1
|
Cristaldi A, Pulvirenti E, Rapisarda P, Favara C, Castrogiovanni M, Oliveri Conti G, Ferrante M. Determination of acrylamide levels in chips/crisps on the Italian market and exposure risk assessment. Food Chem Toxicol 2025; 202:115539. [PMID: 40345519 DOI: 10.1016/j.fct.2025.115539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/27/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
Acrylamide is an important concern in the food industry because it can form during cooking at high temperatures of foods, mainly of vegetable origin, and rich in carbohydrates. In this study, we detected the acrylamide levels in chips/crisps from five brands available on the Italian market and performed the risk assessment related to the exposure to acrylamide through the consumption of chips/crisps. A total of 50 samples were prepared and the acrylamide levels were determined by HPLC. The mean acrylamide value was 1116.6 ± 585 μg/kg, and two out of five brands showed higher values. EDI values were between 0.172 and 0.901 μg/kg bw/day. The LCR values ranged from 8.61 × 10-5 to 4.51 × 10-4. The THQ values were all below 1. The MOEc values ranged from 189 to 987 (mean 478), significantly lower than the 10000 threshold, indicating a potential carcinogenic risk. MOEn values ranged from 477 to 2496 (mean 1208), with values above 100 suggesting no neurotoxic risk. Further research is needed to suggest appropriate interventions to reduce acrylamide levels in foods.
Collapse
Affiliation(s)
- Antonio Cristaldi
- Department of Medicine and Surgery, University of Enna "Kore", Scientific and Technological Center of Santa Panasia, 94100, Enna, Italy; Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy.
| | - Eloise Pulvirenti
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Paola Rapisarda
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Claudia Favara
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Maria Castrogiovanni
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Gea Oliveri Conti
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy.
| | - Margherita Ferrante
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| |
Collapse
|
2
|
El-Sheikh M, Mesalam AA, Mesalam A, Kong IK. Acrylamide and Its Metabolite Glycidamide Induce Reproductive Toxicity During In Vitro Maturation of Bovine Oocytes. TOXICS 2025; 13:223. [PMID: 40137550 PMCID: PMC11946555 DOI: 10.3390/toxics13030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
Acrylamide (ACR) and its metabolite glycidamide (GLY) are contaminants with known toxic effects, especially in reproductive systems. However, the mechanisms underlying their embryotoxic effects remain inadequately understood. In the current study, we investigated the effects of ACR and GLY exposure on oocyte and embryo developmental competence, focusing on DNA damage, apoptosis, autophagy, and epigenetic regulation. Oocytes were exposed to varying concentrations of ACR and GLY during in vitro maturation. The results demonstrated that both ACR and GLY significantly reduced cleavage and blastocyst developmental rates in a dose-dependent manner. Consequently, treated oocytes exhibited actin organization disruption, increased DNA damage, and heightened apoptosis compared to the control. Autophagy-related markers, including LC3A, LC3B, and ATG7, were significantly elevated in the treatment groups. Moreover, both ACR and GLY compounds altered the expression of the epigenetic and MAPK signaling pathway regulators, such as DPPA3, EZH1, EZH2, EED, DUSP1, and ASK1. These disruptions collectively impaired embryonic development. This study underscores the adverse effects of ACR and GLY on reproductive health, driven by oxidative stress, genotoxicity, dysregulated autophagy, and epigenetic alterations.
Collapse
Affiliation(s)
- Marwa El-Sheikh
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre (NRC), Dokki, Cairo 12622, Egypt
| | - Ahmed Atef Mesalam
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Dokki, Cairo 12622, Egypt;
| | - Ayman Mesalam
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- The King Kong Corp., Ltd., Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
3
|
Walton B, Kaplan N, Hrdlicka B, Mehta K, Arendt LM. Obesity Induces DNA Damage in Mammary Epithelial Cells Exacerbated by Acrylamide Treatment through CYP2E1-Mediated Oxidative Stress. TOXICS 2024; 12:484. [PMID: 39058136 PMCID: PMC11281187 DOI: 10.3390/toxics12070484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Obesity and environmental toxins are risk factors for breast cancer; however, there is limited knowledge on how these risk factors interact to promote breast cancer. Acrylamide, a probable carcinogen and obesogen, is a by-product in foods prevalent in the obesity-inducing Western diet. Acrylamide is metabolized by cytochrome P450 2E1 (CYP2E1) to the genotoxic epoxide, glycidamide, and is associated with an increased risk for breast cancer. To investigate how acrylamide and obesity interact to increase breast cancer risk, female mice were fed a low-fat (LFD) or high-fat diet (HFD) and control water or water supplemented with acrylamide at levels similar to the average daily exposure in humans. While HFD significantly enhanced weight gain in mice, the addition of acrylamide did not significantly alter body weights compared to respective controls. Mammary epithelial cells from obese, acrylamide-treated mice had increased DNA strand breaks and oxidative DNA damage compared to all other groups. In vitro, glycidamide-treated COMMA-D cells showed significantly increased DNA strand breaks, while acrylamide-treated cells demonstrated significantly higher levels of intracellular reactive oxygen species. The knockdown of CYP2E1 rescued the acrylamide-induced oxidative stress. These studies suggest that long-term acrylamide exposure through foods common in the Western diet may enhance DNA damage and the CYP2E1-induced generation of oxidative stress in mammary epithelial cells, potentially enhancing obesity-induced breast cancer risk.
Collapse
Affiliation(s)
- Brenna Walton
- Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Noah Kaplan
- Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Brooke Hrdlicka
- Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Kavi Mehta
- Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Lisa M. Arendt
- Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI 53715, USA
- Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
4
|
Korenjak M, Temiz NA, Keita S, Chavanel B, Renard C, Sirand C, Cahais V, Mayel T, Vevang KR, Jacobs FC, Guo J, Smith WE, Oram MK, Tăbăran FA, Ahlat O, Cornax I, O'Sullivan MG, Das S, Nandi SP, Cheng Y, Alexandrov LB, Balbo S, Hecht SS, Senkin S, Virard F, Peterson LA, Zavadil J. Human cancer genomes harbor the mutational signature of tobacco-specific nitrosamines NNN and NNK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.600253. [PMID: 38979250 PMCID: PMC11230374 DOI: 10.1101/2024.06.28.600253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tobacco usage is linked to multiple cancer types and accounts for a quarter of all cancer-related deaths. Tobacco smoke contains various carcinogenic compounds, including polycyclic aromatic hydrocarbons (PAH), though the mutagenic potential of many tobacco-related chemicals remains largely unexplored. In particular, the highly carcinogenic tobacco-specific nitrosamines NNN and NNK form pre-mutagenic pyridyloxobutyl (POB) DNA adducts. In the study presented here, we identified genome-scale POB-induced mutational signatures in cell lines and rat tumors, while also investigating their role in human cancer. These signatures are characterized by T>N and C>T mutations forming from specific POB adducts damaging dT and dC residues. Analysis of 2,780 cancer genomes uncovered POB signatures in ∼180 tumors; from cancer types distinct from the ones linked to smoking-related signatures SBS4 and SBS92. This suggests that, unlike PAH compounds, the POB pathway may contribute uniquely to the mutational landscapes of certain hematological malignancies and cancers of the kidney, breast, prostate and pancreas.
Collapse
|
5
|
Iwai S, Hayashi Y, Baba T, Kitagawa Y. Acceleration of hydrolytic ring opening of N7-alkylguanine by the terminal carbamoyl group of glycidamide. Chem Commun (Camb) 2024; 60:5014-5017. [PMID: 38577847 DOI: 10.1039/d3cc04997c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Hydrolytic ring opening of guanine N7-adducts with compounds containing an oxacyclopropane ring, namely glycidamide, glycidol and 1,2-epoxybutane, was analyzed, and the reaction of the glycidamide adduct was the fastest. The differences in the reaction rates were confirmed by theoretical calculations.
Collapse
Affiliation(s)
- Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Yuta Hayashi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Tomohiro Baba
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Yasutaka Kitagawa
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
6
|
Govindaraju I, Sana M, Chakraborty I, Rahman MH, Biswas R, Mazumder N. Dietary Acrylamide: A Detailed Review on Formation, Detection, Mitigation, and Its Health Impacts. Foods 2024; 13:556. [PMID: 38397533 PMCID: PMC10887767 DOI: 10.3390/foods13040556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
In today's fast-paced world, people increasingly rely on a variety of processed foods due to their busy lifestyles. The enhanced flavors, vibrant colors, and ease of accessibility at reasonable prices have made ready-to-eat foods the easiest and simplest choice to satiate hunger, especially those that undergo thermal processing. However, these foods often contain an unsaturated amide called 'Acrylamide', known by its chemical name 2-propenamide, which is a contaminant formed when a carbohydrate- or protein-rich food product is thermally processed at more than 120 °C through methods like frying, baking, or roasting. Consuming foods with elevated levels of acrylamide can induce harmful toxicity such as neurotoxicity, hepatoxicity, cardiovascular toxicity, reproductive toxicity, and prenatal and postnatal toxicity. This review delves into the major pathways and factors influencing acrylamide formation in food, discusses its adverse effects on human health, and explores recent techniques for the detection and mitigation of acrylamide in food. This review could be of interest to a wide audience in the food industry that manufactures processed foods. A multi-faceted strategy is necessary to identify and resolve the factors responsible for the browning of food, ensure safety standards, and preserve essential food quality traits.
Collapse
Affiliation(s)
- Indira Govindaraju
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| | - Maidin Sana
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| | - Md. Hafizur Rahman
- Department of Quality Control and Safety Management, Faculty of Food Sciences and Safety, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Rajib Biswas
- Department of Physics, Tezpur University, Tezpur 784028, Assam, India;
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.G.); (M.S.); (I.C.)
| |
Collapse
|
7
|
Buyukdere Y, Akyol A. From a toxin to an obesogen: a review of potential obesogenic roles of acrylamide with a mechanistic approach. Nutr Rev 2023; 82:128-142. [PMID: 37155834 PMCID: PMC10711450 DOI: 10.1093/nutrit/nuad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Obesity and obesity-related disorders such as cancer, type 2 diabetes, and fatty liver have become a global health problem. It is well known that the primary cause of obesity is positive energy balance. In addition, obesity is the consequence of complex gene and environment interactions that result in excess calorie intake being stored as fat. However, it has been revealed that there are other factors contributing to the worsening of obesity. The presence of nontraditional risk factors, such as environmental endocrine-disrupting chemicals, has recently been associated with obesity and comorbidities caused by obesity. The aim of this review was to examine the evidence and potential mechanisms for acrylamide having endocrine-disrupting properties contributing to obesity and obesity-related comorbidities. Recent studies have suggested that exposure to environmental endocrine-disrupting obesogens may be a risk factor contributing to the current obesity epidemic, and that one of these obesogens is acrylamide, an environmental and industrial compound produced by food processing, particularly the processing of foods such as potato chips, and coffee. In addition to the known harmful effects of acrylamide in humans and experimental animals, such as neurotoxicity, genotoxicity, and carcinogenicity, acrylamide also has an obesogenic effect. It has been shown in the literature to a limited extent that acrylamide may disrupt energy metabolism, lipid metabolism, adipogenesis, adipocyte differentiation, and various signaling pathways, and may exacerbate the disturbances in metabolic and biochemical parameters observed as a result of obesity. Acrylamide exerts its main potential obesogenic effects through body weight increase, worsening of the levels of obesity-related blood biomarkers, and induction of adipocyte differentiation and adipogenesis. Additional mechanisms may be discovered. Further experimental studies and prospective cohorts are needed, both to supplement existing knowledge about acrylamide and its effects, and to clarify its established relationship with obesity and its comorbidities.
Collapse
Affiliation(s)
- Yucel Buyukdere
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| | - Asli Akyol
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
Hudson KM, Klimczak LJ, Sterling JF, Burkholder AB, Kazanov M, Saini N, Mieczkowski PA, Gordenin DA. Glycidamide-induced hypermutation in yeast single-stranded DNA reveals a ubiquitous clock-like mutational motif in humans. Nucleic Acids Res 2023; 51:9075-9100. [PMID: 37471042 PMCID: PMC10516655 DOI: 10.1093/nar/gkad611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Mutagens often prefer specific nucleotides or oligonucleotide motifs that can be revealed by studying the hypermutation spectra in single-stranded (ss) DNA. We utilized a yeast model to explore mutagenesis by glycidamide, a simple epoxide formed endogenously in humans from the environmental toxicant acrylamide. Glycidamide caused ssDNA hypermutation in yeast predominantly in cytosines and adenines. The most frequent mutations in adenines occurred in the nAt→nGt trinucleotide motif. Base substitutions A→G in this motif relied on Rev1 translesion polymerase activity. Inactivating Rev1 did not alter the nAt trinucleotide preference, suggesting it may be an intrinsic specificity of the chemical reaction between glycidamide and adenine in the ssDNA. We found this mutational motif enriched in published sequencing data from glycidamide-treated mouse cells and ubiquitous in human cancers. In cancers, this motif was positively correlated with the single base substitution (SBS) smoking-associated SBS4 signature, with the clock-like signatures SBS1, SBS5, and was strongly correlated with smoking history and with age of tumor donors. Clock-like feature of the motif was also revealed in cells of human skin and brain. Given its pervasiveness, we propose that this mutational motif reflects mutagenic lesions to adenines in ssDNA from a potentially broad range of endogenous and exogenous agents.
Collapse
Affiliation(s)
- Kathleen M Hudson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| | - Joan F Sterling
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| | - Adam B Burkholder
- Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| | - Marat D Kazanov
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Natalie Saini
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Piotr A Mieczkowski
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| |
Collapse
|
9
|
Huchthausen J, Escher BI, Grasse N, König M, Beil S, Henneberger L. Reactivity of Acrylamides Causes Cytotoxicity and Activates Oxidative Stress Response. Chem Res Toxicol 2023; 36:1374-1385. [PMID: 37531411 PMCID: PMC10445285 DOI: 10.1021/acs.chemrestox.3c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 08/04/2023]
Abstract
Acrylamides are widely used industrial chemicals that cause adverse effects in humans or animals, such as carcinogenicity or neurotoxicity. The excess toxicity of these reactive electrophilic chemicals is especially interesting, as it is mostly triggered by covalent reactions with biological nucleophiles, such as DNA bases, proteins, or peptides. The cytotoxicity and activation of oxidative stress response of 10 (meth)acrylamides measured in three reporter gene cell lines occurred at similar concentrations. Most acrylamides exhibited high excess toxicity, while methacrylamides acted as baseline toxicants. The (meth)acrylamides showed no reactivity toward the hard biological nucleophile 2-deoxyguanosine (2DG) within 24 h, and only acrylamides reacted with the soft nucleophile glutathione (GSH). Second-order degradation rate constants (kGSH) were measured for all acrylamides with N,N'-methylenebis(acrylamide) (NMBA) showing the highest kGSH (134.800 M-1 h-1) and N,N-diethylacrylamide (NDA) the lowest kGSH (2.574 M-1 h-1). Liquid chromatography coupled to high-resolution mass spectrometry was used to confirm the GSH conjugates of the acrylamides with a double conjugate formed for NMBA. The differences in reactivity between acrylamides and methacrylamides could be explained by the charge density of the carbon atoms because the electron-donating inductive effect of the methyl group of the methacrylamides lowered their electrophilicity and thus their reactivity. The differences in reactivity within the group of acrylamides could be explained by the energy of the lowest unoccupied molecular orbital and steric hindrance. Cytotoxicity and activation of oxidative stress response were linearly correlated with the second-order reaction rate constants of the acrylamides with GSH. The reaction of the acrylamides with GSH is hence not only a detoxification mechanism but also leads to disturbances of the redox balance, making the cells more vulnerable to reactive oxygen species. The reactivity of acrylamides explained the oxidative stress response and cytotoxicity in the cells, and the lack of reactivity of the methacrylamides led to baseline toxicity.
Collapse
Affiliation(s)
- Julia Huchthausen
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Department
of Geosciences, Eberhard Karls University
Tübingen, Environmental Toxicology, 72076 Tübingen, Germany
| | - Nico Grasse
- Department
of Analytical Chemistry, Helmholtz Centre
for Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Maria König
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Stephan Beil
- Institute
of Water Chemistry, Technische Universität
Dresden, 01069 Dresden, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
10
|
Akagi JI, Yokoi M, Miyake Y, Shirai T, Baba T, Cho YM, Hanaoka F, Sugasawa K, Iwai S, Ogawa K. A formamidopyrimidine derivative from the deoxyguanosine adduct produced by food contaminant acrylamide induces DNA replication block and mutagenesis. J Biol Chem 2023; 299:105002. [PMID: 37394003 PMCID: PMC10406624 DOI: 10.1016/j.jbc.2023.105002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023] Open
Abstract
Acrylamide, a common food contaminant, is metabolically activated to glycidamide, which reacts with DNA at the N7 position of dG, forming N7-(2-carbamoyl-2-hydroxyethyl)-dG (GA7dG). Owing to its chemical lability, the mutagenic potency of GA7dG has not yet been clarified. We found that GA7dG undergoes ring-opening hydrolysis to form N6-(2-deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-[N-(2-carbamoyl-2-hydroxyethyl)formamido]pyrimidine (GA-FAPy-dG), even at neutral pH. Therefore, we aimed to examine the effects of GA-FAPy-dG on the efficiency and fidelity of DNA replication using an oligonucleotide carrying GA-FAPy-9-(2-deoxy-2-fluoro-β-d-arabinofuranosyl)guanine (dfG), a 2'-fluorine substituted analog of GA-FAPy-dG. GA-FAPy-dfG inhibited primer extension by both human replicative DNA polymerase ε and the translesion DNA synthesis polymerases (Polη, Polι, Polκ, and Polζ) and reduced the replication efficiency by less than half in human cells, with single base substitution at the site of GA-FAPy-dfG. Unlike other formamidopyrimidine derivatives, the most abundant mutation was G:C > A:T transition, which was decreased in Polκ- or REV1-KO cells. Molecular modeling suggested that a 2-carbamoyl-2-hydroxyethyl group at the N5 position of GA-FAPy-dfG can form an additional H-bond with thymidine, thereby contributing to the mutation. Collectively, our results provide further insight into the mechanisms underlying the mutagenic effects of acrylamide.
Collapse
Affiliation(s)
- Jun-Ichi Akagi
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
| | - Masayuki Yokoi
- Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan
| | - Yumi Miyake
- Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Tsuyoshi Shirai
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Tomohiro Baba
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Young-Man Cho
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Fumio Hanaoka
- Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kaoru Sugasawa
- Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
11
|
Li Z, Zhao C, Cao C. Production and Inhibition of Acrylamide during Coffee Processing: A Literature Review. Molecules 2023; 28:molecules28083476. [PMID: 37110710 PMCID: PMC10143638 DOI: 10.3390/molecules28083476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Coffee is the third-largest beverage with wide-scale production. It is consumed by a large number of people worldwide. However, acrylamide (AA) is produced during coffee processing, which seriously affects its quality and safety. Coffee beans are rich in asparagine and carbohydrates, which are precursors of the Maillard reaction and AA. AA produced during coffee processing increases the risk of damage to the nervous system, immune system, and genetic makeup of humans. Here, we briefly introduce the formation and harmful effects of AA during coffee processing, with a focus on the research progress of technologies to control or reduce AA generation at different processing stages. Our study aims to provide different strategies for inhibiting AA formation during coffee processing and investigate related inhibition mechanisms.
Collapse
Affiliation(s)
- Zelin Li
- Department of Food Science and Engineering, College of Life Sciences, Southwest Forestry University, Kunming 650224, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changwei Cao
- Department of Food Science and Engineering, College of Life Sciences, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
12
|
Guth S, Baum M, Cartus AT, Diel P, Engel KH, Engeli B, Epe B, Grune T, Haller D, Heinz V, Hellwig M, Hengstler JG, Henle T, Humpf HU, Jäger H, Joost HG, Kulling SE, Lachenmeier DW, Lampen A, Leist M, Mally A, Marko D, Nöthlings U, Röhrdanz E, Roth A, Spranger J, Stadler R, Steinberg P, Vieths S, Wätjen W, Eisenbrand G. Evaluation of the genotoxic potential of acrylamide: Arguments for the derivation of a tolerable daily intake (TDI value). Food Chem Toxicol 2023; 173:113632. [PMID: 36708862 DOI: 10.1016/j.fct.2023.113632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
This opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) presents arguments for an updated risk assessment of diet-related exposure to acrylamide (AA), based on a critical review of scientific evidence relevant to low dose exposure. The SKLM arrives at the conclusion that as long as an appropriate exposure limit for AA is not exceeded, genotoxic effects resulting in carcinogenicity are unlikely to occur. Based on the totality of the evidence, the SKLM considers it scientifically justified to derive a tolerable daily intake (TDI) as a health-based guidance value.
Collapse
Affiliation(s)
- Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Matthias Baum
- Solenis Germany Industries GmbH, Fütingsweg 20, 47805 Krefeld, Germany.
| | | | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| | - Karl-Heinz Engel
- Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
| | - Barbara Engeli
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, Schwarzenburgstrasse 155, 3003, Bern, Switzerland.
| | - Bernd Epe
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Dirk Haller
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354, Freising, Germany; Technical University of Munich, Gregor-Mendel-Str. 2, 85354, Freising, Germany.
| | - Volker Heinz
- German Institute of Food Technologies (DIL), Prof.-von-Klitzing-Str. 7, 49610, Quakenbrück, Germany.
| | - Michael Hellwig
- Technische Universität Dresden, Bergstraße 66, 01062, Dresden, Germany.
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Thomas Henle
- Department of Food Chemistry, TU Dresden, Bergstrasse 66, 01062, Dresden, Germany.
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149, Münster, Germany.
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria.
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany.
| | - Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Weißenburger Str. 3, 76187, Karlsruhe, Germany.
| | - Alfonso Lampen
- University of Veterinary Medicine Hannover, Institute for Food Quality and Food Safety, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doerenkamp-Zbinden Foundation, University of Konstanz, Box 657, 78457, Konstanz, Germany.
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany.
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria.
| | - Ute Nöthlings
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, Rheinische Friedrich-Wilhelms University Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany.
| | - Elke Röhrdanz
- Unit Reproductive and Genetic Toxicology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger Allee 3, 53175, Bonn, Germany.
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Joachim Spranger
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12200, Berlin, Germany.
| | - Richard Stadler
- Institute of Food Safety and Analytical Sciences, Nestlé Research Centre, Route du Jorat 57, 1000, Lausanne, 26, Switzerland.
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany.
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.
| | - Wim Wätjen
- Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany.
| | | |
Collapse
|
13
|
Wang R, Deng X, Ma Q, Ma F. Association between acrylamide exposure and sex hormones among premenopausal and postmenopausal women: NHANES, 2013-2016. J Endocrinol Invest 2023:10.1007/s40618-022-01976-3. [PMID: 36602706 DOI: 10.1007/s40618-022-01976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE Acrylamide (AA) is a potential carcinogen that mainly comes from fried, baked and roasted foods, and Hb adducts of AA (HbAA) and its metabolite glycidamide (HbGA) are the biomarkers of its exposure. Increasing evidence suggests that AA is associated with various hormone-related cancers. This study aims to explore the association of HbAA and HbGA with female serum sex hormone concentrations. METHODS 942 women from the National Health and Nutrition Examination Survey cycles (2013-2016) were included in this cross-sectional study. The associations between HbAA or HbGA or HbGA/HbAA and sex hormones were assessed by the multiple linear regression. Further stratified analyses were conducted to figure out the effects of menopausal status, BMI and smoking status on sex hormone levels. RESULTS Among all participants, 597 were premenopausal and 345 were postmenopausal. HbAA was positively associated with both two androgen indicators. Specifically, a ln-unit increase in HbAA was associated with 0.41 ng/dL higher ln(total testosterone, TT) (95% CI 0.00, 0.27) and 0.14 ng/dL higher ln(free testosterone) (95%CI 0.00, 0.28), respectively. However, HbGA concentrations had no association with sex hormones in the overall population. Additionally, HbGA/HbAA was negatively associated with TT and SHBG in the overall population as well as postmenopausal women. In stratified analysis, higher HbAA was associated with rising TT in postmenopausal women (β = 0.29, 95%CI 0.04, 0.53) and underweight/normal-weight women (β = 0.18, 95%CI 0.03, 0.33). Other indicators had no significant association detected in estradiol and sex hormone-binding globulin. CONCLUSION Our results revealed that HbAA was positively associated with androgen concentrations, especially in postmenopausal and BMI < 25 women.
Collapse
Affiliation(s)
- R Wang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - X Deng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan Province, China
| | - Q Ma
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - F Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
14
|
Gu X, Wang L, Coates PJ, Gnanasundram SV, Sgaramella N, Sörlin J, Erdogan B, Magan M, Nylander K. Evidence for etiologic field changes in tongue distant from tumor in patients with squamous cell carcinoma of the oral tongue. J Pathol 2023; 259:93-102. [PMID: 36314576 PMCID: PMC10108103 DOI: 10.1002/path.6025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Oral cancer is a paradigm of Slaughter's concept of field cancerization, where tumors are thought to originate within an area of cells containing genetic alterations that predispose to cancer development. The field size is unclear but may represent a large area of tissue, and the origin of mutations is also unclear. Here, we analyzed whole exome and transcriptome features in contralateral tumor-distal tongue (i.e. distant from the tumor, not tumor-adjacent) and corresponding tumor tissues of 15 patients with squamous cell carcinoma of the oral tongue. The number of point mutations ranged from 41 to 237 in tumors and from one to 78 in tumor-distal samples. Tumor-distal samples showed mainly clock-like (associated with aging) or tobacco smoking mutational signatures. Tumors additionally showed mutations that associate with cytidine deaminase AID/APOBEC enzyme activities or a UV-like signature. Importantly, no point mutations were shared between a tumor and the matched tumor-distal sample in any patient. TP53 was the most frequently mutated gene in tumors (67%), whereas a TP53 mutation was detected in only one tumor-distal sample, and this mutation was not shared with the matched tumor. Arm-level copy number variation (CNV) was found in 12 tumors, with loss of chromosome (Chr) 8p or gain of 8q being the most frequent events. Two tumor-distal samples showed a gain of Chr8, which was associated with increased expression of Chr8-located genes in these samples, although gene ontology did not show a role for these genes in oncogenic processes. In situ hybridization revealed a mixed pattern of Chr8 gain and neutral copy number in both tumor cells and adjacent nontumor epithelium in one patient. We conclude that distant field cancerization exists but does not present as tumor-related mutational events. The data are compatible with etiologic field effects, rather than classical monoclonal field cancerization theory. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Xiaolian Gu
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Lixiao Wang
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Philip J Coates
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | | | - Nicola Sgaramella
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Jonas Sörlin
- Clinical Genetics, Laboratory Medicine, Norrlands Universitetssjukhus, Umeå, Sweden
| | - Baris Erdogan
- Department of Clinical Sciences/ENT, Umeå University, Umeå, Sweden
| | - Mustafa Magan
- Department of Clinical Sciences/ENT, Umeå University, Umeå, Sweden
| | - Karin Nylander
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Acrylamide mitigation in foods using recombinant L-asparaginase: An extremozyme from Himalayan Pseudomonas sp. PCH182. Food Res Int 2022; 162:111936. [DOI: 10.1016/j.foodres.2022.111936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022]
|
16
|
Gouveia-Fernandes S, Rodrigues A, Nunes C, Charneira C, Nunes J, Serpa J, Antunes AMM. Glycidamide and cis-2-butene-1,4-dial (BDA) as potential carcinogens and promoters of liver cancer - An in vitro study. Food Chem Toxicol 2022; 166:113251. [PMID: 35750087 DOI: 10.1016/j.fct.2022.113251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 10/18/2022]
Abstract
Acrylamide and furan are environmental and food contaminants that are metabolized by cytochrome P450 2E1 (CYP2E1), giving rise to glycidamide and cis-2-butene-1,4-dial (BDA) metabolites, respectively. Both glycidamide and BDA are electrophilic species that react with nucleophilic groups, being able to introduce mutations in DNA and perform epigenetic remodeling. However, whereas these carcinogens are primarily metabolized in the liver, the carcinogenic potential of acrylamide and furan in this organ is still controversial, based on findings from experimental animal studies. With the ultimate goal of providing further insights into this issue, we explored in vitro, using a hepatocyte cell line and a hepatocellular carcinoma cell line, the putative effect of these metabolites as carcinogens and cancer promoters. Molecular alterations were investigated in cells that survive glycidamide and BDA toxicity. We observed that those cells express CD133 stemness marker, present a high proliferative capacity and display an adjusted expression profile of genes encoding enzymes involved in oxidative stress control, such as GCL-C, GSTP1, GSTA3 and CAT. These molecular changes seem to be underlined, at least in part, by epigenetic remodeling involving histone deacetylases (HDACs). Although more studies are needed, here we present more insights towards the carcinogenic capacity of glycidamide and BDA and also point out their effect in favoring hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Sofia Gouveia-Fernandes
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Armanda Rodrigues
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Carolina Nunes
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Catarina Charneira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049 001, Lisboa, Portugal
| | - João Nunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049 001, Lisboa, Portugal
| | - Jacinta Serpa
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| | - Alexandra M M Antunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049 001, Lisboa, Portugal.
| |
Collapse
|
17
|
Pietropaoli F, Pantalone S, Cichelli A, d'Alessandro N. Acrylamide in widely consumed foods - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:853-887. [PMID: 35286246 DOI: 10.1080/19440049.2022.2046292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acrylamide (AA) is considered genotoxic, neurotoxic and a 'probable human carcinogen'. It is included in group 2 A of the International Agency for Research on Cancer (IARC). The formation of AA occurs when starch-based foods are subjected to temperatures higher than 120 °C in an atmosphere with very low water content. The aim of this review is to shed light on the toxicological aspects of AA, showing its regulatory evolution, and describing the most interesting mitigation techniques for each food category involved, with a focus on compliance with EU legislation in the various classes of consumer products of industrial origin in Europe.
Collapse
Affiliation(s)
- Francesca Pietropaoli
- Department of Innovative Technology in Medicine and Dentistry, University "G. d'Annunzio", Chieti, Italy
| | - Sara Pantalone
- Department of Engineering and Geology, University "G. d'Annunzio", Chieti, Italy
| | - Angelo Cichelli
- Department of Innovative Technology in Medicine and Dentistry, University "G. d'Annunzio", Chieti, Italy
| | - Nicola d'Alessandro
- Department of Engineering and Geology, University "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
18
|
Abstract
EFSA was requested to deliver a statement on a recent publication revisiting the evidence for genotoxicity of acrylamide (AA). The statement was prepared by a Working Group and was endorsed by the CONTAM Panel before its final approval. In interpreting the Terms of Reference, the statement considered the modes of action underlying the carcinogenicity of AA including genotoxic and non-genotoxic effects. Relevant publications since the 2015 CONTAM Panel Opinion on AA in food were reviewed. Several new studies reported positive results on the clastogenic and mutagenic properties of AA and its active metabolite glycidamide (GA). DNA adducts of GA were induced by AA exposure in experimental animals and have also been observed in humans. In addition to the genotoxicity of AA, there is evidence for both secondary DNA oxidation via generation of reactive oxygen species and for non-genotoxic effects which may contribute to carcinogenesis by AA. These studies extend the information assessed by the CONTAM Panel in its 2015 Opinion, and support its conclusions. That Opinion applied the margin of exposure (MOE) approach, as recommended in the EFSA Guidance for substances that are both genotoxic and carcinogenic, for risk characterisation of the neoplastic effects of AA. Based on the new data evaluated, the MOE approach is still considered appropriate, and an update of the 2015 Opinion is not required at the present time.
Collapse
|
19
|
Liu S, Ben X, Liang H, Fei Q, Guo X, Weng X, Wu Y, Wen L, Wang R, Chen J, Jing C. Association of acrylamide hemoglobin biomarkers with chronic obstructive pulmonary disease in the general population in the US: NHANES 2013-2016. Food Funct 2021; 12:12765-12773. [PMID: 34851334 DOI: 10.1039/d1fo02612g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background: Acrylamide is a well-known potential carcinogenic compound formed as an intermediate in the Maillard reaction during heat treatment, mainly from high-temperature frying, and is found in baked goods and coffee, as well as resulting from water treatment, textiles and paper processing. The effects of acrylamide on lung disease in humans remains unclear. We aimed to investigate the association between blood acrylamide and glycidamide and chronic obstructive pulmonary disease (COPD) in the United States of America (U.S.) population using PROC logistic regression models. Results: 2744 participants aged 20 to 80 from the 2013-2016 National Health and Nutrition Examination Survey (NHANES) were enrolled. After adjusting for demographic data, health factors and serum cotinine, the ratio of HbGA to HbAA (HbGA/HbAA) significantly increased the risk of COPD (P for trend = 0.022). The odds ratio (OR) with a 95% confidence interval (95% CI) for HbGA/HbAA in the third tile was 2.45 (1.12-5.31), compared with the lowest tile. The restricted cubic spline (RCS) curve showed a positive linear correlation between the log (HbGA/HbAA) and the risk of COPD (P = 0.030). Conclusion: The ratio of glycidamide and acrylamide (HbGA/HbAA) was associated with COPD. This association was more prominent in males, obese individuals, people with a poverty income ratio (PIR) < 1.85 or people who never exercise. However, null associations were observed between HbAA, HbGA and HbAA + HbGA, and COPD.
Collapse
Affiliation(s)
- Shan Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Xiaosong Ben
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Qiaoyuan Fei
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Xinrong Guo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Xueqiong Weng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Ruihua Wang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Jingmin Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China. .,Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
20
|
Yuan J, Che S, Zhang L, Li X, Yang J, Sun X, Ruan Z. Assessing the combinatorial cytotoxicity of the exogenous contamination with BDE-209, bisphenol A, and acrylamide via high-content analysis. CHEMOSPHERE 2021; 284:131346. [PMID: 34217936 DOI: 10.1016/j.chemosphere.2021.131346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 05/25/2023]
Abstract
Food is often exposed to multiple types of contaminants, and the coexistence of contaminants may have antagonistic, additive or synergistic effects. This study investigated the combinatorial toxicity of the three most widespread exogenous contaminants, decabrominated diphenyl ether (BDE-209), bisphenol A (BPA), and acrylamide (ACR) to HepG2 cells. A mathematical model (Chou-Talalay) and high-content analysis (HCA) were used to probe the nature of the contaminants' interactions and their cytotoxicity mechanisms, respectively. The results highlighted that for the individual pollutants, the cytotoxicity order was BDE-209> BPA > ACR, and varying combinations of contaminants exhibited additive/synergistic effects. In general, combining multiple contaminants significantly increased intracellular reactive oxygen species (ROS), Ca2+ flux, DNA damage and Caspase-3, and decreased mitochondrial membrane potential (MMP) and nucleus roundness, indicating that the additive or synergistic mechanism of the combined contaminations was disturbance to multiple organelles. This study emphasizes the complexity of human exposure to food contaminants and provides a scientific basis for formulating strict regulatory standards.
Collapse
Affiliation(s)
- Jinwen Yuan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China.
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China.
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China.
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| | - Junhua Yang
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Xiaoming Sun
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China.
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China.
| |
Collapse
|
21
|
Li X, Kahlon T, Wang SC, Friedman M. Low Acrylamide Flatbreads Prepared from Colored Rice Flours and Relationship to Asparagine and Proximate Content of Flours and Flatbreads. Foods 2021; 10:foods10122909. [PMID: 34945459 PMCID: PMC8700719 DOI: 10.3390/foods10122909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
Acrylamide is a potentially toxic compound present in many plant-based foods, such as coffee, breads, and potato fries, which is reported to have carcinogenic, neurotoxic, and antifertility properties in vivo, suggesting the need to keep the acrylamide content of widely consumed food as low as possible. As pigmented rice contains bioactive phenolic and flavonoid compounds, the objective of this study was to potentially enhance the beneficial properties of flatbreads by evaluating the acrylamide content and proximate composition of 12 novel flatbreads prepared from the following commercial pigmented rice seeds: Black Japonica, Chinese Black, French Camargue, Himalayan Red, Long Grain Brown, Purple Sticky, Short Grain Brown, Wehani, Wild, Indian Brown Basmati, Organic Brown Jasmine, and Organic Jade Pearl. Although acrylamide levels ranged from 4.9 µg/kg in Long Grain Brown to 50.8 µg/kg in Chinese Black, the absolute values were all low (though statistically significantly differences existed among varieties). Acrylamide content did not correlate with its precursor asparagine. The variations in protein, carbohydrate, fat, ash, dry matter, and water content determined by proximate analysis, and the reported health benefits of colored rice cultivars used to prepare the flatbreads, might also be useful for relating composition to nutritional qualities and health properties, facilitating their use as nutritional and health-promoting functional foods.
Collapse
Affiliation(s)
- Xueqi Li
- Olive Center, University of California, Davis, CA 95616, USA;
| | - Talwinder Kahlon
- Healthy Processed Foods Research, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA;
| | - Selina C. Wang
- Olive Center, University of California, Davis, CA 95616, USA;
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
- Correspondence: (S.C.W.); (M.F.); Tel.: +1-530-752-5018 (S.C.W.); +1-510-559-5615 (M.F.)
| | - Mendel Friedman
- Healthy Processed Foods Research, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA;
- Correspondence: (S.C.W.); (M.F.); Tel.: +1-530-752-5018 (S.C.W.); +1-510-559-5615 (M.F.)
| |
Collapse
|
22
|
Hemgesberg M, Stegmüller S, Cartus A, Schrenk D. A Benchmark analysis of acrylamide-derived DNA adducts in rat hepatocytes in culture measured by a new, highly sensitive method. Toxicology 2021; 464:153022. [PMID: 34743026 DOI: 10.1016/j.tox.2021.153022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Acrylamide (AA) is a carcinogen formed during thermal food processing and can cause tumors in rodents while its carcinogenic potency in humans is unclear. Metabolism of AA, preferentially in the liver, leads to glycidamide (GA) forming N7-GA-guanine (N7-GA-Gua) as the major AA-derived DNA adduct in rodents. Here, a novel method allowing high sensitivity by avoidance of major matrix effects was applied to analyze N7-GA-Gua levels in nuclear DNA from rat hepatocytes in primary culture. We could thus for the first time detect a background level of 5-10 adducts/108 nucleosides in untreated hepatocytes. Incubation with AA did not result in a statistically significant increase in adduct levels over background up to a substrate concentration of 500 μM although a trend to slightly higher adduct levels was observed at and above 200 μM AA. At concentrations > 500 μM significant increases in N7-GA-Gua levels were found. When Benchmark concentration (BMC) modeling was applied to the data, non-linear concentration-response curves were obtained suggesting that AA started to cause measurable increases over background of N7-GA-Gua levels above certain concentrations only. Calculation of the composite BMCL10 (Lower Bound of a 95 % confidence interval) of a BMC leading to a 10 % increase of N7-GA-Gua levels over background resulted in a value of 6.35 μM AA after 24 h. A concentration below this value cannot be expected to lead to an increase in N7-GA-Gua of more than 10 % over the background seen in untreated hepatocytes.
Collapse
Affiliation(s)
- Melanie Hemgesberg
- Food Chemistry and Toxicology Department, University of Kaiserslautern, D-67663 Kaiserslautern, Germany.
| | - Simone Stegmüller
- Food Chemistry and Toxicology Department, University of Kaiserslautern, D-67663 Kaiserslautern, Germany.
| | - Alexander Cartus
- Food Chemistry and Toxicology Department, University of Kaiserslautern, D-67663 Kaiserslautern, Germany.
| | - Dieter Schrenk
- Food Chemistry and Toxicology Department, University of Kaiserslautern, D-67663 Kaiserslautern, Germany.
| |
Collapse
|
23
|
Hemgesberg M, Stegmüller S, Cartus A, Hemmer S, Püttmann M, Stockis JP, Schrenk D. Acrylamide-derived DNA adducts in human peripheral blood mononuclear cell DNA: Correlation with body mass. Food Chem Toxicol 2021; 157:112575. [PMID: 34560178 DOI: 10.1016/j.fct.2021.112575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Acrylamide (AA) is a carcinogen formed during thermal food processing and can cause tumors in rodents while its carcinogenic potency in humans is unclear. Metabolic conversion of AA leads to glycidamide (GA) forming N7-GA-guanine (N7-GA-Gua) as the major DNA adduct in rodents while no such adducts were found in human tissues so far. In a cohort of 56 healthy volunteers adduct levels were determined in peripheral blood mononuclear cell (PBMC) DNA and anthropometric, dietary, and biochemical parameters were measured or inquired using a questionnaire. In the majority of PBMC DNA samples the levels found were above one adduct/108 nucleosides not being correlated to dietary habits including coffee consumption, or to blood glucose levels or hemoglobin HbA1c. However, adduct levels were significantly correlated with the body mass index (BMI) and showed a continuous increase over three BMI classes. Our findings indicate a background of AA-derived DNA adducts present in humans in PBMC related to body mass rather than to certain dietary or lifestyle factors.
Collapse
Affiliation(s)
- Melanie Hemgesberg
- Food Chemistry and Toxicology Department, University of Kaiserslautern, D-67663, Kaiserslautern, Germany.
| | - Simone Stegmüller
- Food Chemistry and Toxicology Department, University of Kaiserslautern, D-67663, Kaiserslautern, Germany.
| | - Alexander Cartus
- Food Chemistry and Toxicology Department, University of Kaiserslautern, D-67663, Kaiserslautern, Germany.
| | - Selina Hemmer
- Food Chemistry and Toxicology Department, University of Kaiserslautern, D-67663, Kaiserslautern, Germany.
| | - Michael Püttmann
- Synlab Center for Laboratory Medicine, D-67434, Neustadt/Weinstrasse, Germany.
| | - Jean-Pierre Stockis
- Statistics Department, University of Kaiserslautern, D-67663, Kaiserslautern, Germany.
| | - Dieter Schrenk
- Food Chemistry and Toxicology Department, University of Kaiserslautern, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
24
|
Hölzl-Armstrong L, Kucab JE, Zwart EP, Luijten M, Phillips DH, Arlt VM. Mutagenicity of N-hydroxy-4-aminobiphenyl in human TP53 knock-in (Hupki) mouse embryo fibroblasts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:252-264. [PMID: 33620775 DOI: 10.1002/em.22429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
TP53 harbors somatic mutations in more than half of human tumors with some showing characteristic mutation spectra that have been linked to environmental exposures. In bladder cancer, a unique distribution of mutations amongst several codons of TP53 has been hypothesized to be caused by environmental carcinogens including 4-aminobiphenyl (4-ABP). 4-ABP undergoes metabolic activation to N-hydroxy-4-aminobiphenyl (N-OH-4-ABP) and forms pre-mutagenic adducts in DNA, of which N-(deoxyguanosin-8-yl)-4-ABP (dG-C8-4-ABP) is the major one. Human TP53 knock-in mouse embryo fibroblasts (HUFs) are a useful model to study the influence of environmental carcinogens on TP53-mutagenesis. By performing the HUF immortalization assay (HIMA) TP53-mutant HUFs are generated and mutations can be identified by sequencing. Here we studied the induction of mutations in human TP53 after treatment of primary HUFs with N-OH-4-ABP. In addition, mutagenicity in the bacterial lacZ reporter gene and the formation of dG-C8-4-ABP, measured by 32 P-postlabelling analysis, were determined in N-OH-4-ABP-treated primary HUFs. A total of 6% TP53-mutants were identified after treatment with 40 μM N-OH-4-ABP for 24 hr (n = 150) with G>C/C>G transversion being the main mutation type. The mutation spectrum found in the TP53 gene of immortalized N-OH-4-ABP-treated HUFs was unlike the one found in human bladder cancer. DNA adduct formation (~40 adducts/108 nucleotides) was detected after 24 hr treatment with 40 μM N-OH-4-ABP, but lacZ mutagenicity was not observed. Adduct levels decreased substantially (sixfold) after a 24 hr recovery period indicating that primary HUFs can efficiently repair the dG-C8-4-ABP adduct possibly before mutations are fixed. In conclusion, the observed difference in the N-OH-4-ABP-induced TP53 mutation spectrum to that observed in human bladder tumors do not support a role of 4-ABP in human bladder cancer development.
Collapse
Affiliation(s)
- Lisa Hölzl-Armstrong
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | - Jill E Kucab
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | - Edwin P Zwart
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Mirjam Luijten
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, UK
- Toxicology Department, GAB Consulting GmbH, Heidelberg, Germany
| |
Collapse
|
25
|
Hölzl-Armstrong L, Nævisdal A, Cox JA, Long AS, Chepelev NL, Phillips DH, White PA, Arlt VM. In vitro mutagenicity of selected environmental carcinogens and their metabolites in MutaMouse FE1 lung epithelial cells. Mutagenesis 2020; 35:453-463. [PMID: 33399867 PMCID: PMC7846080 DOI: 10.1093/mutage/geaa032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/21/2020] [Indexed: 11/12/2022] Open
Abstract
Chemicals in commerce or under development must be assessed for genotoxicity; assessment is generally conducted using validated assays (e.g. Tk mouse lymphoma assay) as part of a regulatory process. Currently, the MutaMouse FE1 cell mutagenicity assay is undergoing validation for eventual use as a standard in vitro mammalian mutagenicity assay. FE1 cells have been shown to be metabolically competent with respect to some cytochrome P450 (CYP) isozymes; for instance, they can convert the human carcinogen benzo[a]pyrene into its proximate mutagenic metabolite. However, some contradictory results have been noted for other genotoxic carcinogens that require two-step metabolic activation (e.g. 2-acetylaminofluorene and 2-amino-3-methylimidazo[4,5-f]quinoxaline). Here, we examined three known or suspected human carcinogens, namely acrylamide, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 4-aminobiphenyl (4-ABP), together with their proximate metabolites (i.e. glycidamide, N-OH-PhIP and N-OH-4-ABP), to aid in the validation of the FE1 cell mutagenicity assay. Assessments of the parent compounds were conducted both in the presence and absence of an exogenous metabolic activation mixture S9; assessments of the metabolites were in the absence of S9. The most potent compound was N-OH-PhIP -S9, which elicited a mutant frequency (MF) level 5.3-fold over background at 5 µM. There was a 4.3-fold increase for PhIP +S9 at 5 µM, a 1.7-fold increase for glycidamide -S9 at 3.5 mM and a 1.5-fold increase for acrylamide +S9 at 4 mM. Acrylamide -S9 elicited a marginal 1.4-fold MF increase at 8 mM. Treatment with PhIP -S9, 4-ABP ±S9 and N-OH-4-ABP -S9 failed to elicit significant increases in lacZ MF with any of the treatment conditions tested. Gene expression of key CYP isozymes was quantified by RT-qPCR. Cyp1a1, 1a2 and 1b1 are required to metabolise PhIP and 4-ABP. Results showed that treatment with both compounds induced expression of Cyp1a1 and Cyp1b1 but not Cyp1a2. Cyp2e1, which catalyses the bioactivation of acrylamide to glycidamide, was not induced after acrylamide treatment. Overall, our results confirm that the FE1 cell mutagenicity assay has the potential for use alongside other, more traditional in vitro mutagenicity assays.
Collapse
Affiliation(s)
- Lisa Hölzl-Armstrong
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
| | - Andrea Nævisdal
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
| | - Julie A Cox
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Alexandra S Long
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Nikolai L Chepelev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
| | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
| |
Collapse
|
26
|
Hölzl-Armstrong L, Moody S, Kucab JE, Zwart EP, Bellamri M, Luijten M, Turesky RJ, Stratton MR, Arlt VM, Phillips DH. Mutagenicity of 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP) in human TP53 knock-in (Hupki) mouse embryo fibroblasts. Food Chem Toxicol 2020; 147:111855. [PMID: 33189884 DOI: 10.1016/j.fct.2020.111855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/03/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a possible human carcinogen formed in cooked fish and meat. PhIP is bioactivated by cytochrome P450 enzymes to form 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP), a genotoxic metabolite that reacts with DNA leading to the mutation-prone DNA adduct N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP). Here, we studied N-OH-PhIP-induced whole genome mutagenesis in human TP53 knock-in (Hupki) mouse embryo fibroblasts (HUFs) immortalised and subjected to whole genome sequencing (WGS). In addition, mutagenicity of N-OH-PhIP in TP53 and the lacZ reporter gene were assessed. TP53 mutant frequency in HUF cultures treated with N-OH-PhIP (2.5 μM for 24 h, n = 90) was 10% while no TP53 mutations were found in untreated controls (DMSO for 24 h, n = 6). All N-OH-PhIP-induced TP53 mutations occurred at G:C base pairs with G > T/C > A transversions accounting for 58% of them. TP53 mutations characteristic of those induced by N-OH-PhIP have been found in human tumours including breast and colorectal, which are cancer types that have been associated with PhIP exposure. LacZ mutant frequency increased 25-fold at 5 μM N-OH-PHIP and up to ~350 dG-C8-PhIP adducts/108 nucleosides were detected by ultra-performance liquid chromatography-electrospray ionisation multistage scan mass spectrometry (UPLC-ESI-MS3) at this concentration. In addition, a WGS mutational signature defined by G > T/C > A transversions was present in N-OH-PhIP-treated immortalised clones, which showed similarity to COSMIC SBS4, 18 and 29 signatures found in human tumours.
Collapse
Affiliation(s)
- Lisa Hölzl-Armstrong
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Jill E Kucab
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK
| | - Edwin P Zwart
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3720 BA, the Netherlands
| | - Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, USA
| | - Mirjam Luijten
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3720 BA, the Netherlands
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, USA
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK.
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK
| |
Collapse
|