1
|
Hammoudeh N, Hasan R, Deeb M, Radwan Z, Ayoubi O, Alendary R, Youssef M, Kazan A, Alsahli R, Faiad W, Aldeli N, Hanano A. Exploring transcriptomic databases to identify and experimentally validate tissue-specific consensus reference gene for gene expression normalization in BALB/c mice acutely exposed to 2,3,7,8-Tetrachlorodibenzo- p-dioxin. Curr Res Toxicol 2025; 8:100234. [PMID: 40391131 PMCID: PMC12088766 DOI: 10.1016/j.crtox.2025.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a toxic compound affecting organs like the liver, kidney, lung, and reproductive systems in mammals. This study outlines a strategy for choosing appropriate HKGs for tissue-specific gene expression analysis in TCDD toxicity, including four steps: i) identifying candidate HKGs from literature and databases; ii) defining primers from literature or designing new ones; iii) validating primer efficiency and specificity; iv) experimentally assessing candidate HKGs' stability in various tissues of TCDD-exposed mice. Based on this strategy, a total of 40 potential HKGs was selected, further filtered based on their database sources and ranked according to their frequency of use or expression stability. Ultimately, we identified a final set of 15 HKGs (Rps18, Calr, Polr2b, Brms1l, P4hb, Esd, Hdgf, Gapdh, Mlec, Tbp, Rn18s, Sdha, B2m, Actr3 and Actb) with typical efficiencies for further evaluation. Then, the stability of the selected HKGs was determined in the liver, kidney, lung, ovary and testis of TCDD-exposed mouse compared to the control group using the [log (2ΔCt)] and statistically analyzed using Pearson correlation coefficient (r) by BestKeeper algorithm. Our data analysis revealed that Actb, Rps18, and Polr2b were the most stable HKGs for normalizing gene expression in the liver, while Sdha, Actb, and Gapdh were suitable for kidney tissue. In the lung, Tbp, Sdha, and Rps18 showed stability, while Tbp, B2m, and Actb were most stable in ovary. Lastly, Actb, B2m, and Tbp were accurately stable in the testis of TCDD-exposed mice. Our study identifies stable HKGs, improving TCDD toxicity research accuracy and reliability.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Reem Hasan
- Distinction and Creativity Agency, Damascus, Syria
| | | | - Zuher Radwan
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, University of Kalamoon, Deir Atiyah, Syria
| | - Omar Ayoubi
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, University of Kalamoon, Deir Atiyah, Syria
| | - Roaa Alendary
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, University of Kalamoon, Deir Atiyah, Syria
| | - Mouayad Youssef
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, University of Kalamoon, Deir Atiyah, Syria
| | - Abdulfattah Kazan
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, University of Kalamoon, Deir Atiyah, Syria
| | - Rasil Alsahli
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, University of Kalamoon, Deir Atiyah, Syria
| | - Walaa Faiad
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Nour Aldeli
- Department of Animal Biology, Faculty of Science, Al Furat University, Deir-ez-Zor, Syria
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
2
|
Fischer F, Stößer S, Wegmann L, Veh E, Lumpp T, Parsdorfer M, Schumacher P, Hartwig A. Chromate Affects Gene Expression and DNA Methylation in Long-Term In Vitro Experiments in A549 Cells. Int J Mol Sci 2024; 25:10129. [PMID: 39337613 PMCID: PMC11431867 DOI: 10.3390/ijms251810129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Chromate has been shown to dysregulate epigenetic mechanisms such as DNA methylation, leading to changes in gene expression and genomic instability. However, most in vitro studies are limited to short incubation periods, although chronic exposure may be more relevant for both environmental and occupational exposure. In this study, human adenocarcinoma A549 cells were treated with 1, 2 or 5 µM chromate for 24 h and compared with incubations with 0.2, 0.5 or 1 µM chromate for 1 to 5 weeks. Chromium accumulated in a pronounced time- and concentration-dependent manner after short-term treatment, whereas a plateau of intracellular chromium content was observed after long-term treatment. While short-term treatment induced a G2 arrest of the cell cycle, this effect was not observed after long-term treatment at lower concentrations. The opposite was observed for global DNA methylation: while short-term treatment showed no effect of chromate, significant dose-dependent hypomethylation was observed in the long-term experiments. Time-dependent effects were also observed in a high-throughput RT-qPCR gene expression analysis, particularly in genes related to the inflammatory response and DNA damage response. Taken together, the results suggest specific differences in toxicity profiles when comparing short-term and long-term exposure to chromate in A549 cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Rose F, Köberle B, Honnen S, Bay C, Burhenne J, Weiss J, Haefeli WE, Theile D. RNA is a pro-apoptotic target of cisplatin in cancer cell lines and C. elegans. Biomed Pharmacother 2024; 173:116450. [PMID: 38503239 DOI: 10.1016/j.biopha.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Cisplatin not only targets DNA but also RNA. However, it is largely unknown whether platinated RNA (Pt-RNA) causes apoptosis and thus contributes to the cytotoxic effects of cisplatin. Consequently, cellular RNA was isolated from HepG2 and LS180 cells, exposed to cisplatin, and the resulting Pt-RNA (20 ng Pt/µg RNA) was transfected into these cancer cell lines or used to treat an apoptosis reporter Caenorhabditis elegans (C. elegans) strain (MD701, expressing CED-1::GFP). Cellular and molecular effects of Pt-RNA were evaluated by luminogenic caspase 3/7 assays, PCR array analysis, and fluorescence microscopy-based quantification of apoptosis in C. elegans gonads. Assuming RNA cross-linking (pseudo double-stranded RNA), the contribution of the Toll-like receptor 3 (TLR3, a sensor of double-stranded RNA) to apoptosis induction in cancer cell lines was investigated by pharmacological TLR3 inhibition and overexpression. In contrast to controls, Pt-RNA significantly enhanced apoptosis in C. elegans (2-fold) and in the cancer cell lines (2-fold to 4-fold). TLR3 overexpression significantly enhanced the pro-apoptotic effects of Pt-RNA in HepG2 cells. TLR3 inhibition reduced the pro-apoptotic effects of Pt-RNA and cisplatin, but not of paclitaxel (off-target control). Gene expression analysis showed that Pt-RNA (but not RNA) significantly enhanced the mRNA levels of nuclear factor kappa B subunit 2 and interleukin-8 in HepG2 cells, suggesting that Pt-RNA is a damage-associated molecular pattern that additionally causes pro-inflammatory responses. Together, this data suggests that not only DNA but also cellular RNA is a functionally relevant target of cisplatin, leading to pro-apoptotic and immunogenic effects.
Collapse
Affiliation(s)
- Fabian Rose
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Beate Köberle
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20A, Karlsruhe 76131, Germany
| | - Sebastian Honnen
- Institute of Toxicology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Cindy Bay
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Jürgen Burhenne
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Johanna Weiss
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Walter E Haefeli
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Dirk Theile
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany.
| |
Collapse
|
4
|
Liu M, Hong Y, Duan X, Zhou Q, Chen J, Liu S, Su J, Han L, Zhang J, Niu B. Unveiling the metal mutation nexus: Exploring the genomic impacts of heavy metal exposure in lung adenocarcinoma and colorectal cancer. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132590. [PMID: 37769449 DOI: 10.1016/j.jhazmat.2023.132590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
Mutations that activate oncogenes and deactivate tumor suppressor genes are widely recognized as significant contributors to cancer development. We investigated relationships between heavy metal exposure and the frequencies and types of gene mutations in patients with lung adenocarcinoma (LUAD) and colorectal cancer (CRC). Plasma concentrations of arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), and lead (Pb) were measured using inductively coupled plasma mass spectrometry (ICPMS), and next-generation sequencing (NGS) of 1123 cancer-related genes was performed using the tumor tissues. Through Bayesian kernel machine regression (BKMR) analysis, we found associations between the integrated concentrations of the heavy metals and the number of gene mutations, especially insertions/deletions (indels), and Pb, As, and Cd were found to be the most significant contributors to the increased mutation rates. We extracted previously established mutational signatures and observed that they exhibit significant correlations with metal exposure. Moreover, we detected substantial shifts in the mutational landscape when comparing groups with high and low metal exposures. Several frequently mutated genes displayed positive correlations with metal exposure, whereas EGFR indels showed a negative association with Cd exposure. These findings suggest that heavy metal exposure can impact genomic stability in cancer-related genes, underscoring the importance of heavy metal exposure in cancer development.
Collapse
Affiliation(s)
- Mengyuan Liu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China; WillingMed Technology (Beijing) Co., Ltd, Beijing 100176, China; Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Yuting Hong
- Department of Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaohong Duan
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Qiming Zhou
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Jing Chen
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Siyao Liu
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Junyan Su
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Li Han
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Jiali Zhang
- Beijing ChosenMed Clinical Laboratory Co., Ltd., Beijing 100176, China
| | - Beifang Niu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China; School of Computer Science, University of the Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
5
|
Stößer S, Lumpp T, Fischer F, Gunesch S, Schumacher P, Hartwig A. Effect of Long-Term Low-Dose Arsenic Exposure on DNA Methylation and Gene Expression in Human Liver Cells. Int J Mol Sci 2023; 24:15238. [PMID: 37894918 PMCID: PMC10607230 DOI: 10.3390/ijms242015238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Millions of people around the world are exposed to elevated levels of arsenic through food or drinking water. Epidemiological studies have linked chronic arsenic exposure to an increased risk of several cancers, cardiovascular disease, central nervous system neuropathies, and genotoxic as well as immunotoxic effects. In addition to the induction of oxidative stress and inhibition of DNA repair processes, epigenetic effects, including altered DNA methylation patterns resulting in aberrant gene expression, may contribute to carcinogenicity. However, the underlying mechanisms by which chronic micromolar concentrations of arsenite affect the methylation status of DNA are not fully understood. In this study, human HepG2 hepatocarcinoma cells were treated with 0.5-10 μM sodium arsenite for 24 h, 10, or 20 days. During these periods, the effects on global DNA methylation, cell cycle phase distribution, and gene expression were investigated. While no impact on DNA methylation was seen after short-term exposure, global hypomethylation was observed at both long-term exposure periods, with concomitant induction of the DNA methyltransferase genes DNMT1 and DNMT3B, while DNMT3A was slightly down-regulated. Pronounced time- and concentration-dependent effects were also seen in the case of genes involved in DNA damage response and repair, inflammation, oxidative stress response, and metal homeostasis. These results suggest that chronic low-dose arsenite exposure can lead to global hypomethylation. As an underlying mechanism, the consistent down-regulation of DNA methyltransferase genes could be excluded; alternatively, interactions at the protein level could play an important role.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
6
|
Matthäus T, Stößer S, Seren HY, Haberland VMM, Hartwig A. Arsenite Impairs BRCA1-Dependent DNA Double-Strand Break Repair, a Mechanism Potentially Contributing to Genomic Instability. Int J Mol Sci 2023; 24:14395. [PMID: 37762697 PMCID: PMC10532266 DOI: 10.3390/ijms241814395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
BRCA1 is a key player in maintaining genomic integrity with multiple functions in DNA damage response (DDR) mechanisms. Due to its thiol-rich zinc-complexing domain, the protein may also be a potential target for redox-active and/or thiol-reactive (semi)metal compounds. The latter includes trivalent inorganic arsenic, which is indirectly genotoxic via induction of oxidative stress and inhibition of DNA repair pathways. In the present study, we investigated the effect of NaAsO2 on the transcriptional and functional DDR. Particular attention was paid to the potential impairment of BRCA1-mediated DDR mechanisms by arsenite by comparing BRCA1-deficient and -proficient cells. At the transcriptional level, arsenite itself activated several DDR mechanisms, including a pronounced oxidative stress and DNA damage response, mostly independent of BRCA1 status. However, at the functional level, a clear BRCA1 dependency was observed in both cell cycle regulation and cell death mechanisms after arsenite exposure. Furthermore, in the absence of arsenite, the lack of functional BRCA1 impaired the largely error-free homologous recombination (HR), leading to a shift towards the error-prone non-homologous end-joining (NHEJ). Arsenic treatment also induced this shift in BRCA1-proficient cells, indicating BRCA1 inactivation. Although BRCA1 bound to DNA DSBs induced via ionizing radiation, its dissociation was impaired, similarly to the downstream proteins RAD51 and RAD54. A shift from HR to NHEJ by arsenite was further supported by corresponding reporter gene assays. Taken together, arsenite appears to negatively affect HR via functional inactivation of BRCA1, possibly by interacting with its RING finger structure, which may compromise genomic stability.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| |
Collapse
|
7
|
Haberland VMM, Magin S, Iliakis G, Hartwig A. Impact of Manganese and Chromate on Specific DNA Double-Strand Break Repair Pathways. Int J Mol Sci 2023; 24:10392. [PMID: 37373538 DOI: 10.3390/ijms241210392] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Manganese is an essential trace element; nevertheless, on conditions of overload, it becomes toxic, with neurotoxicity being the main concern. Chromate is a well-known human carcinogen. The underlying mechanisms seem to be oxidative stress as well as direct DNA damage in the case of chromate, but also interactions with DNA repair systems in both cases. However, the impact of manganese and chromate on DNA double-strand break (DSB) repair pathways is largely unknown. In the present study, we examined the induction of DSB as well as the effect on specific DNA DSB repair mechanisms, namely homologous recombination (HR), non-homologous end joining (NHEJ), single strand annealing (SSA), and microhomology-mediated end joining (MMEJ). We applied DSB repair pathway-specific reporter cell lines, pulsed field gel electrophoresis as well as gene expression analysis, and investigated the binding of specific DNA repair proteins via immunoflourescence. While manganese did not seem to induce DNA DSB and had no impact on NHEJ and MMEJ, HR and SSA were inhibited. In the case of chromate, the induction of DSB was further supported. Regarding DSB repair, no inhibition was seen in the case of NHEJ and SSA, but HR was diminished and MMEJ was activated in a pronounced manner. The results indicate a specific inhibition of error-free HR by manganese and chromate, with a shift towards error-prone DSB repair mechanisms in both cases. These observations suggest the induction of genomic instability and may explain the microsatellite instability involved in chromate-induced carcinogenicity.
Collapse
Affiliation(s)
- Vivien M M Haberland
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Simon Magin
- Institute of Medical Radiation Biology, Medical School, University of Duisburg-Essen, 45122 Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, Medical School, University of Duisburg-Essen, 45122 Essen, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
8
|
Wang Y, Li Y, Gao Y, Kang J, Wang W, Yong YL, Qu X, Dang X, Shang D, Shao Y, Liu J, Chang Y, Zhao L. Fine particulate matter exposure disturbs autophagy, redox balance and mitochondrial homeostasis via JNK activation to inhibit proliferation and promote EMT in human alveolar epithelial A549 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115134. [PMID: 37331288 DOI: 10.1016/j.ecoenv.2023.115134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Epidemiologic studies have demonstrated a direct correlation between fine particulate matter (FPM) exposure and the high risk of respiratory diseases. FPM can penetrate deep into the lung and deposit in the alveoli with breath, where it directly interacts with alveolar epithelial cell (APC). However, we know little about the effects nor mechanisms of FPM on APC. Here, using human APC A549 cells, we found that FPM resulted in blockade of autophagic flux, redox imbalance and oxidative stress, mitochondrial fragmentation, increased mitophagy and impaired mitochondrial respiration. Further we showed that activation of JNK signaling (c-Jun N-terminal kinase) and excessive ROS (reactive oxygen species) release contribute to these adverse effects, with the former being upstream of the latter. More importantly, we found that scavenging ROS or inhibiting JNK activation could restore those effects as well as ameliorate FPM-induced inhibition of cell proliferation, and epithelial-mesenchymal transformation (EMT) in A549 cells. Taken together, our findings indicate that FPM leads to toxicity in alveolar type II cells via JNK activation, and JNK-targeting or antioxidant strategies might be beneficial for prevention or treatment of FPM-related pulmonary diseases.
Collapse
Affiliation(s)
- Yan Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi province, China
| | - Ying Li
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi province, China
| | - Yilin Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi province, China
| | - Jiahao Kang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi province, China
| | - Weijia Wang
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi province, China
| | - Yu-Le Yong
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi province, China
| | - Xiaoyan Qu
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi province, China
| | - Xiaomin Dang
- Department of Respiration, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi province, China
| | - Dong Shang
- Department of Respiration, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi province, China
| | - Yongping Shao
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi province, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi province, China; School of Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Ying Chang
- Center for Translational Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi province, China.
| | - Lin Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi province, China.
| |
Collapse
|
9
|
Gene Expression Profiling of Mono- and Co-Culture Models of the Respiratory Tract Exposed to Crystalline Quartz under Submerged and Air-Liquid Interface Conditions. Int J Mol Sci 2022; 23:ijms23147773. [PMID: 35887123 PMCID: PMC9324045 DOI: 10.3390/ijms23147773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
In vitro lung cell models like air-liquid interface (ALI) and 3D cell cultures have advanced greatly in recent years, being especially valuable for testing advanced materials (e.g., nanomaterials, fibrous substances) when considering inhalative exposure. Within this study, we established submerged and ALI cell culture models utilizing A549 cells as mono-cultures and co-cultures with differentiated THP-1 (dTHP-1), as well as mono-cultures of dTHP-1. After ALI and submerged exposures towards α-quartz particles (Min-U-Sil5), with depositions ranging from 15 to 60 µg/cm2, comparison was made with respect to their transcriptional cellular responses employing high-throughput RT-qPCR. A significant dose- and time-dependent induction of genes coding for inflammatory proteins, e.g., IL-1A, IL-1B, IL-6, IL-8, and CCL22, as well as genes associated with oxidative stress response such as SOD2, was observed, even more pronounced in co-cultures. Changes in the expression of similar genes were more pronounced under submerged conditions when compared to ALI exposure in the case of A549 mono-cultures. Hereby, the activation of the NF-κB signaling pathway and the NLRP3 inflammasome seem to play an important role. Regarding genotoxicity, neither DNA strand breaks in ALI cultivated cells nor a transcriptional response to DNA damage were observed. Altogether, the toxicological responses depended considerably on the cell culture model and exposure scenario, relevant to be considered to improve toxicological risk assessment.
Collapse
|
10
|
Schumacher P, Fischer F, Sann J, Walter D, Hartwig A. Impact of Nano- and Micro-Sized Chromium(III) Particles on Cytotoxicity and Gene Expression Profiles Related to Genomic Stability in Human Keratinocytes and Alveolar Epithelial Cells. NANOMATERIALS 2022; 12:nano12081294. [PMID: 35458002 PMCID: PMC9029936 DOI: 10.3390/nano12081294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Exposure to Cr(VI) compounds has been consistently associated with genotoxicity and carcinogenicity, whereas Cr(III) is far less toxic, due to its poor cellular uptake. However, contradictory results have been published in relation to particulate Cr2O3. The aim of the present study was to investigate whether Cr(III) particles exerted properties comparable to water soluble Cr(III) or to Cr(VI), including two nano-sized and one micro-sized particles. The morphology and size distribution were determined by TEM, while the oxidation state was analyzed by XPS. Chromium release was quantified via AAS, and colorimetrically differentiated between Cr(VI) and Cr(III). Furthermore, the toxicological fingerprints of the Cr2O3 particles were established using high-throughput RT-qPCR and then compared to water-soluble Cr(VI) and Cr(III) in A549 and HaCaT cells. Regarding the Cr2O3 particles, two out of three exerted only minor or no toxicity, and the gene expression profiles were comparable to Cr(III). However, one particle under investigation released considerable amounts of Cr(VI), and also resembled the toxicity profiles of Cr(VI); this was also evident in the altered gene expression related to DNA damage signaling, oxidative stress response, inflammation, and cell death pathways. Even though the highest toxicity was found in the case of the smallest particle, size did not appear to be the decisive parameter, but rather the purity of the Cr(III) particles with respect to Cr(VI) content.
Collapse
Affiliation(s)
- Paul Schumacher
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany; (P.S.); (F.F.)
| | - Franziska Fischer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany; (P.S.); (F.F.)
| | - Joachim Sann
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany;
- Center for Materials Research (LaMa/ZfM), Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Dirk Walter
- Laboratories of Chemistry and Physics, Institute of Occupational and Social Medicine, Justus-Liebig-University Giessen, Aulweg 129, 35392 Giessen, Germany;
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany; (P.S.); (F.F.)
- Correspondence:
| |
Collapse
|
11
|
Kateryna T, Monika L, Beata J, Joanna R, Edyta R, Marcin B, Agnieszka KW, Ewa J. Cadmium and breast cancer – current state and research gaps in the underlying mechanisms. Toxicol Lett 2022; 361:29-42. [DOI: 10.1016/j.toxlet.2022.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/04/2022] [Accepted: 03/17/2022] [Indexed: 01/02/2023]
|
12
|
Wong WPS, Wang JC, Schipma MJ, Zhang X, Edwards JR, El Muayed M. Cadmium-mediated pancreatic islet transcriptome changes in mice and cultured mouse islets. Toxicol Appl Pharmacol 2021; 433:115756. [PMID: 34666113 PMCID: PMC9873403 DOI: 10.1016/j.taap.2021.115756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 01/26/2023]
Abstract
Type II diabetes mellitus (T2DM) is a multifactorial disease process that is characterized by insulin resistance and impairment of insulin-producing pancreatic islets. There is evidence that environmental exposure to cadmium contributes to the development of T2DM. The presence of cadmium in human islets from the general population and the uptake of cadmium in β-cells have been reported. To identify cadmium-mediated changes in gene expression and molecular regulatory networks in pancreatic islets, we performed next-generation RNA-Sequencing (RNA-Seq) in islets following either in vivo (1 mM CdCl2 in drinking water) or ex-vivo (0.5 μM CdCl2) exposure. Both exposure regiments resulted in islet cadmium concentrations that are comparable to those found in human islets from the general population. 6-week in vivo cadmium exposure upregulates the expression of five genes: Synj2, Gjb1, Rbpjl, Try5 and 5430419D17Rik. Rbpjl is a known regulator of ctrb, a gene associated with diabetes susceptibility. With 18-week in vivo cadmium exposure, we found more comprehensive changes in gene expression profile. Pathway enrichment analysis showed that these secondary changes were clustered to molecular mechanisms related to intracellular protein trafficking to the plasma membrane. In islet culture, cadmium ex vivo significantly induces the expression of Mt1, Sphk1, Nrcam, L3mbtl2, Rnf216 and Itpr1. Mt1 and Itpr1 are known to be involved in glucose homeostasis. Collectively, findings reported here revealed a complex cadmium-mediated effect on pancreatic islet gene expression at environmentally relevant cadmium exposure conditions, providing the basis for further studies into the pathophysiological processes arising from cadmium accumulation in pancreatic islets.
Collapse
Affiliation(s)
- Winifred P S Wong
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Janice C Wang
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew J Schipma
- NU Seq Core, Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Xiaomin Zhang
- Division of Transplant Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joshua R Edwards
- College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Malek El Muayed
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
13
|
Schoch S, Sen V, Brenner W, Hartwig A, Köberle B. In Vitro Nephrotoxicity Studies of Established and Experimental Platinum-Based Compounds. Biomedicines 2021; 9:biomedicines9081033. [PMID: 34440237 PMCID: PMC8394219 DOI: 10.3390/biomedicines9081033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Cisplatin is one of the most commonly used drugs for the treatment of various solid cancers. However, its efficacy is restricted by severe side effects, especially dose-limiting nephrotoxicity. New platinum-based compounds are designed to overcome this limitation. Previous investigations showed that the platinum(IV)–nitroxyl complex PN149 is highly cytotoxic in various tumor cell lines. In the present study, investigations with PN149 were extended to normal human kidney tubule epithelia. Coincident with higher intracellular platinum accumulation, the cytotoxicity of PN149 in the proximal tubule epithelial cell line ciPTEC was more pronounced compared to the established platinum chemotherapeutics cisplatin, carboplatin and oxaliplatin. Quantitative gene expression profiling revealed the induction of ROS-inducible and anti-oxidative genes, suggesting an oxidative stress response by PN149. However, in contrast to cisplatin, no pro-inflammatory response was observed. Genes coding for distinct DNA damage response factors and genes related to apoptosis were up-regulated, indicating the activation of the DNA damage response system and induction of the apoptotic cascade by PN149. Altogether, a comparable transcriptional response was observed for PN149 and the platinum chemotherapeutics. However, the lack of inflammatory activity, which is a possible cause contributing to toxicity in human renal proximal tubule epithelia, might indicate the reduced nephrotoxic potential of PN149.
Collapse
Affiliation(s)
- Sarah Schoch
- Department of Laboratory Medicine, Lund University, Scheelevägen 2, 223 81 Lund, Sweden;
| | - Vasily Sen
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia;
| | - Walburgis Brenner
- Clinic for Obstetrics and Women’s Health, Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstreet 1, 55131 Mainz, Germany;
| | - Andrea Hartwig
- Karlsruhe Institute of Technology, Department of Food Chemistry and Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany;
| | - Beate Köberle
- Karlsruhe Institute of Technology, Department of Food Chemistry and Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany;
- Correspondence: ; Tel.: +49-721-608-42933
| |
Collapse
|
14
|
Impact of Nanocomposite Combustion Aerosols on A549 Cells and a 3D Airway Model. NANOMATERIALS 2021; 11:nano11071685. [PMID: 34199005 PMCID: PMC8304990 DOI: 10.3390/nano11071685] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
The use of nanomaterials incorporated into plastic products is increasing steadily. By using nano-scaled filling materials, thermoplastics, such as polyethylene (PE), take advantage of the unique properties of nanomaterials (NM). The life cycle of these so-called nanocomposites (NC) usually ends with energetic recovery. However, the toxicity of these aerosols, which may consist of released NM as well as combustion-generated volatile compounds, is not fully understood. Within this study, model nanocomposites consisting of a PE matrix and nano-scaled filling material (TiO2, CuO, carbon nano tubes (CNT)) were produced and subsequently incinerated using a lab-scale model burner. The combustion-generated aerosols were characterized with regard to particle release as well as compound composition. Subsequently, A549 cells and a reconstituted 3D lung cell culture model (MucilAir™, Epithelix) were exposed for 4 h to the respective aerosols. This approach enabled the parallel application of a complete aerosol, an aerosol under conditions of enhanced particle deposition using high voltage, and a filtered aerosol resulting in the sole gaseous phase. After 20 h post-incubation, cytotoxicity, inflammatory response (IL-8), transcriptional toxicity profiling, and genotoxicity were determined. Only the exposure toward combustion aerosols originated from PE-based materials induced cytotoxicity, genotoxicity, and transcriptional alterations in both cell models. In contrast, an inflammatory response in A549 cells was more evident after exposure toward aerosols of nano-scaled filler combustion, whereas the thermal decomposition of PE-based materials revealed an impaired IL-8 secretion. MucilAir™ tissue showed a pronounced inflammatory response after exposure to either combustion aerosols, except for nanocomposite combustion. In conclusion, this study supports the present knowledge on the release of nanomaterials after incineration of nano-enabled thermoplastics. Since in the case of PE-based combustion aerosols no major differences were evident between exposure to the complete aerosol and to the gaseous phase, adverse cellular effects could be deduced to the volatile organic compounds that are generated during incomplete combustion of NC.
Collapse
|
15
|
Guo M, Lu B, Gan J, Wang S, Jiang X, Li H. Apoptosis detection: a purpose-dependent approach selection. Cell Cycle 2021; 20:1033-1040. [PMID: 34000960 PMCID: PMC8208110 DOI: 10.1080/15384101.2021.1919830] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 01/20/2023] Open
Abstract
Apoptosis is closely associated with many diseases. Detection of apoptosis can be achieved by morphology, biochemistry, molecular biology, immunology, and other techniques. However, as technologies are increasingly used for the detection of apoptosis, many researchers are confused about how to choose a suitable method to detect apoptosis. Selection of a suitable detection method for apoptosis will help clinical diagnosis and prevention of diseases. This article reviews the selection of optimal apoptosis-detection methods based on research purposes and technique principles.
Collapse
Affiliation(s)
- Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Lu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuangcui Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
16
|
Hufnagel M, Neuberger R, Wall J, Link M, Friesen A, Hartwig A. Impact of Differentiated Macrophage-Like Cells on the Transcriptional Toxicity Profile of CuO Nanoparticles in Co-Cultured Lung Epithelial Cells. Int J Mol Sci 2021; 22:ijms22095044. [PMID: 34068728 PMCID: PMC8126233 DOI: 10.3390/ijms22095044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
To mimic more realistic lung tissue conditions, co-cultures of epithelial and immune cells are one comparatively easy-to-use option. To reveal the impact of immune cells on the mode of action (MoA) of CuO nanoparticles (NP) on epithelial cells, A549 cells as a model for epithelial cells have been cultured with or without differentiated THP-1 cells, as a model for macrophages. After 24 h of submerged incubation, cytotoxicity and transcriptional toxicity profiles were obtained and compared between the cell culture systems. Dose-dependent cytotoxicity was apparent starting from 8.0 µg/cm2 CuO NP. With regard to gene expression profiles, no differences between the cell models were observed concerning metal homeostasis, oxidative stress, and DNA damage, confirming the known MoA of CuO NP, i.e., endocytotic particle uptake, intracellular particle dissolution within lysosomes with subsequent metal ion deliberation, increased oxidative stress, and genotoxicity. However, applying a co-culture of epithelial and macrophage-like cells, CuO NP additionally provoked a pro-inflammatory response involving NLRP3 inflammasome and pro-inflammatory transcription factor activation. This study demonstrates that the application of this easy-to-use advanced in vitro model is able to extend the detection of cellular effects provoked by nanomaterials by an immunological response and emphasizes the use of such models to address a more comprehensive MoA.
Collapse
|
17
|
Wedler N, Matthäus T, Strauch B, Dilger E, Waterstraat M, Mangerich A, Hartwig A. Impact of the Cellular Zinc Status on PARP-1 Activity and Genomic Stability in HeLa S3 Cells. Chem Res Toxicol 2021; 34:839-848. [PMID: 33645215 DOI: 10.1021/acs.chemrestox.0c00452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is actively involved in several DNA repair pathways, especially in the detection of DNA lesions and DNA damage signaling. However, the mechanisms of PARP-1 activation are not fully understood. PARP-1 contains three zinc finger structures, among which the first zinc finger has a remarkably low affinity toward zinc ions. Within the present study, we investigated the impact of the cellular zinc status on PARP-1 activity and on genomic stability in HeLa S3 cells. Significant impairment of H2O2-induced poly(ADP-ribosyl)ation and an increase in DNA strand breaks were detected in the case of zinc depletion by the zinc chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) which reduced the total and labile zinc concentrations. On the contrary, preincubation of cells with ZnCl2 led to an overload of total as well as labile zinc and resulted in an increased poly(ADP-ribosyl)ation response upon H2O2 treatment. Furthermore, the impact of the cellular zinc status on gene expression profiles was investigated via high-throughput RT-qPCR, analyzing 95 genes related to metal homeostasis, DNA damage and oxidative stress response, cell cycle regulation and proliferation. Genes encoding metallothioneins responded most sensitively on conditions of mild zinc depletion or moderate zinc overload. Zinc depletion induced by higher concentrations of TPEN led to a significant induction of genes encoding DNA repair factors and cell cycle arrest, indicating the induction of DNA damage and genomic instability. Zinc overload provoked an up-regulation of the oxidative stress response. Altogether, the results highlight the potential role of zinc signaling for PARP-1 activation and the maintenance of genomic stability.
Collapse
Affiliation(s)
- Nadin Wedler
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Tizia Matthäus
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Bettina Strauch
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Elena Dilger
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Martin Waterstraat
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| |
Collapse
|
18
|
Aberle L, Krüger A, Reber JM, Lippmann M, Hufnagel M, Schmalz M, Trussina IREA, Schlesiger S, Zubel T, Schütz K, Marx A, Hartwig A, Ferrando-May E, Bürkle A, Mangerich A. PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response. Nucleic Acids Res 2020; 48:10015-10033. [PMID: 32667640 PMCID: PMC7544232 DOI: 10.1093/nar/gkaa590] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Poly(ADP-ribosyl)ation regulates numerous cellular processes like genome maintenance and cell death, thus providing protective functions but also contributing to several pathological conditions. Poly(ADP-ribose) (PAR) molecules exhibit a remarkable heterogeneity in chain lengths and branching frequencies, but the biological significance of this is basically unknown. To unravel structure-specific functions of PAR, we used PARP1 mutants producing PAR of different qualities, i.e. short and hypobranched (PARP1\G972R), short and moderately hyperbranched (PARP1\Y986S), or strongly hyperbranched PAR (PARP1\Y986H). By reconstituting HeLa PARP1 knockout cells, we demonstrate that PARP1\G972R negatively affects cellular endpoints, such as viability, cell cycle progression and genotoxic stress resistance. In contrast, PARP1\Y986S elicits only mild effects, suggesting that PAR branching compensates for short polymer length. Interestingly, PARP1\Y986H exhibits moderate beneficial effects on cell physiology. Furthermore, different PARP1 mutants have distinct effects on molecular processes, such as gene expression and protein localization dynamics of PARP1 itself, and of its downstream factor XRCC1. Finally, the biological relevance of PAR branching is emphasized by the fact that branching frequencies vary considerably during different phases of the DNA damage-induced PARylation reaction and between different mouse tissues. Taken together, this study reveals that PAR branching and chain length essentially affect cellular functions, which further supports the notion of a ‘PAR code’.
Collapse
Affiliation(s)
- Lisa Aberle
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Annika Krüger
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Julia M Reber
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Michelle Lippmann
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Matthias Hufnagel
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Michael Schmalz
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| | | | - Sarah Schlesiger
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Tabea Zubel
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Karina Schütz
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | | | - Alexander Bürkle
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
19
|
Kwok ML, Meng Q, Hu XL, Chung CT, Chan KM. Whole-transcriptome sequencing (RNA-seq) study of the ZFL zebrafish liver cell line after acute exposure to Cd 2+ ions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105628. [PMID: 32971353 DOI: 10.1016/j.aquatox.2020.105628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is a non-essential metal with no known biological function and a broad range of toxic effects in biological systems. We used whole-transcriptome sequencing (RNA-seq) to study the effects of Cd2+ toxicity in zebrafish liver cells, ZFL. The results of an RNA-Seq analysis of ZFL cells exposed to 5, 10 or 20 μM Cd2+ for 4- or 24-h. The differentially expressed genes affected by Cd2+ were analyzed by using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to study the regulated pathways. Cd2+ regulated the expression of genes associated with cellular Cu, Zn, and Fe homeostasis, DNA replication leading to cell cycle arrest and apoptosis, and glutathione metabolism. Cd2+ boosted up the amino acid synthesis, possibly to support the glutathione metabolism for tackling the oxidative stress generated from Cd2+. Cd2+ stimulation was similar to heat or xenobiotics, based on the responses from ZFL such as endoplasmic reticulum stress and protein folding. We linked also those finding of gene activations relating to carcinogenesis of Cd. This paper provides a comprehensive analysis of the expression profiles induced by Cd2+ exposure in ZFL cells, as well as useful insights into the specific toxic effects.
Collapse
Affiliation(s)
- Man Long Kwok
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin., N.T., Hong Kong
| | - Qi Meng
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin., N.T., Hong Kong
| | - Xue Lei Hu
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin., N.T., Hong Kong
| | - Chun Ting Chung
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin., N.T., Hong Kong
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin., N.T., Hong Kong.
| |
Collapse
|
20
|
Schoch S, Gajewski S, Rothfuß J, Hartwig A, Köberle B. Comparative Study of the Mode of Action of Clinically Approved Platinum-Based Chemotherapeutics. Int J Mol Sci 2020; 21:ijms21186928. [PMID: 32967255 PMCID: PMC7555145 DOI: 10.3390/ijms21186928] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Platinum drugs are among the most effective anticancer agents, but their mode of action is still not fully understood. We therefore carried out a systematic investigation on the cellular activities of cisplatin, carboplatin and oxaliplatin in A498 kidney cancer cells. Cytotoxicity was higher for cisplatin and oxaliplatin compared to carboplatin, with induction of apoptosis as the preferred mode of cell death. Gene expression profiling displayed modulation of genes related to DNA damage response/repair, cell cycle regulation and apoptosis which was more pronounced upon oxaliplatin treatment. Furthermore, repression of specific DNA repair genes was restricted to oxaliplatin. Transcriptional level observations were further analyzed on the functional level. Uptake studies revealed low intracellular platinum accumulation and DNA platination upon carboplatin treatment. Removal of overall DNA platination was comparable for the three drugs. However, no processing of oxaliplatin-induced interstrand crosslinks was observed. Cisplatin and carboplatin influenced cell cycle distribution comparably, while oxaliplatin had no effect. Altogether, we found a similar mode of action for cisplatin and carboplatin, while the activity of oxaliplatin appeared to differ. This might be clinically relevant as due to the difference in mode of action oxaliplatin could be active in tumors which show resistance towards cisplatin and carboplatin.
Collapse
Affiliation(s)
- Sarah Schoch
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany; (S.S.); (S.G.); (J.R.); (A.H.)
- Department of Laboratory Medicine, Lund University, Scheelevägen 2, 22381 Lund, Sweden
| | - Sabine Gajewski
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany; (S.S.); (S.G.); (J.R.); (A.H.)
| | - Jana Rothfuß
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany; (S.S.); (S.G.); (J.R.); (A.H.)
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany; (S.S.); (S.G.); (J.R.); (A.H.)
| | - Beate Köberle
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany; (S.S.); (S.G.); (J.R.); (A.H.)
- Correspondence: ; Tel.: +49-721-608-42933
| |
Collapse
|
21
|
Gajewski S, Hartwig A. PARP1 Is Required for ATM-Mediated p53 Activation and p53-Mediated Gene Expression after Ionizing Radiation. Chem Res Toxicol 2020; 33:1933-1940. [PMID: 32551582 DOI: 10.1021/acs.chemrestox.0c00130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PARP1 and p53 are key players in maintaining genomic stability, but their interplay is still not fully understood. We investigated the impact of PARP1 knockout on the DNA damage response after ionizing radiation (IR) by comparing a U2OS-based PARP1-knockout cell line, established by using the genome-editing system CRISPR/Cas9, with its wild-type counterpart. We intended to gain more insight into the impact of PARP1 on the transcriptional level under basal conditions, after low dose (1 Gy) and high dose (10 Gy) DNA damage induced by IR, aiming to reveal the potential connections between the involved pathways. In the absence of additionally induced DNA damage, lacking PARP1 led to an increased up-regulation of CDKN1A (p21), which caused a G1 arrest and slightly diminished cell proliferation. While a small but comparable transcriptional DNA damage response was observed upon 1 Gy IR in both cell lines, a pronounced transcriptional induction of p53 target genes was evident after treatment with 10 Gy IR exclusively in PARP1-proficient cells, suggesting that PARP1 facilitates the p53 signaling response after IR. Additionally, PARP1 appeared to be required for the ATM-dependent activation of PLK3, which in turn activates p53, leading to its transcriptional damage response. Our results support the involvement of PARP1 activation among the first steps in IR-induced DNA damage response.
Collapse
Affiliation(s)
- Sabine Gajewski
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| |
Collapse
|
22
|
Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020; 94:1787-1877. [PMID: 32542409 PMCID: PMC7303094 DOI: 10.1007/s00204-020-02733-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.
Collapse
Affiliation(s)
- Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, 55099, Mainz, Germany
| | - Sabine Guth
- Department of Toxicology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gunnar Jahnke
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Hans-Jörg Martus
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Bernhard Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Gerlinde Schriever-Schwemmer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Gerhard Eisenbrand
- Retired Senior Professor for Food Chemistry and Toxicology, Kühler Grund 48/1, 69126, Heidelberg, Germany.
| |
Collapse
|
23
|
Hufnagel M, Schoch S, Wall J, Strauch BM, Hartwig A. Toxicity and Gene Expression Profiling of Copper- and Titanium-Based Nanoparticles Using Air-Liquid Interface Exposure. Chem Res Toxicol 2020; 33:1237-1249. [PMID: 32285662 DOI: 10.1021/acs.chemrestox.9b00489] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To assess the toxicity of nanomaterials, most in vitro studies have been performed under submerged conditions, which do not reflect physiological conditions upon inhalation. An air-liquid interface (ALI) exposure may provide more reliable data on dosimetry and prevent interactions with cell culture media components. Therefore, an ALI exposure was combined with a high-throughput RT-qPCR approach to evaluate the toxicological potential of CuO and TiO2 nanoparticles (NP) in A549 cells. While TiO2 NP did not show any cytotoxicity or other effects compromising genomic stability up to 25.8 μg/cm2, CuO NP revealed a dose-dependent cytotoxicity, starting at 4.9 μg/cm2. Furthermore, CuO NP altered distinct gene expression patterns indicative for disturbed metal homeostasis, stress response, and DNA damage induction. Thus, induction of metal homeostasis associated genes (MT1X, MT2A) at 0.4 μg/cm2 and higher suggested uptake and intracellular dissolution of CuO NP, which was verified by a dose-dependent increase in intracellular copper concentration. Starting at 4.9 μg/cm2, oxidative stress markers (HMOX1, HSPA1A) were induced dose-dependently, supported by elevated ROS levels. Furthermore, a dose-dependent induction of genes associated with DNA damage response (DDIT3, GADD45A) was observed, in concordance with an increase in DNA strand breaks. Finally, transcriptional data suggested the induction of apoptosis at high doses, while flow cytometric analysis revealed increased numbers of either late apoptotic or necrotic cells and clearly necrotic cells at the highest concentrations. Thus, an ALI cell culture system was successfully combined with a comprehensive high-throughput RT-qPCR system, allowing the quantification of NP deposition and their impact on genomic stability. For CuO NP, in principle the data confirm observations made under submerged conditions with respect to intracellular copper ion release, as well as oxidative and genotoxic stress response. However, the results derived from ALI exposure allow the assessment of dose-response-relationships as well as the comparison of relative toxic potencies of different NP.
Collapse
Affiliation(s)
- Matthias Hufnagel
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Sarah Schoch
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Johanna Wall
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Bettina Maria Strauch
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| |
Collapse
|
24
|
Strauch BM, Hubele W, Hartwig A. Impact of Endocytosis and Lysosomal Acidification on the Toxicity of Copper Oxide Nano- and Microsized Particles: Uptake and Gene Expression Related to Oxidative Stress and the DNA Damage Response. NANOMATERIALS 2020; 10:nano10040679. [PMID: 32260290 PMCID: PMC7221514 DOI: 10.3390/nano10040679] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 01/04/2023]
Abstract
The toxicity of the copper oxide nanoparticles (CuO NP) has been attributed to the so-called "Trojan horse"-type mechanism, relying on the particle uptake and extensive intracellular release of copper ions, due to acidic pH in the lysosomes. Nevertheless, a clear distinction between extra- and intracellular-mediated effects is still missing. Therefore, the impact of the endocytosis inhibitor hydroxy-dynasore (OH-dyn), as well as bafilomycin A1 (bafA1), inhibiting the vacuolar type H+-ATPase (V-ATPase), on the cellular toxicity of nano- and microsized CuO particles, was investigated in BEAS 2 B cells. Selected endpoints were cytotoxicity, copper uptake, glutathione (GSH) levels, and the transcriptional DNA damage and (oxidative) stress response using the high-throughput reverse transcription quantitative polymerase chain reaction (RT-qPCR). OH-dyn markedly reduced intracellular copper accumulation in the cases of CuO NP and CuO MP; the modulation of gene expression, induced by both particle types affecting especially HMOX1, HSPA1A, MT1X, SCL30A1, IL8 and GADD45A, were completely abolished. BafA1 lowered the intracellular copper concentration in case of CuO NP and strongly reduced transcriptional changes, while any CuO MP-mediated effects were not affected by bafA1. In conclusion, the toxicity of CuO NP depended almost exclusively upon dynamin-dependent endocytosis and the intracellular release of redox-active copper ions due to lysosomal acidification, while particle interactions with cellular membranes appeared to be not relevant.
Collapse
|
25
|
Huang MY, Duan RY, Zhao Q. The influence of long-term cadmium exposure on the male advertisement call of Xenopus laevis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7996-8002. [PMID: 31889288 DOI: 10.1007/s11356-019-07525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a non-essential environmental endocrine-disrupting compound found in water and a potential threat to aquatic habitats. Cd has been shown to have various short-term effects on aquatic animals; however, evidence for long-term effects of Cd on vocal communications in amphibians is lacking. To better understand the long-term effects of low-dose Cd on acoustic communication in amphibians, male Xenopus laevis individuals were treated with low Cd concentrations (0.1, 1, and 10 μg/L) via aqueous exposure for 24 months. At the end of the exposure, the acoustic spectrum characteristics of male advertisement calls and male movement behaviors in response to female calls were recorded. The gene and protein expressions of the androgen receptor (AR) were determined using Western blot and RT-PCR. The results showed that long-term Cd treatment affected the spectrogram and formant of the advertisement call. Compared with the control group, 10 μg/L Cd significantly decreased the first and second formant frequency, and the fundamental and main frequency, and increased the third formant frequency. One and 10-μg/L Cd treatments significantly reduced the proportion of individuals responding to female calls and prolonged the time of first movement of the male. Long-term Cd treatment induced a downregulation in the AR protein. Treatments of 0.1, 1, and 10 μg/L Cd significantly decreased the expression of AR mRNA in the brain. These findings indicate that long-term exposure of Cd has negative effects on advertisement calls in male X. laevis.
Collapse
Affiliation(s)
- Min-Yi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
- Key Laboratory of Biodiversity Research and Ecological Conservation in Southwest Anhui Province, Anqing, 246011, Anhui, China
| | - Ren-Yan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
- Key Laboratory of Biodiversity Research and Ecological Conservation in Southwest Anhui Province, Anqing, 246011, Anhui, China.
| | - Qiang Zhao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| |
Collapse
|
26
|
Fontes PK, Castilho ACS, Razza EM, Nogueira MFG. Bona fide gene expression analysis of samples from the bovine reproductive system by microfluidic platform. Anal Biochem 2020; 596:113641. [PMID: 32087128 DOI: 10.1016/j.ab.2020.113641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 10/25/2022]
Abstract
Sample types such as those from reproductive systems often yield scarce material, which limits RT-qPCR analysis to only a few targets. Recently developed high-throughput systems can potentially change this scenario, however, the nanoliter scale of such platforms requires extra processing, e.g., preamplification, which needs to be defined through observation and experience. In order to establish best practices in high-throughput PCR approaches using samples from reproductive systems, we evaluated the Biomark™ HD performance using 11 different sample types from the bovine reproductive system: blastocyst (single/pool), oocyte (pool), cumulus, granulosa, and theca cells, oviduct tissue, fetal ovary, testicle (adult/fetal), and uterine horn. We observed that the preamplification step is not just reliable, but mandatory. Our results indicated that 14-preamplification cycles associated to 5- and 7-fold-dilution is the best approach for those samples. Additionally, the Biomark™ HD system has a high intra and inter reproducibility, therefore its performance in duplicate is unnecessary for the ΔCq analysis, taking in consideration the cutoff value 4 < Cq < 22. In summary, this high-throughput approach is a reliable and excellent tool for studying the bovine reproductive system, especially using quantitatively-limited samples, as a larger number of target genes can be assessed from a very low amount of starting material.
Collapse
Affiliation(s)
- Patricia Kubo Fontes
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Pharmacology, Institute of Biosciences, University of São Paulo State (Unesp), Campus of Botucatu, São Paulo, Brazil.
| | - Anthony César Souza Castilho
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Pharmacology, Institute of Biosciences, University of São Paulo State (Unesp), Campus of Botucatu, São Paulo, Brazil; University of Western São Paulo (Unoeste), Campus of Presidente Prudente, São Paulo, Brazil.
| | - Eduardo Montanari Razza
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Pharmacology, Institute of Biosciences, University of São Paulo State (Unesp), Campus of Botucatu, São Paulo, Brazil.
| | - Marcelo Fábio Gouveia Nogueira
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Pharmacology, Institute of Biosciences, University of São Paulo State (Unesp), Campus of Botucatu, São Paulo, Brazil; Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (Unesp), Campus of Assis, São Paulo, Brazil.
| |
Collapse
|
27
|
García-Rodríguez A, Rubio L, Vila L, Xamena N, Velázquez A, Marcos R, Hernández A. The Comet Assay as a Tool to Detect the Genotoxic Potential of Nanomaterials. NANOMATERIALS 2019; 9:nano9101385. [PMID: 31569740 PMCID: PMC6835278 DOI: 10.3390/nano9101385] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023]
Abstract
The interesting physicochemical characteristics of nanomaterials (NMs) has brought about their increasing use and, consequently, their increasing presence in the environment. As emergent contaminants, there is an urgent need for new data about their potential side-effects on human health. Among their potential effects, the potential for DNA damage is of paramount relevance. Thus, in the context of the EU project NANoREG, the establishment of common robust protocols for detecting genotoxicity of NMs became an important aim. One of the developed protocols refers to the use of the comet assay, as a tool to detect the induction of DNA strand breaks. In this study, eight different NMs—TiO2NP (2), SiO2NP (2), ZnONP, CeO2NP, AgNP, and multi-walled carbon nanotubes (MWCNT)—were tested using two different human lung epithelial cell lines (A549 and BEAS-2B). The comet assay was carried out with and without the use of the formamidopyrimidine glycosylase (FPG) enzyme to detect the induction of oxidatively damaged DNA bases. As a high throughput approach, we have used GelBond films (GBF) instead of glass slides, allowing the fitting of 48 microgels on the same GBF. The results confirmed the suitability of the comet assay as a powerful tool to detect the genotoxic potential of NMs. Specifically, our results indicate that most of the selected nanomaterials showed mild to significant genotoxic effects, at least in the A549 cell line, reflecting the relevance of the cell line used to determine the genotoxic ability of a defined NM.
Collapse
Affiliation(s)
- Alba García-Rodríguez
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| | - Laura Rubio
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Santiago de los Caballeros 50000, Dominican Republic.
| | - Laura Vila
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| | - Noel Xamena
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain.
| | - Antonia Velázquez
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain.
| | - Ricard Marcos
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain.
| | - Alba Hernández
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain.
| |
Collapse
|
28
|
Hufnagel M, Niemand RK, Strauch BM, Hartwig A. Essentielle Spurenelemente und toxische Metallverbindungen. CHEM UNSERER ZEIT 2019. [DOI: 10.1002/ciuz.201900835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Andrea Hartwig
- Institut für Angewandte Biowissenschaften (IAB)Abteilung für Lebensmittelchemie und ToxikologieKarlsruher Institut für Technologie (KIT) Adenauerring 20a 76131 Karlsruhe
| |
Collapse
|
29
|
Fischbach A, Krüger A, Hampp S, Assmann G, Rank L, Hufnagel M, Stöckl MT, Fischer JMF, Veith S, Rossatti P, Ganz M, Ferrando-May E, Hartwig A, Hauser K, Wiesmüller L, Bürkle A, Mangerich A. The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1. Nucleic Acids Res 2019; 46:804-822. [PMID: 29216372 PMCID: PMC5778597 DOI: 10.1093/nar/gkx1205] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/22/2017] [Indexed: 01/25/2023] Open
Abstract
The post-translational modification poly(ADP-ribosyl)ation (PARylation) plays key roles in genome maintenance and transcription. Both non-covalent poly(ADP-ribose) binding and covalent PARylation control protein functions, however, it is unknown how the two modes of modification crosstalk mechanistically. Employing the tumor suppressor p53 as a model substrate, this study provides detailed insights into the interplay between non-covalent and covalent PARylation and unravels its functional significance in the regulation of p53. We reveal that the multifunctional C-terminal domain (CTD) of p53 acts as the central hub in the PARylation-dependent regulation of p53. Specifically, p53 bound to auto-PARylated PARP1 via highly specific non–covalent PAR-CTD interaction, which conveyed target specificity for its covalent PARylation by PARP1. Strikingly, fusing the p53-CTD to a protein that is normally not PARylated, renders this a target for covalent PARylation as well. Functional studies revealed that the p53–PAR interaction had substantial implications on molecular and cellular levels. Thus, PAR significantly influenced the complex p53–DNA binding properties and controlled p53 functions, with major implications on the p53-dependent interactome, transcription, and replication-associated recombination. Remarkably, this mechanism potentially also applies to other PARylation targets, since a bioinformatics analysis revealed that CTD-like regions are highly enriched in the PARylated proteome.
Collapse
Affiliation(s)
- Arthur Fischbach
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Annika Krüger
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.,Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Stephanie Hampp
- Department of Obstetrics and Gynaecology, University of Ulm, 89075 Ulm, Germany
| | - Greta Assmann
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Lisa Rank
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Matthias Hufnagel
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Martin T Stöckl
- Bioimaging Center, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jan M F Fischer
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Sebastian Veith
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Research Training Group 1331, University of Konstanz, 78457 Konstanz, Germany
| | - Pascal Rossatti
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Magdalena Ganz
- Bioimaging Center, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Elisa Ferrando-May
- Bioimaging Center, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynaecology, University of Ulm, 89075 Ulm, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
30
|
Schoch S, Sen V, Gajewski S, Golubev V, Strauch B, Hartwig A, Köberle B. Activity profile of the cisplatin analogue PN149 in different tumor cell lines. Biochem Pharmacol 2018; 156:109-119. [PMID: 30138622 DOI: 10.1016/j.bcp.2018.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/17/2018] [Indexed: 12/26/2022]
Abstract
The efficacy of the anticancer drug cisplatin is restricted by tumor cell resistance and occurrence of severe side effects. One strategy to overcome these limitations is the development of new, improved platinum drugs. Previous investigations showed that platinum(IV)-nitroxyl complexes are able to circumvent cisplatin resistance in bladder cancer cells. In the present study the mode of action of the platinum(IV)-nitroxyl complex PN149 was investigated in the bladder cancer cell line RT112 and the renal cell carcinoma cell line A498 on the molecular and cellular level. Gene expression analysis showed that PN149 induced genes related to DNA damage response (RRM2B, GADD45A), cell cycle regulation (CDKN1A, PLK3, PPM1D) as well as those coding for the pro-apoptotic factors PUMA and Noxa. These findings on the transcriptional level were confirmed on the functional level revealing that PN149 treatment increased levels of p53 and resulted in cell cycle arrest and drug-induced cytotoxicity via induction of apoptosis. Regarding the expression of oxidative-stress sensitive genes, PN149 induced FTH1, GCLC, HMOX1 and TXNRD1 but relevant effects were restricted to RT112 cells treated with 50 µM. The pro-inflammatory IL-8 was induced by PN149 in RT112 but not A498 cells indicating a cell-type specific activation. Taken together, PN149 possessed promising activity in different tumor cell lines rendering it an interesting alternative to cisplatin in chemotherapy.
Collapse
Affiliation(s)
- Sarah Schoch
- Karlsruhe Institute of Technology, Food Chemistry and Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany
| | - Vasily Sen
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moskow Region 142432, Russian Federation
| | - Sabine Gajewski
- Karlsruhe Institute of Technology, Food Chemistry and Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany
| | - Valery Golubev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moskow Region 142432, Russian Federation
| | - Bettina Strauch
- Karlsruhe Institute of Technology, Food Chemistry and Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany
| | - Andrea Hartwig
- Karlsruhe Institute of Technology, Food Chemistry and Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany
| | - Beate Köberle
- Karlsruhe Institute of Technology, Food Chemistry and Toxicology, Adenauerring 20, 76131 Karlsruhe, Germany.
| |
Collapse
|
31
|
Rubio L, Marcos R, Hernández A. Nanoceria acts as antioxidant in tumoral and transformed cells. Chem Biol Interact 2018; 291:7-15. [DOI: 10.1016/j.cbi.2018.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 12/31/2022]
|
32
|
Pardo M, Kuperman Y, Levin L, Rudich A, Haim Y, Schauer JJ, Chen A, Rudich Y. Exposure to air pollution interacts with obesogenic nutrition to induce tissue-specific response patterns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:532-543. [PMID: 29684880 DOI: 10.1016/j.envpol.2018.04.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Obesity and exposure to particular matter (PM) have become two leading global threats to public health. However, the exact mechanisms and tissue-specificity of their health effects are largely unknown. Here we investigate whether a metabolic challenge (early nutritional obesity) synergistically interacts with an environmental challenge (PM exposure) to alter genes representing key response pathways, in a tissue-specific manner. Mice subjected to 7 weeks obesogenic nutrition were exposed every other day during the final week and a half to aqueous extracts of PM collected in the city of London (UK). The expression of 61 selected genes representing key response pathways were investigated in lung, liver, white and brown adipose tissues. Principal component analysis (PCA) revealed distinct patterns of expression changes between the 4 tissues, particularly in the lungs and the liver. Surprisingly, the lung responded to the nutrition challenge. The response of these organs to the PM challenge displayed opposite patterns for some key genes, in particular, those related to the Nrf2 pathway. While the contribution to the variance in gene expression changes in mice exposed to the combined challenge were largely similar among the tissues in PCA1, PCA2 exhibited predominant contribution of inflammatory and oxidative stress responses to the variance in the lungs, and a greater contribution of autophagy genes and MAP kinases in adipose tissues. Possible involvement of alterations in DNA methylation was demonstrated by cell-type-specific responses to a methylation inhibitor. Correspondingly, the DNA methyltransferase Dnmt3a2 increased in the lungs but decreased in the liver, demonstrating potential tissue-differential synergism between nutritional and PM exposure. The results suggest that urban PM, containing dissolved metals, interacts with obesogenic nutrition to regulate diverse response pathways including inflammation and oxidative stress, in a tissue-specific manner. Tissue-differential effects on DNA methylation may underlie tissue-specific responses to key stress-response genes such as catalase and Nrf2.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Liron Levin
- Department of Life Sciences, Bioinformatics Core Facility, Ben-Gurion University of the Negev, Beer Sheva, 84103, Israel
| | - Assaf Rudich
- The Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel; The National Institute of Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - Yulia Haim
- The Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel; The National Institute of Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
33
|
Pardo M, Xu F, Qiu X, Zhu T, Rudich Y. Seasonal variations in fine particle composition from Beijing prompt oxidative stress response in mouse lung and liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:147-155. [PMID: 29335169 DOI: 10.1016/j.scitotenv.2018.01.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Exposure to air pollution can induce oxidative stress, inflammation and adverse health effects. To understand how seasonal and chemical variations drive health impacts, we investigated indications for oxidative stress and inflammation in mice exposed to water and organic extracts from urban fine particles/PM2.5 (particles with aerodynamic diameter ≤ 2.5 μm) collected in Beijing, China. Higher levels of pollution components were detected in heating season (HS, winter and part of spring) PM2.5 than in the non-heating season (NHS, summer and part of spring and autumn) PM2.5. HS samples were high in metals for the water extraction and high in polycyclic aromatic hydrocarbons (PAHs) for the organic extraction compared to their controls. An increased inflammatory response was detected in the lung and liver following exposure to the organic extracts compared to the water extracts, and mostly in the HS PM2.5. While reduced antioxidant response was observed in the lung, it was activated in the liver, again, more in the HS extracts. Nrf2 transcription factor, a master regulator of stress response that controls the basal oxidative capacity and induces the expression of antioxidant response, and its related genes were induced. In the liver, elevated levels of lipid peroxidation adducts were measured, correlated with histologic analysis that revealed morphologic features of cell damage and proliferation, indicating oxidative and toxic damage. In addition, expression of genes related to detoxification of PAHs was observed. Altogether, the study suggests that the acute effects of PM2.5 can vary seasonally with stronger health effects in the HS than in the NHS in Beijing, China and that some secondary organs may be susceptible for the exposure damage. Specifically, the liver is a potential organ influenced by exposure to organic components such as PAHs from coal or biomass burning and heating.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Fanfan Xu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
34
|
Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Sci Rep 2017; 7:9392. [PMID: 28839203 PMCID: PMC5570922 DOI: 10.1038/s41598-017-09818-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 07/31/2017] [Indexed: 12/20/2022] Open
Abstract
Fine particulate matter (PM2.5) exposure, especially to its organic components, induces adverse health effects on the respiratory system. However, the molecular mechanisms have still not been fully elucidated. Long non-coding RNA (lncRNA) is involved in various physio-pathological processes. In this study, the roles of lncRNA were investigated to reveal the toxicology of PM2.5. Organic extracts of PM2.5 from Nanjing and Shanghai cities were adopted to treat human bronchial epithelial cell lines (BEAS-2B and A549). RNA sequencing showed that the lncRNA functioned as antisense RNA, intergenic RNA and pre-miRNA. The mRNA profiles were also altered after exposure. PM2.5 from Nanjing showed a more serious impact than that from Shanghai. In detail, higher expression of n405968 was positively related to the elevated mRNA levels of inflammatory factors (IL-6 and IL-8). Increasing levels of metastasis associated lung adenocarcinoma transcript 1 (MALAT1) were positively associated with the induced epithelial-mesenchymal transition (EMT) process. Similar response was observed between both cell lines. The higher content of polycyclic aromatic hydrocarbons (PAHs) is likely to contribute to higher toxicity of PM2.5 from Nanjing than that from Shanghai. Antagonism of aryl hydrocarbon receptor (AHR) or inhibition of CYP1A1 diminished the effects stimulated by PM2.5. Our results indicated that lncRNAs could be involved in the toxicology of PM2.5 through regulating the inflammation and EMT process.
Collapse
|
35
|
Strauch BM, Niemand RK, Winkelbeiner NL, Hartwig A. Comparison between micro- and nanosized copper oxide and water soluble copper chloride: interrelationship between intracellular copper concentrations, oxidative stress and DNA damage response in human lung cells. Part Fibre Toxicol 2017; 14:28. [PMID: 28764715 PMCID: PMC5540434 DOI: 10.1186/s12989-017-0209-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 07/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nano- and microscale copper oxide particles (CuO NP, CuO MP) are applied for manifold purposes, enhancing exposure and thus the potential risk of adverse health effects. Based on the pronounced in vitro cytotoxicity of CuO NP, systematic investigations on the mode of action are required. Therefore, the impact of CuO NP, CuO MP and CuCl2 on the DNA damage response on transcriptional level was investigated by quantitative gene expression profiling via high-throughput RT-qPCR. Cytotoxicity, copper uptake and the impact on the oxidative stress response, cell cycle regulation and apoptosis were further analysed on the functional level. RESULTS Cytotoxicity of CuO NP was more pronounced when compared to CuO MP and CuCl2 in human bronchial epithelial BEAS-2B cells. Uptake studies revealed an intracellular copper overload in the soluble fractions of both cytoplasm and nucleus, reaching up to millimolar concentrations in case of CuO NP and considerably lower levels in case of CuO MP and CuCl2. Moreover, CuCl2 caused copper accumulation in the nucleus only at cytotoxic concentrations. Gene expression analysis in BEAS-2B and A549 cells revealed a strong induction of uptake-related metallothionein genes, oxidative stress-sensitive and pro-inflammatory genes, anti-oxidative defense-associated genes as well as those coding for the cell cycle inhibitor p21 and the pro-apoptotic Noxa and DR5. While DNA damage inducible genes were activated, genes coding for distinct DNA repair factors were down-regulated. Modulation of gene expression was most pronounced in case of CuO NP as compared to CuO MP and CuCl2 and more distinct in BEAS-2B cells. GSH depletion and activation of Nrf2 in HeLa S3 cells confirmed oxidative stress induction, mainly restricted to CuO NP. Also, cell cycle arrest and apoptosis induction were most distinct for CuO NP. CONCLUSIONS The high cytotoxicity and marked impact on gene expression by CuO NP can be ascribed to the strong intracellular copper ion release, with subsequent copper accumulation in the cytoplasm and the nucleus. Modulation of gene expression by CuO NP appeared to be primarily oxidative stress-related and was more pronounced in redox-sensitive BEAS-2B cells. Regarding CuCl2, relevant modulations of gene expression were restricted to cytotoxic concentrations provoking impaired copper homoeostasis.
Collapse
Affiliation(s)
- Bettina Maria Strauch
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences, Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Rebecca Katharina Niemand
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences, Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Nicola Lisa Winkelbeiner
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences, Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences, Adenauerring 20a, 76131 Karlsruhe, Germany
| |
Collapse
|
36
|
Piberger AL, Krüger CT, Strauch BM, Schneider B, Hartwig A. BPDE-induced genotoxicity: relationship between DNA adducts, mutagenicity in the in vitro PIG-A assay, and the transcriptional response to DNA damage in TK6 cells. Arch Toxicol 2017; 92:541-551. [PMID: 28593498 PMCID: PMC5773665 DOI: 10.1007/s00204-017-2003-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022]
Abstract
Benzo[a]pyrene is a known human carcinogen. As underlying mechanism, the induction of stable DNA adducts and mutations have been repeatedly demonstrated. Also, the activation of cellular stress response on the transcriptional level has been described. Nevertheless, the interrelationship between these different events is less well understood, especially at low, for human exposure relevant concentrations. Within the present study, we applied the reactive metabolite benzo[a]pyrene diolepoxide (BPDE) in the nanomolar, non-cytotoxic concentration range in human TK6 cells and quantified the induction and repair of stable DNA adducts at the N2-position of guanine by HPLC with fluorescence detection. Significant levels of DNA lesions were detected even at the lowest concentration of 10 nM BPDE, with a linear increase up to 50 nM. Relative repair was similar at all damage levels, reaching about 30% after 8 h and 60% after 24 h. Mutation frequencies were quantified as GPI-deficient cells by the recently established in vitro PIG-A mutagenicity assay. Again, a linear dose–response-relationship in the before-mentioned concentration range was observed, also when plotting the number of GPI-deficient cells against the number of DNA adducts. Furthermore, we explored the time- and concentration-dependent DNA damage response on the transcriptional level via a high-throughput RT-qPCR technique by quantifying the impact of BPDE on the transcription of 95 genes comprising DNA damage response, DNA repair factors, oxidative stress response, cell cycle arrest, cell proliferation, and apoptosis. As expected, BPDE activated DNA damage signaling, p53 and AP-1 dependent signaling, oxidative stress response, and apoptosis. However, in contrast to DNA adducts and mutations, the onset of the transcriptional DNA damage response was restricted to higher concentrations, indicating that its respective activations require a certain level of DNA lesions. Altogether, the results indicate that in case of BPDE, DNA lesions and mutations were correlated at all concentrations, suggesting that repair is not complete even at low levels of DNA damage. Considering the ongoing discussion on potential thresholds also for genotoxic carcinogens, the results are of major relevance, both with respect to basic research as well as to risk assessment of chemical carcinogens.
Collapse
Affiliation(s)
- Ann Liza Piberger
- Food Chemistry and Toxicology, Institute of Applied Bioscience, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Christopher T Krüger
- Food Chemistry and Toxicology, Institute of Applied Bioscience, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Bettina M Strauch
- Food Chemistry and Toxicology, Institute of Applied Bioscience, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Beatrice Schneider
- Food Chemistry and Toxicology, Institute of Applied Bioscience, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Andrea Hartwig
- Food Chemistry and Toxicology, Institute of Applied Bioscience, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| |
Collapse
|
37
|
Mills MG, Gallagher EP. A targeted gene expression platform allows for rapid analysis of chemical-induced antioxidant mRNA expression in zebrafish larvae. PLoS One 2017; 12:e0171025. [PMID: 28212397 PMCID: PMC5315391 DOI: 10.1371/journal.pone.0171025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022] Open
Abstract
Chemical-induced oxidative stress and the biochemical pathways that protect against oxidative damage are of particular interest in the field of toxicology. To rapidly identify oxidative stress-responsive gene expression changes in zebrafish, we developed a targeted panel of antioxidant genes using the Affymetrix QuantiGene Plex (QGP) platform. The genes contained in our panel include eight putative Nrf2 (Nfe2l2a)-dependent antioxidant genes (hmox1a, gstp1, gclc, nqo1, prdx1, gpx1a, sod1, sod2), a stress response gene (hsp70), an inducible DNA damage repair gene (gadd45bb), and three reference genes (actb1, gapdh, hprt1). We tested this platform on larval zebrafish exposed to tert-butyl hydroperoxide (tBHP) and cadmium (Cd), two model oxidative stressors with different modes of action, and compared our results with those obtained using the more common quantitative PCR (qPCR) method. Both methods showed that exposure to tBHP and Cd induced expression of prdx1, gstp1, and hmox1a (2- to 12-fold increase via QGP), indicative of an activated Nrf2 response in larval zebrafish. Both compounds also elicited a general stress response as reflected by elevation of hsp70 and gadd45bb, with Cd being the more potent inducer. Transient changes were observed in sod2 and gpx1a expression, whereas nqo1, an Nrf2-responsive gene in mammalian cells, was minimally affected by either tBHP or Cd chemical exposures. Developmental expression analysis of the target genes by QGP revealed marked upregulation of sod2 between 0-96hpf, and to a lesser extent, of sod1 and gstp1. Once optimized, QGP analysis of these experiments was accomplished more rapidly, using far less tissue, and at lower total costs than qPCR analysis. In summary, the QGP platform as applied to higher-throughput zebrafish studies provides a reasonable cost-effective alternative to qPCR or more comprehensive transcriptomics approaches to rapidly assess the potential for chemicals to elicit oxidative stress as a mechanism of chemical toxicity.
Collapse
Affiliation(s)
- Margaret G. Mills
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Evan P. Gallagher
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
38
|
Stöber R. Identification of carcinogens by a selected panel of DNA damage response associated genes. EXCLI JOURNAL 2016; 14:1294-6. [PMID: 26862330 PMCID: PMC4743486 DOI: 10.17179/excli2015-766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| |
Collapse
|