1
|
Qiu J, Zhang J, Li A. Cytotoxicity and intestinal permeability of phycotoxins assessed by the human Caco-2 cell model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114447. [PMID: 38321666 DOI: 10.1016/j.ecoenv.2022.114447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Phycotoxins are a class of multiple natural metabolites produced by microalgae in marine and freshwater ecosystems that bioaccumulate in food webs, particularly in shellfish, having a great impact on human health. Phycotoxins are mainly leached and absorbed in the small intestine when human consumers accidentally ingest toxic aquatic products contaminated by them. To assess the intestinal uptake and damage of phycotoxins, a typical in vitro model was developed and widely applied using the human colorectal adenocarcinoma Caco-2 cell line. In this review, the application cases were summarized for multiple phycotoxins, including microcystins (MCs), cylindrospermopsins (CYNs), domoic acids (DAs), saxitoxins (STXs), palytoxins (PLTXs), okadaic acids (OAs), pectenotoxins (PTXs) and azaspiracids (AZAs). The results of the previous studies showed that each group of phycotoxins presented different cytotoxicity and mechanisms to Caco-2 cells, and significant discrepancies in the transport of phycotoxin across the Caco-2 cell monolayers. Therefore, this review describes the evaluation assays of the Caco-2 cell monolayer model, illustrates the principles of several primary cytotoxicity evaluation assays, and summarizes the cytotoxicity of each group of phycotoxins to Caco-2 cells line and their cellular transport, and finally proposes the development of multicellular intestinal models for future comprehensive studies on the toxicity and absorption of phycotoxins in the intestine. It will improve the understanding of Caco-2 cell monolayer models in the toxicology studies on phycotoxins and the potentially detrimental effects of microalgal toxins on the human intestine.
Collapse
Affiliation(s)
- Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jingrui Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
2
|
Review of Cyanotoxicity Studies Based on Cell Cultures. J Toxicol 2022; 2022:5647178. [PMID: 35509523 PMCID: PMC9061046 DOI: 10.1155/2022/5647178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 12/23/2022] Open
Abstract
Cyanotoxins (CTs) are a large and diverse group of toxins produced by the peculiar photosynthetic prokaryotes of the domain Cyanoprokaryota. Toxin-producing aquatic cyanoprokaryotes can develop in mass, causing “water blooms” or “cyanoblooms,” which may lead to environmental disaster—water poisoning, extinction of aquatic life, and even to human death. CT studies on single cells and cells in culture are an important stage of toxicological studies with increasing impact for their further use for scientific and clinical purposes, and for policies of environmental protection. The higher cost of animal use and continuous resistance to the use of animals for scientific and toxicological studies lead to a progressive increase of cell lines use. This review aims to present (1) the important results of the effects of CT on human and animal cell lines, (2) the methods and concentrations used to obtain these results, (3) the studied cell lines and their tissues of origin, and (4) the intracellular targets of CT. CTs reviewed are presented in alphabetical order as follows: aeruginosins, anatoxins, BMAA (β-N-methylamino-L-alanine), cylindrospermopsins, depsipeptides, lipopolysaccharides, lyngbyatoxins, microcystins, nodularins, cyanobacterial retinoids, and saxitoxins. The presence of all these data in a review allows in one look to advance the research on CT using cell cultures by facilitating the selection of the most appropriate methods, conditions, and cell lines for future toxicological, pharmacological, and physiological studies.
Collapse
|
3
|
Henri J, Lanceleur R, Delmas JM, Fessard V, Huguet A. Permeability of the Cyanotoxin Microcystin-RR across a Caco-2 Cells Monolayer. Toxins (Basel) 2021; 13:toxins13030178. [PMID: 33673481 PMCID: PMC7997155 DOI: 10.3390/toxins13030178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
Microcystins (MCs) are toxins produced by several cyanobacterial species found worldwide. While MCs have a common structure, the variation of two amino acids in their structure affects their toxicity. As toxicodynamics are very similar between the MC variants, their differential toxicity could rather be explained by toxicokinetic parameters. Microcystin-RR (MC-RR) is the second most abundant congener and induces toxicity through oral exposure. As intestinal permeability is a key parameter of oral toxicokinetics, the apparent permeability of MC-RR across a differentiated intestinal Caco-2 cell monolayer was investigated. We observed a rapid and large decrease of MC-RR levels in the donor compartment. However, irrespective of the loaded concentration and exposure time, the permeabilities were very low from apical to basolateral compartments (from 4 to 15 × 10−8 cm·s−1) and from basolateral to apical compartments (from 2 to 37 × 10−8 cm·s−1). Our results suggested that MC-RR would be poorly absorbed orally. As similar low permeability was reported for the most abundant congener microcystin-LR, and this variant presented a greater acute oral toxicity than MC-RR, we concluded that the intestinal permeability was probably not involved in the differential toxicity between them, in contrast to the hepatic uptake and metabolism.
Collapse
|
4
|
Porzani SJ, Lima ST, Metcalf JS, Nowruzi B. In Vivo and In Vitro Toxicity Testing of Cyanobacterial Toxins: A Mini-Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:109-150. [PMID: 34622370 DOI: 10.1007/398_2021_74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Harmful cyanobacterial blooms are increasing and becoming a worldwide concern as many bloom-forming cyanobacterial species can produce toxic metabolites named cyanotoxins. These include microcystins, saxitoxins, anatoxins, nodularins, and cylindrospermopsins, which can adversely affect humans, animals, and the environment. Different methods to assess these classes of compounds in vitro and in vivo include biological, biochemical, molecular, and physicochemical techniques. Furthermore, toxic effects not attributable to known cyanotoxins can be observed when assessing bloom material. In order to determine exposures to cyanotoxins and to monitor compliance with drinking and bathing water guidelines, it is necessary to have reliable and effective methods for the analysis of these compounds. Many relatively simple low-cost methods can be employed to rapidly evaluate the potential hazard. The main objective of this mini-review is to describe the assessment of toxic cyanobacterial samples using in vitro and in vivo bioassays. Newly emerging cyanotoxins, the toxicity of analogs, or the interaction of cyanobacteria and cyanotoxins with other toxicants, among others, still requires bioassay assessment. This review focuses on some biological and biochemical assays (MTT assay, Immunohistochemistry, Micronucleus Assay, Artemia salina assay, Daphnia magna test, Radionuclide recovery, Neutral red cytotoxicity and Comet assay, Enzyme-Linked Immunosorbent Assay (ELISA), Annexin V-FITC assay and Protein Phosphatase Inhibition Assay (PPIA)) for the detection and measurement of cyanotoxins including microcystins, cylindrospermopsins, anatoxin-a, saxitoxins, and nodularins. Although most bioassay analyses often confirm the presence of cyanotoxins at low concentrations, such bioassays can be used to determine whether some strains or blooms of cyanobacteria may produce other, as yet unknown toxic metabolites. This review also aims to identify research needs and data gaps concerning the toxicity assessment of cyanobacteria.
Collapse
Affiliation(s)
- Samaneh J Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Stella T Lima
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | | | - Bahareh Nowruzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Cao L, Massey IY, Feng H, Yang F. A Review of Cardiovascular Toxicity of Microcystins. Toxins (Basel) 2019; 11:toxins11090507. [PMID: 31480273 PMCID: PMC6783932 DOI: 10.3390/toxins11090507] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022] Open
Abstract
The mortality rate of cardiovascular diseases (CVD) in China is on the rise. The increasing burden of CVD in China has become a major public health problem. Cyanobacterial blooms have been recently considered a global environmental concern. Microcystins (MCs) are the secondary products of cyanobacteria metabolism and the most harmful cyanotoxin found in water bodies. Recent studies provide strong evidence of positive associations between MC exposure and cardiotoxicity, representing a threat to human cardiovascular health. This review focuses on the effects of MCs on the cardiovascular system and provides some evidence that CVD could be induced by MCs. We summarized the current knowledge of the cardiovascular toxicity of MCs, with regard to direct cardiovascular toxicity and indirect cardiovascular toxicity. Toxicity of MCs is mainly governed by the increasing level of reactive oxygen species (ROS), oxidative stress in mitochondria and endoplasmic reticulum, the inhibition activities of serine/threonine protein phosphatase 1 (PP1) and 2A (PP2A) and the destruction of cytoskeletons, which finally induce the occurrence of CVD. To protect human health from the threat of MCs, this paper also puts forward some directions for further research.
Collapse
Affiliation(s)
- Linghui Cao
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Isaac Yaw Massey
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Hai Feng
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
6
|
Díez-Quijada L, Prieto AI, Puerto M, Jos Á, Cameán AM. In Vitro Mutagenic and Genotoxic Assessment of a Mixture of the Cyanotoxins Microcystin-LR and Cylindrospermopsin. Toxins (Basel) 2019; 11:E318. [PMID: 31167415 PMCID: PMC6628426 DOI: 10.3390/toxins11060318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022] Open
Abstract
The co-occurrence of various cyanobacterial toxins can potentially induce toxic effects different than those observed for single cyanotoxins, as interaction phenomena cannot be discarded. Moreover, mixtures are a more probable exposure scenario. However, toxicological information on the topic is still scarce. Taking into account the important role of mutagenicity and genotoxicity in the risk evaluation framework, the objective of this study was to assess the mutagenic and genotoxic potential of mixtures of two of the most relevant cyanotoxins, Microcystin-LR (MC-LR) and Cylindrospermopsin (CYN), using the battery of in vitro tests recommended by the European Food Safety Authority (EFSA) for food contaminants. Mixtures of 1:10 CYN/MC-LR (CYN concentration in the range 0.04-2.5 µg/mL) were used to perform the bacterial reverse-mutation assay (Ames test) in Salmonella typhimurium, the mammalian cell micronucleus (MN) test and the mouse lymphoma thymidine-kinase assay (MLA) on L5178YTk± cells, while Caco-2 cells were used for the standard and enzyme-modified comet assays. The exposure periods ranged between 4 and 72 h depending on the assay. The genotoxicity of the mixture was observed only in the MN test with S9 metabolic fraction, similar to the results previously reported for CYN individually. These results indicate that cyanobacterial mixtures require a specific (geno)toxicity evaluation as their effects cannot be extrapolated from those of the individual cyanotoxins.
Collapse
Affiliation(s)
- Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| |
Collapse
|
7
|
Meneely JP, Hajšlová J, Krska R, Elliott CT. Assessing the combined toxicity of the natural toxins, aflatoxin B 1, fumonisin B 1 and microcystin-LR by high content analysis. Food Chem Toxicol 2018; 121:527-540. [PMID: 30253246 DOI: 10.1016/j.fct.2018.09.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 12/19/2022]
Abstract
As human co-exposure to natural toxins through food and water is inevitable, risk assessments to safeguard health are necessary. Aflatoxin B1 and fumonisin B1, frequent co-contaminants of maize and microcystin-LR, produced in freshwater by cyanobacteria are all naturally occurring potent toxins that threaten human health. Populations in the poorest regions of the world may suffer repeated simultaneous exposure to these contaminants. Using High Content Analysis, multiple cytotoxicity endpoints were measured for the individual toxins and mixtures in various cell lines. Results highlighted that significant cytotoxic effects were observed for aflatoxin B1 in all cell lines while no cytotoxic effects were observed for fumonisin B1 or microcystin-LR. Aflatoxin B1/microcystin-LR was cytotoxic in the order HepG2 > Caco-2 > MDBK. Fumonisin B1/microcystin-LR affected MDBK cells. The ternary mixture was cytotoxic to all cell lines. Most combinations were additive, however antagonism was observed for binary and ternary mixtures in HepG2 and MDBK cell lines at low and high concentrations. Synergy was observed in all cell lines, including at low concentrations. The combination of these natural toxins may pose a significant risk to populations in less developed countries. Furthermore, the study highlights the complexity around trying to regulate for human exposure to multiple contaminants.
Collapse
Affiliation(s)
- Julie P Meneely
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, BT7 1NN, United Kingdom.
| | - Jana Hajšlová
- Faculty of Food & Biochemical Technology, Department of Food Analysis & Nutrition, University of Chemistry & Technology, Technická 3, 166 28, Prague 6, Czech Republic
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, BT7 1NN, United Kingdom
| |
Collapse
|
8
|
Foglia S, Ledda M, Fioretti D, Iucci G, Papi M, Capellini G, Lolli MG, Grimaldi S, Rinaldi M, Lisi A. In vitro biocompatibility study of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical application. Sci Rep 2017; 7:46513. [PMID: 28422155 PMCID: PMC5395943 DOI: 10.1038/srep46513] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/17/2017] [Indexed: 01/06/2023] Open
Abstract
Magnetic iron oxide nanoparticles (IONPs), for their intriguing properties, have attracted a great interest as they can be employed in many different biomedical applications. In this multidisciplinary study, we synthetized and characterized ultrafine 3 nm superparamagnetic water-dispersible nanoparticles. By a facile and inexpensive one-pot approach, nanoparticles were coated with a shell of silica and contemporarily functionalized with fluorescein isothiocyanate (FITC) dye. The obtained sub-5 nm silica-coated magnetic iron oxide fluorescent (sub-5 SIO-Fl) nanoparticles were assayed for cellular uptake, biocompatibility and cytotoxicity in a human colon cancer cellular model. By confocal microscopy analysis we demonstrated that nanoparticles as-synthesized are internalized and do not interfere with the CaCo-2 cell cytoskeletal organization nor with their cellular adhesion. We assessed that they do not exhibit cytotoxicity, providing evidence that they do not affect shape, proliferation, cellular viability, cell cycle distribution and progression. We further demonstrated at molecular level that these nanoparticles do not interfere with the expression of key differentiation markers and do not affect pro-inflammatory cytokines response in Caco-2 cells. Overall, these results showed the in vitro biocompatibility of the sub-5 SIO-Fl nanoparticles promising their safe employ for diagnostic and therapeutic biomedical applications.
Collapse
Affiliation(s)
- Sabrina Foglia
- Institute of Materials for Electronics and Magnetism (IMEM), Department of Engineering, ICT and technologies for energy and transportation, National Research Council (CNR), Parma, Italy
| | - Mario Ledda
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| | - Daniela Fioretti
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| | | | - Massimiliano Papi
- Institute of Physics, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Maria Grazia Lolli
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| | - Settimio Grimaldi
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| | - Monica Rinaldi
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| | - Antonella Lisi
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| |
Collapse
|
9
|
Gerola AP, Silva DC, Jesus S, Carvalho RA, Rubira AF, Muniz EC, Borges O, Valente AJM. Synthesis and controlled curcumin supramolecular complex release from pH-sensitive modified gum-arabic-based hydrogels. RSC Adv 2015. [DOI: 10.1039/c5ra14331d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Delivery of a curcumin supramolecular complex from pH-responsive gum arabic-based hydrogels.
Collapse
Affiliation(s)
- Adriana P. Gerola
- CQC
- Department of Chemistry
- University of Coimbra
- 3004-535 Coimbra
- Portugal
| | - Danielle C. Silva
- CQC
- Department of Chemistry
- University of Coimbra
- 3004-535 Coimbra
- Portugal
| | - Sandra Jesus
- Faculty of Pharmacy
- University of Coimbra
- Coimbra
- Portugal
- CNC
| | - Rui A. Carvalho
- Department of Life Sciences
- University of Coimbra
- 3004-535 Coimbra
- Portugal
| | - Adley F. Rubira
- Grupo de Materiais Poliméricos e Compósitos
- GMPC
- Chemistry Department
- Maringá State University
- 87020-900 Maringá
| | - Edvani C. Muniz
- Grupo de Materiais Poliméricos e Compósitos
- GMPC
- Chemistry Department
- Maringá State University
- 87020-900 Maringá
| | - Olga Borges
- Faculty of Pharmacy
- University of Coimbra
- Coimbra
- Portugal
- CNC
| | | |
Collapse
|
10
|
Tarantini A, Lanceleur R, Mourot A, Lavault MT, Casterou G, Jarry G, Hogeveen K, Fessard V. Toxicity, genotoxicity and proinflammatory effects of amorphous nanosilica in the human intestinal Caco-2 cell line. Toxicol In Vitro 2014; 29:398-407. [PMID: 25448807 DOI: 10.1016/j.tiv.2014.10.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 12/21/2022]
Abstract
Silica (SiO2) in its nanosized form is now used in food applications although the potential risks for human health need to be evaluated in further detail. In the current study, the uptake of 15 and 55nm colloidal SiO2 NPs in the human intestinal Caco-2 cell line was investigated by transmission electron microscopy. The ability of these NPs to induce cytotoxicity (XTT viability test), genotoxicity (γH2Ax and micronucleus assay), apoptosis (caspase 3), oxidative stress (oxidation of 2,7-dichlorodihydrofluorescein diacetate probe) and proinflammatory effects (interleukin IL-8 secretion) was evaluated. Quartz DQ12 was used as particle control. XTT and cytokinesis-block micronucleus assays revealed size- and concentration-dependent effects on cell death and chromosome damage following exposure to SiO2 nanoparticles, concomitantly with generation of reactive oxygen species (ROS), SiO2-15nm particles being the most potent. In the same way, an increased IL-8 secretion was only observed with SiO2-15nm at the highest tested dose (32μg/ml). TEM images showed that both NPs were localized within the cytoplasm but did not enter the nucleus. SiO2-15nm, and to a lower extent SiO2-55nm, exerted toxic effects in Caco-2 cells. The observed genotoxic effects of these NPs are likely to be mediated through oxidative stress rather than a direct interaction with the DNA. Altogether, our results indicate that exposure to SiO2 NPs may induce potential adverse effects on the intestinal epithelium in vivo.
Collapse
Affiliation(s)
- Adeline Tarantini
- Agence Nationale de Sécurité Sanitaire, Unité de Toxicologie des Contaminants, Bâtiment BioAgroPolis, 10B rue C, Bourgelat, BP 40608, 35306 Fougères, France
| | - Rachelle Lanceleur
- Agence Nationale de Sécurité Sanitaire, Unité de Toxicologie des Contaminants, Bâtiment BioAgroPolis, 10B rue C, Bourgelat, BP 40608, 35306 Fougères, France
| | - Annick Mourot
- Agence Nationale de Sécurité Sanitaire, Unité de Toxicologie des Contaminants, Bâtiment BioAgroPolis, 10B rue C, Bourgelat, BP 40608, 35306 Fougères, France
| | - Marie-Thérèse Lavault
- PF Mric TEM, BIOSIT Université de Rennes 1, 2 avenue Léon Bernard, 35043 Rennes, France
| | - Gérald Casterou
- Equipe "Ingénierie Chimique et Molécule pour le Vivant", Institut des Sciences chimiques de Rennes, UMR 6226, Bat 10A, Bureau 210, Campus Beaulieu, Rennes 35000, France
| | - Gérard Jarry
- Agence Nationale de Sécurité Sanitaire, Unité de Toxicologie des Contaminants, Bâtiment BioAgroPolis, 10B rue C, Bourgelat, BP 40608, 35306 Fougères, France
| | - Kevin Hogeveen
- Agence Nationale de Sécurité Sanitaire, Unité de Toxicologie des Contaminants, Bâtiment BioAgroPolis, 10B rue C, Bourgelat, BP 40608, 35306 Fougères, France
| | - Valérie Fessard
- Agence Nationale de Sécurité Sanitaire, Unité de Toxicologie des Contaminants, Bâtiment BioAgroPolis, 10B rue C, Bourgelat, BP 40608, 35306 Fougères, France.
| |
Collapse
|
11
|
Gutiérrez-Praena D, Campos A, Azevedo J, Neves J, Freitas M, Guzmán-Guillén R, Cameán AM, Renaut J, Vasconcelos V. Exposure of Lycopersicon esculentum to microcystin-LR: effects in the leaf proteome and toxin translocation from water to leaves and fruits. Toxins (Basel) 2014; 6:1837-54. [PMID: 24921194 PMCID: PMC4073132 DOI: 10.3390/toxins6061837] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 11/21/2022] Open
Abstract
Natural toxins such as those produced by freshwater cyanobacteria have been regarded as an emergent environmental threat. However, the impact of these water contaminants in agriculture is not yet fully understood. The aim of this work was to investigate microcystin-LR (MC-LR) toxicity in Lycopersicon esculentum and the toxin accumulation in this horticultural crop. Adult plants (2 month-old) grown in a greenhouse environment were exposed for 2 weeks to either pure MC-LR (100 μg/L) or Microcystis aeruginosa crude extracts containing 100 μg/L MC-LR. Chlorophyll fluorescence was measured, leaf proteome investigated with two-dimensional gel electrophoresis and Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF)/TOF, and toxin bioaccumulation assessed by liquid chromatography-mass spectrometry (LC-MS)/MS. Variations in several protein markers (ATP synthase subunits, Cytochrome b6-f complex iron-sulfur, oxygen-evolving enhancer proteins) highlight the decrease of the capacity of plants to synthesize ATP and to perform photosynthesis, whereas variations in other proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and ribose-5-phosphate isomerase) suggest an increase of carbon fixation and decrease of carbohydrate metabolism reactions in plants exposed to pure MC-LR and cyanobacterial extracts, respectively. MC-LR was found in roots (1635.21 μg/kg fw), green tomatoes (5.15–5.41 μg/kg fw), mature tomatoes (10.52–10.83 μg/kg fw), and leaves (12,298.18 μg/kg fw). The results raise concerns relative to food safety and point to the necessity of monitoring the bioaccumulation of water toxins in agricultural systems affected by cyanotoxin contamination.
Collapse
Affiliation(s)
| | - Alexandre Campos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto 4050-123, Portugal.
| | - Joana Azevedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto 4050-123, Portugal.
| | - Joana Neves
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto 4050-123, Portugal.
| | - Marisa Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto 4050-123, Portugal.
| | | | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Jenny Renaut
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, Belvaux L-4422, Luxembourg.
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto 4050-123, Portugal.
| |
Collapse
|
12
|
Huguet A, Henri J, Petitpas M, Hogeveen K, Fessard V. Comparative cytotoxicity, oxidative stress, and cytokine secretion induced by two cyanotoxin variants, microcystin LR and RR, in human intestinal Caco-2 cells. J Biochem Mol Toxicol 2013; 27:253-8. [PMID: 23554253 DOI: 10.1002/jbt.21482] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/15/2013] [Accepted: 03/06/2013] [Indexed: 01/01/2023]
Abstract
While MC-LR and MC-RR share significant structural similarity, MC-RR is less cytotoxic than MC-LR. In the current study, we have compared the effects of MC-LR and MC-RR in Caco-2 cells by evaluating cytotoxicity, oxidative stress (reactive oxygen species production), and the cellular proinflammatory response (IL-6 and IL-8 production). Following treatment with 100 µM microcystins (MC), cytotoxicity was two-fold greater with MC-LR as compared to MC-RR after 24 h exposure. Whereas the reactive oxygen species production and IL-6 secretion were similar following a 24-h treatment with either MC, 100 µM MC-LR induced a five-fold greater IL-8 secretion when compared to MC-RR. Our study has demonstrated that, although both MC-LR and MC-RR induced some cytotoxicity in human intestinal cells, a major difference in IL-8 production was observed between the two variants.
Collapse
Affiliation(s)
- Antoine Huguet
- Contaminant Toxicology Unit, Fougères Laboratory, Anses, 10B rue Claude Bourgelat-Javené CS 40608, 35306 Fougères Cedex, France.
| | | | | | | | | |
Collapse
|
13
|
Gutiérrez-Praena D, Jos Á, Pichardo S, Moreno IM, Cameán AM. Presence and bioaccumulation of microcystins and cylindrospermopsin in food and the effectiveness of some cooking techniques at decreasing their concentrations: a review. Food Chem Toxicol 2012. [PMID: 23200893 DOI: 10.1016/j.fct.2012.10.062] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microcystins (MCs) and cylindrospermopsin (CYN) are among the cyanotoxins which occur naturally, produced by different cyanobacteria species when they grow or proliferate under favorable environmental conditions. From a toxicological point of view, their relevance is due to the deleterious effects that they have been reported to induce in a wide range of organisms, including humans. Cyanotoxins intake from contaminated water and food is an important source of human exposure. Various edible aquatic organisms, plants, and food supplements based on algae, can bioaccumulate these toxins. A thorough review of the scientific data available on this topic is provided, the studies on MCs being much more numerous than those focused on CYN. The scientific literature suggests that these cyanotoxins can be accumulated at concentrations higher than their respective recommended tolerable daily intake (TDI). Finally, the influence of different cooking procedures on their levels in food has been considered. In this regard, again studies on the matter dealing with CYN have been not yet raised. MCs contents have been reported to be reduced in muscle of fish after boiling, or cooking in a microwave-oven, although the effect of other traditional cooking processes such as frying, roasting or grilling have not been demonstrated.
Collapse
Affiliation(s)
- Daniel Gutiérrez-Praena
- Nutrición y Bromatología, Toxicología y Medicina Legal Department, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | | | | | | | | |
Collapse
|
14
|
Gutiérrez-Praena D, Pichardo S, Jos Á, Moreno FJ, Cameán AM. Alterations observed in the endothelial HUVEC cell line exposed to pure Cylindrospermopsin. CHEMOSPHERE 2012; 89:1151-1160. [PMID: 22818884 DOI: 10.1016/j.chemosphere.2012.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 06/05/2012] [Accepted: 06/11/2012] [Indexed: 06/01/2023]
Abstract
The cyanobacterial toxin Cylindrospermopsin (CYN) is receiving great interest due to its increasing presence in waterbodies, which has lead to recognize it as a potential threat to drinking water safety. CYN is a potent inhibitor of protein and glutathione synthesis. The present work studies for the first time the effects of CYN in endothelial cells. The basal cytotoxicity endpoints studied at 24 and 48 h were total protein content (PC), neutral red (NR) uptake and the tretazolium salt, MTS, reduction. Moreover, the effect of subcytotoxic concentrations of CYN on the generation of intracellular reactive oxygen species (ROS), the activity of γ-glutamylcysteine synthetase (GCS) and glutathione (GSH) content have been investigated. In addition, morphological alterations of HUVEC cells subsequent to CYN exposure were recorded. The cytotoxicity endpoints revealed a decrease in the cellular viability in a time and concentration-dependent way. The most sensitive cytotoxicity endpoint was NR uptake assay, with reductions in cell viability of 95% at 48 h of exposure to 40 μg mL(-1) CYN. Intracellular ROS production was increased only at the lowest concentration assayed, while GCS activity and GSH content underwent concentration-dependent enhancements. The most remarkable morphological alterations observed were: nucleolar segregation with altered nuclei, degenerated Golgi apparatus, increases in the presence of granules and apoptosis.
Collapse
Affiliation(s)
- Daniel Gutiérrez-Praena
- Area of Toxicology, Faculty of Pharmacy, University of Seville, Profesor García González n°2, 41012 Seville, Spain
| | | | | | | | | |
Collapse
|
15
|
Zeller P, Quenault H, Huguet A, Blanchard Y, Fessard V. Transcriptomic comparison of cyanotoxin variants in a human intestinal model revealed major differences in oxidative stress response: effects of MC-RR and MC-LR on Caco-2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 82:13-21. [PMID: 22721844 DOI: 10.1016/j.ecoenv.2012.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/30/2012] [Accepted: 05/03/2012] [Indexed: 06/01/2023]
Abstract
Microcystins (MCs) are cyclic hepatotoxins produced by various species of cyanobacteria. Their structure includes two variable amino acids (AA) giving rise to more than 90 MC variants, however most of the studies to date have focused on the most toxic variant: microcystin LR (MC-LR). Ingestion is the major route of human exposure to MCs and several in vivo studies have demonstrated macroscopic effects on the gastro-intestinal tract. However, little information exists concerning the pathways affected by MC variants on intestinal cells. In the current study, we have investigated the effects of MC-RR and MC-LR on the human intestinal cell line Caco-2 using a non-selective method and compared their response at the pangenomic scale. The cells were incubated for 4h or 24h with a range of non-toxic concentrations of MC-RR or MC-LR. Minimal effects were observed after short term exposures (4h) to either MC variant. In contrast, dose dependent modulations of gene transcription levels were observed with MC-RR and MC-LR after 24h. The transcriptomic profiles induced by MC-RR were quite similar to those induced by MC-LR, suggestive of a largely common mechanism of toxicity. However, changes in total gene expression were more pronounced following exposure to MC-LR compared to MC-RR, as revealed by functional annotation. MC-LR affected two principal pathways, the oxidative stress response and cell cycle regulation, which did not elicit significant alteration following MC-RR exposure. This work is the first comparative description of the effects of MC-LR and MC-RR in a human intestinal cell model at the pangenomic scale. It has allowed us to propose differences in the mechanism of toxicity for MC-RR and MC-LR. These results illustrate that taking into account the toxicity of MC variants remains a key point for risk assessment.
Collapse
Affiliation(s)
- Perrine Zeller
- Anses, Fougères laboratory, Contaminant Toxicology Unit, La Haute Marche, BP 90203, 35302 Fougères Cedex, France
| | | | | | | | | |
Collapse
|
16
|
Similar uptake profiles of microcystin-LR and -RR in an in vitro human intestinal model. Toxicology 2011; 290:7-13. [PMID: 21872638 DOI: 10.1016/j.tox.2011.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 12/20/2022]
Abstract
Microcystins (MCs) are cyclic hepatotoxins produced by various species of cyanobacteria. Their structure includes two variable amino acids (AA) leading to more than 80 MC variants. In this study, we focused on the most common variant, microcystin-LR (MC-LR), and microcystin-RR (MC-RR), a variant differing by only one AA. Despite their structural similarity, MC-LR elicits higher liver toxicity than MC-RR partly due to a discrepancy in their uptake by hepatic organic anion transporters (OATP 1B1 and 1B3). However, even though ingestion is the major pathway of human exposure to MCs, intestinal absorption of MCs has been poorly addressed. Consequently, we investigated the cellular uptake of the two MC variants in the human intestinal cell line Caco-2 by immunolocalization using an anti-MC antibody. Caco-2 cells were treated for 30min to 24h with several concentrations (1-50μM) of both variants. We first confirmed the localization of OATP 3A1 and 4A1 at the cell membrane of Caco-2 cells. Our study also revealed a rapid uptake of both variants in less than 1h. The uptake profiles of the two variants did not differ in our immunostaining study neither with respect to concentration nor the time of exposure. Furthermore, we have demonstrated for the first time the nuclear localization of MC-RR and confirmed that of MC-LR. Finally, our results suggest a facilitated uptake and an active excretion of MC-LR and MC-RR in Caco-2 cells. Further investigation on the role of OATP 3A1 and 4A1 in MC uptake should be useful to clarify the mechanism of intestinal absorption of MCs and contribute in risk assessment of cyanotoxin exposure.
Collapse
|