1
|
Garcia de
Lomana M, Gadaleta D, Raschke M, Fricke R, Montanari F. Predicting Liver-Related In Vitro Endpoints with Machine Learning to Support Early Detection of Drug-Induced Liver Injury. Chem Res Toxicol 2025; 38:656-671. [PMID: 40064588 PMCID: PMC12015958 DOI: 10.1021/acs.chemrestox.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 04/22/2025]
Abstract
Drug-induced liver injury (DILI) is a major cause of drug development failures and postmarket drug withdrawals, posing significant challenges to public health and pharmaceutical research. The biological mechanisms leading to DILI are highly complex and the adverse reaction is often difficult to foresee. Hence, mechanistic insights into DILI, as well as machine learning models to predict molecular events that trigger adverse outcomes, pharmacokinetics and pharmacodynamics in the liver, are essential tools for understanding and preventing DILI. In this study, we collected a comprehensive data set of 28 in vitro endpoints related to liver toxicity and function, as well as data specific to DILI, to explore the potential of multi-task learning for their prediction. We demonstrate the benefits of ensemble modeling and provide an uncertainty estimation based on the standard deviation of the predictions to define an applicability domain for the models. Available assays at Bayer for two of the endpoints (Bile salt export pump (BSEP) inhibition and phospholipidosis) were run on a set of public compounds and used for further evaluation (data provided in the Supporting Information). Additionally, we conducted an in-depth data analysis of the relationships among the different endpoints, as well as with DILI. The presented models can be used to derive a "Virtual Liver Safety Profile" showcasing the predicted activity of a compound on the selected endpoints to support the prioritization of assays and the elucidation of modes of action.
Collapse
Affiliation(s)
| | - Domenico Gadaleta
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | | | | | | |
Collapse
|
2
|
Wen J, Liu Y, Xiao B, Zhang Z, Pu Q, Li X, Ding X, Qian F, Li Y. Hepatotoxicity, developmental toxicity, and neurotoxicity risks associated with co-exposure of zebrafish to fluoroquinolone antibiotics and tire microplastics: An in silico study. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136888. [PMID: 39708607 DOI: 10.1016/j.jhazmat.2024.136888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/01/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
This study aimed to investigate the differences in the mechanisms of microscopic hepatotoxicity, developmental toxicity, and neurotoxicity in aquatic organisms co-exposed to styrene-butadiene rubber tire microplastics (SBR TMPs) and fluoroquinolone antibiotics (FQs). We found that hepatotoxicity in zebrafish induced by SBR TMPs and FQs was significantly higher than developmental toxicity and neurotoxicity. Furthermore, the main effects of the FQs primarily manifested as synergistic toxicity, whereas the low- and high-order interactions of the FQs mainly exhibited synergistic and antagonistic effects, respectively. Factorial analysis and the mixture toxicity index revealed that the synergistic effects of lomefloxacin × moxifloxacin and ciprofloxacin × lomefloxacin × enrofloxacin interactions significantly contributed to hepatotoxicity in zebrafish exposed to SBR TMP. SBR TMPs and antibiotics primarily induced hepatotoxicity, developmental toxicity, and neurotoxicity in zebrafish by affecting the activities of Cyp1a, Acox1, TRα, and mAChR. The observed toxicities were closely linked to the hydrophilic/hydrophobic groups, electronegativity, group mass, and structural complexity of the FQ molecules. This study provides new insights regarding the toxicological risks to aquatic organisms from co-exposure to SBR TMPs and FQs from a microscopic perspective. Future studies should include a broader range of antibiotics and tire microplastics and consider their long-term adverse effects on aquatic life.
Collapse
Affiliation(s)
- Jingya Wen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yajing Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Botian Xiao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Zuning Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xixi Li
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3x5, Canada.
| | - Xiaowen Ding
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Feng Qian
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
3
|
Hadjadji C, Devalloir Q, Gaillard C, van den Brink NW, Scheifler R. Evidence linking cadmium and/or lead exposure to immunomodulatory effects in mammals based upon an adverse outcome pathways approach, and research perspectives. CHEMOSPHERE 2025; 371:144056. [PMID: 39746483 DOI: 10.1016/j.chemosphere.2024.144056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
For decades, studies have shown how exposure to non-essential trace metals such as lead (Pb) and cadmium (Cd) largely impact global wildlife. Ecoimmunotoxicology has emerged in the past two decades and focuses on the effects of pollutants on the immune system of free-ranging organisms. Adverse outcome pathways (AOPs) represent a conceptual approach to explore the mechanistic linkage between a molecular initiating event and adverse outcomes, potentially at all biological levels of organisation. The present paper proposes putative AOPs related to the effects of Cd, Pb, and the mixture Cd-Pb, on the immune system of mammals to address future questions in ecoimmunotoxicology. Molecular Initiating Events for both metals relate to entrance in cells through Ca2+ channels or bond to cell surfaces. Exposure to Cd, Pb and Cd-Pb share several similar Key Events (KEs), primarily an increase of oxidative stress (OS) in immune cells through production of reactive oxygen species. For both metals and the mixture, OS affects mitochondrial membranes, and induces apoptosis, ultimately decreasing immune cell number. Both metals affect innate immune system through nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) inflammatory signalling pathways, leading to an upregulation of inflammatory markers and mediators. Adaptive immune system is also affected by the exposure to both metals though a decrease of CD4+/CD8+ ratio, a decrease of MHCII, an inactivation of TH1 and TH2 response, and an inhibition of the humoral response mediated by various Ig. Mixture effects of Cd-Pb are less documented resulting in a more speculative AOP, but potential synergic and antagonistic effects were identified. According to our AOPs, further research in ecoimmunotoxicology of metals in free-ranging mammals should focus on KEs related to NF-κB/MAPK inflammatory signalling pathways, changes in CD4+/CD8+ ratio and MHCII complexes, and on AOs related to auto-immune disorders and on the effective increase of infection rate, particularly in case of exposure to metal mixtures.
Collapse
Affiliation(s)
- Cloe Hadjadji
- Swiss Ornithological Institute, Seerose 1, CH-6204, Sempach, Switzerland; Laboratoire Chrono-Environnement, UMR 6249, CNRS/Université de Franche-Comté, 16 route de Gray, 25000, Besançon, France.
| | - Quentin Devalloir
- Laboratoire Chrono-Environnement, UMR 6249, CNRS/Université de Franche-Comté, 16 route de Gray, 25000, Besançon, France
| | - Colette Gaillard
- Laboratoire Chrono-Environnement, UMR 6249, CNRS/Université de Franche-Comté, 16 route de Gray, 25000, Besançon, France
| | - Nico W van den Brink
- Division of Toxicology, Wageningen University, Box 8000, 6700 EA, Wageningen, the Netherlands
| | - Renaud Scheifler
- Laboratoire Chrono-Environnement, UMR 6249, CNRS/Université de Franche-Comté, 16 route de Gray, 25000, Besançon, France
| |
Collapse
|
4
|
Meier MJ, Harrill J, Johnson K, Thomas RS, Tong W, Rager JE, Yauk CL. Progress in toxicogenomics to protect human health. Nat Rev Genet 2025; 26:105-122. [PMID: 39223311 DOI: 10.1038/s41576-024-00767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Toxicogenomics measures molecular features, such as transcripts, proteins, metabolites and epigenomic modifications, to understand and predict the toxicological effects of environmental and pharmaceutical exposures. Transcriptomics has become an integral tool in contemporary toxicology research owing to innovations in gene expression profiling that can provide mechanistic and quantitative information at scale. These data can be used to predict toxicological hazards through the use of transcriptomic biomarkers, network inference analyses, pattern-matching approaches and artificial intelligence. Furthermore, emerging approaches, such as high-throughput dose-response modelling, can leverage toxicogenomic data for human health protection even in the absence of predicting specific hazards. Finally, single-cell transcriptomics and multi-omics provide detailed insights into toxicological mechanisms. Here, we review the progress since the inception of toxicogenomics in applying transcriptomics towards toxicology testing and highlight advances that are transforming risk assessment.
Collapse
Affiliation(s)
- Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Joshua Harrill
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Kamin Johnson
- Predictive Safety Center, Corteva Agriscience, Indianapolis, IN, USA
| | - Russell S Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, USA
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Julia E Rager
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Callewaert E, Louisse J, Kramer N, Sanz-Serrano J, Vinken M. Adverse Outcome Pathways Mechanistically Describing Hepatotoxicity. Methods Mol Biol 2025; 2834:249-273. [PMID: 39312169 DOI: 10.1007/978-1-0716-4003-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Adverse outcome pathways (AOPs) describe toxicological processes from a dynamic perspective by linking a molecular initiating event to a specific adverse outcome via a series of key events and key event relationships. In the field of computational toxicology, AOPs can potentially facilitate the design and development of in silico prediction models for hazard identification. Various AOPs have been introduced for several types of hepatotoxicity, such as steatosis, cholestasis, fibrosis, and liver cancer. This chapter provides an overview of AOPs on hepatotoxicity, including their development, assessment, and applications in toxicology.
Collapse
Affiliation(s)
- Ellen Callewaert
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Nynke Kramer
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- Toxicology Division, Wageningen University, Wageningen, Netherlands
| | - Julen Sanz-Serrano
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
6
|
Obanya HE, Khan FR, Carrasco-Navarro V, Rødland ES, Walker-Franklin I, Thomas J, Cooper A, Molden N, Amaeze NH, Patil RS, Kukkola A, Michie L, Green-Ojo B, Rauert C, Couceiro F, Hutchison GR, Tang J, Ugor J, Lee S, Hofmann T, Ford AT. Priorities to inform research on tire particles and their chemical leachates: A collective perspective. ENVIRONMENTAL RESEARCH 2024; 263:120222. [PMID: 39490547 DOI: 10.1016/j.envres.2024.120222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Concerns over the ecological impacts of urban road runoff have increased, partly due to recent research into the harmful impacts of tire particles and their chemical leachates. This study aimed to help the community of researchers, regulators and policy advisers in scoping out the priority areas for further study. To improve our understanding of these issues an interdisciplinary, international network consisting of experts (United Kingdom, Norway, United States, Australia, South Korea, Finland, Austria, China and Canada) was formed. We synthesised the current state of the knowledge and highlighted priority research areas for tire particles (in their different forms) and their leachates. Ten priority research questions with high importance were identified under four themes (environmental presence and detection; chemicals of concern; biotic impacts; mitigation and regulation). The priority research questions include the importance of increasing the understanding of the fate and transport of these contaminants; better alignment of toxicity studies; obtaining the holistic understanding of the impacts; and risks they pose across different ecosystem services. These issues have to be addressed globally for a sustainable solution. We highlight how the establishment of the intergovernmental science-policy panel on chemicals, waste, and pollution prevention could further address these issues on a global level through coordinated knowledge transfer of car tire research and regulation. We hope that the outputs from this research paper will reduce scientific uncertainty in assessing and managing environmental risks from TP and their leachates and aid any potential future policy and regulatory development.
Collapse
Affiliation(s)
- Henry E Obanya
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Farhan R Khan
- Norwegian Research Centre (NORCE), Nygårdsporten 112, NO-5008, Bergen, Norway
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, Finland
| | | | | | - Jomin Thomas
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Adam Cooper
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nick Molden
- Emissions Analytics, Unit 2 CR Bates Industrial Estate, Stokenchurch, High Wycombe, Buckinghamshire, HP14 3PD, UK
| | - Nnamdi H Amaeze
- School of the Environment, Memorial Hall, University of Windsor, 401 Sunset Avenue Windsor, Ontario, N9B 3P4, Canada
| | - Renuka S Patil
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Anna Kukkola
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura Michie
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Bidemi Green-Ojo
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Fay Couceiro
- School of Civil Engineering and Surveying at the University of Portsmouth, Hampshire, PO1 3AH, UK
| | - Gary R Hutchison
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Joshua Ugor
- School of the Environment, Geography and Geosciences, University of Portsmouth, UK
| | - Seokhwan Lee
- Environment System Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Thilo Hofmann
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Environmental Geosciences, Josef-Holaubek-Platz 2, 1090, Vienna, Austria; University of Vienna, Research Platform Plastics in the Environment and Society (Plenty), Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Alex T Ford
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK.
| |
Collapse
|
7
|
Zhang L, Tian L, Liang B, Wang L, Huang S, Zhou Y, Ni M, Zhang L, Li Y, Chen J, Li X. Construction of an adverse outcome pathway for the cardiac toxicity of bisphenol a by using bioinformatics analysis. Toxicology 2024; 509:153955. [PMID: 39303899 DOI: 10.1016/j.tox.2024.153955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Bisphenol A (BPA), a common endocrine disruptor, has shown cardiovascular toxicity in several epidemiological studies, as well as in vivo and in vitro experimental studies. However, the related adverse outcome pathway (AOP) of BPA toxicity remains unraveled. This study aimed to develop an AOP for the cardiac toxicity of BPA through bioinformatics analysis. The interactions among BPA, genes, phenotypes, and cardiac toxicity were retrieved from several databases, including the Comparative Toxicogenomics Database, Computational Toxicology, DisGeNet, and MalaCards. The target genes and part of target phenotypes were obtained by Venn analysis and literature screening. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed for target genes by using the DAVID online analysis tool to obtain other target phenotypes. AOP hypotheses from BPA exposure to heart disease were established and evaluated comprehensively by a quantitative weight of evidence (QWOE) method. The target genes included ESR2, MAPK1, TGFB1, and ESR1, and the target phenotypes included heart contraction, cardiac muscle contraction, cellular Ca2+ homeostasis, cellular metabolic process, heart development, etc. Overall, the AOP of BPA cardiac toxicity was deduced to be as follows. Initially, BPA bound with ERα/β and then activated the MAPK, AKT, and IL-17 signaling pathways, leading to Ca2+ homeostasis disorder and increased inflammatory response. Subsequently, cardiac function was impaired, causing coronary heart disease, arrhythmia, cardiac dysplasia, and other heart diseases. According to the Bradford-Hill causal considerations, the score of AOP by QWOE was 69, demonstrating a moderate confidence and providing clues on cardiotoxicity-assessment procedure and further studies on BPA.
Collapse
Affiliation(s)
- Leyan Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Baofang Liang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Liang Wang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Shuzhen Huang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongru Zhou
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Mengmei Ni
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yun Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
8
|
Gadaleta D, Garcia de Lomana M, Serrano-Candelas E, Ortega-Vallbona R, Gozalbes R, Roncaglioni A, Benfenati E. Quantitative structure-activity relationships of chemical bioactivity toward proteins associated with molecular initiating events of organ-specific toxicity. J Cheminform 2024; 16:122. [PMID: 39501321 PMCID: PMC11539312 DOI: 10.1186/s13321-024-00917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
The adverse outcome pathway (AOP) concept has gained attention as a way to explore the mechanism of chemical toxicity. In this study, quantitative structure-activity relationship (QSAR) models were developed to predict compound activity toward protein targets relevant to molecular initiating events (MIE) upstream of organ-specific toxicities, namely liver steatosis, cholestasis, nephrotoxicity, neural tube closure defects, and cognitive functional defects. Utilizing bioactivity data from the ChEMBL 33 database, various machine learning algorithms, chemical features and methods to assess prediction reliability were compared and applied to develop robust models to predict compound activity. The results demonstrate high predictive performance across multiple targets, with balanced accuracy exceeding 0.80 for the majority of models. Furthermore, stability checks confirmed the consistency of predictive performance across multiple training-test splits. The results obtained by using QSAR predictions to identify known markers of adversities highlighted the utility of the models for risk assessment and for prioritizing compounds for further experimental evaluation.Scientific contributionThe work describes the development of QSAR models as tools for screening chemicals with potential systemic toxicity, thus contributing to resource savings and providing indications for further better-targeted testing. This study provides advances in the field of computational modeling of MIEs and information from AOP which is still relatively young and unexplored. The comprehensive modeling procedure is highly generalizable, and offers a robust framework for predicting a wide range of toxicological endpoints.
Collapse
Affiliation(s)
- Domenico Gadaleta
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Marina Garcia de Lomana
- Bayer AG, Machine Learning Research, Research & Development, Pharmaceuticals, Berlin, Germany
| | - Eva Serrano-Candelas
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Paterna, Valencia, Spain
| | - Rita Ortega-Vallbona
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Paterna, Valencia, Spain
| | - Rafael Gozalbes
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Paterna, Valencia, Spain
| | - Alessandra Roncaglioni
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
9
|
Madl AK, Donnell MT, Covell LT. Synthetic vitreous fibers (SVFs): adverse outcome pathways (AOPs) and considerations for next generation new approach methods (NAMs). Crit Rev Toxicol 2024; 54:754-804. [PMID: 39287182 DOI: 10.1080/10408444.2024.2390020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Fiber dimension, durability/dissolution, and biopersistence are critical factors for the risk of fibrogenesis and carcinogenesis. In the modern era, to reduce, refine, and replace animals in toxicology research, the application of in vitro test methods is paramount for hazard evaluation and designing synthetic vitreous fibers (SVFs) for safe use. The objectives of this review are to: (1) summarize the international frameworks and acceptability criteria for implementation of new approach methods (NAMs), (2) evaluate the adverse outcome pathways (AOPs), key events (KEs), and key event relationships (KERs) for fiber-induced fibrogenesis and carcinogenesis in accordance with Organization for Economic Co-operation and Development (OECD) guidelines, (3) consider existing and emerging technologies for in silico and in vitro toxicity testing for the respiratory system and the ability to predict effects in vivo, (4) outline a recommended testing strategy for evaluating the hazard and safety of novel SVFs, and (5) reflect on methods needs for in vitro in vivo correlation (IVIVC) and predictive approaches for safety assessment of new SVFs. AOP frameworks following the conceptual model of the OECD were developed through an evaluation of available molecular and cellular initiating events, which lead to KEs and KERs in the development of fiber-induced fibrogenesis and carcinogenesis. AOP framework development included consideration of fiber physicochemical properties, respiratory deposition and clearance patterns, biosolubility, and biopersistence, as well as cellular, organ, and organism responses. Available data support that fiber AOPs begin with fiber physicochemical characteristics which influence fiber exposure and biosolubility and subsequent key initiating events are dependent on fiber biopersistence and reactivity. Key cellular events of pathogenic fibers include oxidative stress, chronic inflammation, and epithelial/fibroblast proliferation and differentiation, which ultimately lead to hyperplasia, metaplasia, and fibrosis/tumor formation. Available in vitro models (e.g. single-, multi-cellular, organ system) provide promising NAMs tools to evaluate these intermediate KEs. However, data on SVFs demonstrate that in vitro biosolubility is a reasonable predictor for downstream events of in vivo biopersistence and biological effects. In vitro SVF fiber dissolution rates >100 ng/cm2/hr (glass fibers in pH 7 and stone fibers in pH 4.5) and in vivo SVF fiber clearance half-life less than 40 or 50 days were not associated with fibrosis or tumors in animals. Long (fiber lengths >20 µm) biodurable and biopersistent fibers exceeding these fiber dissolution and clearance thresholds may pose a risk of fibrosis and cancer. In vitro fiber dissolution assays provide a promising avenue and potentially powerful tool to predict in vivo SVF fiber biopersistence, hazard, and health risk. NAMs for fibers (including SVFs) may involve a multi-factor in vitro approach leveraging in vitro dissolution data in complement with cellular- and tissue- based in vitro assays to predict health risk.
Collapse
Affiliation(s)
- Amy K Madl
- Valeo Sciences LLC, Ladera Ranch, CA, USA
| | | | | |
Collapse
|
10
|
Sahoo AK, Chivukula N, Madgaonkar SR, Ramesh K, Marigoudar SR, Sharma KV, Samal A. Leveraging integrative toxicogenomic approach towards development of stressor-centric adverse outcome pathway networks for plastic additives. Arch Toxicol 2024; 98:3299-3321. [PMID: 39097536 PMCID: PMC11402864 DOI: 10.1007/s00204-024-03825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Plastics are widespread pollutants found in atmospheric, terrestrial and aquatic ecosystems due to their extensive usage and environmental persistence. Plastic additives, that are intentionally added to achieve specific functionality in plastics, leach into the environment upon plastic degradation and pose considerable risk to ecological and human health. Limited knowledge concerning the presence of plastic additives throughout plastic life cycle has hindered their effective regulation, thereby posing risks to product safety. In this study, we leveraged the adverse outcome pathway (AOP) framework to understand the mechanisms underlying plastic additives-induced toxicities. We first identified an exhaustive list of 6470 plastic additives from chemicals documented in plastics. Next, we leveraged heterogenous toxicogenomics and biological endpoints data from five exposome-relevant resources, and identified associations between 1287 plastic additives and 322 complete and high quality AOPs within AOP-Wiki. Based on these plastic additive-AOP associations, we constructed a stressor-centric AOP network, wherein the stressors are categorized into ten priority use sectors and AOPs are linked to 27 disease categories. We visualized the plastic additives-AOP network for each of the 1287 plastic additives and made them available in a dedicated website: https://cb.imsc.res.in/saopadditives/ . Finally, we showed the utility of the constructed plastic additives-AOP network by identifying highly relevant AOPs associated with benzo[a]pyrene (B[a]P), bisphenol A (BPA), and bis(2-ethylhexyl) phthalate (DEHP) and thereafter, explored the associated toxicity pathways in humans and aquatic species. Overall, the constructed plastic additives-AOP network will assist regulatory risk assessment of plastic additives, thereby contributing towards a toxic-free circular economy for plastics.
Collapse
Affiliation(s)
- Ajaya Kumar Sahoo
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Nikhil Chivukula
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Shreyes Rajan Madgaonkar
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Kundhanathan Ramesh
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
| | | | - Krishna Venkatarama Sharma
- Ministry of Earth Sciences, National Centre for Coastal Research, Government of India, Pallikaranai, Chennai, 600100, India
| | - Areejit Samal
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India.
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| |
Collapse
|
11
|
Cheng C, Fan B, Yang Y, Wang P, Wu M, Xia H, Syed BM, Wu H, Liu Q. Construction of an adverse outcome pathway framework for arsenic-induced lung cancer using a network-based approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116809. [PMID: 39083875 DOI: 10.1016/j.ecoenv.2024.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Environmental pollutants are considered as a cause of tumorigenesis, but approaches to assess their risk of causing tumors remain insufficient. As an alternative approach, the adverse outcome pathway (AOP) framework is used to assess the risk of tumors caused by environmental pollutants. Arsenic is a pollutant associated with lung cancer, but early assessment of lung cancer risk is lacking. Therefore, we applied the AOP framework to arsenic-induced lung cancer. A systematic review revealed increased risks of lung cancer following exposure to a range of arsenic concentrations in drinking water (OR = 1.83, 95 % CI = 1.46-2.30). We obtained, from public databases, genes related to risk of arsenic-induced lung cancer. Then, Cox and LASSO regressions were used to screen target genes from the risk genes. Subsequently, target genes, phenotypes, and pathways were used to construct the computational AOP network, which was determined by Cytoscape to have 156 edges and 45 nodes. Further, target genes, phenotypes, and pathways were used as molecular initiating events and key events to construct the AOP framework depending on upstream and downstream relationships. In the AOP framework, by Weight of Evidence, arsenic exposure increased levels of EGFR, activated the PI3K/AKT pathway, regulated cell proliferation by promoting the G1/S phase transition, and caused generation of lung cancers. External validation was achieved through arsenite-induced, malignant transformed human bronchial epithelial (HBE) cells. Overall, these results, by integration into existing data to construct an AOP framework, provide insights into the assessment of lung cancer risk for arsenic exposure. Special attention needs to be focused on populations with low-dose arsenic exposure.
Collapse
Affiliation(s)
- Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bowen Fan
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yi Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meng Wu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Binafsha Manzoor Syed
- Medical Research Center, Liaquat University of Medical & Health Sciences, Jamshoro, Sindh 76090, Pakistan
| | - Hao Wu
- The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Emergency and Critical Care Medicine, Institute of Poisoning, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
12
|
Xin L, Liu S, Shi W, Ying GG, Hui X, Chen CE. Knowledge-based machine learning for predicting and understanding the androgen receptor (AR)-mediated reproductive toxicity in zebrafish. ENVIRONMENT INTERNATIONAL 2024; 191:108995. [PMID: 39241331 DOI: 10.1016/j.envint.2024.108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/10/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Traditional methods for identifying endocrine-disrupting chemicals (EDCs) that activate androgen receptors (AR) are costly, time-consuming, and low-throughput. This study developed a knowledge-based deep neural network model (AR-DNN) to predict AR-mediated adverse outcomes on female zebrafish fertility. This model started with chemical fingerprints as the input layer and was implemented through a five-layer virtual AR-induced adverse outcome pathway (AOP). Results indicated that the AR-DNN effectively and accurately screens new reproductive toxicants (AUC = 0.94, accuracy = 0.85), providing potential toxicity pathways. Furthermore, 1477 and 2448 chemicals that could lead to infertility were identified in the plastic additives list (PLASTICMAP, n = 7112) and the Inventory of Existing Chemical Substances in China (IECSC, n = 17741), respectively. Colourants containing steroid-like structures are the major active plastic additives that might lower female zebrafish fertility through AR binding, DNA binding, and transcriptional activation. While active IECSC chemicals primarily have the same fragments, such as benzonitrile, nitrobenzene, and quinolone. The predicted toxicity pathways were consistent with existing fish evidence, demonstrating the model's applicability. This knowledge-based approach offers a promising computational toxicology strategy for predicting and characterising the endocrine-disrupting effects and toxic mechanisms of organic chemicals, potentially leading to more efficient and cost-effective screening of EDCs.
Collapse
Affiliation(s)
- Lei Xin
- School of Environment, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China
| | - Sisi Liu
- School of Environment, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China
| | - Wenjun Shi
- School of Environment, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China
| | - Guang-Guo Ying
- School of Environment, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China
| | - Xinyue Hui
- School of Environment, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China
| | - Chang-Er Chen
- School of Environment, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Zhang C, Shi G, Meng Q, Hu R, Li Y, Hu G, Wang K, Huang M. An approach based on a combination of toxicological experiments and in silico predictions to investigate the adverse outcome pathway (AOP) of paraquat neuro-immunotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134607. [PMID: 38761765 DOI: 10.1016/j.jhazmat.2024.134607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Paraquat (PQ) exposure is strongly associated with neurotoxicity. However, research on the neurotoxicity mechanisms of PQ varies in terms of endpoints of toxic assessment, resulting in a great challenge to understand the early neurotoxic effects of PQ. In this study, we developed an adverse outcome pathway (AOP) to investigate PQ-induced neuro-immunotoxicity from an immunological perspective, combining of traditional toxicology methods and computer simulations. In vivo, PQ can microstructurally lead to an early synaptic loss in the brain mice, which is a large degree regarded as a main reason for cognitive impairment to mice behavior. Both in vitro and in vivo demonstrated synapse loss is caused by excessive activation of the complement C1q/C3-CD11b pathway, which mediates microglial phagocytosis dysfunction. Additionally, the interaction between PQ and C1q was validated by molecular simulation docking. Our findings extend the AOP framework related to PQ neurotoxicity from a neuro-immunotoxic perspective, highlighting C1q activation as the initiating event for PQ-induced neuro-immunotoxicity. In addition, downstream complement cascades induce abnormal microglial phagocytosis, resulting in reduced synaptic density and subsequent non-motor dysfunction. These findings deepen our understanding of neurotoxicity and provide a theoretical basis for ecological risk assessment of PQ.
Collapse
Affiliation(s)
- Chunhui Zhang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Ge Shi
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Qi Meng
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Rong Hu
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Yang Li
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Guiling Hu
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Kaidong Wang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China.
| | - Min Huang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
14
|
Wu J, Gao F, Meng R, Li H, Mao Z, Xiao Y, Pu Q, Du M, Zhang Z, Shao Q, Zheng R, Wang M. Single-cell and multi-omics analyses highlight cancer-associated fibroblasts-induced immune evasion and epithelial mesenchymal transition for smoking bladder cancer. Toxicology 2024; 504:153782. [PMID: 38493947 DOI: 10.1016/j.tox.2024.153782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Tobacco carcinogens are recognized as critical hazard factors for bladder tumorigenesis, affecting the prognosis of patients through aromatic amines components. However, the specific function of tobacco carcinogens and systematic assessment models in the prognosis of bladder cancer remains poorly elucidated. We retrieved bladder cancer specific tobacco carcinogens-related genes from Comparative Toxicogenomic Database, our Nanjing Bladder Cancer cohort and TCGA database. Gene×Gene interaction method was utilized to establish a prognostic signature. Integrative assessment of immunogenomics, tumor microenvironments and single-cell RNA-sequencing were performed to illustrate the internal relations of key events from different levels. Finally, we comprehensively identified 33 essential tobacco carcinogens-related genes to construct a novel prognostic signature, and found that high-risk patients were characterized by significantly worse overall survival (HR=2.25; Plog-rank < 0.01). Single-cell RNA-sequencing and multi-omics analysis demonstrated that cancer-associated fibroblasts mediated the crosstalk between epithelial-mesenchymal transition progression and immune evasion. Moreover, an adverse outcome pathway framework was established to facilitate our understanding to the tobacco carcinogens-triggered bladder tumorigenesis. Our study systematically provided immune microenvironmental alternations for smoking-induced adverse survival outcomes in bladder cancer. These findings facilitated the integrative multi-omics insights into risk assessment and toxic mechanisms of tobacco carcinogens.
Collapse
Affiliation(s)
- Jiajin Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fang Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Meng
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Huiqin Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhenguang Mao
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yanping Xiao
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qiuyi Pu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Shao
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Rui Zheng
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Meilin Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
15
|
Foreman AL, Warth B, Hessel EVS, Price EJ, Schymanski EL, Cantelli G, Parkinson H, Hecht H, Klánová J, Vlaanderen J, Hilscherova K, Vrijheid M, Vineis P, Araujo R, Barouki R, Vermeulen R, Lanone S, Brunak S, Sebert S, Karjalainen T. Adopting Mechanistic Molecular Biology Approaches in Exposome Research for Causal Understanding. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7256-7269. [PMID: 38641325 PMCID: PMC11064223 DOI: 10.1021/acs.est.3c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
Through investigating the combined impact of the environmental exposures experienced by an individual throughout their lifetime, exposome research provides opportunities to understand and mitigate negative health outcomes. While current exposome research is driven by epidemiological studies that identify associations between exposures and effects, new frameworks integrating more substantial population-level metadata, including electronic health and administrative records, will shed further light on characterizing environmental exposure risks. Molecular biology offers methods and concepts to study the biological and health impacts of exposomes in experimental and computational systems. Of particular importance is the growing use of omics readouts in epidemiological and clinical studies. This paper calls for the adoption of mechanistic molecular biology approaches in exposome research as an essential step in understanding the genotype and exposure interactions underlying human phenotypes. A series of recommendations are presented to make the necessary and appropriate steps to move from exposure association to causation, with a huge potential to inform precision medicine and population health. This includes establishing hypothesis-driven laboratory testing within the exposome field, supported by appropriate methods to read across from model systems research to human.
Collapse
Affiliation(s)
- Amy L. Foreman
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, University
of Vienna, 1090 Vienna, Austria
| | - Ellen V. S. Hessel
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Elliott J. Price
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine, University
of Luxembourg, 6 avenue
du Swing, L-4367 Belvaux, Luxembourg
| | - Gaia Cantelli
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Helen Parkinson
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Helge Hecht
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Jelle Vlaanderen
- Institute
for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Heidelberglaan 8 3584 CS Utrecht, The Netherlands
| | - Klara Hilscherova
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Martine Vrijheid
- Institute
for Global Health (ISGlobal), Barcelona
Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003 Barcelona, Spain
- Universitat
Pompeu Fabra, Carrer
de la Mercè, 12, Ciutat Vella, 08002 Barcelona, Spain
- Centro de Investigación Biomédica en Red
Epidemiología
y Salud Pública (CIBERESP), Av. Monforte de Lemos, 3-5. Pebellón 11, Planta 0, 28029 Madrid, Spain
| | - Paolo Vineis
- Department
of Epidemiology and Biostatistics, School of Public Health, Imperial College, London SW7 2AZ, U.K.
| | - Rita Araujo
- European Commission, DG Research and Innovation, Sq. Frère-Orban 8, 1000 Bruxelles, Belgium
| | | | - Roel Vermeulen
- Institute
for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Heidelberglaan 8 3584 CS Utrecht, The Netherlands
| | - Sophie Lanone
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Søren Brunak
- Novo
Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Blegdamsvej 3B, 2200 København, Denmark
| | - Sylvain Sebert
- Research
Unit of Population Health, University of
Oulu, P.O. Box 8000, FI-90014 Oulu, Finland
| | - Tuomo Karjalainen
- European Commission, DG Research and Innovation, Sq. Frère-Orban 8, 1000 Bruxelles, Belgium
| |
Collapse
|
16
|
Sahoo AK, Chivukula N, Ramesh K, Singha J, Marigoudar SR, Sharma KV, Samal A. An integrative data-centric approach to derivation and characterization of an adverse outcome pathway network for cadmium-induced toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170968. [PMID: 38367714 DOI: 10.1016/j.scitotenv.2024.170968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Cadmium is a prominent toxic heavy metal that contaminates both terrestrial and aquatic environments. Owing to its high biological half-life and low excretion rates, cadmium causes a variety of adverse biological outcomes. Adverse outcome pathway (AOP) networks were envisioned to systematically capture toxicological information to enable risk assessment and chemical regulation. Here, we leveraged AOP-Wiki and integrated heterogeneous data from four other exposome-relevant resources to build the first AOP network relevant for inorganic cadmium-induced toxicity. From AOP-Wiki, we filtered 309 high confidence AOPs, identified 312 key events (KEs) associated with inorganic cadmium from five exposome-relevant databases using a data-centric approach, and thereafter, curated 30 cadmium relevant AOPs (cadmium-AOPs). By constructing the undirected AOP network, we identified a large connected component of 18 cadmium-AOPs. Further, we analyzed the directed network of 59 KEs and 82 key event relationships (KERs) in the largest component using graph-theoretic approaches. Subsequently, we mined published literature using artificial intelligence-based tools to provide auxiliary evidence of cadmium association for all KEs in the largest component. Finally, we performed case studies to verify the rationality of cadmium-induced toxicity in humans and aquatic species. Overall, cadmium-AOP network constructed in this study will aid ongoing research in systems toxicology and chemical exposome.
Collapse
Affiliation(s)
- Ajaya Kumar Sahoo
- The Institute of Mathematical Sciences (IMSc), Chennai, India; Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Nikhil Chivukula
- The Institute of Mathematical Sciences (IMSc), Chennai, India; Homi Bhabha National Institute (HBNI), Mumbai, India
| | | | - Jasmine Singha
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, Pallikaranai, Chennai, India
| | | | - Krishna Venkatarama Sharma
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, Pallikaranai, Chennai, India
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Chennai, India; Homi Bhabha National Institute (HBNI), Mumbai, India.
| |
Collapse
|
17
|
Rodríguez-Belenguer P, Mangas-Sanjuan V, Soria-Olivas E, Pastor M. Integrating Mechanistic and Toxicokinetic Information in Predictive Models of Cholestasis. J Chem Inf Model 2024; 64:2775-2788. [PMID: 37660324 PMCID: PMC11005038 DOI: 10.1021/acs.jcim.3c00945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 09/05/2023]
Abstract
Drug development involves the thorough assessment of the candidate's safety and efficacy. In silico toxicology (IST) methods can contribute to the assessment, complementing in vitro and in vivo experimental methods, since they have many advantages in terms of cost and time. Also, they are less demanding concerning the requirements of product and experimental animals. One of these methods, Quantitative Structure-Activity Relationships (QSAR), has been proven successful in predicting simple toxicity end points but has more difficulties in predicting end points involving more complex phenomena. We hypothesize that QSAR models can produce better predictions of these end points by combining multiple QSAR models describing simpler biological phenomena and incorporating pharmacokinetic (PK) information, using quantitative in vitro to in vivo extrapolation (QIVIVE) models. In this study, we applied our methodology to the prediction of cholestasis and compared it with direct QSAR models. Our results show a clear increase in sensitivity. The predictive quality of the models was further assessed to mimic realistic conditions where the query compounds show low similarity with the training series. Again, our methodology shows clear advantages over direct QSAR models in these situations. We conclude that the proposed methodology could improve existing methodologies and could be suitable for being applied to other toxicity end points.
Collapse
Affiliation(s)
- Pablo Rodríguez-Belenguer
- Research
Programme on Biomedical Informatics (GRIB), Department of Medicine
and Life Sciences, Universitat Pompeu Fabra,
Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain
- Department
of Pharmacy and Pharmaceutical Technology and Parasitology, Universitat de València, 46100 Valencia, Spain
| | - Victor Mangas-Sanjuan
- Department
of Pharmacy and Pharmaceutical Technology and Parasitology, Universitat de València, 46100 Valencia, Spain
- Interuniversity
Research Institute for Molecular Recognition and Technological Development, Universitat Politècnica de València, 46100 Valencia, Spain
| | - Emilio Soria-Olivas
- IDAL,
Intelligent Data Analysis Laboratory, ETSE, Universitat de València, 46100 Valencia, Spain
| | - Manuel Pastor
- Research
Programme on Biomedical Informatics (GRIB), Department of Medicine
and Life Sciences, Universitat Pompeu Fabra,
Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain
| |
Collapse
|
18
|
Song H, Xie C, Dong M, Zhang Y, Huang H, Han Y, Liu Y, Wei L, Wang X. Effects of ambient UVB light on Pacific oyster Crassostrea gigas mantle tissue based on multivariate data. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116236. [PMID: 38503101 DOI: 10.1016/j.ecoenv.2024.116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Ambient ultraviolet radiation (UVB) from solar and artificial light presents serious environmental risks to aquatic ecosystems. The Pacific oyster, Crassostrea gigas, perceives changes in the external environment primarily through its mantle tissue, which contains many nerve fibers and tentacles. Changes within the mantles can typically illustrate the injury of ambient UVB. In this study, a comprehensive analysis of phenotypic, behavioral, and physiological changes demonstrated that extreme UVB radiation (10 W/m²) directly suppressed the behavioral activities of C. gigas. Conversely, under ambient UVB radiation (5 W/m²), various physiological processes exhibited significant alterations in C. gigas, despite the behavior remaining relatively unaffected. Using mathematical model analysis, the integrated analysis of the full-length transcriptome, proteome, and metabolome showed that ambient UVB significantly affected the metabolic processes (saccharide, lipid, and protein metabolism) and cellular biology processes (autophagy, apoptosis, oxidative stress) of the C. gigas mantle. Subsequently, using Procrustes analysis and Pearson correlation analysis, the association between multi-omics data and physiological changes, as well as their biomarkers, revealed the effect of UVB on three crucial biological processes: activation of autophagy signaling (key factors: Ca2+, LC3B, BECN1, caspase-7), response to oxidative stress (reactive oxygen species, heat shock 70, cytochrome c oxidase), and recalibration of energy metabolism (saccharide, succinic acid, translation initiation factor IF-2). These findings offer a fresh perspective on the integration of multi-data from non-model animals in ambient UVB risk assessment.
Collapse
Affiliation(s)
- Hongce Song
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Chaoyi Xie
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Meiyun Dong
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Yuxuan Zhang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Haifeng Huang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China.
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China.
| |
Collapse
|
19
|
Abe FR, Dorta DJ, Gravato C, de Oliveira DP. Elucidating the effects of pure glyphosate and a commercial formulation on early life stages of zebrafish using a complete biomarker approach: All-or-nothing! THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170012. [PMID: 38246377 DOI: 10.1016/j.scitotenv.2024.170012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
The search for new methods in the toxicology field has increased the use of early life stages of zebrafish (Danio rerio) as a versatile organism model. Here, we use early stages of zebrafish to evaluate glyphosate as pure active ingredient and within a commercial formulation in terms of oxidative stress. Biomarkers involved in the oxidative status were evaluated along with other markers of neurotoxicity, genotoxicity, cytotoxicity, energy balance and motor performance, and the selected tools were evaluated by its sensitivity in determining early-warning events. Zebrafish embryos exposed to glyphosate active ingredient and glyphosate-based formulation were under oxidative stress, but only the commercial formulation delayed the embryogenesis, affected the cholinergic neurotransmission and induced DNA damage. Both altered the motor performance of larvae at very low concentrations, becoming larvae hypoactive. The energy balance was also impaired, as embryos under oxidative stress had lower lipids reserves. Although data suggest that glyphosate-based formulation has higher toxicity than the active ingredient itself, the most sensitive biomarkers detected early-warning effects at very low concentrations of the active ingredient. Biochemical biomarkers of defense system and oxidative damage were the most sensitive tools, detecting pro-oxidant responses at very low concentrations, along with markers of motor performance that showed high sensitivity and high throughput, suitable for detecting early effects linked to neurotoxicity. Alterations on morphology during embryogenesis showed the lowest sensitivity, thus morphological alterations appeared after several alterations at biochemical levels. Tools evaluating DNA damage and cell proliferation showed mid-sensitivity, but low throughput, thus they could be used as complementary markers.
Collapse
Affiliation(s)
- Flavia Renata Abe
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Daniel Junqueira Dorta
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, Brazil; Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil
| | - Carlos Gravato
- Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Danielle Palma de Oliveira
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 Ribeirão Preto, Brazil; Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil.
| |
Collapse
|
20
|
Bass C, Hayward A, Troczka BJ, Haas J, Nauen R. The molecular determinants of pesticide sensitivity in bee pollinators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170174. [PMID: 38246392 DOI: 10.1016/j.scitotenv.2024.170174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Bees carry out vital ecosystem services by pollinating both wild and economically important crop plants. However, while performing this function, bee pollinators may encounter potentially harmful xenobiotics in the environment such as pesticides (fungicides, herbicides and insecticides). Understanding the key factors that influence the toxicological outcomes of bee exposure to these chemicals, in isolation or combination, is essential to safeguard their health and the ecosystem services they provide. In this regard, recent work using toxicogenomic and phylogenetic approaches has begun to identify, at the molecular level, key determinants of pesticide sensitivity in bee pollinators. These include detoxification systems that convert pesticides to less toxic forms and key residues in insecticide target-sites that underlie species-specific insecticide selectivity. Here we review this emerging body of research and summarise the state of knowledge of the molecular determinants of pesticide sensitivity in bee pollinators. We identify gaps in our knowledge for future research and examine how an understanding of the genetic basis of bee sensitivity to pesticides can be leveraged to, a) predict and avoid negative bee-pesticide interactions and facilitate the future development of pest-selective bee-safe insecticides, and b) inform traditional effect assessment approaches in bee pesticide risk assessment and address issues of ecotoxicological concern.
Collapse
Affiliation(s)
- Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom.
| | - Angela Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Bartlomiej J Troczka
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Julian Haas
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, Monheim, Germany.
| |
Collapse
|
21
|
Jaylet T, Coustillet T, Smith NM, Viviani B, Lindeman B, Vergauwen L, Myhre O, Yarar N, Gostner JM, Monfort-Lanzas P, Jornod F, Holbech H, Coumoul X, Sarigiannis DA, Antczak P, Bal-Price A, Fritsche E, Kuchovska E, Stratidakis AK, Barouki R, Kim MJ, Taboureau O, Wojewodzic MW, Knapen D, Audouze K. Comprehensive mapping of the AOP-Wiki database: identifying biological and disease gaps. FRONTIERS IN TOXICOLOGY 2024; 6:1285768. [PMID: 38523647 PMCID: PMC10958381 DOI: 10.3389/ftox.2024.1285768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction: The Adverse Outcome Pathway (AOP) concept facilitates rapid hazard assessment for human health risks. AOPs are constantly evolving, their number is growing, and they are referenced in the AOP-Wiki database, which is supported by the OECD. Here, we present a study that aims at identifying well-defined biological areas, as well as gaps within the AOP-Wiki for future research needs. It does not intend to provide a systematic and comprehensive summary of the available literature on AOPs but summarizes and maps biological knowledge and diseases represented by the already developed AOPs (with OECD endorsed status or under validation). Methods: Knowledge from the AOP-Wiki database were extracted and prepared for analysis using a multi-step procedure. An automatic mapping of the existing information on AOPs (i.e., genes/proteins and diseases) was performed using bioinformatics tools (i.e., overrepresentation analysis using Gene Ontology and DisGeNET), allowing both the classification of AOPs and the development of AOP networks (AOPN). Results: AOPs related to diseases of the genitourinary system, neoplasms and developmental anomalies are the most frequently investigated on the AOP-Wiki. An evaluation of the three priority cases (i.e., immunotoxicity and non-genotoxic carcinogenesis, endocrine and metabolic disruption, and developmental and adult neurotoxicity) of the EU-funded PARC project (Partnership for the Risk Assessment of Chemicals) are presented. These were used to highlight under- and over-represented adverse outcomes and to identify and prioritize gaps for further research. Discussion: These results contribute to a more comprehensive understanding of the adverse effects associated with the molecular events in AOPs, and aid in refining risk assessment for stressors and mitigation strategies. Moreover, the FAIRness (i.e., data which meets principles of findability, accessibility, interoperability, and reusability (FAIR)) of the AOPs appears to be an important consideration for further development.
Collapse
Affiliation(s)
- Thomas Jaylet
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| | | | - Nicola M. Smith
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Birgitte Lindeman
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Lucia Vergauwen
- Zebrafishlab, Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Oddvar Myhre
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Nurettin Yarar
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Johanna M. Gostner
- Institute of Medical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Pablo Monfort-Lanzas
- Institute of Medical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Xavier Coumoul
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| | - Dimosthenis A. Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
- National Hellenic Research Foundation, Athens, Greece
- Science, Technology and Society Department, Environmental Health Engineering, University School for Advanced Studies (IUSS), Pavia, Italy
| | - Philipp Antczak
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
- Heinrich-Heine-University, Düsseldorf, Germany
- Swiss Centre for Applied Human Toxicology, Basel, Switzerland
- DNTOX GmbH, Düsseldorf, Germany
| | - Eliska Kuchovska
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Antonios K. Stratidakis
- Science, Technology and Society Department, Environmental Health Engineering, University School for Advanced Studies (IUSS), Pavia, Italy
| | - Robert Barouki
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| | - Min Ji Kim
- Inserm UMR-S 1124, Université Sorbonne Paris Nord, Bobigny, Paris, France
| | - Olivier Taboureau
- Université Paris Cité, BFA, Team CMPLI, Inserm U1133, CNRS UMR 8251, Paris, France
| | - Marcin W. Wojewodzic
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
- Cancer Registry of Norway, NIPH, Oslo, Norway
| | - Dries Knapen
- Zebrafishlab, Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Karine Audouze
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| |
Collapse
|
22
|
Lu N, Zhang Y, Mu Q, Li Y, Li Y, Yan Z, Wang Y. Hexabromocyclododecane-induced reproductive toxicity in Brachionus plicatilis: Impacts and assessment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106853. [PMID: 38330652 DOI: 10.1016/j.aquatox.2024.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/04/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Hexabromocyclododecane (HBCD), third-generation brominated flame retardants (BRFs), has aroused worldwide concern because of its wide application and potentially negative impacts on marine ecosystems, but an information gap still exists regarding marine low-trophic organisms. Brachionus plicatilis, the model marine zooplankton, was used in the present study, and its reproductive responses were used as the endpoint to indicate HBCD-induced toxicity. HBCD was suggested to be extremely highly toxic compounds regarding the 96 h-LC50 of 0.58 mg L-1. The sublethal exposure of HBCD injured the reproduction of B. plicatilis: The total number of offspring per female and the key population index calculated from the life table, including the intrinsic rate of population increase (rm) and net reproductive rate (R0), were significantly influenced in a concentration-dependent manner. The reproductive process was also altered, as indicated by the first spawning time, first hatching time and oocyst development time. At the same time, individual survival and growth (body length) were also negatively affected by HBCD. Reactive oxygen species (ROS) were suggested to be responsible for reproductive toxicity mainly because the total ROS contents as well as the main components of •OH and H2O2 greatly increased and resulted in the oxidative imbalance that presented as malondialdehyde (MDA) elevation. Simultaneous activation of the glutathione antioxidant system was accompanied by the apoptosis marker enzymes Caspase-3 and 9, as well as the correlation between ROS content, physiological alteration and cell apoptosis, providing further evidence for this. The integrated biomarker response (IBR) and adverse outcome pathway (AOP) showed that HBCD had a significant toxic effect on B. plicatilis near the concentration range of 96 h-LC50. The establishment of this concentration range will provide a reliable reference for future environmental concentration warning of HBCD in marine.
Collapse
Affiliation(s)
- Na Lu
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, No.1 Wenhai Road, Qingdao, China
| | - Yaya Zhang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, No.1 Wenhai Road, Qingdao, China
| | - Qinglin Mu
- Zhejiang Marine Ecology and Environment Monitoring Center, No.20 Tiyu Road, Zhoushan, China
| | - Yijun Li
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, No.1 Wenhai Road, Qingdao, China
| | - Yuanyuan Li
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, No.1 Wenhai Road, Qingdao, China
| | - Zhongyong Yan
- Zhejiang Marine Ecology and Environment Monitoring Center, No.20 Tiyu Road, Zhoushan, China
| | - You Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, No.1 Wenhai Road, Qingdao, China.
| |
Collapse
|
23
|
Barnes DA, Firman JW, Belfield SJ, Cronin MTD, Vinken M, Janssen MJ, Masereeuw R. Development of an adverse outcome pathway network for nephrotoxicity. Arch Toxicol 2024; 98:929-942. [PMID: 38197913 PMCID: PMC10861692 DOI: 10.1007/s00204-023-03637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
Adverse outcome pathways (AOPs) were introduced in modern toxicology to provide evidence-based representations of the events and processes involved in the progression of toxicological effects across varying levels of the biological organisation to better facilitate the safety assessment of chemicals. AOPs offer an opportunity to address knowledge gaps and help to identify novel therapeutic targets. They also aid in the selection and development of existing and new in vitro and in silico test methods for hazard identification and risk assessment of chemical compounds. However, many toxicological processes are too intricate to be captured in a single, linear AOP. As a result, AOP networks have been developed to aid in the comprehension and placement of associated events underlying the emergence of related forms of toxicity-where complex exposure scenarios and interactions may influence the ultimate adverse outcome. This study utilised established criteria to develop an AOP network that connects thirteen individual AOPs associated with nephrotoxicity (as sourced from the AOP-Wiki) to identify several key events (KEs) linked to various adverse outcomes, including kidney failure and chronic kidney disease. Analysis of the modelled AOP network and its topological features determined mitochondrial dysfunction, oxidative stress, and tubular necrosis to be the most connected and central KEs. These KEs can provide a logical foundation for guiding the selection and creation of in vitro assays and in silico tools to substitute for animal-based in vivo experiments in the prediction and assessment of chemical-induced nephrotoxicity in human health.
Collapse
Affiliation(s)
- D A Barnes
- Division of Pharmacology, Utrecht University, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - J W Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - S J Belfield
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - M T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - M Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - M J Janssen
- Division of Pharmacology, Utrecht University, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - R Masereeuw
- Division of Pharmacology, Utrecht University, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands.
| |
Collapse
|
24
|
Tsai HHD, Ford LC, Chen Z, Dickey AN, Wright FA, Rusyn I. Risk-based prioritization of PFAS using phenotypic and transcriptomic data from human induced pluripotent stem cell-derived hepatocytes and cardiomyocytes. ALTEX 2024; 41:363-381. [PMID: 38429992 PMCID: PMC11305846 DOI: 10.14573/altex.2311031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are chemicals with important applications; they are persistent in the environment and may pose human health hazards. Regulatory agencies are considering restrictions and bans of PFAS; however, little data exists for informed decisions. Several prioritization strategies were proposed for evaluation of potential hazards of PFAS. Structure-based grouping could expedite the selection of PFAS for testing; still, the hypothesis that structure-effect relationships exist for PFAS requires confirmation. We tested 26 structurally diverse PFAS from 8 groups using human induced pluripotent stem cell-derived hepatocytes and cardiomyocytes, and tested concentration-response effects on cell function and gene expression. Few phenotypic effects were observed in hepatocytes, but negative chronotropy was observed in cardiomyocytes for 8 PFAS. Substance- and cell type-dependent transcriptomic changes were more prominent but lacked substantial group-specific effects. In hepatocytes, we found upregulation of stress-related and extracellular matrix organization pathways, and down-regulation of fat metabolism. In cardiomyocytes, contractility-related pathways were most affected. We derived phenotypic and transcriptomic points of departure and compared them to predicted PFAS exposures. Conservative estimates for bioactivity and exposure were used to derive a bioactivity-to-exposure ratio (BER) for each PFAS; 23 of 26 PFAS had BER > 1. Overall, these data suggest that structure-based PFAS grouping may not be sufficient to predict their biological effects. Testing of individual PFAS may be needed for scientifically-supported decision-making. Our proposed strategy of using two human cell types and considering phenotypic and transcriptomic effects, combined with dose-response analysis and calculation of BER, may be used for PFAS prioritization.
Collapse
Affiliation(s)
- Han-Hsuan D Tsai
- Interdisciplinary Faculty of Toxicology, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Lucie C Ford
- Interdisciplinary Faculty of Toxicology, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Zunwei Chen
- Interdisciplinary Faculty of Toxicology, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
- Current address: Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Allison N Dickey
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Fred A Wright
- Interdisciplinary Faculty of Toxicology, College Station, TX, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Department of Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
25
|
Chen M, Wu T. Nanoparticles and neurodegeneration: Insights on multiple pathways of programmed cell death regulated by nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168739. [PMID: 38008311 DOI: 10.1016/j.scitotenv.2023.168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Currently, nanoparticles (NPs) are extensively applied in the diagnosis and treatment of neurodegenerative diseases (NDs). With the rapid development and increasing exposure to the public, the potential neurotoxicity associated with NDs caused by NPs has attracted the researchers' attentions but their biosafety assessments are still far behind relevant application studies. Based on recent research, this review aims to conduct a comprehensive and systematic analysis of neurotoxicity induced by NPs. The 191 studies selected according to inclusion and exclusion criteria were imported into the software, and the co-citations and keywords of the included literatures were analyzed to find the breakthrough point of previous studies. According to the available studies, the routes of NPs entering into the normal and injured brain were various, and then to be distributed and accumulated in living bodies. When analyzing the adverse effects induced by NPs, we focused on multiple programmed cell deaths (PCDs), especially ferroptosis triggered by NPs and their tight connection and crosstalk that have been found playing critical roles in the pathogenesis of NDs and their underlying toxic mechanisms. The activation of multiple PCD pathways by NPs provides a scientific basis for the occurrence and development of NDs. Furthermore, the adoption of new methodologies for evaluating the biosafety of NPs would benefit the next generation risk assessment (NGRA) of NPs and their toxic interventions. This would help ensure their safe application and sustainable development in the field of medical neurobiology.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
26
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
27
|
Ivan de Ávila R, Fentem J, Villela I, Somlo D, Fusco Almeida AM, Mendes-Giannini MJS, Di Pietro Micali Canavez A, Bosquetti B, Catarino CM, Schuck DC, Valadares BN, Facchini G, Marigliani B, Migliorini Figueira AC, Hickson R, Leme DM, Tagliati C, de Souza LCR, Maria Engler SS, Gaspar Cordeiro LR, Koepp J, Granjeiro JM, de Mello Brandao H, Munk M, Antunes de Mattos K, Pedralli B, Siqueira Furtuoso Rodrigues MM, Stival AC, Andrade J, Brito LB, Marques Dos Santos TR, Leite J, Garcia da Silva AC, Valadares MC. Brazilian National Network of Alternative Methods (RENAMA) 10th Anniversary: Meeting of the Associated Laboratories, May 2022. Altern Lab Anim 2024; 52:60-68. [PMID: 38061994 DOI: 10.1177/02611929231218378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The Brazilian National Network of Alternative Methods (RENAMA), which is linked to the Ministry of Science, Technology and Innovation, is currently comprised of 51 laboratories from CROs, academia, industry and government. RENAMA's aim is to develop and validate new approach methodologies (NAMs), as well as train researchers and disseminate information on their use - thus reducing Brazilian, and consequently Latin American, dependence on external technology. Moreover, it promotes the adoption of NAMs by educators and trained researchers, as well as the implementation of good laboratory practice (GLP) and the use of certified products. The RENAMA network started its activities in 2012, and was originally comprised of three central laboratories - the National Institute of Metrology, Quality and Technology (INMETRO); the National Institute of Quality Control in Health (INCQS); and the National Brazilian Biosciences Laboratory (LNBio) - and ten associated laboratories. In 2022, RENAMA celebrated its 10th anniversary, a milestone commemorated by the organisation of a meeting attended by different stakeholders, including the RENAMA-associated laboratories, academia, non-governmental organisations and industry. Ninety-six participants attended the meeting, held on 26 May 2022 in Balneário Camboriú, SC, Brazil, as part of the programme of the XXIII Brazilian Congress of Toxicology 2022. Significant moments of the RENAMA were remembered, and new goals and discussion themes were established. The lectures highlighted recent innovations in the toxicological sciences that have translated into the assessment of consumer product safety through the use of human-relevant NAMs instead of the use of existing animal-based approaches. The challenges and opportunities in accepting such practices for regulatory purposes were also presented and discussed.
Collapse
Affiliation(s)
- Renato Ivan de Ávila
- Unilever's Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Bedfordshire, UK
| | - Julia Fentem
- Unilever's Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Bedfordshire, UK
| | - Izabel Villela
- InnVitro Support and Management in Toxicology, Porto Alegre, Brazil
| | - Debora Somlo
- Unilever Brazil Industrial Ltda, WTorre Morumbi, São Paulo, Brazil
| | - Ana Marisa Fusco Almeida
- Laboratory of Proteomics and Clinical Mycology, Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Maria José S Mendes-Giannini
- Laboratory of Proteomics and Clinical Mycology, Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | | | - Bruna Bosquetti
- Safety Assessment Management, Grupo Boticário, Curitiba, Brazil
| | | | | | | | | | - Bianca Marigliani
- Research and Toxicology Department, Humane Society International (HSI), Rio de Janeiro, Brazil
| | | | | | | | - Carlos Tagliati
- Lab Tox, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Janice Koepp
- Biocelltis Biotechnology SA, Florianópolis, Brazil
| | - Jose Mauro Granjeiro
- National Institute of Metrology, Quality and Technology, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Humberto de Mello Brandao
- Innovation Laboratory in Nanobiotechnology and Advanced Materials for Livestock Embrapa Gado de Leite, Juiz de Fora, Brazil
| | - Michele Munk
- Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Katherine Antunes de Mattos
- Microbiological Control Laboratory, Quality Control Department, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Bruna Pedralli
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | | | - Ana Clara Stival
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Jordana Andrade
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Lara Barroso Brito
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Thais Rosa Marques Dos Santos
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Jacqueline Leite
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Artur Christian Garcia da Silva
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Marize Campos Valadares
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
28
|
Tang X, Miao Y, Cao L, Liu Y, Zhu X, Zhang J, Wang D, Li X, Zhang L, Huo J, Chen J. Adverse outcome pathway exploration of furan-induced liver fibrosis in rats: Genotoxicity pathway or oxidative stress pathway through CYP2E1 activation? CHEMOSPHERE 2023; 341:139998. [PMID: 37657698 DOI: 10.1016/j.chemosphere.2023.139998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Furan is a widespread endogenous contaminant in heat-processed foods that can accumulate rapidly in the food chain and has been widely detected in foods, such as wheat, bread, coffee, canned meat products, and baby food. Dietary exposure to this chemical may bring health risk. Furan is classified as a possible category 2B human carcinogen by the International Agency for Research on Cancer, with the liver as its primary target organ. Hepatic fibrosis is the most important nontumoral harmful effect of furan and also an important event in the carcinogenesis of furan. Although the specific mechanism of furan-induced liver fibrosis is still unclear, it may involve oxidative stress and genetic toxicity, in which the activation of cytochrome P450 2E1 (CYP2E1) may be the key event. Thus, we conducted a study using an integrating multi-endpoint genotoxicity platform in 120-day in vivo subchronic toxicity test in rats. Results showed that the rats with activated CYP2E1 exhibited DNA double-strand breaks in D4, gene mutations in D60, and increased expression of reactive oxygen species and nuclear factor erythroid 2-related factor 2 in D120. Necrosis, apoptosis, hepatic stellate cell activation, and fibrosis also occurred in the liver, suggesting that furan can independently affect liver fibrosis through oxidative stress and genotoxicity pathways. Point of Departure (PoD) was obtained by benchmark-dose (BMD) method to establish health-based guidance values. The human equivalent dose of PoD derived from BMDL05 was 2.26 μg/kg bw/d. The findings laid a foundation for the safety evaluation and risk assessment of furan and provided data for the further construction and improvement of the adverse outcome pathway network in liver fibrosis.
Collapse
Affiliation(s)
- Xinyao Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Yeqiu Miao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Li Cao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Yufei Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Xia Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Dongxia Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Xiaomeng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Lishi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jiao Huo
- Department of Nutrition and Food Safety, Chongqing Center for Disease Control and Prevention, Chongqing, China.
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
29
|
Cao S, Wang J, You X, Zhou B, Wang Y, Zhou Z. Purine Metabolism and Pyrimidine Metabolism Alteration Is a Potential Mechanism of BDE-47-Induced Apoptosis in Marine Rotifer Brachionus plicatilis. Int J Mol Sci 2023; 24:12726. [PMID: 37628905 PMCID: PMC10454229 DOI: 10.3390/ijms241612726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
This present study was conducted to provide evidence and an explanation for the apoptosis that occurs in the marine rotifer Brachionus plicatilis when facing 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) stress. Metabolomics analysis showed that aminoacyl-tRNA biosynthesis, valine, leucine and isoleucine biosynthesis, and arginine biosynthesis were the top three sensitive pathways to BDE-47 exposure, which resulted in the reduction in the amino acid pool level. Pyrimidine metabolism and purine metabolism pathways were also significantly influenced, and the purine and pyrimidine content were obviously reduced in the low (0.02 mg/L) and middle (0.1 mg/L) concentration groups while increased in the high (0.5 mg/L) concentration group, evidencing the disorder of nucleotide synthesis and decomposition in B. plicatilis. The biochemical detection of the key enzymes in purine metabolism and pyrimidine metabolism showed the downregulation of Glutamine Synthetase (GS) protein expression and the elevation of Xanthine Oxidase (XOD) activity, which suggested the impaired DNA repair and ROS overproduction. The content of DNA damage biomarker (8-OHdG) increased in treatment groups, and the p53 signaling pathway was found to be activated, as indicated by the elevation of the p53 protein expression and Bax/Bcl-2 ratio. The ROS scavenger (N-acetyl-L-cysteine, NAC) addition effectively alleviated not only ROS overproduction but also DNA damage as well as the activation of apoptosis. The combined results backed up the speculation that purine metabolism and pyrimidine metabolism alteration play a pivotal role in BDE-47-induced ROS overproduction and DNA damage, and the consequent activation of the p53 signaling pathway led to the observed apoptosis in B. plicatilis.
Collapse
Affiliation(s)
- Sai Cao
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
| | - Jiayi Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
| | - Xinye You
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
| | - Bin Zhou
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - You Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Zhongyuan Zhou
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
| |
Collapse
|
30
|
Makena P, Kikalova T, Prasad GL, Baxter SA. Oxidative Stress and Lung Fibrosis: Towards an Adverse Outcome Pathway. Int J Mol Sci 2023; 24:12490. [PMID: 37569865 PMCID: PMC10419527 DOI: 10.3390/ijms241512490] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Lung fibrosis is a progressive fatal disease in which deregulated wound healing of lung epithelial cells drives progressive fibrotic changes. Persistent lung injury due to oxidative stress and chronic inflammation are central features of lung fibrosis. Chronic cigarette smoking causes oxidative stress and is a major risk factor for lung fibrosis. The objective of this manuscript is to develop an adverse outcome pathway (AOP) that serves as a framework for investigation of the mechanisms of lung fibrosis due to lung injury caused by inhaled toxicants, including cigarette smoke. Based on the weight of evidence, oxidative stress is proposed as a molecular initiating event (MIE) which leads to increased secretion of proinflammatory and profibrotic mediators (key event 1 (KE1)). At the cellular level, these proinflammatory signals induce the recruitment of inflammatory cells (KE2), which in turn, increase fibroblast proliferation and myofibroblast differentiation (KE3). At the tissue level, an increase in extracellular matrix deposition (KE4) subsequently culminates in lung fibrosis, the adverse outcome. We have also defined a new KE relationship between the MIE and KE3. This AOP provides a mechanistic platform to understand and evaluate how persistent oxidative stress from lung injury may develop into lung fibrosis.
Collapse
Affiliation(s)
- Patrudu Makena
- RAI Services Company, P.O. Box 1487, Winston-Salem, NC 27102, USA;
| | - Tatiana Kikalova
- Clarivate Analytics, 1500 Spring Garden, Philadelphia, PA 19130, USA
| | - Gaddamanugu L. Prasad
- Former Employee of RAI Services Company, Winston-Salem, NC 27101, USA
- Prasad Scientific Consulting LLC, 490 Friendship Place Ct, Lewisville, NC 27023, USA
| | - Sarah A. Baxter
- RAI Services Company, P.O. Box 1487, Winston-Salem, NC 27102, USA;
| |
Collapse
|
31
|
Liang J, Wei HX, Zhou YY, Hao LL, Ning JY, Zhang L. Investigation on the potential adverse outcome pathway of the sensitive endpoint for nephrotoxicity induced by gardenia yellow based on an integrated strategy using bioinformatics analysis and in vitro testing validation. Food Chem Toxicol 2023:113930. [PMID: 37406755 DOI: 10.1016/j.fct.2023.113930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/17/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
To explore the potential the adverse outcome pathway of Gardenia Yellow (GY)-induced sensitive endpoint for nephrotoxicity, an integrated strategy was applied in the present study. Using bioinformatic analysis, based on the constructed Protein-protein interaction networks, Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis on the core target network were performed to illustrate the potential gene targets and signal pathways. Then, the most enriched pathway was validated with Cell counting kit-8 assays and Western blot analysis in embryonic kidney epithelial 293 cell models. According to the findings, GY may interact with 321 targets related to the endpoint. The five targets on the top ranking in the PPI network were STAT3, SRC, HRAS, AKT1, EP300. Among them, PI3K/Akt was the most enriched pathway. In vitro testing showed that GY exerted a proliferative effect on the cell variability in a dose-dependent manner. GY at concentration of 1000 μg/ml and stimulation for 30 min can significantly enhance the expression of phosphorylated Akt. Thus, after the quantitative weight of evidence evaluation, Akt phosphorylation induced PI3K/Akt activation was speculated as a molecular initiating event leading to a proliferative and inflammatory response in renal tubular epithelial cells.
Collapse
Affiliation(s)
- Jiang Liang
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Hong-Xin Wei
- Beijing Centers for Disease Prevention and Control /Beijing Research Center for Prevention Medicine, Beijing Key Laboratory of Diagnostic and Tracebility Technologies for Food Poisoning, Beijing, 100013, China
| | - Ying-Ying Zhou
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Li-Li Hao
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Jun-Yu Ning
- Beijing Centers for Disease Prevention and Control /Beijing Research Center for Prevention Medicine, Beijing Key Laboratory of Diagnostic and Tracebility Technologies for Food Poisoning, Beijing, 100013, China
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China.
| |
Collapse
|
32
|
Melching-Kollmuss S, Bothe K, Charlton A, Gangadharan B, Ghaffari R, Jacobi S, Marty S, Marxfeld HA, McInnes EF, Sauer UG, Sheets LP, Strupp C, Tinwell H, Wiemann C, Botham PA, van Ravenzwaay B. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny - Part IV: the ECETOC and CLE Proposal for a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). Crit Rev Toxicol 2023; 53:339-371. [PMID: 37554099 DOI: 10.1080/10408444.2023.2231033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023]
Abstract
Following the European Commission Endocrine Disruptor Criteria, substances shall be considered as having endocrine disrupting properties if they (a) elicit adverse effects, (b) have endocrine activity, and (c) the two are linked by an endocrine mode-of-action (MoA) unless the MoA is not relevant for humans. A comprehensive, structured approach to assess whether substances meet the Endocrine Disruptor Criteria for the thyroid modality (EDC-T) is currently unavailable. Here, the European Centre for Ecotoxicology and Toxicology of Chemicals Thyroxine Task Force and CropLife Europe propose a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). In Tier 0, before entering the Thyroid-NDT-TAS, all available in vivo, in vitro and in silico data are submitted to weight-of-evidence (WoE) evaluations to determine whether the substance of interest poses a concern for thyroid disruption. If so, Tier 1 of the Thyroid-NDT-TAS includes an initial MoA and human relevance assessment (structured by the key events of possibly relevant adverse outcome pathways) and the generation of supportive in vitro/in silico data, if relevant. Only if Tier 1 is inconclusive, Tier 2 involves higher-tier testing to generate further thyroid- and/or neurodevelopment-related data. Tier 3 includes the final MoA and human relevance assessment and an overarching WoE evaluation to draw a conclusion on whether, or not, the substance meets the EDC-T. The Thyroid-NDT-TAS is based on the state-of-the-science, and it has been developed to minimise animal testing. To make human safety assessments more accurate, it is recommended to apply the Thyroid-NDT-TAS during future regulatory assessments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Dong L, Wang S, Wang X, Wang Z, Liu D, You H. Investigating the adverse outcome pathways (AOP) of neurotoxicity induced by DBDPE with a combination of in vitro and in silico approaches. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131021. [PMID: 36821895 DOI: 10.1016/j.jhazmat.2023.131021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Current studies have shown an association between DBDPE and neurotoxicity. In this study, the adverse outcome pathway (AOP) and mechanistic analysis of DBDPE-induced neurotoxicity were explored by a combination of in vitro and in silico approaches in SK-N-SH cells. DBDPE-induced oxidative stress caused DNA strand breaks, resulting in the activation of poly (ADP-ribose) (PAR) polymerase-1 (PARP-1). Activation of PARP1 could cause toxic damage in various organ systems, especially in the nervous system. DBDPE-induced apoptosis via the caspase-dependent intrinsic mitochondrial pathway and the PARP1-dependent pathway. Activation of PARP1 by DBDPE was deemed the initiating event, thereby affecting the key downstream biochemical events (e.g., ROS production, DNA damage, membrane potential changes, and ATP reduction), which induced apoptosis. Furthermore, excessive activation of PARP1 was accompanied by the translocation of the apoptosis-inducing factor (AIF), which was associated with PARP1-dependent cell death. The inhibition of PARP1 by PJ34 reduced DBDPE-induced apoptosis and maintained cellular ATP levels. PJ34 also prevented the translocation of AIF from the mitochondria to the nucleus. These findings improve the understanding of the mechanism of DBDPE-induced neurotoxic effects and provide a theoretical basis for the ecological risk of DBDPE.
Collapse
Affiliation(s)
- Liying Dong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xingyu Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ziwei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
34
|
Gou X, Ma C, Ji H, Yan L, Wang P, Wang Z, Lin Y, Chatterjee N, Yu H, Zhang X. Prediction of zebrafish embryonic developmental toxicity by integrating omics with adverse outcome pathway. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130958. [PMID: 36860045 DOI: 10.1016/j.jhazmat.2023.130958] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/09/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
New approach methodologies (NAMs), especially omics-based high-throughput bioassays have been developed rapidly, providing rich mechanistic information such as molecular initiation events (MIEs) and (sub)cellular key events (KEs) in adverse outcome pathways (AOPs). However, how to apply the knowledge of MIEs/KEs to predict adverse outcomes (AOs) induced by chemicals represents a new challenge for computational toxicology. Here, an integrated method named ScoreAOP was developed and evaluated to predict chemicals' developmental toxicity for zebrafish embryos by integrating four related AOPs and dose-dependent reduced zebrafish transcriptome (RZT). The rules of ScoreAOP included 1) sensitivity of responsive KEs demonstrated by point of departure of KEs (PODKE), 2) evidence reliability and 3) distance between KEs and AOs. Moreover, eleven chemicals with different modes of action (MoAs) were tested to evaluate ScoreAOP. Results showed that eight of the eleven chemicals caused developmental toxicity at tested concentration in apical tests. All the tested chemicals' developmental defects were predicted using ScoreAOP, whereas eight out of the eleven chemicals predicted by ScoreMIE which was developed to score MIEs disturbed by chemicals based on in vitro bioassays data. Finally, in terms of mechanism explanation, ScoreAOP clustered chemicals with different MoAs while ScoreMIE failed, and ScoreAOP revealed the activation of aryl hydrocarbon receptor (AhR) plays a significant role in dysfunction of cardiovascular system, resulting in zebrafish developmental defects and mortality. In conclusion, ScoreAOP represents a promising approach to apply mechanism information obtained from omics to predict AOs induced by chemicals.
Collapse
Affiliation(s)
- Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Cong Ma
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Huimin Ji
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Pingping Wang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Zhihao Wang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yishan Lin
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Nivedita Chatterjee
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China.
| |
Collapse
|
35
|
Pognan F, Beilmann M, Boonen HCM, Czich A, Dear G, Hewitt P, Mow T, Oinonen T, Roth A, Steger-Hartmann T, Valentin JP, Van Goethem F, Weaver RJ, Newham P. The evolving role of investigative toxicology in the pharmaceutical industry. Nat Rev Drug Discov 2023; 22:317-335. [PMID: 36781957 PMCID: PMC9924869 DOI: 10.1038/s41573-022-00633-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 02/15/2023]
Abstract
For decades, preclinical toxicology was essentially a descriptive discipline in which treatment-related effects were carefully reported and used as a basis to calculate safety margins for drug candidates. In recent years, however, technological advances have increasingly enabled researchers to gain insights into toxicity mechanisms, supporting greater understanding of species relevance and translatability to humans, prediction of safety events, mitigation of side effects and development of safety biomarkers. Consequently, investigative (or mechanistic) toxicology has been gaining momentum and is now a key capability in the pharmaceutical industry. Here, we provide an overview of the current status of the field using case studies and discuss the potential impact of ongoing technological developments, based on a survey of investigative toxicologists from 14 European-based medium-sized to large pharmaceutical companies.
Collapse
Affiliation(s)
- Francois Pognan
- Discovery and Investigative Safety, Novartis Pharma AG, Basel, Switzerland.
| | - Mario Beilmann
- Nonclinical Drug Safety Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Harrie C M Boonen
- Drug Safety, Dept of Exploratory Toxicology, Lundbeck A/S, Valby, Denmark
| | | | - Gordon Dear
- In Vitro In Vivo Translation, GlaxoSmithKline David Jack Centre for Research, Ware, UK
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Tomas Mow
- Safety Pharmacology and Early Toxicology, Novo Nordisk A/S, Maaloev, Denmark
| | - Teija Oinonen
- Preclinical Safety, Orion Corporation, Espoo, Finland
| | - Adrian Roth
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | - Freddy Van Goethem
- Predictive, Investigative & Translational Toxicology, Nonclinical Safety, Janssen Research & Development, Beerse, Belgium
| | - Richard J Weaver
- Innovation Life Cycle Management, Institut de Recherches Internationales Servier, Suresnes, France
| | - Peter Newham
- Clinical Pharmacology and Safety Sciences, AstraZeneca R&D, Cambridge, UK.
| |
Collapse
|
36
|
Lizano-Fallas V, Carrasco del Amor A, Cristobal S. Prediction of Molecular Initiating Events for Adverse Outcome Pathways Using High-Throughput Identification of Chemical Targets. TOXICS 2023; 11:189. [PMID: 36851063 PMCID: PMC9965981 DOI: 10.3390/toxics11020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The impact of exposure to multiple chemicals raises concerns for human and environmental health. The adverse outcome pathway method offers a framework to support mechanism-based assessment in environmental health starting by describing which mechanisms are triggered upon interaction with different stressors. The identification of the molecular initiating event and the molecular interaction between a chemical and a protein target is still a challenge for the development of adverse outcome pathways. The cellular response to chemical exposure studied with omics could not directly identify the protein targets. However, recent mass spectrometry-based methods are offering a proteome-wide identification of protein targets interacting with s but unrevealing a molecular initiating event from a set of targets is still dependent on available knowledge. Here, we directly coupled the target identification findings from the proteome integral solubility alteration assay with an analytical hierarchy process for the prediction of a prioritized molecular initiating event. We demonstrate the applicability of this combination of methodologies with a test compound (TCDD), and it could be further studied and integrated into AOPs. From the eight protein targets identified by the proteome integral solubility alteration assay after analyzing 2824 human hepatic proteins, the analytical hierarchy process can select the most suitable protein for an AOP. Our combined method solves the missing links between high-throughput target identification and prediction of the molecular initiating event. We anticipate its utility to decipher new molecular initiating events and support more sustainable methodologies to gain time and resources in chemical assessment.
Collapse
Affiliation(s)
- Veronica Lizano-Fallas
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Ana Carrasco del Amor
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, 581 85 Linköping, Sweden
- Ikerbasque, Basque Foundation for Sciences, Department of Physiology, Faculty of Medicine, and Nursing, University of the Basque Country (UPV/EHU), 489 40 Leioa, Spain
| |
Collapse
|
37
|
Seebacher F. Interactive effects of anthropogenic environmental drivers on endocrine responses in wildlife. Mol Cell Endocrinol 2022; 556:111737. [PMID: 35931299 DOI: 10.1016/j.mce.2022.111737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Anthropogenic activity has created unique environmental drivers, which may interact to produce unexpected effects. My aim was to conduct a systematic review of the interactive effects of anthropogenic drivers on endocrine responses in non-human animals. The interaction between temperature and light can disrupt reproduction and growth by impacting gonadotropins, thyroid hormones, melatonin, and growth hormone. Temperature and endocrine disrupting compounds (EDCs) interact to modify reproduction with differential effects across generations. The combined effects of light and EDCs can be anxiogenic, so that light-at-night could increase anxiety in wildlife. Light and noise increase glucocorticoid release by themselves, and together can modify interactions between individuals and their environment. The literature detailing interactions between drivers is relatively sparse and there is a need to extend research to a broader range of taxa and interactions. I suggest that incorporating endocrine responses into Adverse Outcome Pathways would be beneficial to improve predictions of environmental effects.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
38
|
Tollefsen KE, Alonzo F, Beresford NA, Brede DA, Dufourcq-Sekatcheff E, Gilbin R, Horemans N, Hurem S, Laloi P, Maremonti E, Oughton D, Simon O, Song Y, Wood MD, Xie L, Frelon S. Adverse outcome pathways (AOPs) for radiation-induced reproductive effects in environmental species: state of science and identification of a consensus AOP network. Int J Radiat Biol 2022; 98:1816-1831. [PMID: 35976054 DOI: 10.1080/09553002.2022.2110317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Reproductive effects of ionizing radiation in organisms have been observed under laboratory and field conditions. Such assessments often rely on associations between exposure and effects, and thus lacking a detailed mechanistic understanding of causality between effects occurring at different levels of biological organization. The Adverse Outcome Pathway (AOP), a conceptual knowledge framework to capture, organize, evaluate and visualize the scientific knowledge of relevant toxicological effects, has the potential to evaluate the causal relationships between molecular, cellular, individual, and population effects. This paper presents the first development of a set of consensus AOPs for reproductive effects of ionizing radiation in wildlife. This work was performed by a group of experts formed during a workshop organized jointly by the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radioecology Alliance (ALLIANCE) associations to present the AOP approach and tools. The work presents a series of taxon-specific case studies that were used to identify relevant empirical evidence, identify common AOP components and propose a set of consensus AOPs that could be organized into an AOP network with broader taxonomic applicability. CONCLUSION Expert consultation led to the identification of key biological events and description of causal linkages between ionizing radiation, reproductive impairment and reduction in population fitness. The study characterized the knowledge domain of taxon-specific AOPs, identified knowledge gaps pertinent to reproductive-relevant AOP development and reflected on how AOPs could assist applications in radiation (radioecological) research, environmental health assessment, and radiological protection. Future advancement and consolidation of the AOPs is planned to include structured weight of evidence considerations, formalized review and critical assessment of the empirical evidence prior to formal submission and review by the OECD sponsored AOP development program.
Collapse
Affiliation(s)
- Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Frédéric Alonzo
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Nicholas A Beresford
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, UK.,School of Science, Engineering & Environment, University of Salford, Salford, UK
| | - Dag Anders Brede
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Elizabeth Dufourcq-Sekatcheff
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Rodolphe Gilbin
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | | | - Selma Hurem
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Faculty of Veterinary medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Patrick Laloi
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Erica Maremonti
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Deborah Oughton
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Olivier Simon
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - You Song
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Michael D Wood
- School of Science, Engineering & Environment, University of Salford, Salford, UK
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sandrine Frelon
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| |
Collapse
|
39
|
Del'haye GG, Nulmans I, Bouteille SP, Sermon K, Wellekens B, Rombaut M, Vanhaecke T, Vander Heyden Y, De Kock J. Development of an adverse outcome pathway network for breast cancer: a comprehensive representation of the pathogenesis, complexity and diversity of the disease. Arch Toxicol 2022; 96:2881-2897. [PMID: 35927586 DOI: 10.1007/s00204-022-03351-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Abstract
Adverse outcome pathways (AOPs), introduced in modern toxicology, intend to provide an evidence-based representation of toxicological effects and facilitate safety assessment of chemicals not solely based on laboratory animal in vivo experiments. However, some toxicological processes are too complicated to represent in one AOP. Therefore, AOP networks are developed that help understanding and predicting toxicological processes where complex exposure scenarios interact and lead to the emergence of the adverse outcome. In this study, we present an AOP network for breast cancer, developed after an in-depth survey of relevant scientific literature. Several molecular initiating events (MIE) were identified and various key events that link the MIEs with breast cancer were described. The AOP was developed according to Organization of Economic Co-Operation and Development (OECD) guidance, weight of evidence was assessed through the Bradford Hill criteria and confidence was tested by the OECD key questions. The AOP network provides a straightforward understanding of the disease onset and progression at different biological levels. It can be used to pinpoint knowledge gaps, identify novel therapeutic targets and act as a stepping stone for the development of novel in vitro test methods for hazard identification and risk assessment of newly developed chemicals and drugs.
Collapse
Affiliation(s)
- Gigly G Del'haye
- Research Group of Analytical Chemistry, Applied Chemometrics and Molecular Modeling, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium. .,Research Group of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Ine Nulmans
- Liver Therapy & Evolution Team, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Sandrine P Bouteille
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Karolien Sermon
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Brecht Wellekens
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Matthias Rombaut
- Liver Therapy & Evolution Team, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Tamara Vanhaecke
- Liver Therapy & Evolution Team, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Yvan Vander Heyden
- Research Group of Analytical Chemistry, Applied Chemometrics and Molecular Modeling, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Joery De Kock
- Liver Therapy & Evolution Team, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| |
Collapse
|
40
|
Caloni F, De Angelis I, Hartung T. Replacement of animal testing by integrated approaches to testing and assessment (IATA): a call for in vivitrosi. Arch Toxicol 2022; 96:1935-1950. [PMID: 35503372 PMCID: PMC9151502 DOI: 10.1007/s00204-022-03299-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
Alternative methods to animal use in toxicology are evolving with new advanced tools and multilevel approaches, to answer from one side to 3Rs requirements, and on the other side offering relevant and valid tests for drugs and chemicals, considering also their combination in test strategies, for a proper risk assessment.While stand-alone methods, have demonstrated to be applicable for some specific toxicological predictions with some limitations, the new strategy for the application of New Approach Methods (NAM), to solve complex toxicological endpoints is addressed by Integrated Approaches for Testing and Assessment (IATA), aka Integrated Testing Strategies (ITS) or Defined Approaches for Testing and Assessment (DA). The central challenge of evidence integration is shared with the needs of risk assessment and systematic reviews of an evidence-based Toxicology. Increasingly, machine learning (aka Artificial Intelligence, AI) lends itself to integrate diverse evidence streams.In this article, we give an overview of the state of the art of alternative methods and IATA in toxicology for regulatory use for various hazards, outlining future orientation and perspectives. We call on leveraging the synergies of integrated approaches and evidence integration from in vivo, in vitro and in silico as true in vivitrosi.
Collapse
Affiliation(s)
- Francesca Caloni
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Via Celoria 10, 20133, Milan, Italy.
| | - Isabella De Angelis
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- CAAT Europe, University of Konstanz, 78464, Konstanz, Germany
| |
Collapse
|
41
|
Könemann S, von Wyl M, Vom Berg C. Zebrafish Larvae Rapidly Recover from Locomotor Effects and Neuromuscular Alterations Induced by Cholinergic Insecticides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8449-8462. [PMID: 35575681 DOI: 10.1021/acs.est.2c00161] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Owing to the importance of acetylcholine as a neurotransmitter, many insecticides target the cholinergic system. Across phyla, cholinergic signaling is essential for many neuro-developmental processes including axonal pathfinding and synaptogenesis. Consequently, early-life exposure to such insecticides can disturb these processes, resulting in an impaired nervous system. One test frequently used to assess developmental neurotoxicity is the zebrafish light-dark transition test, which measures larval locomotion as a response to light changes. However, it is only poorly understood which structural alterations cause insecticide-induced locomotion defects and how persistent these alterations are. Therefore, this study aimed to link locomotion defects with effects on neuromuscular structures, including motorneurons, synapses, and muscles, and to investigate the longevity of the effects. The cholinergic insecticides diazinon and dimethoate (organophosphates), methomyl and pirimicarb (carbamates), and imidacloprid and thiacloprid (neonicotinoids) were used to induce hypoactivity. Our analyses revealed that some insecticides did not alter any of the structures assessed, while others affected axon branching (methomyl, imidacloprid) or muscle integrity (methomyl, thiacloprid). The majority of effects, even structural, were reversible within 24 to 72 h. Overall, we find that both neurodevelopmental and non-neurodevelopmental effects of different longevity can account for the reduced locomotion. These findings provide unprecedented insights into the underpinnings of insecticide-induced hypoactivity.
Collapse
Affiliation(s)
- Sarah Könemann
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- École Polytechnique Fédéral de Lausanne, EPFL, Route Cantonale, 1015 Lausanne, Switzerland
| | - Melissa von Wyl
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- University of Zurich, UZH, Rämistrassse 71, 8006 Zurich, Switzerland
| | - Colette Vom Berg
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
42
|
Ravichandran J, Karthikeyan BS, Samal A. Investigation of a derived adverse outcome pathway (AOP) network for endocrine-mediated perturbations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154112. [PMID: 35219661 DOI: 10.1016/j.scitotenv.2022.154112] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
An adverse outcome pathway (AOP) is a compact representation of the available mechanistic information on observed adverse effects upon environmental exposure. Sharing of events across individual AOPs has led to the emergence of AOP networks. Since AOP networks are expected to be functional units of toxicity prediction, there is current interest in their development tailored to specific research question or regulatory problem. To this end, we have developed a detailed workflow to construct an endocrine-relevant AOP (ED-AOP) network based on the existing information available in AOP-Wiki. We propose a cumulative weight of evidence (WoE) score for each ED-AOP based on the WoE scores assigned to key event relationships (KERs) by AOP-Wiki, revealing gaps in AOP development. Connectivity analysis of the ED-AOP network comprising 48 AOPs reveals 7 connected components and 12 isolated AOPs. Subsequently, we apply standard network measures to perform an in-depth analysis of the two largest connected components of the ED-AOP network. Notably, the graph-theoretic analyses led to the identification of important events including points of convergence or divergence in the ED-AOP network. These findings can suggest potential adverse outcomes and facilitate the development of new endpoints or assays for chemical risk assessment. Detailed analysis of the largest component in the ED-AOP network gives insights on the systems-level perturbations caused by endocrine disruption, emergent paths, and stressor-event associations. In sum, the derived ED-AOP network can provide a broader view of the biological events disrupted by endocrine disruption, as well as facilitate better risk assessment of environmental chemicals.
Collapse
Affiliation(s)
- Janani Ravichandran
- The Institute of Mathematical Sciences (IMSc), Chennai 600113, India; Homi Bhabha National Institute (HBNI), Mumbai 400094, India
| | | | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Chennai 600113, India; Homi Bhabha National Institute (HBNI), Mumbai 400094, India.
| |
Collapse
|
43
|
Application of the adverse outcome pathway concept for investigating developmental neurotoxicity potential of Chinese herbal medicines by using human neural progenitor cells in vitro. Cell Biol Toxicol 2022; 39:319-343. [PMID: 35701726 PMCID: PMC10042984 DOI: 10.1007/s10565-022-09730-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/10/2022] [Indexed: 12/16/2022]
Abstract
Adverse outcome pathways (AOPs) are organized sequences of key events (KEs) that are triggered by a xenobiotic-induced molecular initiating event (MIE) and summit in an adverse outcome (AO) relevant to human or ecological health. The AOP framework causally connects toxicological mechanistic information with apical endpoints for application in regulatory sciences. AOPs are very useful to link endophenotypic, cellular endpoints in vitro to adverse health effects in vivo. In the field of in vitro developmental neurotoxicity (DNT), such cellular endpoints can be assessed using the human "Neurosphere Assay," which depicts different endophenotypes for a broad variety of neurodevelopmental KEs. Combining this model with large-scale transcriptomics, we evaluated DNT hazards of two selected Chinese herbal medicines (CHMs) Lei Gong Teng (LGT) and Tian Ma (TM), and provided further insight into their modes-of-action (MoA). LGT disrupted hNPC migration eliciting an exceptional migration endophenotype. Time-lapse microscopy and intervention studies indicated that LGT disturbs laminin-dependent cell adhesion. TM impaired oligodendrocyte differentiation in human but not rat NPCs and activated a gene expression network related to oxidative stress. The LGT results supported a previously published AOP on radial glia cell adhesion due to interference with integrin-laminin binding, while the results of TM exposure were incorporated into a novel putative, stressor-based AOP. This study demonstrates that the combination of phenotypic and transcriptomic analyses is a powerful tool to elucidate compounds' MoA and incorporate the results into novel or existing AOPs for a better perception of the DNT hazard in a regulatory context.
Collapse
|
44
|
Ceger P, Garcia-Reyero Vinas N, Allen D, Arnold E, Bloom R, Brennan JC, Clarke C, Eisenreich K, Fay K, Hamm J, Henry PFP, Horak K, Hunter W, Judkins D, Klein P, Kleinstreuer N, Koehrn K, LaLone CA, Laurenson JP, Leet JK, Lowit A, Lynn SG, Norberg-King T, Perkins EJ, Petersen EJ, Rattner BA, Sprankle CS, Steeger T, Warren JE, Winfield S, Odenkirchen E. Current ecotoxicity testing needs among selected U.S. federal agencies. Regul Toxicol Pharmacol 2022; 133:105195. [PMID: 35660046 PMCID: PMC9623878 DOI: 10.1016/j.yrtph.2022.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
U.S. regulatory and research agencies use ecotoxicity test data to assess the hazards associated with substances that may be released into the environment, including but not limited to industrial chemicals, pharmaceuticals, pesticides, food additives, and color additives. These data are used to conduct hazard assessments and evaluate potential risks to aquatic life (e.g., invertebrates, fish), birds, wildlife species, or the environment. To identify opportunities for regulatory uses of non-animal replacements for ecotoxicity tests, the needs and uses for data from tests utilizing animals must first be clarified. Accordingly, the objective of this review was to identify the ecotoxicity test data relied upon by U.S. federal agencies. The standards, test guidelines, guidance documents, and/or endpoints that are used to address each of the agencies' regulatory and research needs regarding ecotoxicity testing are described in the context of their application to decision-making. Testing and information use, needs, and/or requirements relevant to the regulatory or programmatic mandates of the agencies taking part in the Interagency Coordinating Committee on the Validation of Alternative Methods Ecotoxicology Workgroup are captured. This information will be useful for coordinating efforts to develop and implement alternative test methods to reduce, refine, or replace animal use in chemical safety evaluations.
Collapse
Affiliation(s)
- Patricia Ceger
- Integrated Laboratory Systems, LLC, P.O. Box 13501, Research Triangle Park, NC, 27709, USA.
| | | | - David Allen
- Integrated Laboratory Systems, LLC, P.O. Box 13501, Research Triangle Park, NC, 27709, USA.
| | - Elyssa Arnold
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Raanan Bloom
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| | - Jennifer C Brennan
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, 7401M, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Carol Clarke
- U.S. Department of Agriculture, 1400 Independence Ave. SW, Washington, DC, 20250, USA.
| | - Karen Eisenreich
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, 7401M, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Kellie Fay
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, 7401M, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Jonathan Hamm
- Integrated Laboratory Systems, LLC, P.O. Box 13501, Research Triangle Park, NC, 27709, USA.
| | - Paula F P Henry
- U.S. Geological Survey, Eastern Ecological Science Center, 12100 Beech Forest Rd, Laurel, MD, 20708, USA.
| | - Katherine Horak
- U.S. Department of Agriculture, Wildlife Services National Wildlife Research Center, 4101 LaPorte Ave. Fort Collins, CO, 80521, USA.
| | - Wesley Hunter
- U.S. Food and Drug Administration, Center for Veterinary Medicine, HFV-161, 7500 Standish Place, Rockville, MD, 20855, USA.
| | - Donna Judkins
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Patrice Klein
- U.S. Department of Agriculture, 1400 Independence Ave. SW, Washington, DC, 20250, USA.
| | - Nicole Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, P.O. Box 12233, Research Triangle Park, NC, 27709, USA.
| | - Kara Koehrn
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, 7401M, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Carlie A LaLone
- U.S. Environmental Protection Agency, Office of Research and Development, 8101R, 6201 Congdon Blvd., Duluth, MN, 55804, USA.
| | - James P Laurenson
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| | - Jessica K Leet
- U.S. Geological Survey, Columbia Environmental Research Center (CERC), Columbia, MO, 65201, USA.
| | - Anna Lowit
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Scott G Lynn
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Teresa Norberg-King
- U.S. Environmental Protection Agency, Office of Research and Development, 8101R, 6201 Congdon Blvd., Duluth, MN, 55804, USA.
| | - Edward J Perkins
- U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Rd., Vicksburg, MS, 39180, USA.
| | - Elijah J Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 2089, USA.
| | - Barnett A Rattner
- U.S. Geological Survey, Eastern Ecological Science Center, 10300 Baltimore Ave, BARC-EAST Bldg. 308, Beltsville, MD, 20705, USA.
| | - Catherine S Sprankle
- Integrated Laboratory Systems, LLC, P.O. Box 13501, Research Triangle Park, NC, 27709, USA.
| | - Thomas Steeger
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| | - Jim E Warren
- U.S. Department of Agriculture, 1400 Independence Ave. SW, Washington, DC, 20250, USA.
| | - Sarah Winfield
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, HFS-009, College Park, MD, 20740, USA.
| | - Edward Odenkirchen
- U.S. Environmental Protection Agency, Office of Pesticide Programs, MC7507P, 1200 Pennsylvania Avenue NW, Washington, DC, 20460, USA.
| |
Collapse
|
45
|
Svingen T. Endocrine Disruptors in a New Era of Predictive Toxicology and Dealing With the “More is Different” Challenge. FRONTIERS IN TOXICOLOGY 2022; 4:900479. [PMID: 35573277 PMCID: PMC9091552 DOI: 10.3389/ftox.2022.900479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
Environmental chemicals, including endocrine disrupting chemicals (EDCs), pose a threat to human health. Actions are taken by scientists, assessors, regulators, and policymakers around the world to improve testing strategies for chemical substances, including pushing towards greater reliance on data from new approach methodologies to replace animal toxicity studies. This paradigm shift is envisioned to ultimately replace animal testing altogether for many purposes. As regards identification and regulation of EDCs, this poses certain challenges in that current guidelines—at least within the European regulatory framework—stipulate that adverse outcomes are to be demonstrated in an intact organism. The new testing paradigm is, of course, to find ways of dealing with this dilemma. However, another challenge still remains, even if the “intact organisms” definition changes or is replaced, namely the challenge of predicting apical adverse effects resulting from endocrine disruption. The adverse outcome pathway (AOP) framework provides a good platform for identifying and regulating EDCs based on both non-animal and animal (or human) data, but also here we are confronted with the same challenge: how to predict adverse effects in complex organism from simple test assays that are based on reductionist principles? In this article, the challenge of “emergent properties” in predictive toxicology is highlighted as a cautionary footnote because, although a future relying far less on animal toxicity testing is both desirable and sensible, the pace at which we transition to the new paradigm should ensure that human health, and the environment, is safeguarded from harmful chemical substances.
Collapse
|
46
|
Mihajlovic M, Vinken M. Mitochondria as the Target of Hepatotoxicity and Drug-Induced Liver Injury: Molecular Mechanisms and Detection Methods. Int J Mol Sci 2022; 23:ijms23063315. [PMID: 35328737 PMCID: PMC8951158 DOI: 10.3390/ijms23063315] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
One of the major mechanisms of drug-induced liver injury includes mitochondrial perturbation and dysfunction. This is not a surprise, given that mitochondria are essential organelles in most cells, which are responsible for energy homeostasis and the regulation of cellular metabolism. Drug-induced mitochondrial dysfunction can be influenced by various factors and conditions, such as genetic predisposition, the presence of metabolic disorders and obesity, viral infections, as well as drugs. Despite the fact that many methods have been developed for studying mitochondrial function, there is still a need for advanced and integrative models and approaches more closely resembling liver physiology, which would take into account predisposing factors. This could reduce the costs of drug development by the early prediction of potential mitochondrial toxicity during pre-clinical tests and, especially, prevent serious complications observed in clinical settings.
Collapse
|
47
|
van Dijk JR, Kranchev M, Blust R, Cuypers A, Vissenberg K. Arabidopsis root growth and development under metal exposure presented in an adverse outcome pathway framework. PLANT, CELL & ENVIRONMENT 2022; 45:737-750. [PMID: 34240430 PMCID: PMC9290988 DOI: 10.1111/pce.14147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/06/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Due to human activities, soils become more and more polluted with metals, which imposes risks for human health and wildlife welfare. As most of the metals end up in the food chain through accumulation in plants, we need to establish science-based environmental criteria and risk management policies. To meet these necessities, a thorough understanding is required of how these metals accumulate in and affect plants. Many studies have been conducted towards this aim, but strikingly, only a few entries can be found in ecotoxicological databases, especially on Arabidopsis thaliana, which serves as a model species for plant (cell) physiology and genetic studies. As experimental conditions seem to vary considerably throughout literature, extrapolation or comparison of data is rather difficult or should be approached with caution. Furthermore, metal-polluted soils often contain more than one metal, yet limited studies investigated the impact of metal mixtures on plants. This review aims to compile all data concerning root system architecture under Cu, Cd and Zn stress, in single or multi-metal exposure in A. thaliana, and link it to metal-induced responses at different biological levels. Global incorporation into an adverse outcome pathway framework is presented.
Collapse
Affiliation(s)
- Jesper R. van Dijk
- Integrated Molecular Plant Physiology Research, Department of BiologyUniversity of AntwerpAntwerpBelgium
- Adrem Data Lab, Department of Mathematics and Computer Science and Biomedical Informatics Research Network Antwerp (Biomina)University of AntwerpAntwerpBelgium
| | - Mario Kranchev
- Integrated Molecular Plant Physiology Research, Department of BiologyUniversity of AntwerpAntwerpBelgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research, Department of BiologyUniversity of AntwerpAntwerpBelgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental SciencesHasselt UniversityHasseltBelgium
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, Department of BiologyUniversity of AntwerpAntwerpBelgium
- Plant Biochemistry & Biotechnology Lab, Department of AgricultureHellenic Mediterranean UniversityHeraklionGreece
| |
Collapse
|
48
|
O'Brien JM, Yauk CL. Introducing AOP Reports: Collaborative review and publication of adverse outcome pathways. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:116-117. [PMID: 35435297 DOI: 10.1002/em.22481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 05/22/2023]
Affiliation(s)
- Jason M O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
49
|
Martens M, Evelo CT, Willighagen EL. Providing Adverse Outcome Pathways from the AOP-Wiki in a Semantic Web Format to Increase Usability and Accessibility of the Content. APPLIED IN VITRO TOXICOLOGY 2022; 8:2-13. [PMID: 35388368 DOI: 10.26434/chemrxiv.13524191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
INTRODUCTION The AOP-Wiki is the main platform for the development and storage of adverse outcome pathways (AOPs). These AOPs describe mechanistic information about toxicodynamic processes and can be used to develop effective risk assessment strategies. However, it is challenging to automatically and systematically parse, filter, and use its contents. We explored solutions to better structure the AOP-Wiki content, and to link it with chemical and biological resources. Together, this allows more detailed exploration, which can be automated. MATERIALS AND METHODS We converted the complete AOP-Wiki content into resource description framework (RDF) triples. We used >20 ontologies for the semantic annotation of property-object relations, including the Chemical Information Ontology, Dublin Core, and the AOP Ontology. RESULTS The resulting RDF contains >122,000 triples describing 158 unique properties of >15,000 unique subjects. Furthermore, >3500 link-outs were added to 12 chemical databases, and >7500 link-outs to 4 gene and protein databases. The AOP-Wiki RDF has been made available at https://aopwiki.rdf.bigcat-bioinformatics.org. DISCUSSION SPARQL queries can be used to answer biological and toxicological questions, such as listing measurement methods for all Key Events leading to an Adverse Outcome of interest. The full power that the use of this new resource provides becomes apparent when combining the content with external databases using federated queries. CONCLUSION Overall, the AOP-Wiki RDF allows new ways to explore the rapidly growing AOP knowledge and makes the integration of this database in automated workflows possible, making the AOP-Wiki more FAIR.
Collapse
Affiliation(s)
- Marvin Martens
- Department of Bioinformatics-BiGCaT, NUTRIM, and Maastricht University, Maastricht, The Netherlands
| | - Chris T Evelo
- Department of Bioinformatics-BiGCaT, NUTRIM, and Maastricht University, Maastricht, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Egon L Willighagen
- Department of Bioinformatics-BiGCaT, NUTRIM, and Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
50
|
Martens M, Evelo CT, Willighagen EL. Providing Adverse Outcome Pathways from the AOP-Wiki in a Semantic Web Format to Increase Usability and Accessibility of the Content. APPLIED IN VITRO TOXICOLOGY 2022; 8:2-13. [PMID: 35388368 PMCID: PMC8978481 DOI: 10.1089/aivt.2021.0010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Introduction: The AOP-Wiki is the main platform for the development and storage of adverse outcome pathways (AOPs). These AOPs describe mechanistic information about toxicodynamic processes and can be used to develop effective risk assessment strategies. However, it is challenging to automatically and systematically parse, filter, and use its contents. We explored solutions to better structure the AOP-Wiki content, and to link it with chemical and biological resources. Together, this allows more detailed exploration, which can be automated. Materials and Methods: We converted the complete AOP-Wiki content into resource description framework (RDF) triples. We used >20 ontologies for the semantic annotation of property–object relations, including the Chemical Information Ontology, Dublin Core, and the AOP Ontology. Results: The resulting RDF contains >122,000 triples describing 158 unique properties of >15,000 unique subjects. Furthermore, >3500 link-outs were added to 12 chemical databases, and >7500 link-outs to 4 gene and protein databases. The AOP-Wiki RDF has been made available at https://aopwiki.rdf.bigcat-bioinformatics.org Discussion: SPARQL queries can be used to answer biological and toxicological questions, such as listing measurement methods for all Key Events leading to an Adverse Outcome of interest. The full power that the use of this new resource provides becomes apparent when combining the content with external databases using federated queries. Conclusion: Overall, the AOP-Wiki RDF allows new ways to explore the rapidly growing AOP knowledge and makes the integration of this database in automated workflows possible, making the AOP-Wiki more FAIR.
Collapse
Affiliation(s)
- Marvin Martens
- Department of Bioinformatics—BiGCaT, NUTRIM, and Maastricht University, Maastricht, The Netherlands
| | - Chris T. Evelo
- Department of Bioinformatics—BiGCaT, NUTRIM, and Maastricht University, Maastricht, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Egon L. Willighagen
- Department of Bioinformatics—BiGCaT, NUTRIM, and Maastricht University, Maastricht, The Netherlands
| |
Collapse
|