1
|
Shaaban S, Alabdali AYM, Mousa MHA, Ba-Ghazal H, Al-Faiyz YS, Elghamry I, Althikrallah HA, Khatib AOA, Alaasar M, Al-Karmalawy AA. Innovative Multitarget Organoselenium Hybrids With Apoptotic and Anti-Inflammatory Properties Acting as JAK1/STAT3 Suppressors. Drug Dev Res 2025; 86:e70075. [PMID: 40103327 DOI: 10.1002/ddr.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Herein, we report the design, synthesis, and characterization of novel organoselenium (OSe) hybrids (5-19) via modifications of the lead, N-(4-selaneylphenyl)-2-selaneylacetamide. The OSe-based thiazol 9 showed the highest growth inhibition % (GI%) of 64.72% relative to the positive reference doxorubicin (DOX), with a GI% of 79.5%. Furthermore, the novel OSe derivatives showed low GI% values compared to the normal cell lines employed, demonstrating their selectivity. The OSe tethered N-chloroacetamide 5 and Schiff base 19 showed a cytotoxic effect with an IC50 of (25.07 and 11.61 µM), respectively, against the A549 tumor cell line and IC50 of (34.22 and 20.12 µM), respectively, against the HELA cancer cell line. Enzyme-linked immunosorbent assay to study the JAK1 and the STAT3 inhibitory potentials of OSe compounds 5 and 19 in the A549 cancer cells both showed promising inhibitory activities with IC50 values of 25.07 and 11.61 µM, respectively. Protein expression analysis on the A549 cancer cell line on OSe compounds 5 and 19 showed upregulation of P53, BAX, and Caspases 3, 6, 8, and 9 as apoptotic proteins. However, both candidates expressed downregulation of the antiapoptotic proteins (BCL2, MMP2, and MMP9). Moreover, OSe compounds 5 and 19 described the downregulation of the examined inflammatory proteins: COX2, IL-6, and IL-1β. In addition, OSe compound 19 showed potential cell cycle arrest at the G0, S, and G2-M layers, with an increase in cellular levels. Finally, molecular docking studies of OSe compound 19 showed the most promising inhibitory potential toward the JAK1 and STAT3 target receptors, with binding scores and interactions exceeding that of the cocrystallized inhibitor of JAK1.
Collapse
Affiliation(s)
- Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Mai H A Mousa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Hussein Ba-Ghazal
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Yasair S Al-Faiyz
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ibrahim Elghamry
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hanan A Althikrallah
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Arwa Omar Al Khatib
- Faculty of Pharmacy, Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed Alaasar
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Natural, Science II, Institute of Chemistry, Martin-Luther University, Halle Saale, Germany
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad, Iraq
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
2
|
Yuan Y, Xu M, Feng L, Zhong W, Zhang L, Du R, Sun J, Wang C, Du J. Nanozyme Hydrogels Promote Nerve Regeneration in Spinal Cord Injury by Reducing Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59949-59961. [PMID: 39454206 DOI: 10.1021/acsami.4c13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Inhibiting secondary cell death and promoting neuronal regeneration are critical for nerve repair after spinal cord injury (SCI). The excessive accumulation of reactive oxygen species (ROS) after SCI causes cell death and induces apoptosis. These reactions further increase the level of ROS production, leading to a vicious cycle of spinal cord tissue damage. Therefore, intervention targeting ROS is a potential therapeutic approach to improve the recovery of locomotor function after SCI. In this study, we designed and synthesized a nanozyme hydrogel delivery system loaded with multiple drugs, LA/Me/Se NPs-h. LA/Me/Se NPs-h exhibited a satisfactory size distribution and excellent stability, enhancing the bioavailability of therapeutic drugs. Moreover, we explored the antioxidant and protective effects of LA/Me/Se NPs-h against oxidative stress-induced cell damage caused by ROS production after SCI in vitro. In the mice SCI model, the Basso mouse scale and gait analysis showed that LA/Me/Se NPs-h significantly promoted the recovery of locomotor function after SCI. The histological and immunofluorescence results of the injury site revealed that LA/Me/Se NPs-h upregulated the expression of GFAP, NF-200, and superoxide dismutase in spinal cord lesion, reduced caspase-3 expression, improved spinal cord continuity, reduced lesion cavity, and inhibited the axonal demyelination. Consequently, LA/Me/Se NPs-h increased the activity of antioxidant enzymes and reduced neuronal apoptosis by reducing oxidative stress and ultimately promoted nerve regeneration. Taken together, this study demonstrated promising nanozyme hydrogels and provided an effective therapeutic strategy for SCI and other ROS-related diseases.
Collapse
Affiliation(s)
- Yitong Yuan
- Department of Medical Imaging, Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, P. R. China
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan 030001, P. R. China
- Department of Histology and Embryology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Miaomiao Xu
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Limin Feng
- School of Stomatology, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Wanting Zhong
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Longzhu Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Ruochen Du
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Jingjing Sun
- Zhenjiang Mental Health Center, Zhenjiang 212000, P. R. China
| | - Chunfang Wang
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan 030001, P. R. China
- School of Stomatology, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Jiangfeng Du
- Department of Medical Imaging, Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, P. R. China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan 030001, P. R. China
| |
Collapse
|
3
|
Demirtürk Z, Uçkan F, Mert S. Interactions of alumina and polystyrene nanoparticles with the innate immune system of Galleria mellonella. Drug Chem Toxicol 2024; 47:483-495. [PMID: 37259574 DOI: 10.1080/01480545.2023.2217484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 04/22/2023] [Indexed: 06/02/2023]
Abstract
Nowadays, particularly metallic, and polymeric nanoparticles (NPs) are widely produced and used in many fields. Due to the increase in both their usage and diversity, their release and accumulation in the environment are also accelerating. Therefore, their interactions with cells, especially immune cells, and their health risks are not fully understood. The impacts of metallic alumina (Al) NPs and polystyrene (PS) NPs obtained after the polymerization of carcinogenic styrene on living organisms have not yet been elucidated. Galleria mellonella larvae can biodegrade plastics. While biodegradation and solving the waste problem have attracted much attention, the interactions of this distinctive property of G. mellonella larvae in the immune system and ecosystem are not yet completely understood. Al and PS NPs were applied to G. mellonella separately. Al NPs were purchased and PS NPs were prepared from PS by single-emulsion technique and characterized. Then LC50 values of these NPs on G. mellonella were determined. The interactions of these NPs with encapsulation, melanization, and phenoloxidase activity, which express innate immune responses in G. mellonella larvae, were revealed. NP exposure resulted in suppression of the immune response, probably because it affects the functions of hemocytes such as enzymatic activation, hemocyte division, and populations. In this context, our data suggest that Al and PS NPs induce toxic impacts and negatively alter the physiological status of G. mellonella. It is also shown that G. mellonella has the potential to be an impactful alternative model for biosafety and nanotoxicology studies.
Collapse
Affiliation(s)
| | - Fevzi Uçkan
- Department of Biology, Kocaeli University, Kocaeli, Türkiye
| | - Serap Mert
- Department of Polymer Science and Technology, Kocaeli University, Kocaeli, Türkiye
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Türkiye
- Department of Chemistry and Chemical Processing Technology, Kocaeli University, Türkiye
| |
Collapse
|
4
|
Deshmukh R, Singh R, Sharma S, Mishra AK, Harwansh RK. A Snapshot of Selenium-enclosed Nanoparticles for the Management of Cancer. Curr Pharm Des 2024; 30:841-858. [PMID: 38462835 DOI: 10.2174/0113816128297329240305071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Among the primary causes of mortality in today's world is cancer. Many drugs are employed to give lengthy and severe chemotherapy and radiation therapy, like nitrosoureas (Cisplatin, Oxaliplatin), Antimetabolites (5-fluorouracil, Methotrexate), Topoisomerase inhibitors (Etoposide), Mitotic inhibitors (Doxorubicin); such treatment is associated with significant adverse effects. Antitumor antibiotics have side effects similar to chemotherapy and radiotherapy. Selenium (Se) is an essential trace element for humans and animals, and additional Se supplementation is required, particularly for individuals deficient in Se. Due to its unique features and high bioactivities, selenium nanoparticles (SeNPs), which act as a supplement to counter Se deficiency, have recently gained worldwide attention. This study presented a safer and more economical way of preparing stable SeNPs. The researcher has assessed the antiproliferative efficiency of SeNPs-based paclitaxel delivery systems against tumor cells in vitro with relevant mechanistic visualization. SeNPs stabilized by Pluronic F-127 were synthesized and studied. The significant properties and biological activities of PTX-loaded SeNPs on cancer cells from the lungs, breasts, cervical, and colons. In one study, SeNPs were formulated using chitosan (CTS) polymer and then incorporated into CTS/citrate gel, resulting in a SeNPs-loaded chitosan/citrate complex; in another study, CTS was used in the synthesis of SeNPs and then situated into CTS/citrate gel, resulting in Se loaded nanoparticles. These formulations were found to be more successful in cancer treatment.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rajesh Singh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Sandeep Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Ashwini Kumar Mishra
- Delhi Institute of Pharmaceutical Sciences and Research University, Delhi 110017, India
| | | |
Collapse
|
5
|
Fu C, He Y, Yang C, He J, Sun L, Pan Y, Deng L, Huang R, Li M, Chang K. Utilizing biochar to decorate nanoscale FeS for the highly effective decontamination of Se(IV) from simulated wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115285. [PMID: 37517306 DOI: 10.1016/j.ecoenv.2023.115285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Selenium (Se) as an essential nutrient for human beings at trace concentrations, the allowable concentration for the human is only 40 μg/L. Iron sulfide (FeS) nanoparticles have been applied for excessive of selenium (Se) remediation in surface water and groundwater. In this study, FeS nanoparticles were anchored onto biochar (BC) to reduce agglomeration of FeS and prepared into the composite of FeS-BC by pyrolysis to economically and efficiently remove Se(IV) from simulated wastewater based on the excellent performance of FeS and the low cost of BC. Characterizations presented the uniform anchorage of FeS on the BC surface to prevent agglomeration. The results of batch experiments revealed that the removal of Se(IV) by FeS-BC nanomaterials significantly depended on the pH value, with the maximum removal of ∼174.96 mg/g at pH 3.0. A pseudo-second-order kinetic model well reflected the kinetic removal of Se(IV) in pure Se(IV) solution with different concentration, as well as the coexistence of K+, Ca2+, Cl-, and SO42- ions. The presence of K+ ions significantly inhibited the removal of Se(IV) with the increase of K+ ion concentration compared with the effect of the other three ions. SEM-EDS and XPS analyses indicated that the removal process was achieved through adsorption by surface complexation, and reductive precipitation of Se(IV) into Se0 with the electron donor of Fe(II) and S(-II) ions. The FeS-BC nanomaterial exhibited an excellent application prospect in the remediation of Se(IV).
Collapse
Affiliation(s)
- Chengke Fu
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Yichao He
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Chengyun Yang
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Jieyu He
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Luna Sun
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Yixin Pan
- School of Civil Engineering, Shaoxing University, Zhejiang 312000, PR China.
| | - Liping Deng
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Rui Huang
- School of Civil Engineering, Shaoxing University, Zhejiang 312000, PR China.
| | - Manli Li
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Zhejiang 312000, PR China
| | - Kaikai Chang
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China; Shaoxing Yigao Testing Technology Co.,Ltd., Zhejiang 312000, PR China; Shanxi Pingyao Coal Chemical (Group) Co., Ltd., Shanxi 031100, PR China.
| |
Collapse
|
6
|
Delorenzi Schons D, Leite GAA. Malathion or diazinon exposure and male reproductive toxicity: a systematic review of studies performed with rodents. Crit Rev Toxicol 2023; 53:506-520. [PMID: 37922518 DOI: 10.1080/10408444.2023.2270494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
Malathion and diazinon are pesticides commonly used in agriculture to avoid insects that damage crops; however, they may cause impairment to the male genital system of exposed humans. The present work carried out a systematic review of the literature concerning the primary studies that assessed the reproductive effects resulting from male rats and mice exposed to malathion or diazinon. The search for articles was performed on the databases PubMed, LILACS, Scopus, and SciELO, using different combinations of the search terms "malathion," "diazinon," "mice," "rats," "male reproduction," "fertility," and "sperm," followed by the Boolean operators AND or OR. The results obtained indicate that both pesticides act as reproductive toxicants by reducing sperm quality, diminishing hormonal concentrations, inducing increased oxidative stress, and provoking histopathological damage in reproductive organs. Then, the exposure to malathion and diazinon may provoke diminished levels of testosterone by increasing acetylcholine stimulation in the testis through muscarinic receptors, thus, providing a reduction in steroidogenic activity in Leydig cells, whose effect is related to lower levels of testosterone in rodents, and consequently, it is associated with decreased fertility. Considering the toxic effects on the male genital system of rodents and the possible male reproductive toxicity in humans, it is recommended the decreased use of these pesticides and their replacement for others that show no or few toxic effects for non-target animals.
Collapse
Affiliation(s)
- Daniel Delorenzi Schons
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Gabriel Adan Araújo Leite
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
7
|
Nikulin MV, Drobot VV, Shurubor YI, Švedas VK, Krasnikov BF. Preparative Biocatalytic Synthesis of α-Ketomethylselenobutyrate-A Putative Agent for Cancer Therapy. Molecules 2023; 28:6178. [PMID: 37687007 PMCID: PMC10489025 DOI: 10.3390/molecules28176178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Biomedical studies of the role of organic selenium compounds indicate that the amino acid derivative of L-selenomethionine, α-ketomethylselenobutyrate (KMSB), can be considered a potential anticancer therapeutic agent. It was noted that, in addition to a direct effect on redox signaling molecules, α-ketoacid metabolites of organoselenium compounds are able to change the status of histone acetylation and suppress the activity of histone deacetylases in cancer cells. However, the wide use of KMSB in biomedical research is hindered not only by its commercial unavailability, but also by the fact that there is no detailed information in the literature on possible methods for the synthesis of this compound. This paper describes in detail the procedure for obtaining a high-purity KMSB preparation (purity ≥ 99.3%) with a yield of the target product of more than 67%. L-amino acid oxidase obtained from C. adamanteus was used as a catalyst for the conversion of L-selenomethionine to KMSB. If necessary, this method can be used as a basis both for scaling up the synthesis of KMSB and for developing cost-effective biocatalytic technologies for obtaining other highly purified drugs.
Collapse
Affiliation(s)
- Maksim V. Nikulin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Lenin Hills 1, Bldg. 40, Moscow 119991, Russia; (M.V.N.); (V.V.D.)
| | - Viktor V. Drobot
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Lenin Hills 1, Bldg. 40, Moscow 119991, Russia; (M.V.N.); (V.V.D.)
| | - Yevgeniya I. Shurubor
- Centre for Strategic Planning of FMBA of the Russian Federation, Pogodinskaya St., Bldg. 10, Moscow 119121, Russia;
| | - Vytas K. Švedas
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Lenin Hills 1, Bldg. 73, Moscow 119991, Russia
| | - Boris F. Krasnikov
- Centre for Strategic Planning of FMBA of the Russian Federation, Pogodinskaya St., Bldg. 10, Moscow 119121, Russia;
| |
Collapse
|
8
|
Tu K, Liu K, Wang Y, Jiang Y, Zhang C. Association of Dietary Intake of Zinc and Selenium with Breast Cancer Risk: A Case-Control Study in Chinese Women. Nutrients 2023; 15:3253. [PMID: 37513671 PMCID: PMC10386436 DOI: 10.3390/nu15143253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
As major nonenzymatic antioxidant components in the body, dietary Zinc (Zn) and Selenium (Se) may have an impact on breast cancer development. This study aimed to investigate the relationship between dietary Zn, Se intake and breast cancer risk in Chinese women. The case-control study included 1591 cases and 1622 age-frequency matched controls. Dietary intake was collected using a validated food frequency questionnaire. Dietary Zn and Se were divided into four categories: Zn/Se from plants, Zn/Se from meat, Zn/Se from red meat, and Zn/Se from white meat. Unconditional logistic regression models and restricted cubic spline analyses were performed to identify potential associations. Zn from white meat intake was linearly and inversely associated with breast cancer risk, and Se from red meat intake was linearly and positively associated with breast cancer risk, with adjusted odds ratio and 95% confidence interval of 0.76 (0.61-0.95) and 1.36 (1.04-1.77), respectively. Non-linear relationships were found between total dietary Zn, Zn from meat, Zn from red meat intake and breast cancer risk (pnon-linearity < 0.05). In conclusion, dietary Zn and Se intake were associated with breast cancer risk in Chinese women, and the optimal intake of Zn may be beneficial for breast cancer prevention.
Collapse
Affiliation(s)
- Kexin Tu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Kaiyan Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yifan Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yiling Jiang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Caixia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
9
|
Urbano T, Filippini T, Wise LA, Sucato S, Polledri E, Malavolti M, Fustinoni S, Michalke B, Vinceti M. Selenium exposure and urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine: Major effects of chemical species and sex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161584. [PMID: 36702271 DOI: 10.1016/j.scitotenv.2023.161584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an element present in trace amounts and different chemical forms. It may exert both beneficial and adverse effects on cellular redox status and on the generation of reactive oxygen species. 8-oxo-7,8-dihydro-2'deoxyguanosine (8-oxodG) is an oxidized derivative of deoxyguanosine, and a sensitive biomarker of oxidative stress and genotoxicity. The present study assessed the extent to which selenium status was associated with urinary 8-oxodG concentrations in a Northern Italian population. We recruited healthy, non-smoking blood donors living in the Reggio Emilia province during 2017-2019. We measured urinary 8-oxodG concentrations and used restricted cubic spline regression analyses to investigate the association between selenium status (estimated using food frequency questionnaires, urinary concentrations, and serum concentrations of selenium and selenium species) and 8-oxodG/g creatinine. Among 137 participants aged 30-60 years, median urinary selenium and 8-oxodG concentrations were 22.02 μg/L and 3.21 μg/g creatinine, respectively. Serum samples and selenium speciation analyses were available for 104 participants. Median total serum selenium levels and dietary intake were 116.5 μg/L and 78.7 μg/day, respectively. In spline regression analysis, there was little association between dietary, serum, or urinary selenium with 8-oxodG concentrations. In sex-specific analyses, urinary selenium showed a positive association with the endpoint among males. For single selenium species, we observed positive associations with urinary 8-oxodG for serum organic selenium species, and negative associations for inorganic selenium forms. In the most adjusted analysis, urinary 8-oxodG concentrations showed a strong positive association with selenomethione-bound selenium (Se-Met) and a negative association with inorganic tetravalent selenium, selenite. In sex-specific analyses, these associations were considerably stronger in males than in females. Overall, study findings indicate that selenium species exhibited very different patterns of associations with the biomarker of oxidative stress, and that these associations also depended on sex. Background exposure to Se-Met appears to be strongly and positively associated with oxidative stress.
Collapse
Affiliation(s)
- Teresa Urbano
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Sabrina Sucato
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elisa Polledri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marcella Malavolti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; IRCCS Ca' Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz Center Munich, Neuherberg, Germany
| | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
10
|
Sun Y, Wang Z, Gong P, Yao W, Ba Q, Wang H. Review on the health-promoting effect of adequate selenium status. Front Nutr 2023; 10:1136458. [PMID: 37006921 PMCID: PMC10060562 DOI: 10.3389/fnut.2023.1136458] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Selenium is an essential microelement involved in various biological processes. Selenium deficiency increases the risk of human immunodeficiency virus infection, cancer, cardiovascular disease, and inflammatory bowel disease. Selenium possesses anti-oxidant, anti-cancer, immunomodulatory, hypoglycemic, and intestinal microbiota-regulating properties. The non-linear dose-response relationship between selenium status and health effects is U-shaped; individuals with low baseline selenium levels may benefit from supplementation, whereas those with acceptable or high selenium levels may face possible health hazards. Selenium supplementation is beneficial in various populations and conditions; however, given its small safety window, the safety of selenium supplementation is still a subject of debate. This review summarizes the current understanding of the health-promoting effects of selenium on the human body, the dietary reference intake, and evidence of the association between selenium deficiency and disease.
Collapse
Affiliation(s)
- Ying Sun
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Pin Gong,
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Wenbo Yao,
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Qian Ba,
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hui Wang,
| |
Collapse
|
11
|
Stepankova H, Michalkova H, Splichal Z, Richtera L, Svec P, Vaculovic T, Pribyl J, Kormunda M, Rex S, Adam V, Heger Z. Unveiling the nanotoxicological aspects of Se nanomaterials differing in size and morphology. Bioact Mater 2023; 20:489-500. [PMID: 35800405 PMCID: PMC9237951 DOI: 10.1016/j.bioactmat.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/08/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Although the general concept of nanotechnology relies on exploitation of size-dependent properties of nanoscaled materials, the relation between the size/morphology of nanoparticles with their biological activity remains not well understood. Therefore, we aimed at investigating the biological activity of Se nanoparticles, one of the most promising candidates of nanomaterials for biomedicine, possessing the same crystal structure, but differing in morphology (nanorods vs. spherical particles) and aspect ratios (AR, 11.5 vs. 22.3 vs. 1.0) in human cells and BALB/c mice. Herein, we report that in case of nanorod-shaped Se nanomaterials, AR is a critical factor describing their cytotoxicity and biocompatibility. However, spherical nanoparticles (AR 1.0) do not fit this statement and exhibit markedly higher cytotoxicity than lower-AR Se nanorods. Beside of cytotoxicity, we also show that morphology and size substantially affect the uptake and intracellular fate of Se nanomaterials. In line with in vitro data, in vivo i.v. administration of Se nanomaterials revealed the highest toxicity for higher-AR nanorods followed by spherical nanoparticles and lower-AR nanorods. Moreover, we revealed that Se nanomaterials are able to alter intracellular redox homeostasis, and affect the acidic intracellular vesicles and cytoskeletal architecture in a size- and morphology-dependent manner. Although the tested nanoparticles were produced from the similar sources, their behavior differs markedly, since each type is promising for several various application scenarios, and the presented testing protocol could serve as a concept standardizing the biological relevance of the size and morphology of the various types of nanomaterials and nanoparticles.
Collapse
Affiliation(s)
- Hana Stepankova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Zbynek Splichal
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Tomas Vaculovic
- Department of Chemistry, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15 Bratislava, Slovak Republic
| | - Jan Pribyl
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Martin Kormunda
- Department of Physics, Faculty of Science, J. E. Purkyne University, Pasteurova 1, Usti nad Labem, CZ-400 96, Czech Republic
| | - Simona Rex
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| |
Collapse
|
12
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
13
|
Long W, Chen Z, Chen X, Zhong Z. Investigation of the Adsorption Process of Chromium (VI) Ions from Petrochemical Wastewater Using Nanomagnetic Carbon Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3815. [PMID: 36364591 PMCID: PMC9653853 DOI: 10.3390/nano12213815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Magnetic mesoporous carbon (MMC) and magnetic activated carbon (MAC) are good functionalized carbon materials to use when applying environmental techniques. In this work, a series of efficient magnetic composite adsorbents containing Fe3O4 and carbon were prepared successfully and used for the adsorption of Cr(VI) ions in petrochemical wastewater. The morphology and structure of these magnetic adsorbents were characterized with FTIR, TG, XRD, VSM, BET, and SEM technologies. The effect of different factors, such as pH, adsorption time, initial Cr(VI) ions' concentration, Fe3O4 loading, and adsorption time, on the adsorption behavior were discussed. The results showed that the 8%Fe3O4@MMC adsorbent exhibited a high removal rate, reutilization, and large adsorption capacity. The corresponding adsorption capacity and removal rate could reach 132.80 mg·g-1 and 99.60% when the pH value, adsorption time, and initial Cr(VI) ions' concentration were 2, 180 min, and 80 mg·L-1 at 298 K. Four kinds of adsorption isotherm models were used for fitting the experimental data by the 8%Fe3O4@MMC adsorbent at different temperatures in detail, and a kinetic model and thermodynamic analysis also were performed carefully. The reutilization performance was investigated, and the Fe3O4@MMC adsorbent exhibited greater advantage in the adsorption of Cr(VI) ions. These good performances can be attributed to a unique uniform pore structure, different crystalline phases of Fe3O4 particles, and adsorption potential rule. Hence, the 8%Fe3O4@MMC adsorbent can be used in industrial petrochemical wastewater treatment.
Collapse
Affiliation(s)
- Wei Long
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhilong Chen
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiwen Chen
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhanye Zhong
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
14
|
Song B, Weijma J, Buisman CJN, van der Weijden RD. How sulfur species can accelerate the biological immobilization of the toxic selenium oxyanions and promote stable hexagonal Se 0 formation. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129367. [PMID: 35897181 DOI: 10.1016/j.jhazmat.2022.129367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Toxic selenium oxyanions and sulfur species are often jointly present in contaminated waters and soils. This study investigated the effect on kinetics and resulting products for bio-reduction of selenium oxyanions in the presence of biologically produced sulfur resulting from bio-oxidation of sulfide in (bio)gas-desulfurization (bio-S0) and of sulfate. Selenite and selenate (~2 mmol L-1) bio-reduction was studied in batch up to 28 days at 30 oC and pH 7 using lactic acid and a sulfate-reducing sludge, 'Emmtec'. Bio-S0 addition increased the selenite removal rate, but initially slightly decreased selenate reduction rates. Selenite reacted with biologically generated sulfide resulting in selenium-sulfur, which upon further bio-reduction creates a sulfur bio-reduction cycle. Sulfate addition increased the bio-reduction rate for both selenite and sulfate. Bio-S0 or sulfate promoted hexagonal selenium formation, whereas without these, mostly amorphous Se0 resulted. With another inoculum, 'Eerbeek', bio-S0 accelerated the selenite reduction rate less than for 'Emmtec' because of lower sulfur and higher selenite bio-reduction rates. Bio-S0 addition increased the selenate reduction rate slightly and accelerated hexagonal selenium formation. Hexagonal selenium formation is advantageous because it facilitates separation and recovery and is less mobile and toxic than amorphous Se0. Insights into the interaction between selenium and sulfur bio-reduction are valuable for understanding environmental pathways and considerations regarding remediation and recovery.
Collapse
Affiliation(s)
- B Song
- Department of Environmental Technology, Wageningen University and Research, the Netherlands
| | - J Weijma
- Department of Environmental Technology, Wageningen University and Research, the Netherlands
| | - C J N Buisman
- Department of Environmental Technology, Wageningen University and Research, the Netherlands
| | - R D van der Weijden
- Department of Environmental Technology, Wageningen University and Research, the Netherlands.
| |
Collapse
|
15
|
ÖĞÜT S, DEĞİRMENCİOĞLU S, BAHTİYAR N, CİNEMRE FB, AYDEMİR B, KARAÇETİN D, HACIOSMANOĞLU E, KURAL A, GÜNEŞ ME, BEKTAŞ M. The Role of Some Selenoproteins in the Etiopathogenesis of Breast Cancer. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2022. [DOI: 10.38079/igusabder.1152514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Amaç: Meme kanseri, kadınlarda kanser kaynaklı ölümlerde akciğer kanserinden sonra ikinci sırada yer alır. Çeşitli çalışmalarda, selenoproteinlerin kanserogenezin bazı evrelerini baskıladığı ve kanser hücrelerinin çoğalma hızını azalttığı gösterilmiştir. Ancak bu mekanizmalar tam olarak açıklanamamıştır. Kanser tedavisinde radyoterapi, kemoterapiyle birlikte en çok tercih edilen tedavi yöntemlerindendir. Çalışmanın amacı, radyoterapi alan meme kanserli hastaların tedavi öncesi ve sonrası selenoprotein düzeylerindeki değişiklikleri değerlendirerek hastalığın etiyopatogenezine olası etkilerini incelemektir.Yöntem: Çalışmamıza meme kanseri teşhisi konmuş, radyoterapi öncesi ve radyoterapi sonrası örnekleri alınan 35 kadın hasta ile herhangi bir ilaç tedavisi almayan 25 sağlıklı kadın gönüllü dahil edildi. Hasta ve sağlıklı kontrol gruplarını oluşturan bireylerden kan örnekleri alındı. Serum örneklerinde selenoprotein K (Sel-K), selenoprotein W1 (Sel-W1) ve selenoprotein P (Sel-P) düzeyleri ELISA (Enzyme-Linked Immunosorbent Assay) yöntemi ile ölçüldü. İstatistiksel analiz, Wilcoxon ve Mann-Whitney U testleri kullanılarak yapıldı. Hesaplamalar için Statistical Package for the Social Sciences – SPSS 21.0 for Windows (SPSS Inc, Chicago, IL, ABD) kullanıldı. p<0.05, istatistiksel olarak anlamlı bir farkı belirtmek için kabul edildi.Bulgular: Serum Sel-K düzeyleri tedavi öncesi ve kontrol grubu karşılaştırıldığında, tedavi öncesi grupta anlamlı olarak düşük bulundu. Sel- P düzeyleri hem tedavi öncesi hem de tedavi sonrasında kontrol grubu ile karşılaştırıldığında her iki grupta da kontrol grubuna göre düşük bulundu. Sel-W1 düzeylerinde gruplar arasında herhangi bir anlamlılık bulunmadı.Sonuç: Meme kanserinde bazı selenoproteinlerin hastalığın etiyopatogenezinde önemli bir rolü olmakla birlikte daha fazla örneklem grubu ve ileri çalışmalar ile hastalığın progresyonu ve selenoprotein düzeyleri arasındaki ilişkinin araştırılmasına ihtiyaç duyulmaktadır.
Collapse
Affiliation(s)
- Selim ÖĞÜT
- İSTANBUL ÜNİVERSİTESİ, SAĞLIK BİLİMLERİ ENSTİTÜSÜ, TIP BİLİMLERİ (DR)
| | - Sevgin DEĞİRMENCİOĞLU
- KIRKLARELİ ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, TIBBİ BİYOKİMYA ANABİLİM DALI
| | - Nurten BAHTİYAR
- İSTANBUL ÜNİVERSİTESİ-CERRAHPAŞA, CERRAHPAŞA TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, BİYOFİZİK ANABİLİM DALI
| | - Fatma Behice CİNEMRE
- SAKARYA ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, TIBBİ BİYOKİMYA ANABİLİM DALI
| | - Birsen AYDEMİR
- SAKARYA ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, BİYOFİZİK ANABİLİM DALI
| | - Didem KARAÇETİN
- SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, İSTANBUL BAŞAKŞEHİR ÇAM VE SAKURA ŞEHİR SAĞLIK UYGULAMA VE ARAŞTIRMA MERKEZİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, RADYASYON ONKOLOJİSİ ANABİLİM DALI
| | - Ebru HACIOSMANOĞLU
- BEZM-İ ÂLEM VAKIF ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ
| | - Alev KURAL
- SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, HAMİDİYE ULUSLARARASI TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, TIBBİ BİYOKİMYA ANABİLİM DALI
| | - Mehmet Emin GÜNEŞ
- İSTANBUL ESENYURT ÜNİVERSİTESİ, SAĞLIK BİLİMLERİ FAKÜLTESİ, HEMŞİRELİK BÖLÜMÜ
| | | |
Collapse
|
16
|
Efficient adsorptive and reductive removal of U(VI) and Se(IV) using porous hexagonal boron nitride supported nanoscale iron sulfide: Performance and mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Advances in the Study of the Mechanism by Which Selenium and Selenoproteins Boost Immunity to Prevent Food Allergies. Nutrients 2022; 14:nu14153133. [PMID: 35956310 PMCID: PMC9370097 DOI: 10.3390/nu14153133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022] Open
Abstract
Selenium (Se) is an essential micronutrient that functions in the body mainly in the form of selenoproteins. The selenoprotein contains 25 members in humans that exhibit a number of functions. Selenoproteins have immunomodulatory functions and can enhance the ability of immune system to regulate in a variety of ways, which can have a preventive effect on immune-related diseases. Food allergy is a specific immune response that has been increasing in number in recent years, significantly reducing the quality of life and posing a major threat to human health. In this review, we summarize the current understanding of the role of Se and selenoproteins in regulating the immune system and how dysregulation of these processes may lead to food allergies. Thus, we can explain the mechanism by which Se and selenoproteins boost immunity to prevent food allergies.
Collapse
|
18
|
Ehudin MA, Golla U, Trivedi D, Potlakayala SD, Rudrabhatla SV, Desai D, Dovat S, Claxton D, Sharma A. Therapeutic Benefits of Selenium in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23147972. [PMID: 35887320 PMCID: PMC9323677 DOI: 10.3390/ijms23147972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Supplementing chemotherapy and radiotherapy with selenium has been shown to have benefits against various cancers. This approach has also been shown to alleviate the side effects associated with standard cancer therapies and improve the quality of life in patients. In addition, selenium levels in patients have been correlated with various cancers and have served as a diagnostic marker to track the efficiency of treatments or to determine whether these selenium levels cause or are a result of the disease. This concise review presents a survey of the selenium-based literature, with a focus on hematological malignancies, to demonstrate the significant impact of selenium in different cancers. The anti-cancer mechanisms and signaling pathways regulated by selenium, which impart its efficacious properties, are discussed. An outlook into the relationship between selenium and cancer is highlighted to guide future cancer therapy development.
Collapse
Affiliation(s)
- Melanie A. Ehudin
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (S.D.)
| | - Upendarrao Golla
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Devnah Trivedi
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Shobha D. Potlakayala
- Department of Biological Sciences, School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA; (S.D.P.); (S.V.R.)
| | - Sairam V. Rudrabhatla
- Department of Biological Sciences, School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA; (S.D.P.); (S.V.R.)
| | - Dhimant Desai
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (S.D.)
| | - David Claxton
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Arati Sharma
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence:
| |
Collapse
|
19
|
Nath D, Kaur L, Sohal HS, Malhi DS, Garg S, Thakur D. Application of Selenium Nanoparticles in Localized Drug Targeting for Cancer Therapy. Anticancer Agents Med Chem 2022; 22:2715-2725. [PMID: 35168523 DOI: 10.2174/1871520622666220215122756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/04/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Selenium nanoparticles (SeNPs) have gardened their place in the biomedical field and serve as a chemotherapeutic agent for targeted drug delivery due to their capacity to exert distinct mechanisms of action on cancer and normal cells. The principle behind these mechanisms is the generation of Reactive Oxygen Species (ROS) eventually leads to apoptosis via the dysfunction of various pathways. SeNPs, when used in higher concentrations, lead to toxicity; therefore, conjugation and surface functionalization not only improve their toxic nature but also enhance their anticancer activity. OBJECTIVES The primary goal of this analysis is to provide a thorough and systematic investigation into the use of various SeNPs in localized drug targeting for cancer therapy. This has been achieved by citing examples of numerous SeNPs and their use as a drug targeting agent for cancer therapy. METHODS All relevant data and information about the various SeNPs for drug targeting in cancer therapy were gathered from various databases, including Science Direct, PubMed, Taylor and Francis imprints, American Chemical Society, Springer, Royal Society of Chemistry, and Google scholar. RESULTS SeNPs are explored due to their better biopharmaceutical properties and their cytostatic behavior. Se, as an essential component of the enzyme glutathione peroxidase (GPx) and other seleno-chemical substances, might boost chemotherapeutic efficacy, and protect tissues from cellular damage caused by ROS. SeNPs have the potential to set the stage for developing new strategies to treat malignancy. CONCLUSION This review extensively analyzed the anticancer efficacy and functionalization strategies of SeNPs in drug delivery to cancer cells. In addition, this review highlights the mechanism of action of drug-loaded SeNPs to suppress the proliferation of cancer cells in different cell lines.
Collapse
Affiliation(s)
- Dipak Nath
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Loveleen Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Harvinder Singh Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Dharambeer Singh Malhi
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Sonali Garg
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Deepa Thakur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| |
Collapse
|
20
|
Adimulam T, Arumugam T, Foolchand A, Ghazi T, Chuturgoon AA. The Effect of Organoselenium Compounds on Histone Deacetylase Inhibition and Their Potential for Cancer Therapy. Int J Mol Sci 2021; 22:ijms222312952. [PMID: 34884764 PMCID: PMC8657714 DOI: 10.3390/ijms222312952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic and epigenetic changes alter gene expression, contributing to cancer. Epigenetic changes in cancer arise from alterations in DNA and histone modifications that lead to tumour suppressor gene silencing and the activation of oncogenes. The acetylation status of histones and non-histone proteins are determined by the histone deacetylases and histone acetyltransferases that control gene transcription. Organoselenium compounds have become promising contenders in cancer therapeutics. Apart from their anti-oxidative effects, several natural and synthetic organoselenium compounds and metabolites act as histone deacetylase inhibitors, which influence the acetylation status of histones and non-histone proteins, altering gene transcription. This review aims to summarise the effect of natural and synthetic organoselenium compounds on histone and non-histone protein acetylation/deacetylation in cancer therapy.
Collapse
|
21
|
Ren Z, Wu Q, Deng H, Yu Y, Tang W, Deng Y, Zhu L, Wang Y, Deng J. Effects of Selenium on the Immunotoxicity of Subacute Arsenic Poisoning in Chickens. Biol Trace Elem Res 2021; 199:4260-4272. [PMID: 33387274 DOI: 10.1007/s12011-020-02558-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/20/2020] [Indexed: 12/26/2022]
Abstract
This study aimed to determine the effects of selenium on the immune toxicity of subacute arsenic poisoning in chickens. Two hundred 8-day-old broilers were randomly divided into 5 groups: the control group (0.1 mg/kg As + 0.2 mg/kg Se), the As group (3 mg/kg As + 0.2 mg/kg Se), As + Se group I (3 mg/kg As + 5 mg/kg Se), As + Se group II (3 mg/kg As + 10 mg/kg Se), and As + Se group III (3 mg/kg As + 15 mg/kg Se). The conclusions were drawn based on the following measurements: 3.0 mg/kg added to feed led to a decrease in the growth performance of the broilers, reduced the level and conversion rate of ANAE, reduced the blood protein content of the broilers but had no effect on the albumin/globulin ratio, and had an inhibitory effect on erythrocyte immunity. Selenium-added of 5 and 10 mg/kg in daily feed leads to increased growth performance, increases the positive rate and conversion rate of ANAE, increases the hemoglobin content of broilers, and promotes erythrocyte immunity, which indicates that the selenium-added reduces the toxic effects of arsenic; 3.0 mg/kg arsenic with 15 mg/kg selenium had the most severe toxic effects. Fifteen milligrams per kilogram of selenium added in daily feed increases the toxicity of arsenic to broilers. The dose of 10 mg/kg selenium showed the best inhibitory effect on subacute arsenic poisoning in the broilers.
Collapse
Affiliation(s)
- Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, China
| | - Qiang Wu
- Leshan City, Shizhong District of Animal Husbandry Bureau, Leshan, 614000, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yueru Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wenjiao Tang
- Leshan City, Shizhong District of Animal Husbandry Bureau, Leshan, 614000, China
| | - Youtian Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
22
|
Sharifiaghdam M, Shaabani E, Sharifiaghdam Z, De Keersmaecker H, De Rycke R, De Smedt S, Faridi-Majidi R, Braeckmans K, Fraire JC. Enhanced siRNA Delivery and Selective Apoptosis Induction in H1299 Cancer Cells by Layer-by-Layer-Assembled Se Nanocomplexes: Toward More Efficient Cancer Therapy. Front Mol Biosci 2021; 8:639184. [PMID: 33959633 PMCID: PMC8093573 DOI: 10.3389/fmolb.2021.639184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Nanotechnology has made an important contribution to oncology in recent years, especially for drug delivery. While many different nano-delivery systems have been suggested for cancer therapy, selenium nanoparticles (SeNPs) are particularly promising anticancer drug carriers as their core material offers interesting synergistic effects to cancer cells. Se compounds can exert cytotoxic effects by acting as pro-oxidants that alter cellular redox homeostasis, eventually leading to apoptosis induction in many kinds of cancer cells. Herein, we report on the design and synthesis of novel layer-by-layer Se-based nanocomplexes (LBL-Se-NCs) as carriers of small interfering RNA (siRNA) for combined gene silencing and apoptosis induction in cancer cells. The LBL-Se-NCs were prepared using a straightforward electrostatic assembly of siRNA and chitosan (CS) on the solid core of the SeNP. In this study, we started by investigating the colloidal stability and protection of the complexed siRNA. The results show that CS not only functioned as an anchoring layer for siRNA, but also provided colloidal stability for at least 20 days in different media when CS was applied as a third layer. The release study revealed that siRNA remained better associated with LBL-Se-NCs, with only a release of 35% after 7 days, as compared to CS-NCs with a siRNA release of 100% after 48 h, making the LBL nanocarrier an excellent candidate as an off-the-shelf formulation. When applied to H1299 cells, it was found that they can selectively induce around 32% apoptosis, while significantly less apoptosis (5.6%) was induced in NIH/3T3 normal cells. At the same time, they were capable of efficiently inducing siRNA downregulation (35%) without loss of activity 7 days post-synthesis. We conclude that LBL-Se-NCs are promising siRNA carriers with enhanced stability and with a dual mode of action against cancer cells.
Collapse
Affiliation(s)
- Maryam Sharifiaghdam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Elnaz Shaabani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Zeynab Sharifiaghdam
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Ghent University Expertise Centre for Transmission Electron Microscopy and VIB BioImaging Core, Ghent, Belgium
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ghent, Belgium
| | - Juan C. Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Zhu W, Liu Y, Zhang W, Fan W, Wang S, Gu JH, Sun H, Liu F. Selenomethionine protects hematopoietic stem/progenitor cells against cobalt nanoparticles by stimulating antioxidant actions and DNA repair functions. Aging (Albany NY) 2021; 13:11705-11726. [PMID: 33875618 PMCID: PMC8109066 DOI: 10.18632/aging.202865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/22/2021] [Indexed: 01/13/2023]
Abstract
Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) can differentiate into all blood lineages to maintain hematopoiesis, wound healing, and immune functions. Recently, cobalt-chromium alloy casting implants have been used extensively in total hip replacements; however, cobalt nanoparticles (CoNPs) released from the alloy were toxic to HSCs and HPCs. We aimed to investigate the mechanism underlying the toxic effect of CoNPs on HSCs/HPCs and to determine the protective effect of selenomethionine (SeMet) against CoNPs in vitro and in vivo. Human and rat CD34+ HSCs/HPCs were isolated from cord blood and bone marrow, respectively. CoNPs decreased the viability of CD34+ HSCs/HPCs and increased apoptosis. SeMet attenuated the toxicity of CoNPs by enhancing the antioxidant ability of cells. The protective effect of SeMet was not completely abolished after adding H2O2 to abrogate the improvement of the antioxidant capacity by SeMet. SeMet and CoNPs stimulated ATM/ATR DNA damage response signals and inhibited cell proliferation. Unlike CoNPs, SeMet did not damage the DNA, and cell proliferation recovered after removing SeMet. SeMet inhibited the CoNP-induced upregulation of hypoxia inducible factor (HIF)-1α, thereby disrupting the inhibitory effect of HIF-1α on breast cancer type 1 susceptibility protein (BRCA1). Moreover, SeMet promoted BRCA1-mediated ubiquitination of cyclin B by upregulating UBE2K. Thus, SeMet enhanced cell cycle arrest and DNA repair post-CoNP exposure. Overall, SeMet protected CD34+ HSCs/HPCs against CoNPs by stimulating antioxidant activity and DNA repair.
Collapse
Affiliation(s)
- Wenfeng Zhu
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Yake Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Weinan Zhang
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wentao Fan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Siqi Wang
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jin-Hua Gu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu Province, China.,Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Huanjian Sun
- Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Fan Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
24
|
Bevinakoppamath S, Saleh Ahmed AM, Ramachandra SC, Vishwanath P, Prashant A. Chemopreventive and Anticancer Property of Selenoproteins in Obese Breast Cancer. Front Pharmacol 2021; 12:618172. [PMID: 33935708 PMCID: PMC8087246 DOI: 10.3389/fphar.2021.618172] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity is a significant risk factor for various cancers including breast cancer resulting in an increased risk of recurrence as well as morbidity and mortality. Extensive studies on various pathways have been successful in establishing a biological relationship between obesity and breast cancer. The molecular classification of breast cancer includes five groups each having different responses to treatment. Increased levels of inflammatory cytokines seen in obese conditions drive the pro-proliferative pathways, such as the influx of macrophages, angiogenesis, and antiapoptotic pathways. Increased peripheral aromatization of androgens by aromatase increases the circulating estrogen levels which are also responsible for the association of obesity with breast cancer. Also, increased oxidative stress due to chronic low-grade inflammation in obese women plays an important role in carcinogenesis. Despite the availability of safe and effective treatment options for breast cancer, obese women are at increased risk of adverse outcomes including treatment-related toxicities. In the recent decade, selenium compounds have gained substantial interest as chemopreventive and anticancer agents. The chemical derivatives of selenium include inorganic and organic compounds that exhibit pro-oxidant properties and alter cellular redox homeostasis. They target more than one metabolic pathway by thiol modifications, induction of reactive oxygen species, and chromatin modifications to exert their chemopreventive and anticancer activities. The primary functional effectors of selenium that play a significant role in human homeostasis are selenoproteins like glutathione peroxidase, thioredoxin reductase, iodothyronine deiodinases, and selenoprotein P. Selenoproteins play a significant role in adipose tissue physiology by modulating preadipocyte proliferation and adipogenic differentiation. They correlate negatively with body mass index resulting in increased oxidative stress that may lead to carcinogenesis in obese individuals. Methylseleninic acid effectively suppresses aromatase activation thus reducing the estrogen levels and acting as a breast cancer chemopreventive agent. Adipose-derived inflammatory mediators influence the selenium metabolites and affect the proliferation and metastatic properties of cancer cells. Recently selenium nanoparticles have shown potent anticancer activity which may lead to a major breakthrough in the management of cancers caused due to multiple pathways. In this review, we discuss the possible role of selenoproteins as chemopreventive and an anticancer agent in obese breast cancer.
Collapse
Affiliation(s)
- Supriya Bevinakoppamath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, India
| | - Adel Mohammed Saleh Ahmed
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, India
| | - Shobha Chikkavaddaraguddi Ramachandra
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, India
| | - Prashant Vishwanath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, India
| | - Akila Prashant
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, India
| |
Collapse
|
25
|
Ma J, Huang J, Sun J, Zhou Y, Ji X, Guo D, Liu C, Li J, Zhang J, Song H. L-Se-methylselenocysteine sensitizes lung carcinoma to chemotherapy. Cell Prolif 2021; 54:e13038. [PMID: 33793020 PMCID: PMC8088472 DOI: 10.1111/cpr.13038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives Organic Selenium (Se) compounds such as L‐Se‐methylselenocysteine (L‐SeMC/SeMC) have been employed as a class of anti‐oxidant to protect normal tissues and organs from chemotherapy‐induced systemic toxicity. However, their comprehensive effects on cancer cell proliferation and tumour progression remain elusive. Materials and Methods CCK‐8 assays were conducted to determine the viabilities of cancer cells after exposure to SeMC, chemotherapeutics or combined treatment. Intracellular reactive oxygen species (ROS) levels and lipid peroxidation levels were assessed via fluorescence staining. The efficacy of free drugs or drug‐loaded hydrogel against tumour growth was evaluated in a xenograft mouse model. Results Among tested cancer cells and normal cells, the A549 lung adenocarcinoma cells showed higher sensitivity to SeMC exposure. In addition, combined treatments with several types of chemotherapeutics induced synergistic lethality. SeMC promoted lipid peroxidation in A549 cells and thereby increased ROS generation. Significantly, the in vivo efficacy of combination therapy was largely potentiated by hydrogel‐mediate drug delivery. Conclusions Our study reveals the selectivity of SeMC in the inhibition of cancer cell proliferation and develops an efficient strategy for local combination therapy.
Collapse
Affiliation(s)
- Jia Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Huang
- Department of Neurology, Xuhui District Central Hospital, Shanghai, China
| | - Jinli Sun
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfeng Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyuan Ji
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daoxia Guo
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiyu Li
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Jablonska E, Li Q, Reszka E, Wieczorek E, Tarhonska K, Wang T. Therapeutic Potential of Selenium and Selenium Compounds in Cervical Cancer. Cancer Control 2021; 28:10732748211001808. [PMID: 33754876 PMCID: PMC8204638 DOI: 10.1177/10732748211001808] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cervical cancer is a common female cancer. It is strongly associated with human papillomavirus (HPV) infection. However, HPV infection alone is not sufficient to induce cervical cancer because its development is dependent on the coexistence of several factors that enable the virus to overcome the host immune system. These include individual genetic background, environmental factors, or diet, including dietary selenium intake. Selenium is an essential trace element with antiviral properties and has been shown to exert antitumor effects. Surprisingly, the role of selenium in cervical cancer has not been studied as intensively as in other cancers. Here, we have summarized the existing experimental data on selenium and cervical cancer. It may be helpful in evaluating the role of this nutrient in treatment of the mentioned malignancy as well as in planning further studies in this area.
Collapse
Affiliation(s)
- Ewa Jablonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Qi Li
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Edyta Reszka
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Edyta Wieczorek
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Kateryna Tarhonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Tong Wang
- Harbin Medical University, Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, China
| |
Collapse
|
27
|
Selenite Inhibits Notch Signaling in Cells and Mice. Int J Mol Sci 2021; 22:ijms22052518. [PMID: 33802299 PMCID: PMC7959125 DOI: 10.3390/ijms22052518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 02/05/2023] Open
Abstract
Selenium is an essential micronutrient with a wide range of biological effects in mammals. The inorganic form of selenium, selenite, is supplemented to relieve individuals with selenium deficiency and to alleviate associated symptoms. Additionally, physiological and supranutritional selenite have shown selectively higher affinity and toxicity towards cancer cells, highlighting their potential to serve as chemotherapeutic agents or adjuvants. At varying doses, selenite extensively regulates cellular signaling and modulates many cellular processes. In this study, we report the identification of Delta–Notch signaling as a previously uncharacterized selenite inhibited target. Our transcriptomic results in selenite treated primary mouse hepatocytes revealed that the transcription of Notch1, Notch2, Hes1, Maml1, Furin and c-Myc were all decreased following selenite treatment. We further showed that selenite can inhibit Notch1 expression in cultured MCF7 breast adenocarcinoma cells and HEPG2 liver carcinoma cells. In mice acutely treated with 2.5 mg/kg selenite via intraperitoneal injection, we found that Notch1 expression was drastically lowered in liver and kidney tissues by 90% and 70%, respectively. Combined, these results support selenite as a novel inhibitor of Notch signaling, and a plausible mechanism of inhibition has been proposed. This discovery highlights the potential value of selenite applied in a pathological context where Notch is a key drug target in diseases such as cancer, fibrosis, and neurodegenerative disorders.
Collapse
|
28
|
Adeyi OE, Babayemi DO, Ajayi BO, Adeyi AO, Ayodeji AH, Oguntayo AO, Adeyemi AT, Olaiyapo OE, Adeoye ST. Co-administration of sodium selenite and sodium arsenite exacerbates hepatic, renal, pulmonary and splenic inflammation in rats. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Moya-Andérico L, Vukomanovic M, Cendra MDM, Segura-Feliu M, Gil V, Del Río JA, Torrents E. Utility of Galleria mellonella larvae for evaluating nanoparticle toxicology. CHEMOSPHERE 2021; 266:129235. [PMID: 33316472 DOI: 10.1016/j.chemosphere.2020.129235] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 05/27/2023]
Abstract
The use of nanoparticles in consumer products is currently on the rise, so it is important to have reliable methods to predict any associated toxicity effects. Traditional in vitro assays fail to mimic true physiological responses of living organisms against nanoparticles whereas murine in vivo models are costly and ethically controversial. For these reasons, this study aimed to evaluate the efficacy of Galleria mellonella as an alternative, non-rodent in vivo model for examining nanoparticle toxicity. Silver, selenium, and functionalized gold nanoparticles were synthesized, and their toxicity was assessed in G. mellonella larvae. The degree of acute toxicity effects caused by each type of NP was efficiently detected by an array of indicators within the larvae: LD50 calculation, hemocyte proliferation, NP distribution, behavioral changes, and histological alterations. G. mellonella larvae are proposed as a nanotoxicological model that can be used as a bridge between in vitro and in vivo murine assays in order to obtain better predictions of NP toxicity.
Collapse
Affiliation(s)
- Laura Moya-Andérico
- Bacterial Infections: Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marija Vukomanovic
- Advanced Materials Department, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Maria Del Mar Cendra
- Bacterial Infections: Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Miriam Segura-Feliu
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - José A Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections: Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology, and Statistics, Biology Faculty, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
30
|
Makhal PN, Nandi A, Kaki VR. Insights into the Recent Synthetic Advances of Organoselenium Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202004029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Priyanka N. Makhal
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Arijit Nandi
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Venkata Rao Kaki
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
31
|
Sarwar N, Akhtar M, Kamran MA, Imran M, Riaz MA, Kamran K, Hussain S. Selenium biofortification in food crops: Key mechanisms and future perspectives. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103615] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Macan TP, de Amorim TA, Damiani AP, Beretta ÂCDL, Magenis ML, Vilela TC, Teixeira JP, Andrade VMD. Brazil nut prevents oxidative DNA damage in type 2 diabetes patients. Drug Chem Toxicol 2020; 45:1066-1072. [PMID: 32811197 DOI: 10.1080/01480545.2020.1808667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Brazil nut (Bertholletia excelsa, H.B.K.) originating from the Amazon region is one of the richest known sources of selenium (Se), a micronutrient that is essential and required for optimal physiological functioning. This mineral presents several health benefits, including improvement of the redox cellular status and maintenance of genomic stability. Knowing that type 2 diabetes mellitus (T2D) is strongly linked to oxidative stress and consequently DNA damage, the aim of this study was to assess the ex vivo antioxidative effects of Se through Brazil nut consumption and its potential in preventing oxidative DNA damage induced by H2O2. In order to accomplish this, the Comet assay (single-cell gel electrophoresis) was used to measure DNA damage in peripheral blood cells harvested before and after supplementation with Brazil nut. Comet assay was also applied ex vivo to measure the potential of Se to prevent oxidative damage to DNA induced by H2O2 in blood of type 2 diabetes patients collected before and after six months of supplementation with Brazil nut. We found that supplementation with Brazil nuts significantly increased serum Se levels. Furthermore, we observed a significant increase in fasting blood glucose after six months of consuming Brazil nuts; however, no significant effect was observed on the levels of glycated hemoglobin. Finally, we noticed that the cells were more resistant to H2O2-induced DNA damage after six months of supplementation with Brazil nut. Thus, consumption of Brazil nuts could decrease oxidative DNA damage in T2D patients, probably through the antioxidative effects of Se.
Collapse
Affiliation(s)
- Tamires Pavei Macan
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil.,Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
| | - Thais Aquino de Amorim
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Adriani Paganini Damiani
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Ângela Caroline da Luz Beretta
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Marina Lummertz Magenis
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Thais Ceresér Vilela
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - João Paulo Teixeira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
| | - Vanessa Moraes de Andrade
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| |
Collapse
|
33
|
Salahshoor MR, Abdolmaleki A, Faramarzi A, Jalili C, Shiva R. Does Tribulus terrestris improve toxic effect of Malathion on male reproductive parameters? JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2020; 12:183-191. [PMID: 32742118 PMCID: PMC7373104 DOI: 10.4103/jpbs.jpbs_224_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/26/2019] [Accepted: 12/16/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Tribulus terrestris has antioxidant and free-radical-scavenging properties. Malathion is the most common organophosphate, which is capable to produce free radicals and induce disturbance on some of male reproductive parameters. This study was designed to evaluate the effects of T. terrestris extract against damage induced by Malathion to the reproductive parameter of male rats. Materials and Methods: In this experimental study, 48 male Wistar rats were randomly assigned to eight groups: first group, sham group (normal saline); second group, Malathion (250 mg/kg) group; third to fifth groups, T. terrestris groups (2.5, 5, and 10 mg/kg body weight, respectively); and sixth to eight groups, Malathion + T. terrestris groups (2.5, 5, and 10 mg/kg). Tribulus terrestris extract (2.5, 5, and 10 mg/kg body weight, respectively) administrated orally, and daily for 8 weeks. The sperm parameters, testis malondialdehyde (MDA), serum total antioxidant capacity, serum testosterone level, and the height of germinal layer were evaluated and analyzed statistically. Results: All the values of male reproductive parameters reduced significantly in the Malathion group as compared to the sham group (P < 0.01) except MDA level, which increased significantly. The T. terrestris and T. terrestris + Malathion treatments in all doses increased the whole parameters significantly as compared to the Malathion group (P < 0.01) except MDA level, which decreased significantly. No significant changes were observed in all T. terrestris groups as compared to the sham group (P > 0.05). Conclusion: Tribulus terrestris extract administration attenuates the toxic effects of Malathion on some of the male reproductive parameters.
Collapse
Affiliation(s)
- Mohammad Reza Salahshoor
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Abdolmaleki
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azita Faramarzi
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Department of AnatomicalSciences, Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshankhah Shiva
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
34
|
Jalili C, Farzaei MH, Roshankhah S, Salahshoor MR. Resveratrol attenuates malathion-induced liver damage by reducing oxidative stress. J Lab Physicians 2020; 11:212-219. [PMID: 31579256 PMCID: PMC6771320 DOI: 10.4103/jlp.jlp_43_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND: Malathion is an organophosphate insecticide which disrupts the antioxidant system of the body. Resveratrol is a phytoestrogen and antioxidant of the red grape. AIM AND OBJECTIVE: This study was designed to evaluate the effects of resveratrol against toxic effects of malathion to the liver of rats. MATERIALS AND METHODS: In this study, 48 male rats were randomly assigned to 8 groups: control normal (saline) and malathion control-treated groups (50 mg/kg), resveratrol groups (2, 8, and 20 mg/kg), and malathion + resveratrol-treated groups (2, 8, and 20 mg/kg). Treatments were administered intraperitoneally daily for 14 days. Griess technique was assessed for determined serum nitrite oxide level. Aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase concentrations were determined for liver functional disturbances. In addition, thiobarbituric acid reactive species, antioxidant capacity, the diameter of hepatocytes, and the central hepatic vein (CHV) were investigated. RESULTS: Malathion administration significantly improved liver malondialdehyde (MDA) and nitrite oxide level, the mean diameter of CHV and hepatocyte, and liver enzymes and decreased tissue ferric-reducing ability of plasma (FRAP) level compared to the normal control group (P < 0.01). The resveratrol and resveratrol + malathion treatments at all doses significantly reduced the mean diameter of hepatocyte and CHV, liver enzymes, kidney MDA, and nitrite oxide levels and increased tissue FRAP level compared to the malathion control group (P < 0.01). CONCLUSION: It seems that resveratrol administration improved liver injury induced by malathion in rats.
Collapse
Affiliation(s)
- Cyrus Jalili
- Department of Anatomical Sciences, Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shiva Roshankhah
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Salahshoor
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
35
|
Saeed M, Saleem U, Anwar F, Ahmad B, Anwar A. Inhibition of Valproic Acid-Induced Prenatal Developmental Abnormalities with Antioxidants in Rats. ACS OMEGA 2020; 5:4953-4961. [PMID: 32201781 PMCID: PMC7081441 DOI: 10.1021/acsomega.9b03792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/20/2020] [Indexed: 05/10/2023]
Abstract
Valproic acid (VP) is a very effective therapy for the management of generalized epilepsy. However, its use during pregnancy leads to increased risk of teratogenesis and cognitive malfunctioning in postnatal growing children. Antioxidants are used commercially as a palliative therapy. This study compares the different antioxidants effects on VP-induced teratogenicity. Pregnant female rats (n = 80) were divided into eight groups (n = 10) as follows: Group I, control group; Group II, disease group valproic acid (500 mg/kg); Groups III and IV, treated with 2000 and 8000 mg/kg vitamin C, respectively; Groups V and VI, treated with selenium 100 and 200 μg/kg dose, respectively; and Groups VII and VIII, administered grape seed extract 300 and 600 mg/kg, respectively. Groups III-VIII received valproic acid (500 mg/kg) along with their respective treatments. All treatments were given via an oral route. The fetuses were double stained, and levels of superoxide dismutase (SOD), catalase (CAT), nitrite, glutathione (GSH), and malondialdehyde (MDA) were estimated. Resorption rate was significantly reduced in Vit. C treated groups at both dose levels. Maternal death rate was decreased remarkably in all treatment groups. Vit. C at a high dose (8000 mg/kg) and grape seed at a high dose (600 mg/kg) significantly reduced the incidence of delayed cervical ossification. The values of MDA were significantly reduced in all groups except the Vit. C group (2000 mg/kg). However, no significant elevation was observed in the values of SOD, CAT, and GSH. The current study concluded that vitamin C at a high dose (8000 mg/kg) and grape seed extract at a high dose (600 mg/kg) had partially protected the fetuses exposed to VP.
Collapse
Affiliation(s)
- Mamoona Saeed
- Department
of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore 54000, Pakistan
| | - Uzma Saleem
- Faculty
of Pharmaceutical Sciences, GC University
Faisalabad, Faisalabad 38000, Pakistan
- E-mail: . Phone: +92-333-4904928 (U.S.)
| | - Fareeha Anwar
- Department
of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore 54000, Pakistan
- E-mail: . Phone: +92-333-8883251 (F.A.)
| | - Bashir Ahmad
- Department
of Pharmacy, Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore 54000, Pakistan
| | - Asifa Anwar
- Department
of Pharmacy, IUB, Bahawalpur 63210, Pakistan
| |
Collapse
|
36
|
Kim D, Ku B, Choi EM. Se-methylselenocysteine stimulates migration and antioxidant response in HaCaT keratinocytes: Implications for wound healing. J Trace Elem Med Biol 2020; 58:126426. [PMID: 31743802 DOI: 10.1016/j.jtemb.2019.126426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Se-methylselenocysteine (MSC), a natural organic selenium compound, is known for its anticancer effects. In the present study, we investigated the effects of MSC on cell migration, which is the most limiting step in the reepithelialization process of wound healing and the antioxidant response in HaCaT keratinocytes. METHODS HaCaT cells were treated with various concentrations of MSC. Cell migration and proliferation, the expression of proteins that are involved in the epidermal-mesenchymal transition (EMT) process, the extent of oxidative stress and the antioxidant response, and the associated signaling pathways were analyzed. RESULTS MSC (100-500 μM) increased HaCaT cell migration. MSC stimulated EMT, which was evidenced by a decrease in E-cadherin in the cells at the wound edge and increases in Snail, Twist, and matrix metalloproteinases. MSC increased the phosphorylation of Akt and glycogen synthase kinase 3β, which led to the stabilization and nuclear accumulation of β-catenin, a transcriptional coactivator involved in EMT. MSC caused a transient increase and then an eventual decrease in cellular reactive oxygen species, which appeared to be associated with the increase in nuclear factor erythroid 2-related factor 2, a key transcription factor for the antioxidant response. CONCLUSION Our results suggest that MSC can promote skin wound healing by stimulating keratinocyte migration and, moreover, can protect cells from excessive oxidative stress that often accompanies and impairs the wound healing process, particularly in chronic wounds, by stimulating an antioxidant response.
Collapse
Affiliation(s)
- Dongsoo Kim
- Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Bonhee Ku
- Department of Cosmetic Science & Management, Graduate School, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Eun-Mi Choi
- Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; Department of Cosmetic Science & Management, Graduate School, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| |
Collapse
|
37
|
Bi D, Li X, Li T, Li X, Lin Z, Yao L, Li H, Xu H, Hu Z, Zhang Z, Liu Q, Xu X. Characterization and Neuroprotection Potential of Seleno-Polymannuronate. Front Pharmacol 2020; 11:21. [PMID: 32153394 PMCID: PMC7044149 DOI: 10.3389/fphar.2020.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
Seleno-polymannuronate (Se-PM) was prepared from alginate-derived polymannuronate (PM) through a sulfation followed by a selenylation replacement reaction. The organic selenium content of Se-PM was 437.25 μg/g and its average molecular weight was 2.36 kDa. The neuroprotection effect of Se-PM and corresponding molecular mechanisms were investigated. Our results showed that, comparing to both sulfated PM (S-PM) and PM, Se-PM remarkably inhibited the aggregation of Aβ1-42 oligomer in vitro and significantly reduced the APP and BACE1 protein expression in N2a-sw cells, highlighting the critical function of the selenium presented in Se-PM. Moreover, Se-PM decreased the expression of cytochrome c and the ratio of Bax to Bcl-2, and enhanced the mitochondrial membrane potential in N2a-sw cells. These results suggested that Se-PM treatment can markedly inhibit N2a-sw cell apoptosis and promote N2a-sw cell survival and that Se-PM might be a potential therapeutic agent for the prevention of neurodegeneration owing to its remarkable neuroprotection effect.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiaofan Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Tong Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Zhijian Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hui Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhenqing Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
38
|
Zhuang Y, Li L, Feng L, Wang S, Su H, Liu H, Liu H, Wu Y. Mitochondrion-targeted selenium nanoparticles enhance reactive oxygen species-mediated cell death. NANOSCALE 2020; 12:1389-1396. [PMID: 31913383 DOI: 10.1039/c9nr09039h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Selenium nanoparticles (SeNPs) can induce reactive oxygen species (ROS)-mediated cell death when accumulated in cancer cells, while rendering anti-oxidation and cancer prevention in healthy tissues at low doses. Although they are promising anticancer agents with fewer side effects, their application is limited by their relative low toxicity to cancer cells. Therefore, we propose a mitochondrion-targeting strategy to improve their cancer cell killing efficiency. Such mitochondrion-targeted SeNPs could efficiently increase ROS production and mitochondrion damage in cancer cells; however, only a slightly increased toxicity to normal cells was observed, indicating a potentially better therapeutic window for anticancer treatments.
Collapse
Affiliation(s)
- Yuan Zhuang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Selenium nanoparticles are less toxic than inorganic and organic selenium to mice in vivo. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00303-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
40
|
Li L, Tian J, Wang X, Xu G, Jiang W, Yang Z, Liu D, Lin G. Cardiotoxicity of Intravenously Administered CdSe/ZnS Quantum Dots in BALB/c Mice. Front Pharmacol 2019; 10:1179. [PMID: 31649542 PMCID: PMC6791919 DOI: 10.3389/fphar.2019.01179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Since CdSe quantum dots (QDs) are increasingly used in electronics, medical, and pharmaceutical science due to their excellent optical properties, it is necessary to carry out thorough and systematic studies on their biosafety. Numerous studies have reported the toxicity of QDs on liver, kidney, immune system, and reproductive system. However, few studies have been done on the cardiotoxicity of QDs. In this study, we administered carboxylated CdSe/ZnS QDs in BALB/c mice via the tail vein and analyzed the in vivo cardiotoxicity of CdSe/ZnS QDs. The body weight, hematology, serum biochemistry, histology, heart elements concentration, echocardiography, and heart oxidative stress markers were carried out at different time. There were no significant differences in body weight and heart organ index between QDs group and the control group. Hematology results showed the platelet (PLT) counts on Day 1 and Day 42 in both high dose QDs group and low dose QDs group, and the PLT counts on Day1 in the high dose group were significantly higher than that in control group. Serum biochemistry results showed that lactate dehydrogenase (LDH), creatine kinase (CK), and creatine kinase isoenzyme (CK-MB) of mice exposed to CdSe/ZnS QDs were significantly higher than that of the control group on Day 1, and CK-MB levels still remained high on Day 7. A higher concentration of Cd was observed in the heart of CdSe/ZnS QDs exposed mice on Day 42, whereas no Cd was detected in the control group, which suggested that QDs can accumulate in heart. No significant histopathological changes and cardiac function were observed in all mice at different time after treatment. Increased level of glutathione peroxidase (GPx) and malondialdehyde (MDA) was observed in mice administered with high dose QDs on Day 1, and increased level of total antioxidant capacity (T-AOC) and MDA activities was observed on Day 42. These results indicated that CdSe/ZnS QDs could accumulate in heart, cause some biochemical indicators change, induce oxidative damage, and have cardiotoxicity. Our findings might provide valuable information on the biological safety evaluation of the cardiovascular system of QDs.
Collapse
Affiliation(s)
- Li Li
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jinglin Tian
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Xiaomei Wang
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, China
| | - Wenxiao Jiang
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Zhiwen Yang
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Dongmeng Liu
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Guimiao Lin
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
41
|
Berntssen MHG, Lundebye AK, Amund H, Sele V, Ørnsrud R. Feed-to-Fillet Transfer of Selenite and Selenomethionine Additives to Plant-Based Feeds to Farmed Atlantic Salmon Fillet. J Food Prot 2019; 82:1456-1464. [PMID: 31397590 DOI: 10.4315/0362-028x.jfp-19-104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study investigated the transfer kinetics of dietary selenite and selenomethionine (SeMet) to the fillet of farmed Atlantic salmon (Salmo salar). The uptake and elimination rate constants of the two selenium (Se) forms were determined in Atlantic salmon fed either selenite- or SeMet-supplemented diets followed by a depuration period. The fillet half-life of selenite and SeMet was 779 ± 188 and 339 ± 103 days, respectively. The elimination and uptake rates were used in a simple one-compartmental kinetic model to predict levels in fillet based on long-term (whole production cycle) feeding with given dietary Se levels. Model predictions for Atlantic salmon fed plant-based feeds low in natural Se and supplemented with either 0.2 mg of selenite or SeMet kg-1 gave a predicted fillet level of 0.042 and 0.058 mg Se kg-1 wet weight, respectively. Based on these predictions and the European Food Safety Authority risk assessment of Se feed supplementation for food-producing terrestrial farm animals, the supplementation with 0.2 mg of selenite kg-1 would likely be safe for the most sensitive group of consumers (toddlers). However, supplementing feed to farm animals, including salmon, with 0.2 mg of SeMet kg-1 would give a higher (114%) Se intake than the safe upper intake limit for toddlers.
Collapse
Affiliation(s)
- Marc H G Berntssen
- Institute of Marine Research (IMR), P.O. Box 1870 Nordnes, N-5817 Bergen, Norway (ORCID: https://orcid/org/0000-0001-9304-2282 [M.H.G.B.])
| | - Anne-Katrine Lundebye
- Institute of Marine Research (IMR), P.O. Box 1870 Nordnes, N-5817 Bergen, Norway (ORCID: https://orcid/org/0000-0001-9304-2282 [M.H.G.B.])
| | - Heidi Amund
- Technical University of Denmark (DTU), Anker Engelunds Vej 1, 2800 Kgs. Lyngby, Denmark
| | - Veronika Sele
- Institute of Marine Research (IMR), P.O. Box 1870 Nordnes, N-5817 Bergen, Norway (ORCID: https://orcid/org/0000-0001-9304-2282 [M.H.G.B.])
| | - Robin Ørnsrud
- Institute of Marine Research (IMR), P.O. Box 1870 Nordnes, N-5817 Bergen, Norway (ORCID: https://orcid/org/0000-0001-9304-2282 [M.H.G.B.])
| |
Collapse
|
42
|
Xu Y, Wang W, Chen M, Zhou J, Huang X, Tao S, Pan B, Li Z, Xie X, Li W, Kan H, Ying Z. Developmental programming of obesity by maternal exposure to concentrated ambient PM 2.5 is maternally transmitted into the third generation in a mouse model. Part Fibre Toxicol 2019; 16:27. [PMID: 31266526 PMCID: PMC6604135 DOI: 10.1186/s12989-019-0312-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Obesity is an uncontrolled global epidemic and one of the leading global public health challenges. Maternal exposure to ambient fine particulate matter (PM2.5) may adversely program offspring's adiposity, suggesting a specialized role of PM2.5 pollution in the global obesity epidemic. However, the vulnerable window for this adverse programming and how it is cross-generationally transmitted have not been determined. Therefore, in the present study, female C57Bl/6 J mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CAP) during different periods, and the development and adulthood adiposity of their four-generational offspring were assessed. RESULTS Our data show that the pre-conceptional but not gestational exposure to CAP was sufficient to cause male but not female offspring's low birth weight, accelerated postnatal weight gain, and increased adulthood adiposity. These adverse developmental traits were transmitted into the F2 offspring born by the female but not male F1 offspring of CAP-exposed dams. In contrast, no adverse development was noted in the F3 offspring. CONCLUSIONS The present study identified a pre-conceptional window for the adverse programming of adiposity by maternal exposure to PM2.5, and showed that it was maternally transmitted into the third generation. These data not only call special attention to the protection of women from exposure to PM2.5, but also may facilitate the development of intervention to prevent this adverse programming.
Collapse
Affiliation(s)
- Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, 130 Dong’an Rd, Shanghai, 200032 China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| | - Wanjun Wang
- Department of Environmental Health, School of Public Health, Fudan University, 130 Dong’an Rd, Shanghai, 200032 China
| | - Minjie Chen
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, 20 Penn St. HSFII S005, Baltimore, MD 21201 USA
| | - Ji Zhou
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| | - Xingke Huang
- Department of Environmental Health, School of Public Health, Fudan University, 130 Dong’an Rd, Shanghai, 200032 China
| | - Shimin Tao
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Bin Pan
- Department of Environmental Health, School of Public Health, Fudan University, 130 Dong’an Rd, Shanghai, 200032 China
| | - Zhouzhou Li
- Department of Environmental Health, School of Public Health, Fudan University, 130 Dong’an Rd, Shanghai, 200032 China
| | - Xiaoyun Xie
- Department of Interventional & Vascular Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weihua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, 130 Dong’an Rd, Shanghai, 200032 China
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, 20 Penn St. HSFII S005, Baltimore, MD 21201 USA
| |
Collapse
|
43
|
Evans SO, Jacobson GM, Goodman HJB, Bird S, Jameson MB. Comparative Safety and Pharmacokinetic Evaluation of Three Oral Selenium Compounds in Cancer Patients. Biol Trace Elem Res 2019; 189:395-404. [PMID: 30187284 DOI: 10.1007/s12011-018-1501-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023]
Abstract
Selenium (Se) compounds have demonstrated anticancer properties in both preclinical and clinical studies, with particular promise in combination therapy where the optimal form and dose of selenium has yet to be established. In a phase I randomised double-blinded study, the safety, tolerability and pharmacokinetic (PK) profiles of sodium selenite (SS), Se-methylselenocysteine (MSC) and seleno-l-methionine (SLM) were compared in patients with chronic lymphocytic leukaemia and a cohort of patients with solid malignancies. Twenty-four patients received 400 μg of elemental Se as either SS, MSC or SLM for 8 weeks. None of the Se compounds were associated with any significant toxicities, and the total plasma Se AUC of SLM was markedly raised in comparison to MSC and SS. DNA damage assessment revealed negligible genotoxicity, and some minor reductions in lymphocyte counts were observed. At the dose level used, all three Se compounds are well-tolerated and non-genotoxic. Further analyses of the pharmacodynamic effects of Se on healthy and malignant peripheral blood mononuclear cells will inform the future evaluation of higher doses of these Se compounds. The study is registered under the Australian and New Zealand Clinical Trials Registry No: ACTRN12613000118707.
Collapse
Affiliation(s)
- Stephen O Evans
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand
| | - Gregory M Jacobson
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Hugh J B Goodman
- Regional Cancer Centre, Waikato Hospital, Private Bag 3200, Hamilton, 3240, New Zealand
| | - Steve Bird
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Michael B Jameson
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand.
- Regional Cancer Centre, Waikato Hospital, Private Bag 3200, Hamilton, 3240, New Zealand.
| |
Collapse
|
44
|
Rao S, Lin Y, Du Y, He L, Huang G, Chen B, Chen T. Designing multifunctionalized selenium nanoparticles to reverse oxidative stress-induced spinal cord injury by attenuating ROS overproduction and mitochondria dysfunction. J Mater Chem B 2019; 7:2648-2656. [PMID: 32254998 DOI: 10.1039/c8tb02520g] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spinal cord injury (SCI) remains a challenging clinical problem worldwide, due to the lack of effective drugs for precise treatment. Among the complex pathophysiological events following SCI, reactive oxygen species (ROS) overproduction plays a particularly significant role. As therapeutic agents for neurological diseases, tetramethylpyrazine (TMP) and monosialotetrahexosylganglioside (GM1) have been widely used in the clinical treatment of SCI. Our previous studies have reported that functionalized selenium nanoparticles (SeNPs) exhibit excellent antioxidant activity against oxidative stress-related diseases. Therefore, in this study, novel multifunctionalized SeNPs decorated with polysaccharide-protein complex (PTW)/PG-6 peptide and loaded with TMP/GM1 were rationally designed and synthesized, which exhibited a satisfactory size distribution and superior stability. Furthermore, the protective effects of SeNPs@GM1/TMP on PC12 cells against tert-butyl hydroperoxide (t-BOOH)-induced cytotoxicity and the underlying mechanisms were also explored. Flow cytometric analysis indicated that SeNPs@GM1/TMP showed strongly protective effects against t-BOOH-induced G2/M phase arrest and apoptosis. Moreover, we found that SeNPs@GM1/TMP could attenuate ROS overproduction to prevent mitochondria dysfunction via inhibiting the activation of p53 and MAPK pathways. Effects of SeNPs@GM1/TMP on functional recovery after SCI were evaluated by the Basso-Beattie-Bresnahan (BBB) locomotion scale, inclined plane test, and footprint analysis. The results of hematoxylin-eosin staining and Nissl staining also showed that SeNPs@GM1/TMP provided a neuroprotective effect in SCI rats. This finding suggests that SeNPs@GM1/TMP could be further developed as a promising nanomedicine for efficient SCI treatment.
Collapse
Affiliation(s)
- Siyuan Rao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Role of Zinc and Selenium in Oxidative Stress and Immunosenescence: Implications for Healthy Aging and Longevity. HANDBOOK OF IMMUNOSENESCENCE 2019. [PMCID: PMC7121636 DOI: 10.1007/978-3-319-99375-1_66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aging is a complex process that includes gradual and spontaneous biochemical and physiological changes which contributes to a decline in performance and increased susceptibility to diseases. Zn and Se are essential trace elements that play a pivotal role in immune functions and antioxidant defense and, consequently, are claimed to play also a role in successful aging trajectories. Consistently with their nature of essential trace elements, a plethora of data obtained “in vitro” and “in vivo” (in humans and animal models) support the relevance of Zn and Se for both the innate and adoptive immune response. Moreover, Zn and Se are strictly involved in the synthesis and regulation of activity of proteins and enzymes, e.g., metallothioneins (MT) and glutathione peroxidase (GPX), that are necessary for our endogenous antioxidant response. This is clearly important to protect our cells from oxidative damage and to slow the decline of our immune system with aging. Age-related changes affecting tissue levels of Zn and Se may indicate that the risk of Zn and Se deficiency increases with aging. However, it is still unclear which of these changes can be the consequence of a “real deficiency” and which can be part of our physiological compensatory response to the accumulating damage occurring in aging. Furthermore, the upregulation of antioxidant proteins (Zn and Se dependent) may be a manifestation of self-induced oxidative stress. By the way, Zn and Se dependent proteins are modulated not only by nutritional status, but also by well-known hallmarks of aging that play antagonistic functions, such as the deregulated nutrient sensing pathways and cellular senescence. Thus, it is not an easy task to conduct Zn or Se supplementation in elderly and it is emerging consistent that these kind of supplementation requires an individualized approach. Anyway, there is consistent support that supplementation with Zn using doses around 10 mg/day is generally safe in elderly and may even improve part of immune performances in those subjects with a baseline deficiency. Regarding Se supplementation, it may induce both beneficial and detrimental effects on cellular immunity depending on the form of Se, supplemental dose, and delivery matrix. The nutritional association of supplements based on “Zn plus Se” is hypothesized to provide additional benefits, but this will likely need a more complex individualized approach. The improvement of our knowledge around screening and detection of Zn and Se deficiency in aging could lead to substantial benefits in terms of efficacy of nutritional supplements aimed at ameliorate performance and health in aging.
Collapse
|
46
|
Liu YR, Sun B, Zhu GH, Li WW, Tian YX, Wang LM, Zong SM, Sheng PZ, Li M, Chen S, Qin Y, Liu HJ, Zhou HG, Sun T, Yang C. Selenium–lentinan inhibits tumor progression by regulating epithelial–mesenchymal transition. Toxicol Appl Pharmacol 2018; 360:1-8. [DOI: 10.1016/j.taap.2018.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/07/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
|
47
|
Zanetti TA, Biazi BI, Baranoski A, D'Epiro GFR, Corveloni AC, Semprebon SC, Coatti GC, Mantovani MS. Response of HepG2/C3A cells supplemented with sodium selenite to hydrogen peroxide-induced oxidative stress. J Trace Elem Med Biol 2018; 50:209-215. [PMID: 30262281 DOI: 10.1016/j.jtemb.2018.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/20/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
Oxidative stress (OS) is involved in the onset of various pathological processes, and sodium selenite (Na2SeO3) is known to have antioxidant activity. This study evaluated the cellular response of human HepG2/C3A cells supplemented with Na2SeO3 when exposed to hydrogen peroxide (H2O2)-induced OS. We analyzed cytotoxicity, cell proliferation, and genotoxicity in comparison with molecular data of mRNA and protein expression. The MTT and comet assays revealed that Na2SeO3 conferred cytoprotective and anti-genotoxic effects. In contrast, RTCA (Real-Time Cell Analysis) and flow cytometry analysis revealed that Na2SeO3 did not inhibit H2O2-induced anti-proliferative effects or cell cycle arrest (G2/M). Cells exposed simultaneously to Na2SeO3 and H2O2 showed overexpression of GPX1 mRNA, indicating that Na2SeO3 influenced the cellular antioxidant system. Furthermore, downregulation of CAT mRNA and SOD1 and PRX2 proteins induced by H2O2, was minimal after the Na2SeO3+H2O2 treatment. Although normalization of CCN2B mRNA expression by Na2SeO3 was observed after the Na2SeO3+H2O2 treatment, this was not observed for other genes such as CDKN1A, CDKN1C, and CDKN2B, which are related to cell cycle control, nor for GADD45A, which is involved in the cellular response to DNA damage. Furthermore, both CDKN1B and CDKN1C expression were downregulated in HepG2/C3A cells treated with Na2SeO3 only. Our results indicate that cellular response to Na2SeO3 involved the modulation of the antioxidant system. Na2SeO3 was unable completely recover HepG2/C3A cells from H2O2-induced oxidative damage, as evidenced by analysis of cell proliferation kinetics, cell cycle assay, and expression of key genes involved in cell cycle progression and response to DNA damage.
Collapse
Affiliation(s)
- Thalita Alves Zanetti
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil.
| | - Bruna Isabela Biazi
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Adrivanio Baranoski
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Gláucia Fernanda Rocha D'Epiro
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Amanda Cristina Corveloni
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Simone Cristine Semprebon
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Giuliana Castello Coatti
- Human Genome and Stem-Cell Research Center. Institute of Biosciences, University of São Paulo - USP, Rua do Matão - Travessa 13, n. 106, São Paulo, São Paulo, Brazil
| | - Mário Sérgio Mantovani
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| |
Collapse
|
48
|
Gandin V, Khalkar P, Braude J, Fernandes AP. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med 2018; 127:80-97. [PMID: 29746900 DOI: 10.1016/j.freeradbiomed.2018.05.001] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/12/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022]
Abstract
Selenium(Se)-containing compounds have attracted a growing interest as anticancer agents over recent decades, with mounting reports demonstrating their high efficacy and selectivity against cancer cells. Typically, Se compounds exert their cytotoxic effects by acting as pro-oxidants that alter cellular redox homeostasis. However, the precise intracellular targets, signalling pathways affected and mechanisms of cell death engaged following treatment vary with the chemical properties of the selenocompound and its metabolites, as well as the cancer model that is used. Naturally occurring organic Se compounds, besides encompassing a significant antitumor activity with an apparent ability to prevent metastasis, also seem to have fewer side effects and less systemic effects as reported for many inorganic Se compounds. On this basis, many novel organoselenium compounds have also been synthesized and examined as potential chemotherapeutic agents. This review aims to summarize the most well studied natural and synthetic organoselenium compounds and provide the most recent developments in our understanding of the molecular mechanisms that underlie their potential anticancer effects.
Collapse
Affiliation(s)
- Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Prajakta Khalkar
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jeremy Braude
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
49
|
Lobb RJ, Jacobson GM, Cursons RT, Jameson MB. The Interaction of Selenium with Chemotherapy and Radiation on Normal and Malignant Human Mononuclear Blood Cells. Int J Mol Sci 2018; 19:ijms19103167. [PMID: 30326581 PMCID: PMC6214079 DOI: 10.3390/ijms19103167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 01/17/2023] Open
Abstract
Selenium, a trace element with anticancer properties, can reduce harmful toxicities of chemotherapy and radiotherapy without compromising efficacy. However, the dose-response relationship in normal versus malignant human cells is unclear. We evaluated how methylseleninic acid (MSA) modulates the toxicity and efficacy of chemotherapy and radiation on malignant and non-malignant human mononuclear blood cells in vitro. We specifically investigated its effects on endoplasmic reticulum stress induction, intracellular glutathione concentration, DNA damage and viability of peripheral blood mononuclear cells and THP1 monocytic leukaemia cells in response to radiation, cytosine arabinoside or doxorubicin chemotherapy. MSA, at lower concentrations, induced protective responses in normal cells but cytotoxic effects in malignant cells, alone and in conjunction with chemotherapy or radiation. However, in normal cells higher concentrations of MSA were directly toxic and increased the cytotoxicity of radiation but not chemotherapy. In malignant cells higher MSA concentrations were generally more effective in combination with cancer treatments. Thus, optimal MSA concentrations differed between normal and malignant cells and treatments. This work supports clinical reports that selenium can significantly reduce dose-limiting toxicities of anticancer therapies and potentially improve efficacy of anticancer treatments. The optimal selenium compound and dose is not yet determined.
Collapse
Affiliation(s)
- Richard J Lobb
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia.
| | - Gregory M Jacobson
- Department of Biological Sciences, University of Waikato, Hamilton 3216, New Zealand.
| | - Ray T Cursons
- Department of Biological Sciences, University of Waikato, Hamilton 3216, New Zealand.
| | - Michael B Jameson
- Oncology Department, Waikato Hospital, Hamilton 3204, New Zealand.
- Waikato Clinical Campus, Faculty of Medical and Health Sciences, University of Auckland, Hamilton 3204, New Zealand.
| |
Collapse
|
50
|
Menon S, KS SD, R S, S R, S VK. Selenium nanoparticles: A potent chemotherapeutic agent and an elucidation of its mechanism. Colloids Surf B Biointerfaces 2018; 170:280-292. [DOI: 10.1016/j.colsurfb.2018.06.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
|