-9) and necroptosis-related factors (RIPK1, RIPK3, and MLKL) were considerably elevated, in addition to the reduced expression of BCL-2 and Caspase-8. We also found that MT inhibited apoptosis and necroptosis in TBBPA-induced ST cells and effectively resolved the abnormal expression of related signaling pathways. In summary, the above results indicate that MT alleviates the disorder of PTEN/PI3K/AKT signaling pathway via inhibiting ROS overproduction, thereby mitigating apoptosis and necroptosis caused by TBBPA. This research provides a theoretical basis for further understanding of the toxicity of TBBPA and the detoxification of MT against environmental toxics.
Collapse
Affiliation(s)
- Kexin Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyu Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Duqiang Gong
- College of Animal Science and Technology, College of Jilin Agricultural Science and Technology University, Jilin, China
| |
Collapse
|
10
|
Yu Y, Hua X, Chen H, Yang Y, Dang Y, Xiang M. Tetrachlorobisphenol A mediates reproductive toxicity in Caenorhabditis elegans via DNA damage-induced apoptosis. CHEMOSPHERE 2022; 300:134588. [PMID: 35427672 DOI: 10.1016/j.chemosphere.2022.134588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Tetrachlorobisphenol A (TCBPA), an alternative to tetrabromobisphenol A (TBBPA), is ubiquitous in the environment and could potentially impact the reproductive system of organisms. However, the mechanisms underlying TCBPA-mediated reproductive effects remain unclear. Herein, we exposed Caenorhabditis elegans (C. elegans, L4 larvae) to TCBPA at environmentally relevant doses (0-100 μg/L) for 24 h. Exposure to TCBPA at concentrations of 1-100 μg/L impaired fertility of C. elegans, as indicated by brood size. After staining, the number of germline cells decreased in a dose-dependent manner, whereas germline cell corpses increased in exposed nematodes (10-100 μg/L TCBPA). Moreover, the expression of genes related to the germline apoptosis pathway was regulated following exposure to 100 μg/L TCBPA, indicating the potential role of DNA damage in TCBPA-induced apoptosis. Apoptosis was nearly abolished in ced-4 and ced-3 mutants and blocked in hus-1, egl-1, cep-1, and ced-9 mutants. Numerous foci were detected in TCBPA (100 μg/L)-exposed hus-1::GFP strains. These results indicate that TCBPA induces hus-1-mediated DNA damage and further causes apoptosis via a cep-1-dependent pathway. Our data provide evidence that TCBPA causes reproductive toxicity via DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Xin Hua
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, Southeast University, Nanjing, 210009, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yue Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Liaoning, 110122, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
11
|
Rani M, Shanker U. Efficient removal of plastic additives by sunlight active titanium dioxide decorated Cd-Mg ferrite nanocomposite: Green synthesis, kinetics and photoactivity. CHEMOSPHERE 2022; 290:133307. [PMID: 34929280 DOI: 10.1016/j.chemosphere.2021.133307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/27/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Large use of flame retardants or additives in plastic industries have caused scientific attention as their leaching from consumer products is indicative of environmental concern. Moreover, plastic additives have proven features of endocrine disruptors, genotoxicity and persistence. Therefore, photodegradation of tetrabromobisphenol A (TBBPA) and bisphenol A (BPA) were explored in water. Seeing environmental safety, titanium dioxide decorated magnesium substituted cadmium ferrite (CdMgFe2O4@TiO2) was synthesized by using plant extract of M. koenigii via co-precipitation. Sharp peaks obtained in PXRD ensured high crystallinity and purity of distorted spherical nanocomposite (5-25 nm). Subsequently, CdMgFe2O4@TiO2 nanocatalyst was evaluated for the effective elimination of plastic additives at variable reaction parameters (pollutant: 2-10 mgL-1; catalyst: 5-25 mg; pH: 3-7, dark-sunlight). With 20 mg of catalytic dose, CdMgFe2O4@TiO2 showed maximum degradation of 2 mgL-1 of TBBPA (91%) and BPA (94%) at neutral pH under sunlight. Considerable reduction in persistence of TBBPA (t1/2:2.4 h) and BPA (t1/2:2.1 h) indicated admirable photoactivity of CdMgFe2O4@TiO2. Results were supported by BET, zeta potential, band reflectance and photoluminescence analysis that indicated for higher surface area (90 m2g-1), larger particle stability (-20 mV), lower band gap (1.9 eV) and inhibited charge-pairs recombination in nanocomposite. Degradation consisted of initial Langmuir-adsorption followed by first order kinetics. Scavenger analysis revealed the role of hydroxyl radical in photodegradation studies. Nanocomposite was effective up to eight cycles without any significant loss of activity that advocated its high-sustainability and cost-effectiveness. Overall, with excellent surface characteristics, green synthesized CdMgFe2O4@TiO2 nanocomposite is a promising and alternative photocatalyst for industrial applications.
Collapse
Affiliation(s)
- Manviri Rani
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India.
| | - Uma Shanker
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab, 144011, India.
| |
Collapse
|
12
|
Reed JM, Spinelli P, Falcone S, He M, Goeke CM, Susiarjo M. Evaluating the Effects of BPA and TBBPA Exposure on Pregnancy Loss and Maternal-Fetal Immune Cells in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:37010. [PMID: 35343813 PMCID: PMC8959013 DOI: 10.1289/ehp10640] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been linked to miscarriages and pregnancy complications in humans. In contrast, the potential reproductive toxicity of BPA analogs, including tetrabromobisphenol A (TBBPA), is understudied. Furthermore, although environmental exposure has been linked to altered immune mediators, the effects of BPA and TBBPA on maternal-fetal immune tolerance during pregnancy have not been studied. The present study investigated whether exposure resulted in higher rates of pregnancy loss in mice, lower number of regulatory T cells (Tregs), and lower indoleamine 2,3 deoxygenase 1 (Ido1) expression, which provided evidence for mechanisms related to immune tolerance in pregnancy. OBJECTIVES The purpose of this investigation was to characterize the effects of BPA and TBBPA exposure on pregnancy loss in mice and to study the percentage and number of Tregs and Ido1 expression and DNA methylation. METHODS Analysis of fetal resorption and quantification of maternal and fetal immune cells by flow cytometry were performed in allogeneic and syngeneic pregnancies. Ido1 mRNA and protein expression, and DNA methylation in placentas from control and BPA- and TBBPA-exposed mice were analyzed using real-time quantitative polymerase chain reaction, immunofluorescence, and bisulfite sequencing analyses. RESULTS BPA and TBBPA exposure resulted in higher rates of hemorrhaging in early allogeneic, but not syngeneic, conceptuses. In allogeneic pregnancies, BPA and TBBPA exposure was associated with higher fetal resorption rates and lower maternal Treg number. Importantly, these differences were associated with lower IDO1 protein expression in trophoblast giant cells and higher mean percentage Ido1 DNA methylation in embryonic day 9.5 placentas from BPA- and TBBPA-exposed mice. DISCUSSION BPA- and TBBPA-induced pregnancy loss in mice was associated with perturbed IDO1-dependent maternal immune tolerance. https://doi.org/10.1289/EHP10640.
Collapse
Affiliation(s)
- Jasmine M. Reed
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Philip Spinelli
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sierra Falcone
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Miao He
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Calla M. Goeke
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
13
|
Dang Z, Arena M, Kienzler A. Fish toxicity testing for identification of thyroid disrupting chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117374. [PMID: 34051580 DOI: 10.1016/j.envpol.2021.117374] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 05/03/2023]
Abstract
Identification of thyroid disrupting chemicals (TDCs), one of the most studied types of endocrine disruptors (EDs), is required according to EU regulations on industrial chemicals, pesticides, and biocides. Following that requirement, the use of fish as a unique non-mammalian model species for identification of EDs may be warranted. This study summarized and evaluated effects of TDCs on fish thyroid sensitive endpoints including thyroid hormones, thyroid related gene expression, immunostaining for thyroid follicles, eye size and pigmentation, swim bladder inflation as well as effects of TDCs on secondary sex characteristics, sex ratio, growth and reproduction. Changes in thyroid sensitive endpoints may reflect the balanced outcome of different processes of the thyroid cascade. Thyroid sensitive endpoints may also be altered by non-thyroid molecular or endocrine pathways as well as non-specific factors such as general toxicity, development, stress, nutrient, and the environmental factors like temperature and pH. Defining chemical specific effects on thyroid sensitive endpoints is important for identification of TDCs. Application of the AOP (adverse outcome pathway) concept could be helpful for defining critical events needed for testing and identification of TDCs in fish.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment A. van Leeuwenhoeklaan, 93720, BA, Bilthoven, the Netherlands.
| | - Maria Arena
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| | - Aude Kienzler
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| |
Collapse
|
14
|
Yu Y, Hou Y, Dang Y, Zhu X, Li Z, Chen H, Xiang M, Li Z, Hu G. Exposure of adult zebrafish (Danio rerio) to Tetrabromobisphenol A causes neurotoxicity in larval offspring, an adverse transgenerational effect. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125408. [PMID: 33647619 DOI: 10.1016/j.jhazmat.2021.125408] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most extensively used brominated flame retardants and is universally detected in the environment. However, information related to its transgenerational toxicity is sparse. Using zebrafish as a study model, adult fish were exposed to TBBPA at different concentrations (0, 3, 30, or 300 μg/L) for 42 d and then, the exposed adults were spawned in TBBPA-free water. The neurobehavior of adults and larval offspring was evaluated, and the levels of thyroxine (T4), triiodothyronine (T3) and neurotransmitters (acetylcholine, dopamine and gamma-aminobutyric acid) were quantified in larvae and embryos. Our results showed that TBBPA was detected in embryo and the locomotor activity of larval offspring was significantly reduced, suggesting that TBBPA can transfer to offspring and result in neurotoxicity in larval offspring. Furthermore, a reduction in T3 levels was observed in both the larvae and embryos. We also found a significantly decreased content of dopamine in larval offspring, accompanied by downregulated mRNA expression of rdr2b and drd3. Our results demonstrated that TBBPA can be transferred to offspring embryos, and subsequently induce neurotoxicity in larval offspring by affecting the amount of T3 transferred from the parents to embryos and the production of dopamine in larvae.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Yunbo Hou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Xiaohui Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhenchi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
15
|
Lumio RT, Tan MA, Magpantay HD. Biotechnology-based microbial degradation of plastic additives. 3 Biotech 2021; 11:350. [PMID: 34221820 PMCID: PMC8217394 DOI: 10.1007/s13205-021-02884-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/06/2021] [Indexed: 10/21/2022] Open
Abstract
Plastic additives are agents responsible to the flame resistance, durability, microbial resistance, and flexibility of plastic products. High demand for production and use of plastic additives is associated with environmental accumulation and various health hazards. One of the suitable methods of depleting plastic additive in the environment is bioremediation as it offers cost-efficiency, convenience, and sustainability. Microbial activity is one of the effective ways of detoxifying various compounds as microorganisms can adapt in an environment with high prevalence of pollutants. The present review discusses the use and abundance of these plastic additives, their health-related risks, the microorganisms capable of degrading them, the proposed mechanism of biodegradation, and current innovations capable of improving the efficiency of bioremediation.
Collapse
Affiliation(s)
- Rob T. Lumio
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Mario A. Tan
- The Graduate School, University of Santo Tomas, Manila, Philippines
- College of Science and Research Center for the Natural and Applied Sciences, University of Santo, Tomas, Manila, Philippines
| | - Hilbert D. Magpantay
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| |
Collapse
|
16
|
Chen J, Li J, Jiang H, Yu J, Wang H, Wang N, Chen S, Mo W, Wang P, Tanguay RL, Dong Q, Huang C. Developmental co-exposure of TBBPA and titanium dioxide nanoparticle induced behavioral deficits in larval zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112176. [PMID: 33780780 DOI: 10.1016/j.ecoenv.2021.112176] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Both tetrabromobisphenol A (TBBPA) and titanium dioxide nanoparticle (TiO2 NP) have widespread commercial applications, resulting in their ubiquitous co-presence in the environment and biota. Although environmental chemicals exist as mixtures, toxicity studies are nearly always conducted with single chemicals. Few studies explore potential interactions of different chemical mixtures. In this study, we employ the sensitive developing nerve system in zebrafish to assess the neurotoxicity of TBBPA/TiO2 NP mixtures. Specifically, zebrafish embryos were exposed to solvent control (0.1% DMSO), 2 μM TBBPA, 0.1 mg/L TiO2 NP, and their mixture from 8 to 120 h post fertilization (hpf), and motor/social behavioral assessments were conducted on embryos/larvae at different developmental stages. Our results showed that TBBPA/TiO2 NP single or co-exposures increased spontaneous movement, decreased touch response and swim speed, and affected social behaviors of light/dark preference, shoaling, mirror attack and social contact. In particular, many of these phenotypes were manifested with higher magnitude of changes from the mixture exposure. These behavioral deficits were also accompanied with increased cell death in olfactory region and neuromasts in the lateral line system, increased ROS in gallbladder, pancreas, liver, and intestine, as well as increased lipid peroxidation and decreased ATP levels in whole larval tissue homogenates. Further, genes coding for key cell apoptosis marker and antioxidant enzyme were significantly upregulated by these two chemicals, in particular to their mixture. Interestingly, the co-presence of TBBPA also increased the mean particle size of TiO2 NP in the exposure solutions and the TiO2 NP content in larval tissue. Together, our analysis suggests that TBBPA/TiO2 NP induced behavioral changes may be due to physical accumulation of these two chemicals in the target organs, and TiO2 NP may serve as carriers for increased accumulation of TBBPA. To conclude, we demonstrated that TBBPA/TiO2 NP together cause increased bioaccumulation of TiO2, and heightened responses in behavior, cell apoptosis and oxidative stress. Our findings also highlight the importance of toxicity assessment using chemical mixtures.
Collapse
Affiliation(s)
- Jiangfei Chen
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Jiani Li
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hao Jiang
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jiajian Yu
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hongzhu Wang
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Nengzhuang Wang
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Shan Chen
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Wen Mo
- Zhejiang Rehabilitation Medical Center, Hangzhou 310051, PR China
| | - Ping Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Robyn L Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, 28645 East Highway 34, Corvallis, OR 97333, United States
| | - Qiaoxiang Dong
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China; The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Changjiang Huang
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
17
|
Hou X, Wei L, Tang Y, Kong W, Liu J, Schnoor JL, Jiang G. Two Typical Glycosylated Metabolites of Tetrabromobisphenol A Formed in Plants: Excretion and Deglycosylation in Plant Root Zones. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:313-319. [PMID: 34805424 PMCID: PMC8603600 DOI: 10.1021/acs.estlett.1c00084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The glycosylation process was investigated for the common brominated flame retardant tetrabromobisphenol A (TBBPA) in hydroponic exposure systems with pumpkin seedlings. Two typical glycosylation metabolites of TBBPA formed in pumpkin seedlings, TBBPA mono-β-d-glucopyranoside (TBBPA MG) and TBBPA di-β-d-glucopyranoside (TBBPA DG), increasing their mass early in the exposure (reaching maximum masses of 608 ± 53 and 3806 ± 1570 pmol at 12 h, respectively) and then falling throughout exposure. These two metabolites were released from roots to rhizosphere solutions, where they also exhibited initial increases followed by decreasing trends (reaching maximum masses of 595 ± 272 pmol at 3 h and 77.1 ± 36.0 pmol at 6 h, respectively). However, a (pseudo)zero-order deglycosylation of TBBPA MG and TBBPA DG (during the first 1.5 h) back to TBBPA was unexpectedly detected in the hydroponic solutions containing pumpkin exudates and microorganisms. The function of microorganisms in the solutions was further investigated, revealing that the microorganisms were main contributors to deglycosylation. Plant detoxification through glycosylation and excretion, followed by deglycosylation of metabolites back to the toxic parent compound (TBBPA) in hydroponic solutions, provides new insight into the uptake, transformation, and environmental fate of TBBPA and its glycosylated metabolites in plant/microbial systems.
Collapse
Affiliation(s)
- Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinyin Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment and Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jerald L Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment and Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Zhu B, Han J, Lei L, Hua J, Zuo Y, Zhou B. Effects of SiO 2 nanoparticles on the uptake of tetrabromobisphenol A and its impact on the thyroid endocrine system in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111845. [PMID: 33385677 DOI: 10.1016/j.ecoenv.2020.111845] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The coexistence of nanoparticles and organic toxicants in the environment modifies pollutant bioavailability and toxicity. This study investigated the influence of silicon dioxide nanoparticles (n-SiO2) on the uptake of tetrabromobisphenol A (TBBPA) and its impact on the thyroid endocrine system in zebrafish larvae. Zebrafish (Danio rerio) embryos were exposed to TBBPA at different concentrations (50, 100, and 200 μg/L) alone or in combination with n-SiO2 (25 mg/L) until 120 h post-fertilization (hpf). Chemical measurements showed that both TBBPA and n-SiO2 were bioconcentrated in zebrafish larvae, and the uptake of TBBPA was enhanced by n-SiO2. Furthermore, zebrafish larvae exposed to 200 μg/L TBBPA alone exhibited significantly increased T4 contents and decreased T3 contents, whereas n-SiO2 treatment alone did not have a detectable effect. Furthermore, the thyroid hormone levels changed more upon treatment with 200 μg/L TBBPA combined with 25 mg/L n-SiO2 than upon TBBPA treatment alone. Alterations in gene transcription along the related hypothalamic-pituitary-thyroid (HPT) axis were observed, and expression of the binding and transport protein transthyretin (TTR) was significantly decreased for both TBBPA alone and co-exposure with n-SiO2. Thus, the current study demonstrates that n-SiO2, even at the nontoxic concentrations, increases thyroid hormone disruption in zebrafish larvae co-exposed to TBBPA by promoting its bioaccumulation and bioavailability.
Collapse
Affiliation(s)
- Biran Zhu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianghuan Hua
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yanxia Zuo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
19
|
Yang R, Liu S, Liang X, Yin N, Jiang L, Zhang Y, Faiola F. TBBPA, TBBPS, and TCBPA disrupt hESC hepatic differentiation and promote the proliferation of differentiated cells partly via up-regulation of the FGF10 signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123341. [PMID: 32653787 DOI: 10.1016/j.jhazmat.2020.123341] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/18/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Halogenated flame retardants (HFRs), including Tetrabromobisphenol A (TBBPA), Tetrabromobisphenol S (TBBPS), and Tetrachlorobisphenol A (TCBPA), are widely applied in the manufacturing industry to improve fire safety and can be detected in pregnant women's serum at nanomolar levels. Thus, it is necessary to pay attention to the three HFR potential development toxicity, which has not been conclusively addressed yet. The liver is the main organ that detoxifies our body; TBBPA exposure may lead to increased liver weight in rodents. Therefore, in this study, we assessed the developmental hepatic toxicity of the three HFRs with a human embryonic stem cell hepatic differentiation-based system and transcriptomics analyses. We mostly evaluated lineage fate alterations and demonstrated the three HFRs may have common disruptive effects on hepatic differentiation, with TCBPA being significantly more potent. More specifically, the three HFRs up-regulated genes related to cell cycle and FGF10 signaling, at late stages of the hepatic differentiation. This indicates the three chemicals promoted hepatoblast proliferation likely via up-regulating the FGF10 cascade. At the same time, we also presented a powerful way to combine in vitro differentiation and in silico transcriptomic analyses, to efficiently evaluate hazardous materials' adverse effects on lineage fate decisions during early development.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Wellcome Trust/CRUK Gurdon Institute, Department of Pathology, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Xiaoxing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, 102206, China
| | - Yang Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Li X, Pillai SC, Wei L, Liu Z, Huang L, Huang Q, Jia X, Hou D, Song H, Wang H. Facile synthesis of polyoxometalate-modified metal organic frameworks for eliminating tetrabromobisphenol-A from water. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122946. [PMID: 32937701 DOI: 10.1016/j.jhazmat.2020.122946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Removal of tetrabromobisphenol-A (TBBPA) from wastewater is of significance to protect the aquatic life. The present study reports the facile preparation of polyoxometalate-modified metal-organic framework (MOFs) materials for TBBPA removal from water. The polyoxometalate-modified MOFs exhibited significantly higher affinity towards TBBPA than the control MOFs. The experimental data were fitted with the Langmuir, Freundlich and Dubinin-Radushkevich models. The TBBPA adsorption onto modified MOFs fitted the pseudo-second-order kinetic model. The equilibrium adsorption isotherms showed that the adsorption of TBBPA can be fitted by the Langmuir model. The maximum adsorption capacity of adsorbent composites reached 3.65 mg/g, with 95 % removal of TBBPA. The thermodynamic parameters indicated that adsorption was spontaneous. A blue shift of phosphorus peaks obtained from XPS spectra implied the formation of intrinsic chemical bonding between TBBPA and MOFs composites. Moreover, response surface methodology was employed to characterize the TBBPA adsorption in the co-existence of different factors. BPA had strong competition for TBBPA adsorption in a wide range of pH, but not at the middle level of Ca2+ concentration. Polyoxometalate-modified MOFs can easily be recycled using a simple organic solvent washing. This study provides a novel strategy for developing cost effective adsorbents to remove TBBPA from contaminated water.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Suresh C Pillai
- Centre for Precision Engineering, Materials and Manufacturing Research & Nanotechnology and Bio-Engineering Research Division, Department of Environmental Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| | - Lan Wei
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Zhongzhen Liu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Lianxi Huang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Qing Huang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
21
|
Zhou H, Yin N, Faiola F. Tetrabromobisphenol A (TBBPA): A controversial environmental pollutant. J Environ Sci (China) 2020; 97:54-66. [PMID: 32933740 DOI: 10.1016/j.jes.2020.04.039] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants and is extensively used in electronic equipment, furniture, plastics, and textiles. It is frequently detected in water, soil, air, and organisms, including humans, and has raised concerns in the scientific community regarding its potential adverse health effects. Human exposure to TBBPA is mainly via diet, respiration, and skin contact. Various in vivo and in vitro studies based on animal and cell models have demonstrated that TBBPA can induce multifaceted effects in cells and animals, and potentially exert hepatic, renal, neural, cardiac, and reproductive toxicities. Nevertheless, other reports have claimed that TBBPA might be a safe chemical. In this review, we re-evaluated most of the published TBBPA toxicological assessments with the goal of reaching a conclusion about its potential toxicity. We concluded that, although low TBBPA exposure levels and rapid metabolism in humans may signify that TBBPA is a safe chemical for the general population, particular attention should be paid to the potential effects of TBBPA on early developmental stages.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Yu Y, Ma R, Qu H, Zuo Y, Yu Z, Hu G, Li Z, Chen H, Lin B, Wang B, Yu G. Enhanced adsorption of tetrabromobisphenol a (TBBPA) on cosmetic-derived plastic microbeads and combined effects on zebrafish. CHEMOSPHERE 2020; 248:126067. [PMID: 32041069 DOI: 10.1016/j.chemosphere.2020.126067] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/19/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Microplastics (MPs) pollution and its potential environmental risks have drawn increasing concerns in recent years. Among which, microbeads in personal care and cosmetic products has becoming an emerging issue for their abundance as well as the knowledge gaps in their precise environmental behaviors in freshwater. The present study investigated the sorption process of tetrabromobisphenol A (TBBPA), the most widely applied and frequently encountered flame retardant in aquatic environments, on two sources of polyethylene (PE) particles (pristine PE particles and microbeads isolated from personal care and cosmetic products). Significantly enhanced adsorption capacity of microbeads was observed with up to 5-folds higher than the pristine PE particles. The sorption efficiency was also governed by solution pH, especially for the cosmetic-derived microbeads, indicating the strong adsorption of TBBPA on PE was dominated by both hydrophobic and electrostatic interactions. Additionally, combined effects on redox status of zebrafish were evaluated with two environmental relevant concentrations of PE particles (0.5 and 5 mg L-1) using integrated biomarker response (IBR) index through a 14-d exposure. Co-exposure induced significant antioxidative stress than either PE or TBBPA alone when exposed to 0.5 mg L-1 of MPs. After 7-d depuration, the IBR value for combination treatments [TBBPA + PE (L)] was 3-fold compared with that in MP-free groups, indicating the coexistence might exert a prolonged adverse effects on aquatic organisms. These results highlight the probability of risk from microbead pollution in freshwater, where toxic compounds can be adsorbed on microbeads in a considerable amount resulting in potential adverse effects towards aquatic organisms.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Collaborative Innovation Center for Regional Environmental Quality, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Han Qu
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Collaborative Innovation Center for Regional Environmental Quality, School of Environment, Tsinghua University, Beijing, 100084, China; Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85721, United States
| | - You Zuo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ziling Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Bigui Lin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Bin Wang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Collaborative Innovation Center for Regional Environmental Quality, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Gang Yu
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Collaborative Innovation Center for Regional Environmental Quality, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
23
|
High-efficient removal of tetrabromobisphenol A in aqueous by dielectric barrier discharge: Performance and degradation pathways. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116615] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Tan F, Lu B, Liu Z, Chen G, Liu Y, Cheng F, Zhou Y. Identification and quantification of TBBPA and its metabolites in adult zebrafish by high resolution liquid chromatography tandem mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Sheikh IA, Beg MA. Structural binding interactions of tetrabromobisphenol A with sex steroid nuclear receptors and sex hormone‐binding globulin. J Appl Toxicol 2020; 40:832-842. [DOI: 10.1002/jat.3947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Ishfaq A. Sheikh
- King Fahd Medical Research CenterKing Abdulaziz University Jeddah Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical SciencesKing Abdulaziz University Jeddah Saudi Arabia
| | - Mohd A. Beg
- King Fahd Medical Research CenterKing Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
26
|
Zindler F, Beedgen F, Braunbeck T. Time-course of coiling activity in zebrafish (Danio rerio) embryos exposed to ethanol as an endpoint for developmental neurotoxicity (DNT) - Hidden potential and underestimated challenges. CHEMOSPHERE 2019; 235:12-20. [PMID: 31254777 DOI: 10.1016/j.chemosphere.2019.06.154] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Detection of developmental neurotoxicity (DNT) has been recognized as a major challenge by regulatory bodies and science. In search of sensitive and specific test methods, spontaneous tail coiling of embryonic zebrafish has been recommended as a promising tool for identification of DNT-inducing chemicals. The present study was designed to develop a protocol for a prolonged test to study neurotoxicity during the entire development of coiling movement in zebrafish embryos. Ambient illumination was found to modulate coiling activity from the very onset of tail movements representing the earliest behavioral response to light possible in zebrafish. In the dark, embryos displayed increased coiling activity in a way known from photokinesis, a stereotypical element of the visual motor response. Elevated coiling activity during dark phases allows for the development of test strategies that integrate later coiling movements under the control of a further developed nervous system. Furthermore, zebrafish embryos were exposed to ethanol, and coiling activity was analyzed according to the new test protocol. Exposure of embryos to non-teratogenic concentrations of ethanol (0.4-1%) resulted in a delay of the onset of coiling activity and heartbeat. Moreover, ethanol produced a dose-dependent increase in coiling frequency at 26 h post-fertilization, indicating the involvement of neurotoxic mechanisms. Analysis of coiling activity during prolonged exposure allowed for (1) attributing effects on coiling activity to different mechanisms and (2) preventing false interpretation of results. Further research is needed to verify the potential of this test protocol to distinguish between different mechanisms of neurotoxicity.
Collapse
Affiliation(s)
- Florian Zindler
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany.
| | - Franziska Beedgen
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany
| |
Collapse
|
27
|
In Vitro Effects of Bisphenol A and Tetrabromobisphenol A on Cell Viability and Reproduction-Related Gene Expression in Pituitaries from Sexually Maturing Atlantic Cod (Gadus morhua L.). FISHES 2019. [DOI: 10.3390/fishes4030048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bisphenol A (BPA) and tetrabromobisphenol A (TBBPA) are widely used industrial chemicals, ubiquitously present in the environment. While BPA is a well-known endocrine disruptor and able to affect all levels of the teleost reproductive axis, information regarding TBBPA on this subject is very limited. Using primary cultures from Atlantic cod (Gadus morhua), the present study was aimed at investigating potential direct effects of acute (72 h) BPA and TBBPA exposure on cell viability and the expression of reproductive-relevant genes in the pituitary. The results revealed that both bisphenols stimulate cell viability in terms of metabolic activity and membrane integrity at environmentally relevant concentrations. BPA had no direct effects on gonadotropin gene expression, but enhanced the expression of gonadotropin-releasing hormone (GnRH) receptor 2a, the main gonadotropin modulator in Atlantic cod. In contrast, TBBPA increased gonadotropin transcript levels but had no effect on GnRH receptor mRNA. In conclusion, both anthropogenic compounds display endocrine disruptive properties and are able to directly interfere with gene expression related to reproductive function in cod pituitary cells at environmentally relevant concentrations in vitro.
Collapse
|
28
|
Dang Z, Kienzler A. Changes in fish sex ratio as a basis for regulating endocrine disruptors. ENVIRONMENT INTERNATIONAL 2019; 130:104928. [PMID: 31277008 DOI: 10.1016/j.envint.2019.104928] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Fish sex ratio (SR) is an endpoint potentially indicating both endocrine activity and adversity, essential elements for identifying Endocrine Disrupting Chemicals (EDCs) as required by the EU regulations. Due to different protocols and methods in the literature studies, SR data vary greatly. This study analyses literature SR data and discusses important considerations for using SR data in the regulatory context for the hazard identification, classification, PBT (persistent, bioaccumulative and toxic) assessment, testing, and risk assessment. A total number of 106 studies were compiled for SR of zebrafish, medaka and fathead minnow exposed to 84 chemicals or mixtures. About 53% of literature studies determined SR by methods different from the standard histology method, leading to uncertainty of quantifying SR and differential sensitivity. SR was determined after depuration in 40 papers, which may lead to chemical-induced SR changes reversible to the control. SR was responsive to chemicals with EAS (estrogen, androgen, steoroidogenesis) activity and also to those with thyroid and progesterone activity. Besides, SR was influenced by non-chemical factors, e.g., inbreeding and temperature, leading to difficulty in data interpretation. The ECHA/EFSA/JRC Guidance suggests that SR and gonad histology data can be used for identifying EDCs. Due to reversibility, influence of confounding factors, and responsiveness to chemicals with endocrine activity other than EAS, this study suggests that SR/gonad histology should be combined with certain mode of action evidence for identifying EDCs. Important considerations for using SR data in the identification, classification, PBT assessment, testing, and risk assessment are discussed.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment (RIVM), A. van Leeuwenhoeklaan 9, Bilthoven, the Netherlands.
| | - Aude Kienzler
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy
| |
Collapse
|
29
|
Meng Y, Wang S, Wang Z, Ye N, Fang H. Algal toxicity of binary mixtures of zinc oxide nanoparticles and tetrabromobisphenol A: Roles of dissolved organic matters. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:78-85. [PMID: 30308412 DOI: 10.1016/j.etap.2018.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/06/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
The present study investigated the impacts of dissolved organic matters (DOM) on joint toxicity involved in zinc oxide nanoparticles (ZnO NPs) and tetrabromobisphenol A (TBBPA) at relevant low-exposure concentrations (<1 mg/L). It was found that ZnO NPs in single and combined systems exhibited severe inhibition effects on a freshwater microalgae Scenedesmus obliquus. However, the presence of DOM slightly alleviated the growth inhibition toxicity induced by the binary mixtures of ZnO NPs and TBBPA. Ultrastructure analysis revealed that ZnO NPs caused structural damage to cells, including plasmolysis, membrane destruction, and the disruption of thylakoid in the chloroplast, regardless of the presence of coexisting substances. Oxidative stress biomarker quantitative analysis and in situ observations indicated that the massive accumulation of reactive oxygen species in the binary mixtures of ZnO NPs and TBBPA caused severe oxidative damage, but the presence of DOM significantly mitigated the damage.
Collapse
Affiliation(s)
- Yue Meng
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Se Wang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Zhuang Wang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China.
| | - Nan Ye
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Hao Fang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| |
Collapse
|
30
|
Zhang H, Liu W, Chen B, He J, Chen F, Shan X, Du Q, Li N, Jia X, Tang J. Differences in reproductive toxicity of TBBPA and TCBPA exposure in male Rana nigromaculata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:394-403. [PMID: 30199813 DOI: 10.1016/j.envpol.2018.08.086] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/04/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA) are persistent toxic environmental pollutants that cause severe reproductive toxicity in animals. The goal of this study was to compare the reproductive toxic effects of TBBPA and TCBPA on male Rana nigromaculata and to expound on the mechanisms leading to these effects. Healthy adult frogs were exposed to 0, 0.001, 0.01, 0.1, and 1 mg/L of TBBPA and TCBPA for 14 days. Sperm numbers were counted by erythrometry. Sperm mobility and deformities were observed under a light microscope (400 × ). We used commercial ELISA kits to determine the serum content of testosterone (T), estradiol (E2), luteinizing hormone (LH) and follicle stimulating hormone (FSH). Expression of androgen receptor (AR) mRNA was detected using real-time qPCR. Sperm numbers and sperm mobility were significantly decreased and sperm deformity was significantly increased in a concentration dependent manner following exposure to TBBPA and TCBPA. Sperm deformity was significantly greater in the 1 mg/L TCBPA (0.549) treatment group than in the 1 mg/L TBBPA (0.397) treatment group. Serum T content was significantly greater in the 0.01, 0.1 and 1 mg/L TBBPA and TCBPA experimental groups compared with controls, while E2 content was significantly greater in only the 1 mg/L TBBPA and TCBPA experimental groups. Expression levels of LH and FSH significantly decreased in the 1 mg/L TBBPA and TCBPA treatment groups. AR mRNA expression decreased markedly in all the treated groups. Our results indicated that TBBPA and TCBPA induced reproductive toxicity in a dose-dependent manner, with TCBPA having greater toxicity than TBBPA. Furthermore, changes in T, E2, LH, and FSH levels induced by TBBPA and TCBPA exposure, which led to endocrine disorders, also caused disturbance of spermatogenesis through abnormal gene expressions of AR in the testes.
Collapse
Affiliation(s)
- Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou, 510632, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wenli Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Bin Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Jianbo He
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Feifei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Xiaodong Shan
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Qiongxia Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Ning Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Xiuying Jia
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Juan Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China.
| |
Collapse
|
31
|
Xie H, Wang H, Ji F, Liang Y, Song M, Zhang J. Tetrabromobisphenol A alters soil microbial community via selective antibacterial activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:597-603. [PMID: 30153641 DOI: 10.1016/j.ecoenv.2018.08.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant. Most studies regarding TBBPA have concentrated on its occurrence, distribution, toxicity and degradation in the environment. However, little is known about its ecological effects on soil microbial communities. In this study, we investigated the effect of TBBPA on soil microbial community. Overall, the data suggested that the growth and composition of soil microorganisms were correlated to the TBBPA concentration and exposure time. Phospholipid-derived fatty acid analysis (PLFAs) showed that significant microbial growth inhibitions were 46.1% and 46.9% in 40 mg/kg TBBPA-treated soils after 45-day incubation under aerobic and anaerobic conditions, respectively. Results of PLFAs and llumina sequencing indicated that TBBPA mainly inhibited Gram-positive bacteria, but not Gram-negative bacteria. The selective antibacterial activity of TBBPA toward Gram-positive bacteria was further confirmed in pure bacteria cultures. These data suggested that, in addition to their effect on microbial growth and composition, TBBPA may affect the microbial ecology. Additional research should be carried out to identify the ecological risk of TBBPA in soil.
Collapse
Affiliation(s)
- Huijun Xie
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Haijing Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, China
| | - Fang Ji
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
32
|
Siracusa JS, Yin L, Measel E, Liang S, Yu X. Effects of bisphenol A and its analogs on reproductive health: A mini review. Reprod Toxicol 2018; 79:96-123. [PMID: 29925041 DOI: 10.1016/j.reprotox.2018.06.005] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 04/24/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022]
Abstract
Known endocrine disruptor bisphenol A (BPA) has been shown to be a reproductive toxicant in animal models. Its structural analogs: bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) are increasingly being used in consumer products. However, these analogs may exert similar adverse effects on the reproductive system, and their toxicological data are still limited. This mini-review examined studies on both BPA and BPA analog exposure and reproductive toxicity. It outlines the current state of knowledge on human exposure, toxicokinetics, endocrine activities, and reproductive toxicities of BPA and its analogs. BPA analogs showed similar endocrine potencies when compared to BPA, and emerging data suggest they may pose threats as reproductive hazards in animal models. While evidence based on epidemiological studies is still weak, we have utilized current studies to highlight knowledge gaps and research needs for future risk assessments.
Collapse
Affiliation(s)
- Jacob Steven Siracusa
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - Lei Yin
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States; ReproTox Biotech LLC, Athens 30602, GA, United States
| | - Emily Measel
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - Shenuxan Liang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - Xiaozhong Yu
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
33
|
Pittinger CA, Pecquet AM. Review of historical aquatic toxicity and bioconcentration data for the brominated flame retardant tetrabromobisphenol A (TBBPA): effects to fish, invertebrates, algae, and microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:14361-14372. [PMID: 29671227 DOI: 10.1007/s11356-018-1998-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/09/2018] [Indexed: 05/13/2023]
Abstract
This paper summarizes the historical and recent research on the aquatic toxicology and bioconcentration potential of tetrabromobisphenol A (TBBPA), a major flame retardant in electronics. Historical studies on TBBPA are presented in detail, and are compared with more recent research. The historical studies have not been published to date, though they were pivotal in regulatory assessments by the European Union, Canada, and the USA. These assessments have enabled the use of TBBPA as a flame retardant in electronic applications, to the present. The studies were conducted under a Test Rule by the US Environmental Protection Agency in 1987, and were sponsored by member companies of the North American Flame Retardants Alliance (NAFRA) through the American Chemistry Council. The studies were conducted under Good Laboratory Practice procedures, and include 6 acute toxicity tests of TBBPA with fish, invertebrates, algae, and microbes, eight chronic tests, and three bioconcentration studies with fish and invertebrates. Methods and empirical data for each study are detailed in an electronic supplement. Results of the NAFRA studies are compared with recent findings on TBBPA toxicity. Molluscan shell growth may be uniquely sensitive to TBBPA, more sensitive than chronic fish or crustacean toxicity endpoints. Several of the NAFRA studies and several independent studies have reported toxicities exceeding the empirical water solubility limits of TBBPA (in the range of 2.0 mg/L depending on pH). The validity of these results is discussed.
Collapse
Affiliation(s)
| | - Alison M Pecquet
- Department of Environmental Health, College of Medicine, University of Cincinnati, 160 Panceza Way, Cincinnati, OH, 45267-0056, USA.
| |
Collapse
|
34
|
Yin N, Liang S, Liang S, Yang R, Hu B, Qin Z, Liu A, Faiola F. TBBPA and Its Alternatives Disturb the Early Stages of Neural Development by Interfering with the NOTCH and WNT Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5459-5468. [PMID: 29608295 DOI: 10.1021/acs.est.8b00414] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tetrabromobisphenol A (TBBPA), as well as its alternatives Tetrabromobisphenol S (TBBPS) and Tetrachlorobisphenol A (TCBPA), are widely used halogenated flame retardants. Their high detection rates in human breast milk and umbilical cord serum have raised wide concerns about their adverse effects on human fetal development. In this study, we evaluated the cytotoxicity and neural developmental toxicity of TBBPA, TBBPS, and TCBPA with a mouse embryonic stem cell (mESC) system, at human body fluid and environmental relevant doses. All the three compounds showed similar trends in their cytotoxic effects. However, while TBBPA and TBBPS stimulated ESC neural differentiation, TCBPA significantly inhibited neurogenesis. Mechanistically, we demonstrated that, as far as the NOTCH (positive regulator) and WNT (negative regulator) pathways were concerned, TBBPA only partially and slightly disturbed them, whereas TBBPS significantly inhibited the WNT pathway, and TCBPA down-regulated the expression of NOTCH effectors but increased the WNT signaling, actions which both inhibited neural specification. In conclusion, our findings suggest that TBBPS and TCBPA may not be safe alternatives to TBBPA, and their toxicity need to be comprehensively evaluated.
Collapse
Affiliation(s)
- Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Shaojun Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Shengxian Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Bowen Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Aifeng Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Biomass Energy and Bioprocess Technology , Chinese Academy of Science , Qingdao 266101 , China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing , 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
35
|
Zhu B, Zhao G, Yang L, Zhou B. Tetrabromobisphenol A caused neurodevelopmental toxicity via disrupting thyroid hormones in zebrafish larvae. CHEMOSPHERE 2018; 197:353-361. [PMID: 29407805 DOI: 10.1016/j.chemosphere.2018.01.080] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 05/27/2023]
Abstract
Tetrabromobisphenol A (TBBPA), one of the most widely used brominated flame retardants (BFRs), has resulted in worldwide environmental contamination. TBBPA has been reported as a thyroid endocrine disruptor and a potential neurotoxicant. However, the underlying mechanism is still not clear. In this study, zebrafish (Danio rerio) embryos (2 h post-fertilization, hpf) were exposed to different concentrations of TBBPA (50, 100, 200 and 400 μg/L) alone or in combination with 3,3',5-triiodo-l-thyronine (T3, 20 μg/L + TBBPA, 200 μg/L). The results confirmed that TBBPA could evoke thyroid disruption by observations of increased T4 contents and decreased T3 contents, accompanied by up-regulated tshβ, tg mRNA and down-regulated ttr and trβ mRNA levels in zebafish larvae. TBBPA-induced neurodevelopmental toxicity was also indicated by down-regulated transcription of genes related to central nervous system (CNS) development (e.g., α1-tubulin, mbp and shha), and decreased locomotor activity and average swimming speed. Our results further demonstrated that treatment with T3 could reverse or eliminate TBBPA-induced effects on thyroidal and neurodevelopmental parameters. Given the above, we hypothesize that the observed neurodevelopmental toxicity in the present study could be attributed to the thyroid hormone disruptions by TBBPA.
Collapse
Affiliation(s)
- Biran Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Gang Zhao
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
36
|
Sharma P, Chadha P, Saini HS. Tetrabromobisphenol A induced oxidative stress and genotoxicity in fish Channa punctatus. Drug Chem Toxicol 2018. [DOI: 10.1080/01480545.2018.1441864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Prince Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
37
|
Cuco AP, Santos JI, Abrantes N, Gonçalves F, Wolinska J, Castro BB. Concentration and timing of application reveal strong fungistatic effect of tebuconazole in a Daphnia-microparasitic yeast model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:141-163. [PMID: 29096087 DOI: 10.1016/j.aquatox.2017.08.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 05/13/2023]
Abstract
Given the importance of pollutant effects on host-parasite relationships and disease spread, the main goal of this study was to assess the influence of different exposure scenarios for the fungicide tebuconazole (concentration×timing of application) on a Daphnia-microparasitic yeast experimental system. Previous results had demonstrated that tebuconazole is able to suppress Metschnikowia bicuspidata infection at ecologically-relevant concentrations; here, we aimed to obtain an understanding of the mechanism underlying the anti-parasitic (fungicidal or fungistatic) action of tebuconazole. We exposed the Daphnia-yeast system to four nominal tebuconazole concentrations at four timings of application (according to the predicted stage of parasite development), replicated on two Daphnia genotypes, in a fully crossed experiment. An "all-or-nothing" effect was observed, with tebuconazole completely suppressing infection from 13.5μgl-1 upwards, independent of the timing of tebuconazole application. A follow-up experiment confirmed that the suppression of infection occurred within a narrow range of tebuconazole concentrations (3.65-13.5μgl-1), although a later application of the fungicide had to be compensated for by a slight increase in concentration to elicit the same anti-parasitic effect. The mechanism behind this anti-parasitic effect seems to be the inhibition of M. bicuspidata sporulation, since tebuconazole was effective in preventing ascospore production even when applied at a later time. However, this fungicide also seemed to affect the vegetative growth of the yeast, as demonstrated by the enhanced negative effect of the parasite (increasing mortality in one of the host genotypes) at a later time of application of tebuconazole, when no signs of infection were observed. Fungicide contamination can thus affect the severity and spread of disease in natural populations, as well as the inherent co-evolutionary dynamics in host-parasite systems.
Collapse
Affiliation(s)
- Ana P Cuco
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal.
| | - Joana I Santos
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando Gonçalves
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
38
|
NTP Research Report on Biological Activity of Bisphenol A (BPA) Structural Analogues and Functional Alternatives. ACTA ACUST UNITED AC 2017. [DOI: 10.22427/ntp-rr-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Huang Q, Chen Y, Lin L, Liu Y, Chi Y, Lin Y, Ye G, Zhu H, Dong S. Different effects of bisphenol a and its halogenated derivatives on the reproduction and development of Oryzias melastigma under environmentally relevant doses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:752-758. [PMID: 28407592 DOI: 10.1016/j.scitotenv.2017.03.263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Bisphenol A (BPA) and its halogenated compounds (H-BPAs) are widely detected in the environmental media and organisms. However, their toxicological effects, especially chronic exposure at low doses, have not been fully compared. In this study, the effects of BPA and H-BPAs on the reproduction and development of Oryzias melastigma were systematically assessed and compared at various developmental stages. BPA and its derivatives tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA) elicited the acceleration of embryonic heartbeat. BPA did not show any significant impact on the hatching time and rate of embryos. In contrast, both TBBPA and TCBPA led to the delayed hatching and decreased hatching rate. Accordingly, the expressions of hatching enzyme significantly decreased upon exposure and TCBPA was found to be more toxic than TBBPA. The body weight and gonadsomatic index (GSI) of the treated fish were relatively lower than the control fish upon long-term (four months from larvae to adult) exposure to BPA rather than H-BPAs. Slowed oocyte development occurred in the ovary, and the estrogen level decreased after exposure to BPA rather than H-BPAs. In male fish, no significant alteration was observed in the testis for all groups. The concentration of testosterone significantly decreased upon exposure to BPA rather than H-BPAs. The effects of these three chemicals on the estrogen-related gene expressions were different under various developmental stages. Our study indicated the importance of considering both the exposure stages and structure-activity relationship when assessing the eco-toxicological impact of pollutants.
Collapse
Affiliation(s)
- Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| | - Yajie Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Lifeng Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Yiyao Liu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Yulang Chi
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Yi Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Guozhu Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Huiming Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Sijun Dong
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
40
|
Feng Y, Lu K, Gao S, Mao L. The fate and transformation of tetrabromobisphenol A in natural waters, mediated by oxidoreductase enzymes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:596-604. [PMID: 28327772 DOI: 10.1039/c6em00703a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, we examined the fate and transformation of tetrabromobisphenol A (TBBPA), mediated by the representative oxidoreductases (laccase and horseradish peroxidase (HRP)) in natural waters. Both enzymes could readily degrade TBBPA at environmentally relevant concentrations (e.g., 10 nmol L-1) in natural waters. After 2 hour treatment, 0.5-25% and 35-65% of TBBPA were degraded in municipal wastewater and natural surface waters by a laccase or HRP-catalyzed reaction, respectively. Enzyme kinetics evaluations indicated that the kCAT/KM ratio of HRP (1.01 μM-1 s-1) was much higher than that of laccase (0.032 μM-1 s-1) for TBBPA degradation, suggesting that the catalytic performance of HRP towards TBBPA was more efficient than that of laccase. The effects of pH and organic matter on the enzymatic degradation efficiency were explored. Organic matter in the water inhibited the enzymatic degradation efficiency and the degree of inhibition was proportional to the UV254 values of water. Product identification indicated that the product distribution of TBBPA at low concentration (10 nmol L-1) was similar to that of TBBPA at high concentration (10 μmol L-1). The degradation intermediates underwent further enzymatic reaction to yield higher molecular weight secondary products. Toxicity assessment showed that TBBPA toxicity was effectively eliminated by the oxidoreductase-catalyzed reaction.
Collapse
Affiliation(s)
- Yiping Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China.
| | | | | | | |
Collapse
|
41
|
Wang C, Gao J, Gu C. Rapid Destruction of Tetrabromobisphenol A by Iron(III)-Tetraamidomacrocyclic Ligand/Layered Double Hydroxide Composite/H 2O 2 System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:488-496. [PMID: 27977161 DOI: 10.1021/acs.est.6b04294] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Iron(III)-tetraamidomacrocyclic ligand (Fe(III)-TAML) activators have received widespread attentions for their abilities to activate hydrogen peroxide to oxidize many organic pollutants. In this study, Fe(III)-TAML/layered double hydroxide (LDH) composite was developed by intercalating Fe(III)-TAML into the interlayer of LDH. Electrostatic interaction and hydrogen bonding might account for the adsorption of Fe(III)-TAML on LDH. The newly synthesized Fe(III)-TAML/LDH composite showed superior reactivity as indicated by efficient decomposition of tetrabromobisphenol A (TBBPA) in the presence of hydrogen peroxide, which can be fully degraded within 20 s and the degradation rate increased up to 8 times compared to free Fe(III)-TAML. In addition, the toxicity of the system was significantly reduced after the reaction. The higher reactivity of Fe(III)-TAML/LDH system is attributed to the enhanced adsorption of TBBPA on LDH, which could increase the contact possibility between Fe(III)-TAML and TBBPA. On the basis of the analysis of reaction intermediates, β-scission at the middle carbon atom and C-Br bond cleavage in phenyl ring of TBBPA were involved in the degradation process. Furthermore, our results demonstrated that the Fe(III)-TAML/LDH composite can be reused several times, which could lower the overall cost for environmental implication and render Fe(III)-TAML/LDH as the potential environmentally friendly catalyst for future wastewater treatment under mild reaction conditions.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, P.R. China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing, Jiangsu 210008, P. R. China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, P.R. China
| |
Collapse
|
42
|
Malkoske T, Tang Y, Xu W, Yu S, Wang H. A review of the environmental distribution, fate, and control of tetrabromobisphenol A released from sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1608-1617. [PMID: 27325014 DOI: 10.1016/j.scitotenv.2016.06.062] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 05/19/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a high use brominated flame retardant (BFR), raising concerns of widespread pollution and harm to human and ecological health. BFR manufacturing, TBBPA-based product manufacturing, e-waste recycling, and wastewater treatment plants have been identified as the main emission point sources. This paper discusses the occurrence, distribution, and fate of TBBPA from source to the environment. After release to the environment, TBBPA may undergo adsorption, photolysis, and biological degradation. Exposure of humans and biota is also discussed along with the role of treatment and regulations in reducing release of TBBPA to the environment and exposure risks. In general this review found stronger enforcement of existing legislation, and investment in treatment of e-waste plastics and wastewater from emission point sources could be effective methods in reducing release and exposure of TBBPA in the environment.
Collapse
Affiliation(s)
- Tyler Malkoske
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Yulin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Wenying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Shuili Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Hongtao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
43
|
Metabolomics approach reveals metabolic disorders and potential biomarkers associated with the developmental toxicity of tetrabromobisphenol A and tetrachlorobisphenol A. Sci Rep 2016; 6:35257. [PMID: 27734936 PMCID: PMC5062249 DOI: 10.1038/srep35257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022] Open
Abstract
Tetrabromobisphenol A and tetrachlorobisphenol A are halogenated bisphenol A (H-BPA), and has raised concerns about their adverse effects on the development of fetuses and infants, however, the molecular mechanisms are unclear, and related metabolomics studies are limited. Accordingly, a metabolomics study based on gas chromatography-mass spectrometry was employed to elucidate the molecular developmental toxicology of H-BPA using the marine medaka (Oryzias melastigmas) embryo model. Here, we revealed decreased synthesis of nucleosides, amino acids and lipids, and disruptions in the TCA (tricarboxylic acid) cycle, glycolysis and lipid metabolism, thus inhibiting the developmental processes of embryos exposed to H-BPA. Unexpectedly, we observed enhanced neural activity accompanied by lactate accumulation and accelerated heart rates due to an increase in dopamine pathway and a decrease in inhibitory neurotransmitters following H-BPA exposure. Notably, disorders of the neural system, and disruptions in glycolysis, the TCA cycle, nucleoside metabolism, lipid metabolism, glutamate and aspartate metabolism induced by H-BPA exposure were heritable. Furthermore, lactate and dopa were identified as potential biomarkers of the developmental toxicity of H-BPA and related genetic effects. This study has demonstrated that the metabolomics approach is a useful tool for obtaining comprehensive and novel insights into the molecular developmental toxicity of environmental pollutants.
Collapse
|
44
|
Xu C, Qiu P, Chen H, Zhou Y, Jiang F, Xie X. Pd/mesoporous carbon nitride: A bifunctional material with high adsorption capacity and catalytic hydrodebromination activity for removal of tetrabromobisphenol A. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Wu S, Ji G, Liu J, Zhang S, Gong Y, Shi L. TBBPA induces developmental toxicity, oxidative stress, and apoptosis in embryos and zebrafish larvae (Danio rerio). ENVIRONMENTAL TOXICOLOGY 2016; 31:1241-1249. [PMID: 25846749 DOI: 10.1002/tox.22131] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/06/2015] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is currently one of the most frequently used brominated flame retardants and can be considered as a high production volume chemical. In this study, zebrafish embryos and larvae served as a biological model to evaluate TBBPA-induced developmental toxicity, oxidative stress, oxidant-associated gene expression, and cell apoptosis. Abnormalities, including hyperemia and pericardial edema, were induced in zebrafish larvae. The results showed that toxicity endpoints such as hatching rate, survival rate, malformation rate, and growth rate had a significant dose-response relationship with TBBPA. Further studies revealed that TBBPA did not alter the enzyme activities of Copper/Zinc Superoxide dismutase (Cu/Zn-SOD), catalase (CAT), and glutathioneperoxidase (GPx) at 0.10 mg/L, but decreased activities following exposure to 0.40, 0.70, and 1.00 mg/L. Despite the significantly decreased gene expression of Cu/Zn-SOD, CAT, and GPx1a in the 1.00 mg/L treatment group, other treatments (0.10, 0.40, 0.70 mg/L) did not alter gene expression. Moreover, Acridine orange staining results showed that apoptotic cells mainly accumulated in the brain, heart, and tail, indicating possible TBBPA-induced brain, cardiac, and blood circulation system impairment in zebrafish embryos and larvae. Histological analysis also showed evidence of obvious heart impairment in TBBPA-treated groups. This study provides new evidence on the developmental toxicity, oxidative stress, and apoptosis of embryos and zebrafish larvae, which is important for the evaluation of environmental toxicity and chemical risk. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1241-1249, 2016.
Collapse
Affiliation(s)
- Shengmin Wu
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing, 210042, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing, 210042, China
| | - Jining Liu
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing, 210042, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing, 210042, China
| | - Yang Gong
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing, 210042, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing, 210042, China
| |
Collapse
|
46
|
Gu C, Wang J, Liu S, Liu G, Lu H, Jin R. Biogenic Fenton-like Reaction Involvement in Cometabolic Degradation of Tetrabromobisphenol A by Pseudomonas sp. fz. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9981-9989. [PMID: 27556415 DOI: 10.1021/acs.est.6b02116] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant (BFR) that has frequently been detected in various environmental compartments. Although TBBPA biotransformation has been observed under both aerobic and anaerobic conditions, knowledge of the detailed mechanism of direct aerobic TBBPA biodegradation still remains limited. In this study, the underlying mechanism of cometabolic degradation of TBBPA by Pseudomonas sp. fz under aerobic conditions was investigated. Two key degradation pathways (beta scission and debromination) were proposed based on triple quadrupole liquid chromatography-mass spectrometry (LC-MS) analysis. TBBPA degradation by strain fz was demonstrated to be an extracellular process associated with the low-molecular-mass component (LMMC). Moreover, LMMC was preliminarily identified as oligopeptides, mainly consisting of glycine, proline, and alanine in a 2:1:1 molar ratio. Quenching studies suggested the involvement of hydroxyl radicals ((•)OH) in extracellular TBBPA degradation. To the best of our knowledge, we provide the first evidence that TBBPA was degraded by a biogenic Fenton-like reaction mediated via extracellular H2O2 and Fe(II)-oligopeptide complexes by the genus Pseudomonas. This study provides a new insight into the fate and biodegradation of TBBPA and other organic pollutants in natural and artificial bioremediation environments.
Collapse
Affiliation(s)
- Chen Gu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Shasha Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| |
Collapse
|
47
|
Chen J, Tanguay RL, Xiao Y, Haggard DE, Ge X, Jia Y, Zheng Y, Dong Q, Huang C, Lin K. TBBPA exposure during a sensitive developmental window produces neurobehavioral changes in larval zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:53-63. [PMID: 27239688 DOI: 10.1016/j.envpol.2016.05.059] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/05/2016] [Accepted: 05/21/2016] [Indexed: 06/05/2023]
Abstract
Tetrabromobisphenol A (TBBPA), one of the most widely used brominated flame retardants (BFRs), is a ubiquitous contaminant in the environment and in the human body. This study demonstrated that zebrafish embryos exposed to TBBPA during a sensitive window of 8-48 h post-fertilization (hpf) displayed morphological malformations and mortality. Zebrafish exposed exclusively between 48 and 96 hpf were phenotypically normal. TBBPA was efficiently absorbed and accumulated in zebrafish embryos, but was eliminated quickly when the exposure solution was removed. Larval behavior assays conducted at 120 hpf indicated that exposure to 5 μM TBBPA from 8 to 48 hpf produced larvae with significantly lower average activity and speed of movement in the normal condition than in those exposed from 48 to 96 hpf. Specifically, 8-48 hpf-exposed larvae spent significantly less time in both activity bursts and gross movements compared to control or 48-96 hpf exposed larvae. Consistent with the motor deficits, TBBPA induced apoptotic cell death, delayed cranial motor neuron development, inhibited primary motor neuron development and loosed muscle fiber during the early developmental stages. To further explore TBBPA-induced developmental and neurobehavioral toxicity, RNA-Seq analysis was used to identify early transcriptional changes following TBBPA exposure. In total, 1969 transcripts were significantly differentially expressed (P < 0.05, FDR < 0.05, 1.5-FC) upon TBBPA exposure. Functional and pathway analysis of the TBBPA transcriptional profile identified biological processes involved in nerve development, muscle filament sliding and contraction, and extracellular matrix disassembly and organization changed significantly. In addition, TBBPA also led to an elevation in the expression of genes encoding uridine diphosphate glucuronyl transferases (ugt), which could affect thyroxine (T4) metabolism and subsequently lead to neurobehavioral changes. In summary, TBBPA exposure during a narrow, sensitive developmental window perturbs various molecular pathways and results in neurobehavioral deficits in zebrafish.
Collapse
Affiliation(s)
- Jiangfei Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, No.130, Mei Long Road, Shanghai 200237, China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Robert L Tanguay
- Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97333, USA
| | - Yanyan Xiao
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Derik E Haggard
- Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97333, USA
| | - Xiaoqing Ge
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yinhang Jia
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yi Zheng
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiaoxiang Dong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Changjiang Huang
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, No.130, Mei Long Road, Shanghai 200237, China.
| |
Collapse
|
48
|
Hoo JY, Kumari Y, Shaikh MF, Hue SM, Goh BH. Zebrafish: A Versatile Animal Model for Fertility Research. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9732780. [PMID: 27556045 PMCID: PMC4983327 DOI: 10.1155/2016/9732780] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/20/2016] [Indexed: 02/06/2023]
Abstract
The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.
Collapse
Affiliation(s)
- Jing Ying Hoo
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Sunway College, Jalan Universiti, Bandar Sunway, 46150 Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Seow Mun Hue
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Bey Hing Goh
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
49
|
Lefevre E, Cooper E, Stapleton HM, Gunsch CK. Characterization and Adaptation of Anaerobic Sludge Microbial Communities Exposed to Tetrabromobisphenol A. PLoS One 2016; 11:e0157622. [PMID: 27463972 PMCID: PMC4963083 DOI: 10.1371/journal.pone.0157622] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/02/2016] [Indexed: 11/22/2022] Open
Abstract
The increasing occurrence of tetrabromobisphenol A (TBBPA) in the environment is raising questions about its potential ecological and human health impacts. TBBPA is microbially transformed under anaerobic conditions to bisphenol A (BPA). However, little is known about which taxa degrade TBBPA and the adaptation of microbial communities exposed to TBBPA. The objectives of this study were to characterize the effect of TBBPA on microbial community structure during the start-up phase of a bench-scale anaerobic sludge reactor, and identify taxa that may be associated with TBBPA degradation. TBBPA degradation was monitored using LC/MS-MS, and the microbial community was characterized using Ion Torrent sequencing and qPCR. TBBPA was nearly completely transformed to BPA via reductive debromination in 55 days. Anaerobic reactor performance was not negatively affected by the presence of TBBPA and the bulk of the microbial community did not experience significant shifts. Several taxa showed a positive response to TBBPA, suggesting they may be associated with TBBPA degradation. Some of these taxa had been previously identified as dehalogenating bacteria including Dehalococcoides, Desulfovibrio, Propionibacterium, and Methylosinus species, but most had not previously been identified as having dehalogenating capacities. This study is the first to provide in-depth information on the microbial dynamics of anaerobic microbial communities exposed to TBBPA.
Collapse
Affiliation(s)
- Emilie Lefevre
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, United States of America
| | - Ellen Cooper
- Nicholas School of the Environment, Duke University, Durham, NC, United States of America
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, United States of America
| | - Claudia K. Gunsch
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, United States of America
| |
Collapse
|
50
|
TBBPA chronic exposure produces sex-specific neurobehavioral and social interaction changes in adult zebrafish. Neurotoxicol Teratol 2016; 56:9-15. [DOI: 10.1016/j.ntt.2016.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 11/18/2022]
|