1
|
Zhang Z, Sheng N, Qu Y, Xue Z, Zhao F, Wu B, Lv C, Dong F, Wang J, Song H, Sun Q, Zhang M, Long F, Li Y, Ji S, Li Z, Zhang X, Fu H, Li K, Cai J, Zhu Y, Cao Z, Tong S, Lv Y, Dai J, Pan Y, Shi X. Dietary Diversity Modified the Association of Per- and Polyfluoroalkyl Substances with Accelerated Biological Aging: Evidence from the China National Human Biomonitoring Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7877-7889. [PMID: 40238466 DOI: 10.1021/acs.est.4c13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) can impact various systems in the human body. However, their influence on biological aging remains unclear. This study aims to investigate the association between PFASs exposure and biological aging based on data from 9756 participants in the China National Human Biomonitoring Program and assesses the potential moderating effect of Dietary Diversity Score (DDS). Biological age indexes were calculated using the Klemera-Doubal method (KDM) and Mahalanobis distance (MD). The DDS was calculated based on the consumption frequency of 13 food groups over the past 12 months. Most PFASs showed positive associations with KDM-age acceleration (KDM-AA), while no statistically significant associations were observed with MD. The dose-response relationships of PFASs with KDM-AA and MD were steeper at low concentrations of PFASs, and then the slope appeared flat at higher concentrations. The weighted quantile sum revealed positive mixture effects of PFASs on biological aging. PFHpS and PFNA were both major contributors to KDM-AA and MD. DDS appeared to potentially modify the association between PFASs and biological aging. Our findings demonstrate that PFASs were significantly associated with accelerated biological aging, whereas higher DDS mitigates these adverse effects, highlighting the importance of this preventive measure.
Collapse
Affiliation(s)
- Zheng Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Nan Sheng
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Pollutants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhanhong Xue
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Bing Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunxian Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fengfeng Dong
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Pollutants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinghua Wang
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Pollutants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qi Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Miao Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fanye Long
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hui Fu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Kexin Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiayi Cai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shilu Tong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- School of Public Health and Social Work, Queensland University of Technology, Brisbane 4001, Australia
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jiayin Dai
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Pollutants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yitao Pan
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Pollutants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
2
|
Soltanighias T, Umar A, Abdullahi M, Abdallah MAE, Orsini L. Combined toxicity of perfluoroalkyl substances and microplastics on the sentinel species Daphnia magna: Implications for freshwater ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125133. [PMID: 39419463 DOI: 10.1016/j.envpol.2024.125133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Persistent chemicals from industrial processes, particularly perfluoroalkyl substances (PFAS), have become pervasive in the environment due to their persistence, long half-lives, and bioaccumulative properties. Used globally for their thermal resistance and repellence to water and oil, PFAS have led to widespread environmental contamination. These compounds pose significant health risks with exposure through food, water, and dermal contact. Aquatic wildlife is particularly vulnerable as water bodies act as major transport and transformation mediums for PFAS. Their co-occurrence with microplastics may intensify the impact on aquatic species by influencing PFAS sorption and transport. Despite progress in understanding the occurrence and fate of PFAS and microplastics in aquatic ecosystems, the toxicity of PFAS mixtures and their co-occurrence with other high-concern compounds remains poorly understood, especially over organisms' life cycles. Our study investigates the chronic toxicity of PFAS and microplastics on the sentinel species Daphnia, a species central to aquatic foodwebs and an ecotoxicology model. We examined the effects of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and polyethylene terephthalate microplastics (PET) both individually and in mixtures on Daphnia ecological endpoints. Unlike conventional studies, we used two Daphnia genotypes with distinct histories of chemical exposure. This approach revealed that PFAS and microplastics cause developmental failures, delayed sexual maturity and reduced somatic growth, with historical exposure to environmental pollution reducing tolerance to these persistent chemicals due to cumulative fitness costs. We also observed that the combined effect of the persistent chemicals analysed was 59% additive and 41% synergistic, whereas no antagonistic interactions were observed. The genotype-specific responses observed highlight the complex interplay between genetic background and pollutant exposure, emphasizing the importance of incorporating multiple genotypes in environmental risk assessments to more accurately predict the ecological impact of chemical pollutants.
Collapse
Affiliation(s)
- Tayebeh Soltanighias
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK; College of Engineering and Physical Sciences Department of Civil Engineering, Aston University, Birmingham, B4 7ET, UK
| | - Abubakar Umar
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK; School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Muhammad Abdullahi
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Luisa Orsini
- School of Biosciences and Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Environmental Research and Justice (CERJ), University of Birmingham, Birmingham, B15 2TT, UK; The Alan Turing Institute, British Library, 96 Euston Road, London, NW1 2DB, UK; Robust Nature Excellence Initiative, Max-von-Laue-Straße 13, 60438 Frankfurt Am Main, Germany.
| |
Collapse
|
3
|
Manuguerra S, Carli F, Scoditti E, Santulli A, Gastaldelli A, Messina CM. Effects of Mixtures of Emerging Pollutants and Drugs on Modulation of Biomarkers Related to Toxicity, Oxidative Stress, and Cancer. Metabolites 2024; 14:559. [PMID: 39452940 PMCID: PMC11509268 DOI: 10.3390/metabo14100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Over time, the scientific community has developed a growing interest in the effects of mixtures of different compounds, for which there is currently no established evidence or knowledge, in relation to certain categories of xenobiotics. It is well known that exposure to pollutants causes oxidative stress, resulting in the overproduction of reactive oxygen species (ROS), which can affect signaling pathways that regulate the cell cycle, apoptosis, energy balance, and cellular metabolism. The aim of this study was to investigate the effects of sub-lethal concentrations of mixtures of emerging pollutants and pharmaceuticals on the modulation of biomarkers related to toxicity, oxidative stress, and cancer. Methods: In this study, the hepatoma cell line HepG2 was exposed to increasing concentrations of polybrominated diphenyl ether 47 (BDE-47), cadmium chloride (CdCl2), and carbamazepine (CBZ), both individually and in mixtures, for 72 h to assess cytotoxicity using the MTT assay. The subsequent step, following the identification of the sub-lethal concentration, was to investigate the effects of exposure at the gene expression level, through the evaluation of molecular markers related to cell cycle and apoptosis (p53), oxidative stress (NRF2), conjugation and detoxification of xenobiotics (CYP2C9 and GST), DNA damage (RAD51 and γH2AFX), and SUMOylation processes (SUMO1 and UBC9) in order to identify any potential alterations in pathways that are normally activated at the cellular level. Results: The results showed that contaminants tend to affect the enzymatic detoxification and antioxidant system, influencing DNA repair defense mechanisms involved in resistance to oxidative stress. The combined effect of the compounds at sub-lethal doses results in a greater activation of these pathways compared to exposure to each compound alone, thereby exacerbating their cytotoxicity. Conclusions: The biomarkers analyzed could contribute to the definition of early warning markers useful for environmental monitoring, while simultaneously providing insight into the toxicity and hazard levels of these substances in the environment and associated health risks.
Collapse
Affiliation(s)
- Simona Manuguerra
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (S.M.); (A.S.)
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, 73100 Lecce, Italy;
| | - Andrea Santulli
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (S.M.); (A.S.)
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Concetta Maria Messina
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (S.M.); (A.S.)
| |
Collapse
|
4
|
Obiako PC, Ayisire SO, Sayes CM. Impact of perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA) on oxidative stress and metabolic biomarkers in human neuronal cells (SH-SY5Y). ENVIRONMENT INTERNATIONAL 2024; 190:108864. [PMID: 38986427 DOI: 10.1016/j.envint.2024.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/04/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Perfluorinated alkyl substances (PFAS) are pervasive environmental contaminants that have attracted considerable attention due to their widespread utilization, resilient characteristics, adverse health implications, and regulatory scrutiny. Despite documented toxicity in living organisms, the precise molecular mechanisms governing the induced adverse effects remain unclear. This study aims to elucidate mechanisms of toxic action by collecting empirical data sets along oxidative stress and metabolic disruption pathways. We investigated the impact of long-chain PFAS (perfluorooctanoic acid (PFOA)) and its short-chain analog (perfluorobutanoic acid (PFBA)) on human neuronal cells (SH-SY5Y). The functionalities of enzymes associated with oxidative stress (catalase and glutathione reductase) and cellular metabolism (lactate dehydrogenase and pyruvate dehydrogenase) were also characterized. Our results reveal that a 24-hour exposure to PFOA and PFBA generated significant levels of reactive oxygen species. Correspondingly, there was a notable decline in catalase and glutathione reductase activities, with PFBA demonstrating a more pronounced effect. High concentrations of PFOA and PFBA reduced metabolic activity. Lactate dehydrogenase activity was only impacted by a high concentration of PFBA, while pyruvate dehydrogenase activity was decreased with PFBA exposure and increased with PFOA exposure. The findings from this study contribute to the knowledge of PFAS and cell interactions and reveal the potential underlying mechanisms of PFAS-induced toxicity.
Collapse
Affiliation(s)
- Precious C Obiako
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Solomon O Ayisire
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, United States.
| |
Collapse
|
5
|
Coe ST, Chakraborty S, Faheem M, Kupradit K, Bhandari RK. A second hit by PFOS exposure exacerbated developmental defects in medaka embryos with a history of ancestral BPA exposure. CHEMOSPHERE 2024; 362:142796. [PMID: 38972462 PMCID: PMC11309894 DOI: 10.1016/j.chemosphere.2024.142796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Bisphenol-A (BPA), a known endocrine-disrupting chemical (EDC) in plastics and resins, has been found to induce heritable health effects in fish and mammals, affecting directly exposed individuals and indirectly their progenies in subsequent generations. It is not clearly understood if subsequent generations of the BPA-exposed ancestors have increased sensitivity to the second hit by the chemicals of emerging concern. To understand this, the present study examined the effects of developmental exposure to perfluorooctanesulfonic acid (PFOS), which has been a global contaminant recently, in embryos whose ancestors were exposed to BPA. Two lineages of medaka (Oryzias latipes) were established: 1) the BPA lineage in which the F0 generation was exposed to 10 μg/L BPA during early development and 2) the control lineage with no BPA exposure in the F0 generation. These lineages were raised up to the F4 generation without further exposure. The embryos of the F4 generation were exposed to PFOS at 0, 0.002, 0.02, 0.2, 2, and 20 mg/L concentrations. Early developmental defects resulting in mortality, delayed hatching, teratogenic phenotypes, and altered gene expression were examined in both lineages. The expression level of genes encoding DNA methyltransferases and genes responsible for oxidative stress defense were determined. Following environmentally relevant PFOS exposure, organisms with a history of BPA exposure displayed significant changes in all categories of developmental defects mentioned above, including increased expression of genes related to oxidative stress, compared to individuals without BPA exposure. The present study provides initial evidence that a history of ancestral BPA exposure can alter sensitivity to developmental disorders following the second hit by PFOS exposure. The variable of ancestral BPA exposure could be considered in mechanistic, medical, and regulatory toxicology, and can also be applied to holistic environmental equity research.
Collapse
Affiliation(s)
- Seraiah T Coe
- Department of Biology, University of North Carolina at Greensboro, NC, 27412, USA
| | - Sourav Chakraborty
- Department of Biology, University of North Carolina at Greensboro, NC, 27412, USA; Division of Biological Sciences, University of Missouri Columbia, MO, 65211, USA
| | - Mehwish Faheem
- Division of Biological Sciences, University of Missouri Columbia, MO, 65211, USA
| | - Karabuning Kupradit
- Department of Biology, University of North Carolina at Greensboro, NC, 27412, USA
| | - Ramji K Bhandari
- Division of Biological Sciences, University of Missouri Columbia, MO, 65211, USA.
| |
Collapse
|
6
|
Singh S, Gautam K, Mir SS, Anbumani S. Genotoxicity and cytotoxicity assessment of 'forever chemicals' in zebrafish (Danio rerio). MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503788. [PMID: 39054005 DOI: 10.1016/j.mrgentox.2024.503788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) comprise many chemicals with strong carbon-carbon and carbon-fluorine bonds and have extensive industrial applications in manufacturing several consumer products. The solid covalent bonding makes them more persistent in the environment and stays away from all types of degradation, naming them 'forever chemicals.' Zebrafish (Danio rerio) was used to evaluate the genotoxic and cytotoxic effects of legacy PFAS, Perfluorooctane sulfonate (PFOS), and its alternatives, such as Perfluoro-2-methyl-3-oxahexanoic acid ammonium (GenX) and 7H-Perfluoro-3,6-dioxa-4-methyl-octane-1-sulfonic acid (Nafion by-product 2 [NBP2]) upon single and combined exposure at an environmental concentration of 10 µg/L for 48-h. Erythrocyte micronucleus cytome assay (EMNCA) revealed an increased frequency of micronuclei (MN) in fish erythrocytes with a significant increase in NBP2-treated fish. The order of genotoxicity noticed was NBP2 > PFOS > Mixture > GenX in D. rerio. Fish exposed to PFOS and its alternatives in single and combined experiments did not cause any significant difference in nuclear abnormalities. However, PFOS and combined exposure positively inhibit cytokinesis, resulting in an 8.16 and 7.44-fold-change increase of binucleated cells. Besides, statistically, increased levels of reactive oxygen species (ROS) and malondialdehyde (MDA) content indicate oxidative stress in D. rerio. In addition, 'forever chemicals' resulted in cytotoxicity, as evident through changes in nucleus width to the erythrocyte length in NBP2 and mixture exposure groups. The findings revealed that PFAS alternative NBP2 is more toxic than PFOS in inducing DNA damage and cytotoxicity. In addition, all three tested 'forever chemicals' induced ROS and lipid peroxidation after individual and combined exposure. The present work is the first to concern the genotoxicity and cytotoxicity of 'forever chemicals' in the aquatic vertebrate D. rerio.
Collapse
Affiliation(s)
- Shaloo Singh
- Ecotoxicology Laboratory, REACT Division, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226008, India; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Krishna Gautam
- Ecotoxicology Laboratory, REACT Division, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Snober S Mir
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, REACT Division, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Alamo A, La Vignera S, Mogioì LM, Crafa A, Barbagallo F, Cannarella R, Aversa A, Calogero AE, Condorelli RA. In-Vitro Effects of Perfluorooctanoic Acid on Human Sperm Function: What Are the Clinical Consequences? J Clin Med 2024; 13:2201. [PMID: 38673474 PMCID: PMC11050799 DOI: 10.3390/jcm13082201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Lifestyle and environmental pollution harm male fertility. Perfluoroalkyl substances (PFAS) are bio-accumulates in the environment as well as in several human tissues, and one of the most common PFAS is perfluorooctanoic acid (PFOA). Therefore, this study aimed to evaluate the in vitro effects of PFOA with hydrophobic and waterproofing properties on motility and bio-functional sperm parameters. Methods: To accomplish this, 50 healthy men with normozoospermia and not exposed to high doses of PFAS were enrolled. Their spermatozoa were incubated for 3 h with increasing concentrations of PFOA (0, 0.01, 0.1, and 1 mM) to evaluate its effects. In particular, we evaluated the effects of PFOA on total and progressive sperm motility and, by flow cytometry, on the following bio-functional sperm parameters: degree of chromatin compactness, viability, early and late apoptosis, mitochondrial membrane potential, the degree of lipoperoxidation, and concentrations of mitochondrial superoxide anion. Results: The results showed that PFOA decreased both total and progressive sperm motility, impaired chromatin compactness, and increased sperm lipid peroxidation and mitochondrial superoxide anion levels. Conclusions: This study showed that PFOA alters several sperm parameters and thus it may play a negative role in male fertility.
Collapse
Affiliation(s)
- Angela Alamo
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (A.A.); (L.M.M.); (A.C.); (F.B.); (R.C.); (A.E.C.); (R.A.C.)
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (A.A.); (L.M.M.); (A.C.); (F.B.); (R.C.); (A.E.C.); (R.A.C.)
| | - Laura M. Mogioì
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (A.A.); (L.M.M.); (A.C.); (F.B.); (R.C.); (A.E.C.); (R.A.C.)
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (A.A.); (L.M.M.); (A.C.); (F.B.); (R.C.); (A.E.C.); (R.A.C.)
| | - Federica Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (A.A.); (L.M.M.); (A.C.); (F.B.); (R.C.); (A.E.C.); (R.A.C.)
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (A.A.); (L.M.M.); (A.C.); (F.B.); (R.C.); (A.E.C.); (R.A.C.)
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (A.A.); (L.M.M.); (A.C.); (F.B.); (R.C.); (A.E.C.); (R.A.C.)
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (A.A.); (L.M.M.); (A.C.); (F.B.); (R.C.); (A.E.C.); (R.A.C.)
| |
Collapse
|
8
|
Qin H, Lang Y, Wang Y, Cui W, Niu Y, Luan H, Li M, Zhang H, Li S, Wang C, Liu W. Adipogenic and osteogenic effects of OBS and synergistic action with PFOS via PPARγ-RXRα heterodimers. ENVIRONMENT INTERNATIONAL 2024; 183:108354. [PMID: 38043320 DOI: 10.1016/j.envint.2023.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) is a novel alternative to perfluorooctane sulfonate (PFOS), with environmental health risks largely unknown. The present study aims to unravel the adipogenesis effects and underlying molecular initiating events of OBS, which are crucial for understanding and predicting its adverse outcome. In undifferentiated human mesenchymal stem cells (hMSCs), exposure to 1-100 nM of OBS for 7 days stimulated reactive oxygen species production. In the subsequent multipotent differentiation, hMSCs favored adipogenesis and repressed osteogenesis. The point of departure (PoD) for cellular responses of OBS was 38.85 nM, higher than PFOS (0.39 nM). Notably, OBS/PFOS co-exposure inhibited osteogenesis and synergistically promoted adipogenesis. Consistently, the expression of adipogenic marker genes was up-regulated, while that of osteogenic marker genes was down-regulated. The decreased adiponectin and elevated tumor necrosis factor α (TNFα) secretion were observed in differentiated cells exposed to the mixture of OBS and PFOS. The co-treatment of a peroxisome proliferator-activated receptor γ (PPARγ) antagonist alleviated the adipogenic effects of PFOS and its combination with OBS. Moreover, OBS/PFOS co-exposure induced peroxisome PPARγ activation in reporter gene assays, and increased formation of PPARγ - retinoid X receptor α (RXRα) heterodimers measured by co-immunoprecipitation assays. Molecular docking showed interaction energy of OBS (-20.7 kcal/mol) with intact PPARγ-RXRα complex was lower than that of PFOS (-25.9 kcal/mol). Overall, single OBS exhibited lower potency in inducing adipogenesis but is comparable to PFOS in repressing osteogenesis, whereas OBS/PFOS co-exposure increases interaction with PPARγ-RXRα heterodimers, resulting in the synergistic activation of PPARγ, ultimately enhancing adipogenesis at the expense of osteogenic differentiation. The results indicate the potential health risks of increased obesity and decreased bone density caused by OBS and its co-exposure with PFOS, as well as other perfluorinated alkylated substances mixtures.
Collapse
Affiliation(s)
- Hui Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yueming Lang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yiteng Wang
- Central Hospital of Dalian University of Technology, Sports Medicine Department, Dalian 116021, China
| | - Wei Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuxin Niu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haiyang Luan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Minghan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Han Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Chenxi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
9
|
Chen JC, Baumert BO, Li Y, Li Y, Pan S, Robinson S, Rubbo B, Costello E, He J, Hampson H, Beglarian E, Rock S, Goodrich JA, Eckel SP, Aung MT, McConnell R, Conti DV, Chatzi L. Associations of per- and polyfluoroalkyl substances, polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers with oxidative stress markers: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2023; 239:117308. [PMID: 37813138 PMCID: PMC10841434 DOI: 10.1016/j.envres.2023.117308] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/09/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) are intentionally produced persistent organic pollutants (POPs) that are resistant to environmental degradation. Previous in-vitro and in-vivo studies have shown that POPs can induce oxidative stress, which is linked to neurodegenerative diseases, cardiovascular diseases, and cancer. However, findings in epidemiological studies are inconsistent and an evidence synthesis study is lacking to summarize the existing literature and explore research gaps. OBJECTIVE We evaluated the effects of PFAS, PCBs, OCPs, and PBDEs, on oxidative stress biomarkers in epidemiological studies. METHODS A literature search was conducted in PubMed, Embase, and Cochrane CENTRAL to identify all published studies related to POPs and oxidative stress up to December 7th, 2022. We included human observational studies reporting at least one exposure to POPs and an oxidative stress biomarker of interest. Random-effects meta-analyses on standardized regression coefficients and effect direction plots with one-tailed sign tests were used for quantitative synthesis. RESULTS We identified 33 studies on OCPs, 35 on PCBs, 49 on PFAS, and 12 on PBDEs. Meta-analyses revealed significant positive associations of α-HCH with protein carbonyls (0.035 [0.017, 0.054]) and of 4'4-DDE with malondialdehyde (0.121 [0.056, 0.187]), as well as a significant negative association between 2'4-DDE and total antioxidant capacity (TAC) (-0.042 [-0.079, -0.004]), all β [95%CI]. Sign tests showed a significant positive association between PCBs and malondialdehyde (pone-tailed = 0.03). Additionally, we found significant negative associations of OCPs with acetylcholine esterase (pone-tailed = 0.02) and paraoxonase-1 (pone-tailed = 0.03). However, there were inconsistent associations of OCPs with superoxide dismutase, glutathione peroxidase, and catalase. CONCLUSIONS Higher levels of OCPs were associated with increased levels of oxidative stress through increased pro-oxidant biomarkers involving protein oxidation, DNA damage, and lipid peroxidation, as well as decreased TAC. These findings have the potential to reveal the underlying mechanisms of POPs toxicity.
Collapse
Affiliation(s)
- Jiawen Carmen Chen
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States.
| | - Brittney O Baumert
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Yijie Li
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Yiping Li
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Shudi Pan
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Shante Robinson
- University of Southern California, Los Angeles, CA, United States
| | - Bruna Rubbo
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Elizabeth Costello
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Jie He
- School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Hailey Hampson
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Emily Beglarian
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Sarah Rock
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Max T Aung
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Rob McConnell
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - David V Conti
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Lida Chatzi
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
10
|
Yang YD, Li JX, Lu N, Tian R. Serum albumin mitigated perfluorooctane sulfonate-induced cytotoxicity by affecting the cellular responses. Biophys Chem 2023; 302:107110. [PMID: 37741269 DOI: 10.1016/j.bpc.2023.107110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
During the wide applications of perfluorinated materials such as perfluorooctane sulfonate (PFOS) in commercial and industrial products, the potential toxicity of these engineered compounds has attracted more and more attention. As a typical environmental pollutant, PFOS could preferentially bind to albumin protein in vivo. However, the role of protein-PFOS interactions in the cytotoxicity of PFOS was not stressed enough. Herein, we investigated the interactions of PFOS with human serum albumin (HSA, the most abundant protein in human plasma) using both experimental and theoretical approaches. It was demonstrated that PFOS could mainly bind to the Sudlow site I of HSA to generate HSA-PFOS complex through hydrogen bonds and van der Waals forces. Toxicity assays with endothelial cells illustrated that the binding of HSA could significantly attenuate the intracellular uptake and subcellular distribution of PFOS, thereby inhibiting the formation of reactive oxygen species and toxicity for those HSA-bound PFOS. Similarly, the presence of fetal bovine serum in the cell culture media greatly reduced PFOS-caused cytotoxicity. Conclusively, our study reveals that the binding of albumin protein to PFOS could mitigate its toxicity by the modulation of cellular responses. The formation of protein-complexed contaminants would significantly reduce the bioavailability of these chemicals and subsequently mitigate their environmental toxicology to the human health.
Collapse
Affiliation(s)
- Ya-Di Yang
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jia-Xin Li
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Naihao Lu
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Rong Tian
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
11
|
Ogunsuyi OM, Fasakin PT, Ajibiye OP, Ogunsuyi OI, Adekoya KO. Perfluoroundecanoic acid induces DNA damage, reproductive and pathophysiological dysfunctions via oxidative stress in male Swiss mice. CHEMOSPHERE 2023; 338:139491. [PMID: 37453524 DOI: 10.1016/j.chemosphere.2023.139491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Perfluoroundecanoic acid (PFUnA) is an eleven carbon-chain compound that belongs to the perfluoroalkyl carboxylic acid family. It has been detected in the human blood, effluents, and surface/ground waters, but its toxic effects to the DNA and reproductive system remain unclear. This study was aimed at exploring the toxicity of PFUnA on the hepatic DNA, organ-system and reproductive system in orally treated male Swiss mice. In this present study, administration of PFUnA for 28 days with five doses (0.1, 0.3, 05, 0.7 and 1.0 mg kg-1 b.w./d) in male Swiss mice induced significant hepatic DNA damage which was observed using the alkaline comet assay and equally altered hematological and clinical biochemical parameters. In addition to testicular atrophy, sperm count and sperm motility significantly decreased while sperm abnormalities increased after 35 days exposure. Serum LH and FSH levels were remarkably increased while serum testosterone levels were strikingly reduced. Histopathology revealed the liver, kidney, and testis as potential targets of PFUnA toxicity. Increased activities of superoxide dismutase (SOD) and catalase (CAT), as well as levels of glutathione-s-transferase (GST) and reduced glutathione (GSH), with consistent reduction of glutathione peroxidase (GPx) and reduced glutathione (GSH) in the liver and testis induced oxidative stress. In conclusion, PFUnA exhibited both genotoxicity and reproductive toxicity via oxidative stress induction.
Collapse
Affiliation(s)
- Opeoluwa M Ogunsuyi
- Department of Cell Biology and Genetics, Faculty of Science, University of Lagos, Akoka-Yaba, Lagos, Nigeria.
| | - Peter T Fasakin
- Department of Cell Biology and Genetics, Faculty of Science, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| | - Oluwatobi P Ajibiye
- Department of Cell Biology and Genetics, Faculty of Science, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| | - Olusegun I Ogunsuyi
- Department of Biological Science, College of Basic and Applied Sciences, Mountain Top University, Ibafo, Ogun State, Nigeria
| | - Khalid O Adekoya
- Department of Cell Biology and Genetics, Faculty of Science, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| |
Collapse
|
12
|
Yang YD, Tian R, Lu N. Binding of serum albumin to perfluorooctanoic acid reduced cytotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162738. [PMID: 36906033 DOI: 10.1016/j.scitotenv.2023.162738] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
With the ubiquitous applications of perfluorinated compounds such as perfluorooctanoic acid (PFOA) in industrial and commercial products, the toxicity of these engineered materials in environmental and public health is received growing attention. As a typical organic pollutant, PFOA has been extensively found in wildlife and human bodies, and can preferentially bind to serum albumin in vivo. However, the importance of protein-PFOA interactions on the cytotoxicity of PFOA could not be stressed enough. In this study, we used both experimental and theoretical approaches, to investigate the interactions of PFOA with bovine serum albumin (BSA, the most abundant protein in blood). It was found that PFOA could mainly interact with Sudlow site I of BSA to form BSA-PFOA complex, in which van der Waals forces and hydrogen bonds played dominant roles. Moreover, the strong binding of BSA could greatly alter the cellular uptake and distribution of PFOA in human endothelial cells, and result in the decreases of reactive oxygen species formation and cytotoxicity for these BSA-coated PFOA. Consistently, the addition of fetal bovine serum into cell culture medium also significantly mitigated PFOA-induced cytotoxicity, which was attributed to the extracellular complexation between PFOA and serum proteins. Altogether, our study demonstrates that the binding of serum albumin to PFOA could reduce its toxicity by affecting the cellular responses.
Collapse
Affiliation(s)
- Ya-Di Yang
- College of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang 330022, China
| | - Rong Tian
- College of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang 330022, China
| | - Naihao Lu
- College of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
13
|
Zhou Z, Guo R, Chen B, Wang L, Cao H, Wei C, Hu M, Zhan Y, Li S, Wang Y, Liang Y. Development of a Completely New PFOS Alternative with Lower Surface Tension for Minimizing the Environmental Burden. Chem Res Chin Univ 2023; 39:408-414. [PMID: 37303471 PMCID: PMC10115474 DOI: 10.1007/s40242-023-3030-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 06/13/2023]
Abstract
Improving the technical performance of related industrial products is an efficient strategy to reducing the application quantities and environmental burden for toxic chemicals. A novel polyfluoroalkyl surfactant potassium 1,1,2,2,3,3,4,4-octafluoro-4-(perfluorobutoxy)butane-1-sulfonate(F404) was synthesized by a commercializable route. It had a surface tension(γ) of 18.2 mN/m at the critical micelle concentration(CMC, 1.04 g/L), significantly lower than that of perfluorooctane sulfonate(PFOS, ca. 33.0 mN/m, 0.72 g/L), and exhibited remarkable suppression of chromium-fog at a dose half that of PFOS. The half maximal inhibitory concentration(IC50) values in HepG2 cells and the lethal concentration of 50%(LC50) in zebrafish embryos after 72 hpf indicated a lower toxicity for F404 in comparison to PFOS. In a UV/sulphite system, 89.3% of F404 were decomposed after 3 h, representing a defluorination efficiency of 43%. The cleavage of the ether C-O bond during the decomposition would be expected to form a short chain·C4F9 as the position of the ether C-O in the F404 fluorocarbon chains is C4-O5. The ether unit is introduced in the perfluoroalkyl chain to improve water solubility, biocompatibility and degradation, thereby minimizing the environmental burden. Electronic Supplementary Material Supplementary material is available in the online version of this article at 10.1007/s40242-023-3030-4.
Collapse
Affiliation(s)
- Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Rui Guo
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Cuiyun Wei
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Ming Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Yuhang Zhan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| | - Shutao Li
- Hubei Hengxin Chemical Co., Ltd., Yingcheng, 432400 P. R. China
| | - Yawei Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 P. R. China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056 P. R. China
| |
Collapse
|
14
|
Pacchini S, Piva E, Schumann S, Irato P, Pellegrino D, Santovito G. An Experimental Study on Antioxidant Enzyme Gene Expression in Trematomus newnesi ( Boulenger, 1902) Experimentally Exposed to Perfluoro-Octanoic Acid. Antioxidants (Basel) 2023; 12:352. [PMID: 36829911 PMCID: PMC9951861 DOI: 10.3390/antiox12020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Antarctica is the continent with the lowest local human impact; however, it is susceptible to pollution from external sources. Emerging pollutants such as perfluoroalkyl substances pose an increasing threat to this environment and therefore require more in-depth investigations to understand their environmental fate and biological impacts. The present study focuses on expression analysis at the transcriptional level of genes coding for four antioxidant enzymes (sod1, sod2, gpx1, and gpx4) in the liver and kidney of an Antarctic fish species, Trematomus newnesi (Boulenger, 1902). mRNA levels were also assessed in fish exposed to 1.5 μg/L of perfluoro-octanoic acid for 10 days. The kidney showed a higher level of expression than the liver in wildlife specimens. In the liver, the treatment induced an increase in gene expression for all the considered enzymes, whereas in the kidney, it induced a general decrease. The obtained results advance the scientific community's understanding of how the potential future presence of anthropogenic contaminants in the Southern Ocean can affect the antioxidant system of Antarctic fishes. The presence of pollutants belonging to the perfluoroalkyl substances in the Southern Ocean needs to be continuously monitored in parallel with this type of research.
Collapse
Affiliation(s)
- Sara Pacchini
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Elisabetta Piva
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Sophia Schumann
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Paola Irato
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Daniela Pellegrino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | | |
Collapse
|
15
|
Huang M, Ivantsova E, Konig I, Patel N, English C, Souders CL, Martyniuk CJ. Developmental and mitochondrial toxicity assessment of perfluoroheptanoic acid (PFHpA) in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104037. [PMID: 36526081 DOI: 10.1016/j.etap.2022.104037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The potential toxicity of several perfluoroalkyl and polyfluoroalkyl substances (PFASs) to aquatic species are not well understood. Here, we assessed the sub-lethal toxicity potential of perfluoroheptanoic acid (PFHpA) to developing zebrafish. PFHpA was not acutely toxic to fish up to 50 µM and there was > 96% survival in all treatments. Exposure to 200 µM PFHpA decreased ATP-linked respiration of embryos. There was no evidence for ROS induction in 7-day-old larvae fish exposed to 0.1 µM or 1 µM PFHpA. Twenty-four transcripts related to mitochondrial complexes I through V were measured and atp06, cox4i1, and cyc1 levels were decreased in larval zebrafish in a concentration-dependent manner by PFHpA exposure. Locomotor activity was reduced in fish exposed to 0.1 µM PFHpA based on a visual motor response test. Anxiolytic-type behaviors were not affected by PFHpA. This study contributes to environmental risk assessments for perfluorinated chemicals.
Collapse
Affiliation(s)
- Michelle Huang
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Isaac Konig
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Department of Chemistry, Federal University of Lavras (UFLA), Minas Gerais, Brazil
| | - Neep Patel
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Cole English
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, USA.
| |
Collapse
|
16
|
Goines S, Dick JE. Investigating the cytotoxic redox mechanism of PFOS within Hep G2 by hyperspectral-assisted scanning electrochemical microscopy. Analyst 2022; 147:4356-4364. [PMID: 36043461 PMCID: PMC10308698 DOI: 10.1039/d2an00904h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is one of the most lethal per- and poly-fluoroalkyl substances (PFAS). Generally, exposure effects are studied through case-controlled studies, cohort studies, or cell assays. Unfortunately, most studies involving two-dimensional cell cultures require cell lysis or fixation. For in vitro studies, fluorescence microscopy has been useful, but methods to simultaneously discern phototoxic effects during an experiment are limited. Here, we use hepatocarcinoma (Hep G2) cells to examine the redox mechanism of PFOS cytotoxicity in vitro, while using hyperspectral-assisted scanning electrochemical microscopy (SECM) to differentiate between PFOS and redox mediator induced stress. Specifically, we correlate an increase in the electrochemical response of ferrocenemethanol oxidation with an increase in intracellular reactive oxygen species. Corresponding hyperspectral images of redox indicative-fluorophores implicate superoxide in the cytotoxic redox mechanism.
Collapse
Affiliation(s)
- Sondrica Goines
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
17
|
Wang P, Liu D, Yan S, Cui J, Liang Y, Ren S. Adverse Effects of Perfluorooctane Sulfonate on the Liver and Relevant Mechanisms. TOXICS 2022; 10:toxics10050265. [PMID: 35622678 PMCID: PMC9144769 DOI: 10.3390/toxics10050265] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent, widely present organic pollutant. PFOS can enter the human body through drinking water, ingestion of food, contact with utensils containing PFOS, and occupational exposure to PFOS, and can have adverse effects on human health. Increasing research shows that the liver is the major target of PFOS, and that PFOS can damage liver tissue and disrupt its function; however, the exact mechanisms remain unclear. In this study, we reviewed the adverse effects of PFOS on liver tissue and cells, as well as on liver function, to provide a reference for subsequent studies related to the toxicity of PFOS and liver injury caused by PFOS.
Collapse
|
18
|
Marques E, Pfohl M, Wei W, Tarantola G, Ford L, Amaeze O, Alesio J, Ryu S, Jia X, Zhu H, Bothun GD, Slitt A. Replacement per- and polyfluoroalkyl substances (PFAS) are potent modulators of lipogenic and drug metabolizing gene expression signatures in primary human hepatocytes. Toxicol Appl Pharmacol 2022; 442:115991. [PMID: 35337807 PMCID: PMC9036616 DOI: 10.1016/j.taap.2022.115991] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 01/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of environmental toxicants, and some, such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), have been associated with hepatic steatosis in rodents and monkeys. It was hypothesized that perfluorosulfonic acids (C4, 6, 8), perfluorocarboxylic acids (C4-14), perfluoro(2-methyl-3-oxahexanoic) acid (HFPO-DA), 1H, 1H, 2H, 2H-perfluorooctanesulfonic acid (6:2 FTS) along with 3 PFOS precursors could induce expression of lipid metabolism genes and lipid deposition in human hepatocytes. Five-donor pooled cryopreserved human hepatocytes were cultured and treated with 0.1% DMSO vehicle or various PFAS (0.25 to 25 μM) in media. After a 48-h treatment, mRNA transcripts related to lipid transport, metabolism, and synthesis were measured using a Quantigene Plex assay. After 72-h treatments, hepatocytes were stained with Nile Red dye to quantify intracellular lipids. Overall, PFAS were transcriptionally active at 25 μM. In this model, lipid accumulation was not observed with C8-C12 treatments. Shorter chain PFAS (C4-C5), 6:2 FTS, and PFOS precursor, metFOSA, induced significant liver lipid accumulation, and gene activation at lower concentrations than legacy PFAS. In summary short chain PFAS and other alternative PFAS were more potent gene inducers, and potential health effects of replacement PFAS should be critically evaluated in humans.
Collapse
Affiliation(s)
- Emily Marques
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Marisa Pfohl
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Wei Wei
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Giuseppe Tarantola
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Lucie Ford
- Department of Biology and Biomedical Sciences, Salve Regina University, Newport, RI 02840, USA
| | - Ogochukwu Amaeze
- Department of Clinical Pharmacy & Biopharmacy, Faculty of Pharmacy, University of Lagos, Nigeria
| | - Jessica Alesio
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Sangwoo Ryu
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Xuelian Jia
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ, USA
| | - Hao Zhu
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ, USA; Department of Chemistry, Rutgers University, Camden, NJ, USA
| | - Geoffrey D Bothun
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Angela Slitt
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
19
|
L-Carnitine reduces reactive oxygen species/endoplasmic reticulum stress and maintains mitochondrial function during autophagy-mediated cell apoptosis in perfluorooctanesulfonate-treated renal tubular cells. Sci Rep 2022; 12:4673. [PMID: 35304586 PMCID: PMC8933466 DOI: 10.1038/s41598-022-08771-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 03/07/2022] [Indexed: 12/31/2022] Open
Abstract
We previously reported that perfluorooctanesulfonate (PFOS) causes autophagy-induced apoptosis in renal tubular cells (RTCs) through a mechanism dependent on reactive oxygen species (ROS)/extracellular signal-regulated kinase. This study extended our findings and determined the therapeutic potency of l-Carnitine in PFOS-treated RTCs. l-Carnitine (10 mM) reversed the effects of PFOS (100 µM) on autophagy induction and impaired autophagy flux. Furthermore, it downregulated the protein level of p47Phox, which is partly related to PFOS-induced increased cytosolic ROS in RTCs. Moreover, l-Carnitine reduced ROS production in mitochondria and restored PFOS-impeded mitochondrial function, leading to sustained normal adenosine triphosphate synthesis and oxygen consumption and reduced proton leakage in a Seahorse XF stress test. The increased inositol-requiring enzyme 1α expression by PFOS, which indicated endoplasmic reticulum (ER) stress activation, was associated with PFOS-mediated autophagy activation that could be attenuated through 4-phenylbutyrate (5 mM, an ER stress inhibitor) and l-Carnitine pretreatment. Therefore, by reducing the level of IRE1α, l-Carnitine reduced the levels of Beclin and LC3BII, consequently reducing the level of apoptotic biomarkers including Bax and cleaving PARP and caspase 3. Collectively, these results indicate that through the elimination of oxidative stress, extracellular signal–regulated kinase activation, and ER stress, l-Carnitine reduced cell autophagy/apoptosis and concomitantly increased cell viability in RTCs. This study clarified the potential mechanism of PFOS-mediated RTC apoptosis and provided a new strategy for using l-Carnitine to prevent and treat PFOS-induced RTC apoptosis.
Collapse
|
20
|
PFAS Molecules: A Major Concern for the Human Health and the Environment. TOXICS 2022; 10:toxics10020044. [PMID: 35202231 PMCID: PMC8878656 DOI: 10.3390/toxics10020044] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of over 4700 heterogeneous compounds with amphipathic properties and exceptional stability to chemical and thermal degradation. The unique properties of PFAS compounds has been exploited for almost 60 years and has largely contributed to their wide applicability over a vast range of industrial, professional and non-professional uses. However, increasing evidence indicate that these compounds represent also a serious concern for both wildlife and human health as a result of their ubiquitous distribution, their extreme persistence and their bioaccumulative potential. In light of the adverse effects that have been already documented in biota and human populations or that might occur in absence of prompt interventions, the competent authorities in matter of health and environment protection, the industries as well as scientists are cooperating to identify the most appropriate regulatory measures, substitution plans and remediation technologies to mitigate PFAS impacts. In this review, starting from PFAS chemistry, uses and environmental fate, we summarize the current knowledge on PFAS occurrence in different environmental media and their effects on living organisms, with a particular emphasis on humans. Also, we describe present and provisional legislative measures in the European Union framework strategy to regulate PFAS manufacture, import and use as well as some of the most promising treatment technologies designed to remediate PFAS contamination in different environmental compartments.
Collapse
|
21
|
Ojo AF, Peng C, Ng JC. Combined effects of mixed per- and polyfluoroalkyl substances on the Nrf2-ARE pathway in ARE reporter-HepG2 cells. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126827. [PMID: 34388917 DOI: 10.1016/j.jhazmat.2021.126827] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Although the Nrf2-ARE pathway plays a critical role in cellular protection against toxicity and oxidative stress from environmental chemical stressors, the association between exposure to per- and polyfluoroalkyl substances (PFAS) mixtures and the changes of Nrf2-ARE pathway remains largely unexplored. This study evaluated the potential of PFAS to induce the Nrf2-ARE pathway as individual compounds and as binary, ternary, and multicomponent mixtures in the ARE reporter-HepG2 cells and compared the mixture toxicity data to the predictions by concentration addition (CA) model. The toxicological interactions between PFAS mixture components were also determined by the model deviation ratio (MDR) between the CA predicted and mixture toxicity values. The induction of the Nrf2-ARE pathway was quantified using the luciferase system, and the endpoint assessed was the concentration that induced an induction ratio (IR) of 1.5 (ECIR1.5). The results showed that exposures to both individual and mixed PFAS induced the Nrf2-ARE pathway in ARE reporter-HepG2 cells. Based on the MDRs, the combinations with PFOS showed synergistic interactive effects, while the combinations with PFOA showed additive effects. These results indicate that the CA model underestimated the mixture toxicity of PFAS with PFOS co-exposures and may have health risk assessment implications.
Collapse
Affiliation(s)
- Atinuke F Ojo
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Cheng Peng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Jack C Ng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
22
|
Xu D, Li L, Tang L, Guo M, Yang J. Perfluorooctane sulfonate induces heart toxicity involving cardiac apoptosis and inflammation in rats. Exp Ther Med 2021; 23:14. [PMID: 34815766 PMCID: PMC8593915 DOI: 10.3892/etm.2021.10936] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent pollutant that exerts toxicity and induces cardiogenesis in humans and animals. Yet, the effect of PFOS exposure on cardiac toxicity in adult rats has, to our knowledge, not been reported and the mechanism still remains unknown. The present study aimed to investigate the toxicity of PFOS on rat hearts and any associated mechanisms. Rats were exposed to 0 (control), 1 and 10 mg/kg PFOS every other day for 14 days. Body weight and heart weight were recorded. The serum levels of lactic dehydrogenase (LDH), creatine kinase (CK), creatine kinase-isoenzyme-MB (CK-MB) and cardiac troponin-T (cTn-T) in heart tissues were measured using biochemical assays. TUNEL staining and western blotting were applied to analyze levels of apoptosis in rat hearts. Pathological assessment and immunohistochemistry analysis of heart tissues were used to evaluate the levels of PFOS-induced cardiotoxicity and inflammatory infiltration. PFOS exposure at the dosage of 10 mg/kg significantly increased the percentage of heart to body weight; however, it did not alter the body weight. At 10 mg/kg, PFOS significantly increased expression levels of myocardial injury markers, such as cTn-T, LDH, CK and CK-MB, while 1 mg/kg PFOS upregulated the expression level of cTn-T in rats. Notably, cardiac fibrosis and myocardiac hypertrophy appeared in the 10 mg/kg PFOS group. In addition, TUNEL-positive cells were significantly increased by exposure to 10 mg/kg PFOS in rat heart tissues. The protein expressions profiles of p53 and Bax were also significantly upregulated in the 10 mg/kg PFOS group. Inflammatory infiltration, detected by anaylzing expression levels of IL-1β and TNF-α, was significantly raised by 10 mg/kg PFOS exposure. In conclusion, these results demonstrated that 10 mg/kg PFOS-induced cardiac toxicity in rats, which was associated with an increase in apoptosis and the expression of proinflammatory cytokines.
Collapse
Affiliation(s)
- Dongmin Xu
- Department of Pharmacy, Chun'an First People's Hospital, Zhejiang Province People's Hospital Chun'an Branch, Hangzhou, Zhejiang 311700, P.R. China
| | - Li Li
- Department of Pharmacy, Chun'an First People's Hospital, Zhejiang Province People's Hospital Chun'an Branch, Hangzhou, Zhejiang 311700, P.R. China
| | - Leilei Tang
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Ming Guo
- Department of Cardiology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Jie Yang
- Department of Cardiology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang 311200, P.R. China
| |
Collapse
|
23
|
Ojo AF, Xia Q, Peng C, Ng JC. Evaluation of the individual and combined toxicity of perfluoroalkyl substances to human liver cells using biomarkers of oxidative stress. CHEMOSPHERE 2021; 281:130808. [PMID: 34022600 DOI: 10.1016/j.chemosphere.2021.130808] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 05/26/2023]
Abstract
Although human exposure is to mixtures of per- and polyfluoroalkyl substances (PFAS), their combined effects and underlying mechanisms remain largely unknown. In this study, the combined effects of PFAS was investigated by treating human liver cells (HepG2) with various concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorodecanoic acid (PFDA), perfluorononanoic acid (PFNA), and perfluorohexanoic acid (PFHxS) individually or in binary combinations (PFOS + PFOA, PFOS + PFDA, PFOS + PFNA, PFOS + PFHxS, PFOA + PFDA, PFOA + PFNA, and PFOA + PFHxS) for 24 h using an orthogonal design. The individual and binary combination effects of PFAS on the cytotoxicity, intracellular reactive oxygen species (ROS) production, and glutathione (GSH) levels were determined by MTS assay, dichlorofluorescein diacetate assay, and GSH-Glo™ Glutathione assay, respectively. The results showed that exposure to PFOA, PFOS, PFDA, PFNA, and PFHxS individually and in binary combinations caused concentration-dependent cytotoxicity to HepG2 cells. Also, intracellular ROS production was not significantly induced in both the individual and co-treatment groups, indicating that ROS production may not be likely influencing the combined cytotoxicity of PFAS to HepG2 cells. However, the depletion of the intracellular glutathione levels was correlated with cytotoxicity. Moreover, the factorial analysis results showed no significant interactive effects between PFOS + PFOA, PFOS + PFDA, PFOS + PFNA, PFOS + PFHxS, PFOA + PFDA, PFOA + PFNA, and PFOA + PFHxS. Taken together, the results showed that both individual and combined PFAS could induce concentration-dependent cytotoxicity and depletion of GSH levels, but could not induce significant increases in ROS production at the concentration range tested. Overall, these results provided valuable toxicological data on the combined effects of mixed PFAS that may help to better assess their human health risk.
Collapse
Affiliation(s)
- Atinuke F Ojo
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Qing Xia
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Cheng Peng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Jack C Ng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
24
|
Alharthy SA, Hardej D. The role of transcription factor Nrf2 in the toxicity of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in C57BL/6 mouse astrocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103652. [PMID: 33812015 DOI: 10.1016/j.etap.2021.103652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 05/14/2023]
Abstract
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are members of perfluoroalkyl substances (PFAS). This study aimed to determine the protective role of Nrf2 against the toxicity of these agents. Nrf2-/- and wild-type astrocytes were exposed to PFOS (75-600 μM) and PFOA (400-1000 μM) for 24 h. Lactate dehydrogenase (LDH) release was significantly higher in nrf2-/- than in the wild-type astrocytes. Exposure to 600 μM PFOS and 800 μM PFOA showed significant increases in reactive oxygen species, lipid peroxidation, and apoptosis in nrf2-/- astrocytes as compared to wild-type astrocytes. The GSH/GSSG ratio was significantly decreased in nrf2-/- astrocytes when compared to wild-type astrocytes. Additionally, PFOS and PFOS caused dramatic ultrastructural alterations to the mitochondria. BHT pretreatment in wild-type cells decreased ROS production with exposure to both agents. Results of the present study conclude that PFOS and PFOA are cytotoxic to astrocytes and that nrf2 -/- cells are more sensitive to toxicity by these agents.
Collapse
Affiliation(s)
- Saif A Alharthy
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Diane Hardej
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA.
| |
Collapse
|
25
|
Osorio-Yáñez C, Sanchez-Guerra M, Cardenas A, Lin PID, Hauser R, Gold DR, Kleinman KP, Hivert MF, Fleisch AF, Calafat AM, Webster TF, Horton ES, Oken E. Per- and polyfluoroalkyl substances and calcifications of the coronary and aortic arteries in adults with prediabetes: Results from the diabetes prevention program outcomes study. ENVIRONMENT INTERNATIONAL 2021; 151:106446. [PMID: 33631604 PMCID: PMC8721596 DOI: 10.1016/j.envint.2021.106446] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are endocrine disrupting chemicals that have been associated with cardiovascular risk factors including elevated body weight and hypercholesterolemia. Therefore, PFAS may contribute to the development of atherosclerosis and cardiovascular disease (CVD). However, no previous study has evaluated associations between PFAS exposure and arterial calcification. METHODS AND RESULTS This study used data from 666 prediabetic adults enrolled in the Diabetes Prevention Program trial who had six PFAS quantified in plasma at baseline and two years after randomization, as well as measurements of coronary artery calcium (CAC) and ascending (AsAC) and descending (DAC) thoracic aortic calcification 13-14 years after baseline. We performed multinomial regression to test associations between PFAS and CAC categorized according to Agatston score [low (<10), moderate (11-400) and severe (>400)]. We used logistic regression to assess associations between PFAS and presence of AsAC and DAC. We adjusted models for baseline sex, age, BMI, race/ethnicity, cigarette smoking, education, treatment assignment (placebo or lifestyle intervention), and statin use. PFAS concentrations were similar to national means; 53.9% of participants had CAC > 11, 7.7% had AsAC, and 42.6% had DAC. Each doubling of the mean sum of plasma concentrations of linear and branched isomers of perfluorooctane sulfonic acid (PFOS) was associated with 1.49-fold greater odds (95% CI: 1.01, 2.21) of severe versus low CAC. This association was driven mainly by the linear (n-PFOS) isomer [1.54 (95% CI: 1.05, 2.25) greater odds of severe versus low CAC]. Each doubling of mean plasma N-ethyl-perfluorooctane sulfonamido acetic acid concentration was associated with greater odds of CAC in a dose-dependent manner [OR = 1.26 (95% CI:1.08, 1.47) for moderate CAC and OR = 1.37 (95% CI:1.07, 1.74) for severe CAC, compared to low CAC)]. Mean plasma PFOS and n-PFOS were also associated with greater odds of AsAC [OR = 1.67 (95% CI:1.10, 2.54) and OR = 1.70 (95% CI:1.13, 2.56), respectively], but not DAC. Other PFAS were not associated with outcomes. CONCLUSIONS Prediabetic adults with higher plasma concentrations of select PFAS had higher risk of coronary and thoracic aorta calcification. PFAS exposure may be a risk factor for adverse cardiovascular health among high-risk populations.
Collapse
Affiliation(s)
- Citlalli Osorio-Yáñez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico.
| | - Marco Sanchez-Guerra
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico.
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Pi-I D Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ken P Kleinman
- Department of Biostatistics, School of Public Health and Human Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Abby F Fleisch
- Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME, USA; Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Edward S Horton
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| |
Collapse
|
26
|
ROS-Triggered Autophagy Is Involved in PFOS-Induced Apoptosis of Human Embryo Liver L-02 Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6625952. [PMID: 33880372 PMCID: PMC8046535 DOI: 10.1155/2021/6625952] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 01/09/2023]
Abstract
The liver is the primary target organ for perfluorooctane sulphonate (PFOS), a recently discovered persistent organic pollutant. However, the mechanisms mediating hepatotoxicity remain unclear. Herein, we explored the relationship between reactive oxygen species (ROS) and autophagy and apoptosis induced by PFOS in L-02 cells, which are incubated with different concentrations of PFOS (0, 50, 100, 150, 200, or 250 μmol/L) for 24 or 48 hrs at 37°C. The results indicated that PFOS exposure decreased cell activities, enhanced ROS levels in a concentration-dependent manner, decreased mitochondrial membrane potential (MMP), and induced autophagy and apoptosis. Compared with the control, 200 μmol/L PFOS increased ROS levels; enhanced the expression of Bax, cleaved-caspase-3, and LC3-II; induced autophagy; decreased MMP; and lowered Bcl-2, p62, and Bcl-2/Bax ratio. The antioxidant N-acetyl cysteine (NAC) protected MMP against PFOS-induced changes and diminished apoptosis and autophagy. Compared with 200 μmol/L PFOS treatment, NAC pretreatment reversed the increase in ROS, Bax, and cleaved-caspase-3 protein caused by PFOS, lowered the apoptosis rate increased by PFOS, and increased the levels of MMP and Bcl-2/Bax ratio decreased by PFOS. The autophagy inhibitor 3-methyladenine and chloroquine decreased apoptosis and cleaved-caspase-3 protein level and increased the Bcl-2/Bax ratio. In summary, our results suggest that ROS-triggered autophagy is involved in PFOS-induced apoptosis in L-02 cells.
Collapse
|
27
|
Goodrum PE, Anderson JK, Luz AL, Ansell GK. Application of a Framework for Grouping and Mixtures Toxicity Assessment of PFAS: A Closer Examination of Dose-Additivity Approaches. Toxicol Sci 2021; 179:262-278. [PMID: 32735321 PMCID: PMC7846094 DOI: 10.1093/toxsci/kfaa123] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Environmental occurrence and biomonitoring data for per- and polyfluoroalkyl substances (PFAS) demonstrate that humans are exposed to mixtures of PFAS. This article presents a new and systematic analysis of available PFAS toxicity study data using a tiered mixtures risk assessment framework consistent with United States and international mixtures guidance. The lines of evidence presented herein include a critique of whole mixture toxicity studies and analysis of dose-response models based on data from subchronic oral toxicity studies in rats. Based on available data to-date, concentration addition and relative potency factor methods are found to be inappropriate due to differences among sensitive effects and target organ potencies and noncongruent dose-response curves for the same effect endpoints from studies using the same species and protocols. Perfluorooctanoic acid and perfluorooctane sulfonic acid lack a single mode of action or molecular initiating event and our evaluation herein shows they also have noncongruent dose-response curves. Dose-response curves for long-chain perfluoroalkyl sulfonic acids (PFSAs) also significantly differ in shapes of the curves from short-chain PFSAs and perfluoroalkyl carboxylic acids evaluated, and additional differences are apparent when curves are evaluated based on internal or administered dose. Following well-established guidance, the hazard index method applied to perfluoroalkyl carboxylic acids and PFSAs grouped separately is the most appropriate approach for conducting a screening level risk assessment for nonpolymeric PFAS mixtures, given the current state-of-the science. A clear presentation of assumptions, uncertainties, and data gaps is needed before dose-additivity methods, including hazard index , are used to support risk management decisions. Adverse outcome pathway(s) and mode(s) of action information for perfluorooctanoic acid and perfluorooctane sulfonic acid and for other nonpolymer PFAS are key data gaps precluding more robust mixtures methods. These findings can guide the prioritization of future studies on single chemical and whole mixture toxicity studies.
Collapse
|
28
|
Perfluorooctane sulfonate induces autophagy-associated apoptosis through oxidative stress and the activation of extracellular signal-regulated kinases in renal tubular cells. PLoS One 2021; 16:e0245442. [PMID: 33471797 PMCID: PMC7817024 DOI: 10.1371/journal.pone.0245442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/31/2020] [Indexed: 01/09/2023] Open
Abstract
Perfluorooctane sulfonate (PFOS) is among the most abundant organic pollutants and is widely distributed in the environment, wildlife, and humans. Its toxic effects and biological hazards are associated with its long elimination half-life in humans. However, how it affects renal tubular cells (RTCs) remains unclear. In this study, PFOS was observed to mediate the increase in reactive oxygen species (ROS) generation, followed by the activation of the extracellular-signal-regulated kinase 1/2 (ERK1/2) pathway, which induced autophagy in RTCs. Although PFOS treatment induced autophagy after 6 h, prolonged treatment (24 h) reduced the autophagic flux by increasing lysosomal membrane permeability (LMP), leading to increased p62 protein accumulation and subsequent apoptosis. The increase in LMP was visualized through increased green fluorescence with acridine orange staining, and this was attenuated by 3-methyladenine, an autophagy inhibitor. N-acetyl cysteine and an inhibitor of the mitogen-activated protein kinase kinases (U0126) attenuated autophagy and apoptosis. Taken together, these results indicate that ROS activation and ROS-mediated phosphorylated ERK1/2 activation are essential to activate autophagy, resulting in the apoptosis of PFOS-treated RTCs. Our findings provide insight into the mechanism of PFOS-mediated renal toxicity.
Collapse
|
29
|
Yang Y, Meng K, Chen M, Xie S, Chen D. Fluorotelomer Alcohols' Toxicology Correlates with Oxidative Stress and Metabolism. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 256:71-101. [PMID: 33866421 DOI: 10.1007/398_2020_57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorotelomer alcohols (FTOHs) are widely used as industrial raw materials due to their unique hydrophobic and oleophobic properties. However, because of accidental exposure to products containing FTOHs or with the widespread use of FTOHs, they tend to contaminate the water and the soil. There are reports demonstrating that FTOHs can cause various harmful effects in animals and humans (for example, neurotoxicity, hepatotoxicity, nephrotoxicity, immunotoxicity, endocrine-disrupting activity, and developmental and reproductive toxicities). Oxidative stress is related to a variety of toxic effects induced by FTOHs. To date, few reviews have addressed the relationship between the toxicity of FTOHs and oxidative stress. This article summarises research demonstrating that the toxicity induced by FTOHs correlates with oxidative stress and metabolism. Furthermore, during the metabolic process of FTOHs, a number of cytochrome P450 enzymes (CYP450) are involved and many metabolites are produced by these enzymes, which can induce oxidative stress. This is also reviewed.
Collapse
Affiliation(s)
- Yujuan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Kuiyu Meng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Min Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China.
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
30
|
Bonato M, Corrà F, Bellio M, Guidolin L, Tallandini L, Irato P, Santovito G. PFAS Environmental Pollution and Antioxidant Responses: An Overview of the Impact on Human Field. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:8020. [PMID: 33143342 PMCID: PMC7663035 DOI: 10.3390/ijerph17218020] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/09/2023]
Abstract
Due to their unique properties, perfluorinated substances (PFAS) are widely used in multiple industrial and commercial applications, but they are toxic for animals, humans included. This review presents some available data on the PFAS environmental distribution in the world, and in particular in Europe and in the Veneto region of Italy, where it has become a serious problem for human health. The consumption of contaminated food and drinking water is considered one of the major source of exposure for humans. Worldwide epidemiological studies report the negative effects that PFAS have on human health, due to environmental pollution, including infertility, steroid hormone perturbation, thyroid, liver and kidney disorders, and metabolic disfunctions. In vitro and in vivo researches correlated PFAS exposure to oxidative stress effects (in mammals as well as in other vertebrates of human interest), produced by a PFAS-induced increase of reactive oxygen species formation. The cellular antioxidant defense system is activated by PFAS, but it is only partially able to avoid the oxidative damage to biomolecules.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Irato
- Department of Biology, University of Padova, 35131 Padova, Italy; (M.B.); (F.C.); (M.B.); (L.G.); (L.T.)
| | - Gianfranco Santovito
- Department of Biology, University of Padova, 35131 Padova, Italy; (M.B.); (F.C.); (M.B.); (L.G.); (L.T.)
| |
Collapse
|
31
|
Gao Y, Guo X, Wang S, Chen F, Ren X, Xiao H, Wang L. Perfluorooctane sulfonate enhances mRNA expression of PPARγ and ap2 in human mesenchymal stem cells monitored by long-retained intracellular nanosensor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114571. [PMID: 32320904 DOI: 10.1016/j.envpol.2020.114571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctane sulfonate (PFOS) has been widely used as a surface coating for household products. It still exists in living environments despite being restricted, due to its bioaccumulation and long half-life. Studies have shown that PFOS has the ability to induce adipogenic differentiation of human cells. Human mesenchymal stem cells (hMSCs) distributed within the adipose tissue might be a potential target of accumulated PFOS. However, traditional end-point toxicity assays failed to examine the subtle changes of cellular function exposed to low-dose persistent organic pollutants in real time. In the present work, highly sensitive and long-retained (more than 30 days) fluorescence based polymeric nanosensors were developed and employed for real-time assessment of cellular functions. hMSCs were engineered with sensor molecules encapsulated poly (lactic-co-glycolic acid) (PLGA) particles. Once internalized by hMSCs, PLGA particles continuously release and replenish sensor molecules to cytoplasm, resulting in prolonged fluorescence signal against photo bleaching and dilution by exocytosis. With this method, the dynamic changes of viability, ROS induction, and adipogenic differentiation related mRNA expression of hMSCs were monitored. PFOS with the concentration as low as 0.1 μM can induce cellular ROS and enhance the PPARγ and ap2 mRNA expression, suggesting the effect on promoting adipogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Yu Gao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xixi Guo
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Siyu Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Fubin Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xiaomin Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, China
| | - Huaxin Xiao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
32
|
Ojo AF, Peng C, Ng JC. Combined effects and toxicological interactions of perfluoroalkyl and polyfluoroalkyl substances mixtures in human liver cells (HepG2). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114182. [PMID: 32247900 DOI: 10.1016/j.envpol.2020.114182] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 05/23/2023]
Abstract
The combined effects and toxicological interactions of perfluoroalkyl and polyfluoroalkyl substances (PFAS) mixtures remain largely unknown even though they occur as complex mixtures in the environment. This study investigated the toxicity of individual and combined PFAS to human liver cell line (HepG2). The Combination Index (CI)-isobologram equation method was used to determine the toxicological interactions of PFAS in binary, ternary and multi-component mixtures. The results indicated that the cytotoxicity of individual PFAS to HepG2 cells increased with increasing carbon chain lengths when separated into non-sulfonated and sulfonated groups. The respective cytotoxicity of PFAS is in the order of PFDA > PFNA > PFOA > PFHpA for perfluoroalkyl carboxylic acids and in the order of PFOS > PFHxS for perfluoroalkane sulfonic acids. The toxicological interaction of PFOS and PFOA with other PFAS clearly showed a different pattern of combined toxicity in HepG2 Cells. The binary, ternary, and multi-component combinations of PFOS with PFOA, PFNA, PFDA, PFHxS, and PFHpA displayed synergistic interactions for almost all inhibitory effect levels tested, whereas, either synergistic or antagonistic effect was observed in mixtures with PFOA. Overall, the pattern of interactions of PFAS mixtures is predominated by synergism, especially at low to medium effect levels; the exceptions to this were the antagonistic interactions found in mixture with PFOA, PFHxS, and PFHpA. These cytotoxicity results may have an implication on the health risk assessment of PFAS mixtures.
Collapse
Affiliation(s)
- Atinuke F Ojo
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Cheng Peng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Jack C Ng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
33
|
Zhang L, Duan X, Sun W, Sun H. Perfluorooctane sulfonate acute exposure stimulates insulin secretion via GPR40 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138498. [PMID: 32305757 DOI: 10.1016/j.scitotenv.2020.138498] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 05/20/2023]
Abstract
Perfluoroalkyl substances (PFASs) are widely used synthetic chemicals, showing environmental/biological persistence and adverse effects on ecosystem and human health. Several epidemiological and animal studies have revealed that PFASs levels are associated with elevated serum insulin level; however, the effect of PFASs on insulin secretion and the underlying mechanism are not clear. In this study, the effect of a most concerned PFAS, perfluorooctane sulfonate (PFOS) on insulin secretion in Beta-TC-6 pancreatic cells was studied. The results showed that PFOS acute exposure stimulated insulin secretion and elevated intracellular calcium concentration ([Ca2+]i). The PFOS-stimulated [Ca2+]i elevation was resulted from both extra- and intra-cellular sources. PFOS acute exposure decreased ATP content and ATP/ADP ratio, indicating the mitochondrial function was damaged under PFOS acute exposure. The PFOS-stimulated insulin secretion was inhibited by GW1100, a G Protein-coupled Receptor 40 (GPR40) specific inhibitor, but not affected by GW9662, a specific antagonist to the peroxisome proliferator-activated receptor gamma (PPARγ). The observation of RNA silencing further demonstrated that the PFOS-stimulated insulin secretion is, at least partially, via GPR40. By using specific inhibitors, we found that the GPR40 downstream pathways, phospholipase C (PLC) and L-type Ca2+ channels (LTCC) were involved in PFOS-stimulated [Ca2+]i elevation and insulin secretion.
Collapse
Affiliation(s)
- Lianying Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaoyu Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weijie Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
34
|
Scinicariello F, Buser MC, Abadin HG, Attanasio R. Perfluoroalkyl substances and anthropomorphic measures in children (ages 3-11 years), NHANES 2013-2014. ENVIRONMENTAL RESEARCH 2020; 186:109518. [PMID: 32315828 PMCID: PMC8132309 DOI: 10.1016/j.envres.2020.109518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Perfluoroalkyl acids (PFAAs) are man-made compounds that are persistent in the environment and highly bioaccumulative in the body. Humans are exposed to a mixture of these substances, and the effects of these mixtures may be different than the effects noted for individual compounds. Prenatal exposure to PFAAs has been associated with decreased birth weight. The objective of the present study is to evaluate concurrent serum PFAA levels, as single compounds and as mixtures, in relation to anthropomorphic measures in children. METHODS Using multivariate linear regression, we evaluated the association between single or PFAA mixtures and with height-for-age (HAZ), weight-for-age (WAZ), and BMI (BMIZ) z-scores in children (ages 3-11 years) participants of the National Health and Nutrition Examination Survey (NHANES) 2013-2014. Analyses were also stratified by sex. The PFAA mixture was based on relative potency factors express in terms of PFOA equivalency (CmixRPFi) or as molar sum of the PFAA congeners (∑molPFAA). RESULTS There was a statistically significant association of PFHxS and PFOS with decreased HAZ in boys. The significantly decreased HAZ in boys was also found when the PFAAs were analyzed as mixtures: CmixRPFi (β = -0.33; 95%CI: 0.63, -0.04) or ΣmolPFAAs (β = -0.30; 95%CI: 0.56, -0.04). In boys, PFHxS was also associated with decreased WAZ and BMIZ. The only statistically significant association found in girls was between decreased HAZ and PFHxS. CONCLUSIONS We found sex differences in the association between concurrent serum PFAA levels and anthropomorphic measures in children 3-11 years old. PFAA levels, as single congeners or as mixture concentrations were associated with decreased height-for-age z-score in boys.
Collapse
Affiliation(s)
- Franco Scinicariello
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, 30341, USA.
| | - Melanie C Buser
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, 30341, USA
| | - Henry G Abadin
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, 30341, USA
| | | |
Collapse
|
35
|
Zeeshan M, Yang Y, Zhou Y, Huang W, Wang Z, Zeng XY, Liu RQ, Yang BY, Hu LW, Zeng XW, Sun X, Yu Y, Dong GH. Incidence of ocular conditions associated with perfluoroalkyl substances exposure: Isomers of C8 Health Project in China. ENVIRONMENT INTERNATIONAL 2020; 137:105555. [PMID: 32059142 DOI: 10.1016/j.envint.2020.105555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/10/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The detrimental effects of perfluoroalkyl substances (PFASs) on several physiological systems have been reported, but the association of PFASs with eye, one of the most sensitive and exposed organ, has never been explored. To investigate the association between eye diseases including visual impairment (VI) and PFASs isomers, a cross-sectional stratified study was conducted in 1202 Chinese population, aged 22-96 years, from Shenyang, China. A standard protocol including Snellen vision chart, slit-lamp microscopy and direct ophthalmoscopy was used to examine eye diseases/conditions relating to anterior and posterior segment of eyes. In addition, we measured the blood concentrations of 19 linear and branched PFASs at one-time point. Results indicated that blood levels of PFASs were significantly higher in eye disease group than normal group. PFASs exposure were positively associated with both combined eye diseases and individual eye diseases. Among other PFASs, linear perfluorooctane sulfonate (n-PFOS; odds ratio [OR] = 3.37, 95% confidence interval [CI]: 2.50, 4.56), branched perfluorooctane sulfonate (Br-PFOS; OR = 2.25, 95% CI: 1.72, 2.93) and linear perfluorooctanoic acid (n-PFOA; OR = 1.79, 95% CI: 1.36, 2.37) significantly increases the odds of VI. Vitreous disorder was adversely associated with long-chain PFASs exposure. For example, perfluorotridecanoic acid (PFTrDA; OR = 1.86, 95% CI: 1.51, 2.29) and perfluorodecanoic acid (PFDA; OR = 1.79, 95% CI: 1.36, 2.36) showed the most significant association. In conclusion, this study suggests higher serum PFASs levels were associated with increase odds of VI and vitreous disorder in Chinese adults.
Collapse
Affiliation(s)
- Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunqing Yang
- Department of Preventive Medicine, Guangzhou Institute of Dermatology, Guangzhou 510095, China
| | - Yang Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenzhong Huang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhibin Wang
- Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore 21205, USA
| | - Xiao-Yun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao Sun
- Department of Internal Medicine, Shenyang Women's and Children's Hospital. No.87 Danan Street, Shenhe District, Shenyang 110011, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
36
|
Wan HT, Lai KP, Wong CKC. Comparative Analysis of PFOS and PFOA Toxicity on Sertoli Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3465-3475. [PMID: 32119782 DOI: 10.1021/acs.est.0c00201] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Perfluoroalkyl chemicals induce male reproductive toxicity. Current evidence showed the effects of the chemical exposure on the deterioration of testicular functions, and reduction in epididymal sperm counts. Previous studies showed that PFOA and PFOS displayed a high correlation with each other in seminal plasma levels, but induced different effects on semen variables. In this study, we focused on the comparative toxicity analysis of PFOA and PFOS, using a rat primary Sertoli cell model. Our transcriptomic data showed that PFOA and PFOS treatments (40 μM) perturbed global gene expression. While PFOS induced higher toxicity in affecting cytoskeleton signaling, Sertoli cell-cell junction, and inflammation, underlined by Ingenuity pathway analysis. Immunocytochemical staining revealed that PFOS treatment (40 and 80 μM) induced truncated actin filament and disorganized bundled configuration in the cell cytoplasm. Moreover, disorganized distribution of N-cadherin (N-cad) and β-catenin (β-cat), and defragmentation of ZO-1 at the Sertoli cell-cell interface was evident. At 80 μM of PFOS, cytoplasmic distribution of N-cad, β-cat, and ZO-1 were observed. We then examined whether resveratrol, a polyphenol antioxidant, was able to protect the cells from PFOS toxicity. The pretreatment of Sertoli cells with 10 μM resveratrol prevented the formation of truncated actin filament and dis-localization of β-cat. Western blot analysis showed that Res pretreatment increased the levels of basal ES proteins (N-cad and β-cat), tight junction proteins (ZO-1 and occludin), and gap junction protein, versus control.
Collapse
Affiliation(s)
- Hin Ting Wan
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Keng Po Lai
- Guanxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, P. R. China
| | - Chris Kong Chu Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| |
Collapse
|
37
|
Lin CY, Lee HL, Hwang YT, Su TC. The association between total serum isomers of per- and polyfluoroalkyl substances, lipid profiles, and the DNA oxidative/nitrative stress biomarkers in middle-aged Taiwanese adults. ENVIRONMENTAL RESEARCH 2020; 182:109064. [PMID: 31884197 DOI: 10.1016/j.envres.2019.109064] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 05/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been widely used in consumer products. In vitro and animal studies have demonstrated that exposure to perfluorooctanoic acid (PFOA) and/or perfluorooctane sulfonate (PFOS) increases oxidative/nitrative stress. Recent studies have also found that isomers of PFOA/PFOS may have unique biological effects on clinical parameters. However, the correlation between PFOA/PFOS isomers and markers of oxidative/nitrative stress has never been investigated in the general population. In the current study, 597 adult subjects (ages between 22 and 63 years old) were enrolled from a control group of a case-control study entitled "Work-related risk factors and coronary heart disease". We investigated the correlation between the serum isomers of PFOA/PFOS, lipid profiles, and the urine compounds 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-nitroguanine (8-NO2Gua) in these participants. There were 519 men and 78 women with a mean age of 45.8 years. Linear PFOA levels were positively correlated with serum low density lipoprotein cholesterol (LDL-C), small dense LDL, and triglyceride, and linear PFOS levels were positively correlated with LDL-C and HDL-C in multiple linear regression analyses. After controlling for potential confounders, the mean levels of 8-OHdG and 8-NO2Gua significantly increased across the quartiles of linear PFOS in multiple linear regression analyses. When both the 8-OHdG and 8-NO2Gua levels were above the 50th percentile, the odds ratio (OR) of higher levels of LDL-C (>75th percentile) with one unit increase in ln linear PFOS level was the highest (OR 3.15 (95% CI = 1.45-6.64), P = 0.003) in logistic regression models. In conclusion, serum linear PFOA/PFOS were correlated with lipid profiles, and linear PFOS was associated with urine oxidative/nitrative stress biomarkers. The positive correlation between linear PFOS and LDL-C was more marked when concentrations of urine oxidative/nitrative stress biomarkers were elevated. Further studies are needed to elucidate the causal relationships among PFAS isomers, lipid profiles, and oxidative/nitrative stress.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Yi-Ting Hwang
- Department of Statistics, National Taipei University, New Taipei City, 237, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan; Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
38
|
Sammi SR, Foguth RM, Nieves CS, De Perre C, Wipf P, McMurray CT, Lee LS, Cannon JR. Perfluorooctane Sulfonate (PFOS) Produces Dopaminergic Neuropathology in Caenorhabditis elegans. Toxicol Sci 2019; 172:417-434. [PMID: 31428778 PMCID: PMC6876260 DOI: 10.1093/toxsci/kfz191] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Perfluorooctane sulfonate (PFOS) has been widely utilized in numerous industries. Due to long environmental and biological half-lives, PFOS is a major public health concern. Although the literature suggests that PFOS may induce neurotoxicity, neurotoxic mechanisms, and neuropathology are poorly understood. Thus, the primary goal of this study was to determine if PFOS is selectively neurotoxic and potentially relevant to specific neurological diseases. Nematodes (Caenorhabditis elegans) were exposed to PFOS or related per- and polyfluoroalkyl substances (PFAS) for 72 h and tested for evidence of neuropathology through examination of cholinergic, dopaminergic, gamma-amino butyric acid (GABA)ergic, and serotoninergic neuronal morphologies. Dopaminergic and cholinergic functional analyses were assessed through 1-nonanol and Aldicarb assay. Mechanistic studies assessed total reactive oxygen species, superoxide ions, and mitochondrial content. Finally, therapeutic approaches were utilized to further examine pathogenic mechanisms. Dopaminergic neuropathology occurred at lower exposure levels (25 ppm, approximately 50 µM) than required to produce neuropathology in GABAergic, serotonergic, and cholinergic neurons (100 ppm, approximately 200 µM). Further, PFOS exposure led to dopamine-dependent functional deficits, without altering acetylcholine-dependent paralysis. Mitochondrial content was affected by PFOS at far lower exposure level than required to induce pathology (≥1 ppm, approximately 2 µM). Perfluorooctane sulfonate exposure also enhanced oxidative stress. Further, mutation in mitochondrial superoxide dismutase rendered animals more vulnerable. Neuroprotective approaches such as antioxidants, PFAS-protein dissociation, and targeted (mitochondrial) radical and electron scavenging were neuroprotective, suggesting specific mechanisms of action. In general, other tested PFAS were less neurotoxic. The primary impact is to prompt research into potential adverse outcomes related to PFAS-induced dopaminergic neurotoxicity in humans.
Collapse
Affiliation(s)
- Shreesh Raj Sammi
- School of Health Sciences
- Purdue Institute for Integrative Neurosciences
| | - Rachel M Foguth
- School of Health Sciences
- Purdue Institute for Integrative Neurosciences
| | | | - Chloe De Perre
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Peter Wipf
- Departments of Chemistry, Pharmaceutical Sciences, and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Cynthia T McMurray
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Jason R Cannon
- School of Health Sciences
- Purdue Institute for Integrative Neurosciences
| |
Collapse
|
39
|
Hoover G, Kar S, Guffey S, Leszczynski J, Sepúlveda MS. In vitro and in silico modeling of perfluoroalkyl substances mixture toxicity in an amphibian fibroblast cell line. CHEMOSPHERE 2019; 233:25-33. [PMID: 31163305 DOI: 10.1016/j.chemosphere.2019.05.065] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Poly and perfluoroalkyl substances (PFAS) are a large group of emerging organic pollutants that can persist in the environment and bioaccumulate in biota. They are found in complex mixtures, and although the exact number of PFAS is unknown, it has been estimated to be in the thousands. The objective of this study was two-fold. First, we examined the cytotoxicity of PFAS singly and in binary mixtures using an amphibian fibroblast cell line. Second, we used this experimental data to develop quantitative structure-activity relationship (QSAR) models for single and binary mixtures. We tested the cytotoxicity of four common PFAS: perfluorooctane sulfonate (PFOS); perfluorooctanoic acid (PFOA); perfluorohexane sulfonate (PFHxS); and perfluorohexanoic acid (PFHxA). PFOS was the most toxic and PFHxA the least cytotoxic. Binary mixtures allowed for the construction of isobolograms to test for additivity, synergism, or antagonism. Using this data, QSAR modeling was used for predicting the toxicity of 24 single and 1380 binary mixtures (theoretically generated). Overall, our experimental and modeling results showed that mixtures were approximately additive, with the exception of PFOS and PFOA, which were found to be weakly synergistic. This data shows that certain mixtures of PFAS may have increased toxicity potential above what the simple sum of PFAS concentrations would suggest. More studies are needed that test the toxicity of PFAS mixtures.
Collapse
Affiliation(s)
- Gary Hoover
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Samuel Guffey
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
40
|
Chen A, Jandarov R, Zhou L, Calafat AM, Zhang G, Urbina EM, Sarac J, Augustin DH, Caric T, Bockor L, Petranovic MZ, Novokmet N, Missoni S, Rudan P, Deka R. Association of perfluoroalkyl substances exposure with cardiometabolic traits in an island population of the eastern Adriatic coast of Croatia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:29-36. [PMID: 31129329 PMCID: PMC6581612 DOI: 10.1016/j.scitotenv.2019.05.250] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Exposure to perfluoroalkyl substances (PFAS), ubiquitous environmental contaminants, may be related to cardiometabolic diseases in adults. Studies in European populations to examine the association of PFAS exposure and comprehensive cardiometabolic traits and metabolic syndrome (MetS) are limited. METHODS In this pilot cross-sectional study of a well-characterized adult population of the island of Hvar, situated off the eastern Adriatic coast of Croatia, we measured PFAS concentrations in plasma samples collected during 2007-2008 and examined their cross-sectional associations with cardiometabolic traits and MetS after adjustment of covariates (n = 122). PFAS investigated in this study included perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA). RESULTS The geometric mean (range) was 8.91 (2.36, 33.67) ng/mL for PFOS, 2.87 (1.03, 8.02) ng/mL for PFOA, 0.77 (0.25, 2.40) ng/mL for PFHxS, and 1.29 (0.48, 3.46) ng/mL for PFNA, with frequency of detection at 100%, 100%, 95.9%, and 100%, respectively. PFOS, PFOA, and PFNA concentrations were positively associated with the risk of MetS as defined by the Adult Treatment Panel III (ATP III) criteria, with estimated odds ratios and 95% confidence intervals at 1.89 (0.93, 3.86), 2.19 (0.88, 5.44), and 2.95 (1.12, 7.80), respectively, with only PFNA reaching statistical significance. PFNA concentrations were associated with increased risk of overweight or obesity. CONCLUSIONS Background exposure to PFOS, PFOA, and PFNA was marginally associated with increased risk of MetS in this small study, and these results should be confirmed with a larger sample size and longitudinal follow-up.
Collapse
Affiliation(s)
- Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Roman Jandarov
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Li Zhou
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ge Zhang
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elaine M Urbina
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jelena Sarac
- Institute for Anthropological Research, Zagreb, Croatia
| | | | - Tonko Caric
- Institute for Anthropological Research, Zagreb, Croatia
| | - Luka Bockor
- Institute for Anthropological Research, Zagreb, Croatia
| | | | | | - Sasa Missoni
- Institute for Anthropological Research, Zagreb, Croatia; Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia
| | - Pavao Rudan
- Institute for Anthropological Research, Zagreb, Croatia; Croatian Academy of Sciences and Arts, Zagreb, Croatia
| | - Ranjan Deka
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
41
|
Zhou R, Lu G, Yan Z, Bao X, Zhang P, Jiang R. Bioaccumulation and biochemical effects of ethylhexyl methoxy cinnamate and its main transformation products in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105241. [PMID: 31301543 DOI: 10.1016/j.aquatox.2019.105241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to investigate the bioaccumulation and biochemical responses exposed to one of the main organic ultraviolet (UV) pollutants in the environment, ethylhexyl methoxy cinnamate (EHMC), and its main transformation product, either alone or in combination in zebrafish (Danio rerio). Four-month-old zebrafish were exposed to EHMC (34.4, 344 nmol/L) solution for 14 days, the species and contents of EHMC transformation products in zebrafish were determined and 3,5-dichloro-2-hydroxyacetophenone (3,5DCl2HAcP) was the one with the highest concentration in transformation products. Then, zebrafish were exposed to EHMC, 3,5DCl2HAcP alone and mixed solution for 21 days. At 7, 14 and 21 d, the related indexes of antioxidant defense system were determined. Results showed that both EHMC and 3,5DCl2HAcP can lead to the increase of malondialdehyde (MDA) and glutathione (GSH) contents, superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) activities in visceral mass compared with the corresponding control group, thus produced oxidative stress effect in organism and 3,5DCl2HAcP even showed stronger oxidative stress than EHMC. The effects of the two lower concentration co-exposure groups were similar and more significant to that of single exposure groups, while excessive oxidative stress occurred at the highest co-exposure group indicated by the decrease of GSH content, SOD, CAT, GR activities and the continued increase of MDA content. At 21 d, estradiol (E2), vitellogenin (Vtg) and testosterone (T) contents, estrogen receptor (Esr), progesterone receptor (Pgr), androgen receptor (Ar), Vtg1, P450 aromatase (Cyp19a1) and 17β-hydroxysteroid dehydrogenase (Hsd17b3) expression were all significantly increased when exposed to 3,5DCl2HAcP alone, showing complex estrogen and androgen effects. When exposed to EHMC alone, E2 and Vtg contents, Esr, Pgr, Vtg1, Cyp19a1 and Hsd17b1 gene expression levels decreased significantly, and T content and Ar and Hsd17b3 expression increased significantly, indicated that EHMC can produce anti-estrogen and androgen effect. Last, the decrease of estrogen effect and increase of androgen effect in co-exposure group suggested that 3,5DCl2HAcP might weaken the estrogen effect and promote the androgen effect of EHMC.
Collapse
Affiliation(s)
- Ranran Zhou
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China.
| | - Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xuhui Bao
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Zhang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
42
|
Can sustained exposure to PFAS trigger a genotoxic response? A comprehensive genotoxicity assessment in mice after subacute oral administration of PFOA and PFBA. Regul Toxicol Pharmacol 2019; 106:169-177. [DOI: 10.1016/j.yrtph.2019.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 12/30/2022]
|
43
|
Liu S, Yang R, Yin N, Wang YL, Faiola F. Environmental and human relevant PFOS and PFOA doses alter human mesenchymal stem cell self-renewal, adipogenesis and osteogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:564-572. [PMID: 30476818 DOI: 10.1016/j.ecoenv.2018.11.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 05/21/2023]
Abstract
PFOS and PFOA are two of the most abundant perfluorinated compounds (PFCs) in the environment. Previous studies have reported they have a long half-life (up to five years) once they enter into the human body. Moreover, they can potentially promote the adipogenic process by activating PPARγ. However, little is known about PFOS and PFOA chronic health impacts on humans. In this study, we employed primary human mesenchymal stem cells (hMSCs) and demonstrated that PFOS and PFOA exerted acute cytotoxicity and affected adipogenesis and osteogenesis at environmental and human relevant doses. In fact, PFOS and PFOA impaired the proper expression of CD90 (a surface antigen highly enriched in undifferentiated hMSCs) and promoted adipogenesis, presumably via their interaction with PPARγ. Moreover, PFOA partly disturbed osteogenesis. Thus, our findings not only validated the health risks of PFOS and PFOA, but also revealed new potential long-term PFOS/PFOA impacts on humans.
Collapse
Affiliation(s)
- Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan-Liang Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; Section of Molecular Biology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
44
|
Tang J, Lu X, Chen F, Ye X, Zhou D, Yuan J, He J, Chen B, Shan X, Jiang J, Liu W, Zhang H. Effects of Perfluorooctanoic Acid on the Associated Genes Expression of Autophagy Signaling Pathway of Carassius auratus Lymphocytes in vitro. Front Physiol 2018; 9:1748. [PMID: 30568600 PMCID: PMC6290059 DOI: 10.3389/fphys.2018.01748] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
Perfluorooctanoic acid (PFOA) has been detected in various water bodies and caused harm to aquatic organisms. The aim of this study was to investigate the cytotoxicity and mechanism associated with autophagy and oxidative stress after exposure to PFOA (0, 1, 10, 100 μg/L) for 12 h on lymphocytes, which was isolated from the head kidney of Carassius auratus (C. auratus). Both of autophagy formation, cell activity, and intracellular reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) levels were measured. The relative expression of partial autophagy-related genes autophagy related 5 (Atg 5), autophagy related 7 (Atg 7), and Beclin 1 were also cloned and detected. Homologous relationships analysis showed high identities of genes in C. auratus and other fish by blast. C. auratus lymphocytes growth inhibition rates was increased induced by PFOA. Compared with the control group, the ROS generation and the MDA content were significantly increased in all of the PFOA-treated group. Besides, decreased SOD activity and decrease of GSH activity induced by PFOA further confirmed the occurrence of oxidative stress. The number of autophagosome formations was increased in a dose-dependent manner. Compared with the control group, Atg 7 and Beclin 1 mRNA expression was elevated significantly after PFOA exposed, showing a time-dependent manner, while mRNA expression of Atg 5 was increased remarkably in 100 μg/L PFOA-treated group. Our results indicated that PFOA caused oxidative damage to lymphocytes in C. auratus and caused various autophagy signaling pathway-associated genes imbalances in the lymphocytes. Autophagy signaling pathway-associated genes imbalance could weaken antioxidant capacity and involve in the mechanism of C. auratus lymphocytes oxidative injury caused by PFOA.
Collapse
Affiliation(s)
- Juan Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiangjun Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Feifei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xueping Ye
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Dongren Zhou
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Julin Yuan
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Jianbo He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Bin Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaodong Shan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jinxiao Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Wenli Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
45
|
Peropadre A, Fernández Freire P, Hazen MJ. A moderate exposure to perfluorooctanoic acid causes persistent DNA damage and senescence in human epidermal HaCaT keratinocytes. Food Chem Toxicol 2018; 121:351-359. [DOI: 10.1016/j.fct.2018.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 01/15/2023]
|
46
|
Abass K, Emelyanova A, Rautio A. Temporal trends of contaminants in Arctic human populations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:28834-28850. [PMID: 30145756 PMCID: PMC6592971 DOI: 10.1007/s11356-018-2936-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/06/2018] [Indexed: 05/18/2023]
Abstract
The first Arctic Monitoring and Assessment Programme (AMAP) report was published in 1998 and followed by three assessment reports of human health (AMAP 2003, 2009 and 2015). The focus area of the AMAP reports was to monitor levels of environmental contaminants in the Arctic and to assess the health effects connected with detected levels in Arctic countries. This review gives an overview of temporal trends of contaminants and their health effects in humans of the Arctic based on data published by AMAP, as well as Russian scientific literature. Several time series of 31 contaminants in humans of the Arctic from different cohorts are reported. The lengths of time series and periods covered differ from each other. International restrictions have decreased the levels of most persistent organic pollutants in humans and food webs. Percentage changes for contaminants in human biological matrices (blood samples from children, mothers and males and breast milk samples) for the period of sampling showed declining trends in most of the monitored Arctic locations, with the exception of oxychlordane, hexachlorobenzene (HCB), 2,2',4,4',5,5'-hexabromodiphenyl ether (PBDE153) and perfluorinated compounds (PFCs).
Collapse
Affiliation(s)
- Khaled Abass
- Arctic Health, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.
- Department of Pesticides, Menoufia University, P.O. Box 32511, Menoufia, Egypt.
| | | | - Arja Rautio
- Arctic Health, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
- Thule Institute & University of Arctic, University of Oulu, Oulu, Finland
| |
Collapse
|
47
|
Perfluorooctanoic acid stimulates ovarian cancer cell migration, invasion via ERK/NF-κB/MMP-2/-9 pathway. Toxicol Lett 2018; 294:44-50. [PMID: 29753068 DOI: 10.1016/j.toxlet.2018.05.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/04/2018] [Accepted: 05/08/2018] [Indexed: 01/10/2023]
Abstract
As widely used in consumer products, perfluorooctanoic acid (PFOA) has become a common environmental pollutant, which has been detected in human serum and associated with cancers. Our previous study showed that PFOA is a carcinogen that promotes endometrial cancer cell migration and invasion through activation of ERK/mTOR signaling. Here, we showed that PFOA (≥100 nM) treatment also stimulated A2780 ovarian cancer cell invasion and migration, which correlated with increased matrix metalloproteinases MMP-2/-9 expression, important proteases associated with tumor invasion and migration. Notably, PFOA treatment induced activation of ERK1/2/ NF-κB signaling. Pre-treatment with U0126, an ERK1/2inhibitor;or JSH-23, a NF-kB inhibitor, can reverse the PFOA-induced cell migration and invasion. Consistent with these results, inhibiting ERK1/2 or NF-κB signaling abolished PFOA-induced up-regulation of MMP-2/-9 expression. These results indicate that PFOA can stimulate ovarian cancer cell migration, invasion and MMP-2/-9 expression by up-regulating ERK/NF-κB pathway.
Collapse
|
48
|
Shen A, Lee S, Ra K, Suk D, Moon HB. Historical trends of perfluoroalkyl substances (PFASs) in dated sediments from semi-enclosed bays of Korea. MARINE POLLUTION BULLETIN 2018; 128:287-294. [PMID: 29571375 DOI: 10.1016/j.marpolbul.2018.01.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Information is scarce on historical trends of perfluoroalkyl substances (PFASs) in the coastal environment. In this study, four sediment cores were collected from semi-enclosed bays of Korea to investigate the pollution history, contamination profiles, and environmental burden of PFASs. The total PFAS concentrations in sediment cores ranged from 6.61 to 821 pg/g dry weight. The highest concentrations of PFASs were found in surface or sub-surface sediments, indicating on-going contamination by PFASs. Historical trends in PFASs showed a clear increase since the 1980s, which was consistent with the global PFAS consumption pattern. Concentrations of PFASs were dependent on the organic carbon content in sediment cores. PFOS and longer-chain PFASs were predominant in all of the sediment cores. In particular, a large proportion of longer-chain PFASs was observed in the upper layers of the sediment cores from industrialized coastal regions. Inventories and fluxes estimated for PFASs were similar to those for PCDD/Fs.
Collapse
Affiliation(s)
- Aihua Shen
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Kongtae Ra
- Marine Environment and Conservation Research Division, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea
| | - Dongwoo Suk
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
49
|
Shi G, Xie Y, Guo Y, Dai J. 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB), a novel perfluorooctane sulfonate alternative, induced developmental toxicity in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 195:24-32. [PMID: 29247975 DOI: 10.1016/j.aquatox.2017.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/28/2017] [Accepted: 12/06/2017] [Indexed: 05/05/2023]
Abstract
6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) is a major component of Forafac®1157, a novel perfluorooctane sulfonate (PFOS) alternative used globally in aqueous film forming foams (AFFFs). Although 6:2 FTAB has been recently detected in the aquatic environment, its toxic effects on aquatic organisms remain unclear. Here, zebrafish embryos were exposed to various concentrations of 6:2 FTAB (0, 5, 10, 20, 40, 60, 80, and 100 mg/L) from 6 to 120 h post-fertilization (hpf) to investigate its developmental toxicity and possible mechanism of action. Results showed that exposure to 40 mg/L or higher concentrations of 6:2 FTAB significantly decreased the survival percentage and increased the malformation percentage. The median lethal concentration (LC50) at 120 hpf was 43.73 ± 3.24 mg/L, and the corresponding benchmark dose lower limit (BMDL) of lethal effect was 33.79 mg/L. These values were both higher than those for PFOS, supporting the notion that 6:2 FTAB is less toxic than PFOS to zebrafish embryos. The most common developmental defect in 6:2 FTAB-treated embryos was rough-edged skin/fins. TUNEL assay showed that 6:2 FTAB exposure induced cell apoptosis in the tail region compared with that of the control, which might explain the rough-edged skin/fins. The increased transcriptional levels of p53, bax, and apaf1 and the increased activities of caspase-3, -8, and -9 provided further evidence of 6:2 FTAB-induced apoptosis. We also analyzed the effects of 6:2 FTAB on oxidative stress and the immune system. Results showed that reactive oxygen species and malondialdehyde accumulated in concentration-dependent manners after exposure to 6:2 FTAB, and antioxidant enzyme activities (catalase and glutathione peroxidase) also changed. Exposure to 6:2 FTAB also altered the transcriptional levels of ccl1, il-1β, il-8, tnfα, ifn, and cxcl-c1c, which play important roles in the innate immune system. Collectively, our data suggest that 6:2 FTAB exposure can induce cell apoptosis, oxidative stress, and immunotoxicity, thus highlighting the developmental toxicity of 6:2 FTAB in zebrafish embryos.
Collapse
Affiliation(s)
- Guohui Shi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yu Xie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
50
|
Phycoerythrin Peptide from Pyropia yezoensis Alleviates Endoplasmic Reticulum Stress Caused by Perfluorooctane Sulfonate-Induced Calcium Dysregulation. Mar Drugs 2018; 16:md16020044. [PMID: 29373516 PMCID: PMC5852472 DOI: 10.3390/md16020044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/27/2023] Open
Abstract
Perfluorooctane sulfonate (PFOS), a stable fluorosurfactant, causes endoplasmic reticulum (ER) stress in the brain. This study was designed to investigate whether a phycoerythrin-derived peptide of Pyropia yezoensis (PYP) reduces PFOS-induced ER stress associated with calcium dysregulation. The protective effects of PYP were determined by cell viability, immunoblotting for ER stress response protein glucose-regulated protein 78 (GRP78) and calcium-dependent protein kinases in rat frontal cortical neurons. PFOS-induced decrease in cell viability was attenuated by PYP pretreatment (1 µg/mL) for 24 h, which was downregulated by inhibiting tropomyosin-receptor kinase B (TrkB). PYP pretreatment downregulated the increase in intracellular calcium levels and phosphorylation of calcium/calmodulin-dependent protein kinase II and c-Jun N-terminal kinase which are associated with a PFOS-induced increase in GRP78. The PFOS-induced increase in GRP78 was downregulated via activation of TrkB receptor-linked extracellular signal-regulated kinases 1/2 (ERK1/2) by PYP pretreatment. Moreover, PYP microinjections (1 µg/kg, 0.54 nmol) attenuated the GRP78 expression in rat prefrontal cortex caused by PFOS (10 mg/kg) exposure for 2 weeks. These findings demonstrate that PYP enhances frontal cortical neuron viability via activation of TrkB receptor-ERK1/2 signaling and attenuation of ER stress in rat prefrontal cortex against PFOS exposure, suggesting that PYP might prevent neuronal dysfunctions caused by PFOS-induced ER stress.
Collapse
|