1
|
Huang J, Ran J, Xia J, Du H, Zhou L. Analysis of areca alkaloids and their conversions using CE-C 4D and identification by CE-MS. Food Chem 2025; 483:144228. [PMID: 40203553 DOI: 10.1016/j.foodchem.2025.144228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
As one of the four major addictive substance globally, areca nut contains areca alkaloids as its principal active ingredients, which exhibit both medicinal potential and toxic effects. In this study, a concise and effective approach was developed for the simultaneous analysis of areca alkaloids using laboratory-built capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C4D). The proposed method demonstrated satisfactory linearity (R2 ≥ 0.995), precision (RSDs ≤ 6.56%) and quantification limits of 0.77-1.37 μM. This method has been successfully used to quantify areca products with recoveries of 92.2-110.1%. In addition, the effect of processing on the areca alkaloid content in areca nut-containing products was analyzed. On this basis, the conversions of areca alkaloids under various alkaline conditions were investigated through experimental studies and theoretical calculations. The separation parameters for CE-C4D were effectively transferred to CE-mass spectrometry (MS), and the above analytical results for areca alkaloids were validated by incorporating CE-MS related experiments.
Collapse
Affiliation(s)
- Jinying Huang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiaying Ran
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jingtong Xia
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hongying Du
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Lei Zhou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Yin L, Wang X. Curcumin Alleviates Arecoline-induced Oral Submucous Fibrosis via the FOSL1/MAPK8 Axis. Cell Biochem Biophys 2025; 83:2227-2236. [PMID: 39674970 DOI: 10.1007/s12013-024-01633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Oral submucous fibrosis (OSF) is a precancerous lesion of the oral cavity. Areca nut consumption can cause OSF through sustained activation of buccal mucosal fibroblasts (BMFs). This study explored the effect of curcumin on arecoline-induced BMF activation and its mechanism of action. BMFs were isolated and identified by immunofluorescence detection of fibroblast surface markers vimentin and S100A4. After transfection with FOSL1- or MAPK8-related vectors, BMFs were activated by arecoline and treated with curcumin. Scratch and transwell assays were performed to detect cell migration. ChIP and luciferase reporter assays were conducted to detect the binding of FOSL1 to the MAPK8 promoter. RT-qPCR was used to detect FOSL1 and MAPK8 mRNA expression. Western blotting was used to detect FOSL1, MAPK8, COL1A1, α-SMA, Smad2, and p-Smad2 proteins. Curcumin treatment inhibited arecoline-induced fibroblast migration, reduced the expression of myofibroblast markers COL1A1, α-SMA, and p-Smad2, and downregulated the expression of FOSL1 and MAPK8. FOSL1 or MAPK8 overexpression enhanced migration and increased COL1A1, α-SMA, and p-Smad2 expression in curcumin-treated cells. FOSL1 bound to the MAPK8 promoter and promoted MAPK8 expression. Simultaneous FOSL1 overexpression and MAPK8 knockdown, compared to FOSL1 overexpression, reduced cell migration and inhibited COL1A1, α-SMA, and p-Smad2 expression. In conclusion, curcumin targets FOSL1 to reduce MAPK8 expression, thereby suppressing arecoline-induced fibroblast activation.
Collapse
Affiliation(s)
- Lifen Yin
- Department of Periodontal Mucosa, Changsha Stomatological Hospital, Changsha, Hunan, 410004, P.R. China
| | - Xiao Wang
- Department of Periodontal Mucosa, Changsha Stomatological Hospital, Changsha, Hunan, 410004, P.R. China.
| |
Collapse
|
3
|
Zeng F, Liu Z, Yi J, Chen B, Ouyang Y, Ning W, Tang J, Liu B. Inhibitory role of arecaidine on PPARγ signaling in oral mucosa: Mechanistic insights from transcriptome and experimental analysis. Toxicon 2025; 262:108403. [PMID: 40339757 DOI: 10.1016/j.toxicon.2025.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/10/2025]
Abstract
OBJECTIVE This study aims to elucidate the effects of arecaidine on oral mucosa through RNA sequencing (RNA-Seq) combined with in vivo and in vitro experimental validation. METHODS Based on transcriptomic analysis, we preliminarily explored the molecular targets and mechanisms by which arecaidine influences oral mucosa. Subsequent validation was performed using arecaidine-treated human primary oral mucosal fibroblasts. RESULTS In vivo experiments revealed that the arecaidine-treated group exhibited significantly restricted oral cavity opening compared to the control group, with markedly reduced mouth-opening values. Histopathological analysis via HE staining and Masson staining demonstrated fibrotic lesions in the arecaidine-treated group. RNA-Seq libraries constructed from oral mucosal tissues identified 100 significantly differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that arecaidine influenced multiple pathways, including autoimmune thyroid disease, allograft rejection, type I diabetes, graft-versus-host disease, and the PPAR-γ signaling pathway. Notably, arecaidine significantly downregulated PPAR-γ, PCK1, pdk4, plin5, Hmgcs2, UCP3, and Angptl4, while upregulating TGF-β1, FOS, and other genes associated with the PPAR pathway. In vitro experiments confirmed that arecaidine induced substantial damage to fibroblasts, suppressing proliferation and promoting the secretion of inflammatory cytokines (e.g., IL-6, TGF-β, TNF-α) after 48 h exposure to high concentrations. Furthermore, arecaidine significantly altered the expression of molecules linked to the PPAR-γ signaling pathway. CONCLUSION This study delineates the transcriptomic response of oral mucosa to arecaidine through integrated in vivo and in vitro experiments, confirming its role in inducing submucosal fibrosis. The underlying mechanism is associated with dysregulation of the PPAR-γ signaling pathway.
Collapse
Affiliation(s)
- Fanzuo Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China; Hunan Academy of Traditional Chinese Medicine, Changsha, 410006, China
| | - Zhenkui Liu
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, China
| | - Jian Yi
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Bowei Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yin Ouyang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Wanling Ning
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Jiongwei Tang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Baiyan Liu
- Hunan Academy of Traditional Chinese Medicine, Changsha, 410006, China.
| |
Collapse
|
4
|
Kuang S, Xiao S, Zhou J, Liu L, Li N, Ding Y, Lyu P, Zhu C, Xue P. Combined effect of areca nut, cigarettes, alcohol and SNPs in glycosyltransferase family genes on lung cancer development in Hainan, China. BMC Cancer 2025; 25:814. [PMID: 40307723 PMCID: PMC12044758 DOI: 10.1186/s12885-025-14088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Abnormal glycosylation modification is closely related to the development and metastasis of cancers. As a carcinogen by the International Agency for Research on Cancer (IARC) of the WHO, areca nut lacked of combined effect' study with genetic factors related to lung cancer. The aim of this study was to investigate the combined effect of polymorphisms of glycosyltransferase family genes and behavioral factors on the susceptibility of lung cancer. METHODS A case‒control study was conducted in Hainan, which included 428 patients with lung cancer and 428 cancer-free controls. Six single-nucleotide polymorphisms (SNPs) (FUT2 rs1047781, rs601338, FUT3 rs28362459, rs3745635, ST6Gal-I rs2239611 and MGAT5 rs34944508) were detected by the MassARRAY System. The association between these SNPs and the risk of lung cancer, clinicopathological characteristics, and combined effect of behavioral factors (areca nuts, cigarettes, alcohol) and genotypes on lung cancer were estimated using by logistic regression analysis. RESULTS In this study, individuals with AA genotype in ST6Gal-I rs2239611 significantly increased lung cancer risk (ORadj = 2.077; 95%CI:1.191-3.624; Padj = 0.010), particularly in smokers (Padj = 0.038) and alcohol consumers (Padj = 0.049). FUT2 rs1047781 was associated with clinical stage (Padj = 0.047) and lymph node metastasis (Padj = 0.014). Significant gene-environment interactions were observed between behavioral factors (cigarette smoking, alcohol drinking, and betel quid chewing) and both FUT2 rs1047781 (Padj = 0.013) and ST6Gal-I rs2239611 (Padj = 0.047), collectively elevating lung cancer risk. CONCLUSION ST6Gal-I rs2239611 was a potential genetic biomarker for lung cancer. Areca nut chewing, cigarette smoking, alcohol drinking interacts with glycosyltransferase gene polymorphisms (FUT2 rs1047781 and ST6Gal-I rs2239611), increasing lung cancer risk-a novel finding given the lack of prior studies on this combination.
Collapse
Affiliation(s)
- Shicheng Kuang
- Department of Pharmacy, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Sha Xiao
- School of Public Health, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Jing Zhou
- School of Public Health, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Lirong Liu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Na Li
- School of Public Health, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Yipeng Ding
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Pengfei Lyu
- Department of Breast Surgery, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, People's Republic of China
| | - Chaoyong Zhu
- Medical Examination Center of Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China.
| | - Ping Xue
- School of Public Health, Shenyang Medical College, Shenyang, Liaoning, 110034, People's Republic of China.
| |
Collapse
|
5
|
Xu J, Li M, Li R, Zhang Z, Ma Y, Tao R, Zou L, Wang J, Wen L, Li R. Effect of areca nut extracts on growth performance, slaughtering performance, and meat quality of broiler chickens. Front Vet Sci 2025; 12:1579415. [PMID: 40357195 PMCID: PMC12067790 DOI: 10.3389/fvets.2025.1579415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Since the comprehensive ban on the addition of antibiotics to livestock and poultry feeds in China, the search for safe and natural antibiotic substitutes has become a hot spot in the animal breeding industry. Areca catechu L (AN), known as the leader among the four southern medicinal herbs, possesses functions such as insecticidal, antibacterial, antiinflammatory, promoting gastrointestinal motility and preventing Alzheimer's disease. Nevertheless, ANE is rarely used as a feed additive in AA broilers, and its specific role remains unclear. This study was conducted to investigate the effects of different levels of areca nut extracts (ANE) on growth performance, slaughter performance and meat quality of AA broiler chickens. Methods 128 one-day-old Arbor Acres broilers were randomly divided into eight groups of 16 birds each, housed in three cages with 5-6 birds per cage, with or without ANE supplementation (0, 100, 150, 200, 250, 300, 350, and 400 mg/kg, respectively). Results The entire experiment duration was 49 days. Adding 100 and 200 mg/kg ANE to the diet could significantly increase the body weight of broilers at 21 days of age (P ≤ 0.001), and significantly reduce the feed-to-weight ratio from 1 to 21 days of age (P ≤ 0.001). The diet supplemented with 200 mg/kg ANE could significantly increase the average body weight at 49 days of age (P = 0.001). Compared with the control group, the addition of different dosages of ANE in the feed could improve the pH45min, yellowness, and shear force (P ≤ 0.043) of the pectoral and leg muscles of broilers. Additionally, the contents of crude fat and crude protein, which are nutritional components in the pectoral and leg muscles of the ANE-supplemented groups, were to an extent higher than those of the control group (P ≤ 0.036). The addition of different levels of ANE in the diet significantly raised the expression levels of muscle development-related genes, including Myf5, Myf6, MyoD1, IGF-1, and IGF-2 (P ≤ 0.032). Discussion In conclusion, An appropriate amount of ANE in the diet has been demonstrated to boost the growth performance and meat quality of broilers, facilitate muscle development, and has no remarkable influence on slaughter performance. the ideal dosage for broilers is 100-200 mg/kg ANE. The findings of this study offer valuable insights into the potential benefits of ANE in poultry production, and provide a basis for further research into the development of ANE as a new feed additive.
Collapse
Affiliation(s)
- Juan Xu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Mengyao Li
- Changsha Lvye Biotechnology Co., Ltd, Changsha, China
| | - Rong Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Zhen Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Ying Ma
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Ran Tao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Lirui Zou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Changsha Lvye Biotechnology Co., Ltd, Changsha, China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Changsha Lvye Biotechnology Co., Ltd, Changsha, China
| |
Collapse
|
6
|
Li Y, Zhou J, Liu L, Zhu C, Luo Z, Li N, Lyu P, Zhang J, Xie T, Ding Y, Xiao S. Association of SNPs in nAChRs genes, areca nut chewing and smoking, and their interaction with lung cancer in Hainan, China: a case control study. BMC Cancer 2025; 25:626. [PMID: 40197297 PMCID: PMC11974198 DOI: 10.1186/s12885-025-14020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Areca nut (AN) was classified as a carcinogen by the International Agency for Research on Cancer (IARC) of the WHO in 2003. AN has the same carcinogenic components as cigarettes, such as benzo[a]pyrene (B[a]P) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), but its effects on interactions with genetic factors related to lung cancer have rarely been investigated. METHODS: Here, a propensity score-matched case‒control study was conducted in Hainan, which included 445 patients with lung cancer and 445 cancer-free controls. Then, the associations between single-nucleotide polymorphisms (SNPs) in the CHRNA5-CHRNA3-CHRNB4 gene cluster and their interaction effects with AN chewing and smoking on lung cancer were analyzed. In addition, we explored the associations among AN, cigarettes, and genes related to lung cancer using the Comparative Toxicogenomics Database (CTD). RESULTS The results indicate that the CHRNA3 rs938682 (A > G) GG genotype (OR = 0.669, 95% CI = 0.454 ~ 0.984, P = 0.042) can decrease the risk of lung cancer. The CHRNB4 rs7178270 (C > G) GG genotype (OR = 1.729, 95% CI = 1.168 ~ 2.571, P = 0.006) can increase the risk of lung cancer. The CHRNA5 rs17486278 CC genotype was associated with a high risk in males, smokers, and drinkers. The CHRNA3 rs938682 GG genotype was associated with a low risk in AN chewers. The CHRNB4 rs7178270 GG genotype was associated with high risk in drinkers and AN chewers. CHRNB4 rs7178270 and AN chewing have an interaction effect on lung cancer in Hainan. CONCLUSIONS This study is the first to elucidate the hidden impacts of AN on lung cancer and provides a key evidence regarding the interactive effects of AN and cigarettes with SNPs in nAChRs genes on lung cancer.
Collapse
Affiliation(s)
- Yixuan Li
- School of Public Health, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Jing Zhou
- School of Public Health, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Lirong Liu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Chaoyong Zhu
- Medical Examination Center of Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Ziyue Luo
- School of Public Health, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Na Li
- School of Public Health, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Pengfei Lyu
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, People's Republic of China
| | - Jing Zhang
- School of Public Health, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China
| | - Tian Xie
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Yipeng Ding
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China.
| | - Sha Xiao
- School of Public Health, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People's Republic of China.
| |
Collapse
|
7
|
Deshpande SM, Choudhary S, Patankar S, Khetan P, Sadaphule G, Sachdev SS. Comparative analysis of Ki-67, α-SMA, and MMP-9 expression in oral submucous fibrosis and oral leukoplakia with/without dysplasia: Insights into malignant transformation mechanisms. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2025; 58:100804. [PMID: 40101344 DOI: 10.1016/j.patol.2025.100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 03/20/2025]
Abstract
BACKGROUND The present study aimed to comparatively analyze the immunoexpression of Ki-67, Alpha Smooth Muscle Actin (α-SMA), and Matrix Metalloproteinase-9 (MMP-9) between Oral Leukoplakia (OL) and Oral Submucous Fibrosis (OSMF), both with and without dysplasia. The objective was to determine the potential role of these biomarkers in the diagnosis and prognostication of oral potentially malignant disorders (OPMDs) and their potential as targets for interventions. MATERIALS AND METHODS Immunohistochemical staining for Ki-67, α-SMA, and MMP-9 was performed on seventy formalin-fixed paraffin-embedded tissue blocks, comprising normal buccal mucosa (n=10), OSMF (n=30), and OL (n=30) with 15 cases each of dysplasia and non-dysplasia. The expression of these markers was comparatively evaluated in OSMF and OL, with and without dysplasia. RESULTS The immunoexpression of Ki-67, MMP-9, and α-SMA was found to be significantly higher (p<0.001) in OSMF compared to OL for the respective dysplastic counterparts. Additionally, OSMF with dysplasia exhibited a significantly higher expression (p<0.001) of these markers compared to OSMF without dysplasia. CONCLUSIONS The present study reports differences in cell proliferation rates, myofibroblast and MMP-9 expression between OSMF and OL. The higher expression of these markers in OSMF with dysplasia suggests accelerated disease progression and enhanced potential for transformation into oral squamous cell carcinoma (OSCC). These findings highlight variations in the tissue microenvironment of OPMDs, influencing their biological behaviour and prognosis.
Collapse
Affiliation(s)
- Sneha Masne Deshpande
- Department of Oral Pathology and Microbiology, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, India
| | - Sheetal Choudhary
- Department of Oral Pathology and Microbiology, YMT Dental College and Hospital, Kharghar, Navi Mumbai, India
| | - Sangeeta Patankar
- Department of Oral Pathology and Microbiology, YMT Dental College and Hospital, Kharghar, Navi Mumbai, India
| | - Palak Khetan
- Department of Oral Pathology and Microbiology, YMT Dental College and Hospital, Kharghar, Navi Mumbai, India
| | - Girish Sadaphule
- Department of Oral Pathology and Microbiology, YMT Dental College and Hospital, Kharghar, Navi Mumbai, India
| | - Sanpreet Singh Sachdev
- Department of Oral Pathology and Microbiology, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, India.
| |
Collapse
|
8
|
Wang W. Assessing the carcinogenic potential and molecular mechanisms of arecoline in human lungs: from in silico methods to in vitro validation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118108. [PMID: 40147173 DOI: 10.1016/j.ecoenv.2025.118108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/26/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVE Despite the globally recognized carcinogenic potential of arecoline, the primary active compound in areca nut, the molecular mechanisms underlying its role in lung adenocarcinoma (LUAD) have yet to be fully understood. This study aims to bridge this gap by integrating network toxicology, molecular docking and dynamics simulation, tumor bioinformatics, and in vitro assays to elucidate the molecular mechanisms through which arecoline contributes to LUAD development. METHODS We first utilized disease-related databases and compound databases to identify arecoline-targeted LUAD-relevant proteins and constructed an interaction network using Cytoscape to screen core proteins based on topological analysis. Subsequently, we performed molecular docking and dynamics simulation, along with surface plasmon resonance assay to examine and validate the interactions between arecoline and core proteins. Next, we utilized these proteins for functional enrichment analyses to explore their correlation with cancer. Ultimately, we detected the expression and prognosis of core genes and constructed a prognostic model to examine its relationship with immune infiltration and immunotherapy. RESULTS Arecoline targets 106 LUAD-relevant proteins, including 24 core proteins. The stable interactions of arecoline and core proteins (especially PTGS2) greatly support the carcinogenic toxicity of arecoline in human lungs. These target proteins influence the occurrence, progression, and immune infiltration of LUAD by participating in pathways related to cancer and immunity, thereby affecting the prognosis and immunotherapy of LUAD patients. CONCLUSION This study elucidates the molecular mechanism underlying arecoline-induced LUAD, introducing a novel approach for assessing food safety and presenting innovative and promising targets and strategies for cancer intervention and therapy.
Collapse
Affiliation(s)
- Wenwen Wang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
9
|
Shen J, Zhou M, Xiao N, Tan Z, Liang X. Unveiling the Mystery of the Stimulatory Effects of Arecoline: Its Relevance to the Regulation of Neurotransmitters and the Microecosystem in Multi-Ecological Intestinal Sites. Int J Mol Sci 2025; 26:3150. [PMID: 40243919 PMCID: PMC11989758 DOI: 10.3390/ijms26073150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
The dried ripe seeds and pericarp of Areca catechu L., a palm species, possess significant economic value. Masticating betel nut is also a long-standing and widely prevalent lifestyle habit rooted in history, known for its stimulating effect. This effect stems primarily from arecoline, the principal active compound in betel nut. This study investigates the potential mechanisms underlying the stimulating effects of arecoline, focusing on neurotransmitters, neurotrophic factors, and the microecosystem in multi-ecological intestinal sites. After arecoline intervention in mice, significant changes were observed in locomotor activity. The levels of dopamine (DA) in liver tissue and 5-hydroxytryptamine (5-HT) in brain tissue were significantly reduced. There was a significant increase in microbial activity in the feces and in the level of n-valeric acid in the intestinal content. At the genus level, the relative abundance of Clostridium was significantly reduced, whereas the relative abundances of Helicobacter and Aquincola were markedly increased. Helicobacter, Aquincola, Faecalibaculum, and Liquorilactobacillus were signature genera in the arecoline-treated group. The 5-HT level was significantly negatively correlated with the abundance of the signature genera Aquincola, Helicobacter, and Liquorilactobacillus in the arecoline group. The ingestion of arecoline can alter the behavioral patterns of mice, causing significant changes in the 5-HT levels in brain tissue and exerting regulatory effects on the microecosystem in multi-ecological intestinal sites. These findings will provide a reference for the future development and utilization of betel nut.
Collapse
Affiliation(s)
- Junxi Shen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (J.S.); (M.Z.)
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Mengsi Zhou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (J.S.); (M.Z.)
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Nenqun Xiao
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (J.S.); (M.Z.)
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Xuejuan Liang
- Institute of Innovative Traditional Chinese Medications, Hunan Academy of Chinese Medicine, Changsha 410013, China
| |
Collapse
|
10
|
Gao G, Lin C, Li R, Xie X, Luo HB. Epigallocatechin-3-gallate inhibits the collagen accumulation of oral submucous fibrosis induced by arecoline. Front Pharmacol 2025; 16:1540559. [PMID: 39959427 PMCID: PMC11825517 DOI: 10.3389/fphar.2025.1540559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/17/2025] [Indexed: 02/18/2025] Open
Abstract
Objective Oral submucous fibrosis (OSF) is a chronic oral mucosal disease, which exerts a profound impact on patients' daily life and currently lacks efficacious therapeutic interventions. Epigallocatechin-3-gallate (EGCG), the abundant polyphenol found in green tea, exhibits remarkable anti-fibrotic effects on the skin. However, the research on OSF regarding EGCG is relatively limited. Purpose We aimed to investigate the potential therapeutic effect of EGCG against OSF using an arecoline (ARE) -induced rat model and primary rat oral fibroblasts. Methods Primary rat oral mucosal fibroblasts (ROMF) were isolated and identified. Optimal ARE concentrations were established using the Cell Counting Kit-8. The impact of ARE on extracellular matrix (ECM)-related protein expression was assessed through RT-qPCR and Western blot techniques. Similarly, the effects of EGCG on ARE-induced ECM changes in ROMF were evaluated. The study also established an OSF model in Sprague-Dawley rats, induced by ARE, with pathological changes characterized using HE and Masson's staining, further assessing the impact of ARE on ECM-related protein expression in rat oral tissues through RT-qPCR and Western blot methods. Results EGCG effectively suppressed the ARE-induced ECM components while concurrently improving the OSF pathological process in vitro and in vivo. Conclusion The results indicate that the natural product EGCG effectively suppressed the increased ECM components induced by ARE and concurrently improved the OSF pathological process, indicating that EGCG could be potentially a novel anti-fibrotic candidate drug for the treatment of OSF.
Collapse
Affiliation(s)
- Ge Gao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Caipeng Lin
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Ruibo Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Song Li’s Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Sanya, China
| |
Collapse
|
11
|
Huang G, Zeng D, Liang T, Liu Y, Cui F, Zhao H, Lu W. Recent Advance on Biological Activity and Toxicity of Arecoline in Edible Areca (Betel) Nut: A Review. Foods 2024; 13:3825. [PMID: 39682896 DOI: 10.3390/foods13233825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Areca nut (Areca catechu L. AN), which is the dried, mature seed of the palm species Areca catechu L., is consumed by over 600 million individuals, predominantly in South Asia, East Africa, and certain regions of the tropical Pacific. The International Agency for Research on Cancer (IARC) has classified it as a species carcinogenic to humans and designated it as a Group 1 human carcinogen. Arecoline, which has attracted attention for its therapeutic potential in the treatment of mental illness and the relief of gastrointestinal disorders, is the main active alkaloid in the areca nut. However, in 2020, the IARC said that arecoline might be a "probable human carcinogen". Arecoline can cause various types of cellular damage, primarily leading to the destruction of cell morphology, reduced survival rates, abnormal physiological functions, and even cell apoptosis. The research on its toxic mechanisms includes several aspects, such as increased levels of reactive oxygen species, autophagy, epigenetic dysregulation, and immune dysfunction, but these research findings are scattered and lack systematic integration. This article summarizes the effect mechanisms of arecoline on the oral cavity, neurological and cardiovascular systems, and other organs, as well as embryogenesis, and provides detailed and valuable insights for the clinical practice and targeted therapy of arecoline.
Collapse
Affiliation(s)
- Gang Huang
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150001, China
| | - Deyong Zeng
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing 401151, China
- School of Medicine and Health Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Tisong Liang
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing 401151, China
| | - Yaping Liu
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing 401151, China
| | - Fang Cui
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150001, China
| | - Haitian Zhao
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing 401151, China
- School of Medicine and Health Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Weihong Lu
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150001, China
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing 401151, China
- School of Medicine and Health Sciences, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
12
|
Ji M, Zhang L, Bao HH, Chen HM, Wu Y, Hu XS, Chen F, Zhu YC. Exposure assessment to areca alkaloids in the Chinese populations through areca nut chewing. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1894-1904. [PMID: 39285983 PMCID: PMC11401816 DOI: 10.1007/s13197-024-05966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 09/19/2024]
Abstract
Chewing areca nuts is popular in China. Areca alkaloids are the major toxic compounds in areca nuts. In this study, the levels of four areca alkaloids (i.e. arecoline, arecaidine, guvacoline and guvacine) in 119 areca nut samples were analyzed and 3030 areca nut consumption questionnaires were collected to investigate the exposure to areca alkaloids in the Chinese populations through areca nut chewing. The levels of arecoline, arecaidine, guvacoline and guvacine in different areca nut products were 0.46-4.97 mg/g, 0.57-7.51 mg/g, 0.08-1.44 mg/g and 0.03-8.48 mg/g, respectively. Chewing fresh areca fruits was the main source of arecoline and the total areca alkaloids exposure. The estimated daily intake (EDI) of arecoline and the total areca alkaloids for the Chinese populations were 1.126 and 2.625 mg/kg BW/day for average exposure, 4.411 and 9.739 mg/kg BW/day for high exposure (P95th). The EDI varied with age and gender. The young male population (≤ 34 years) had the highest EDI than other populations. Concentrated and focused efforts are required to educate the general public, especially the young male population, about the risks of areca nut chewing to reduce exposure to areca alkaloids of the Chinese population. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05966-6.
Collapse
Affiliation(s)
- Miao Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083 People's Republic of China
| | - Lei Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National Center for Food Safety Risk Assessment, Beijing, 100022 People's Republic of China
| | - Hui-Hui Bao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National Center for Food Safety Risk Assessment, Beijing, 100022 People's Republic of China
| | - Hai-Ming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, 570228 People's Republic of China
| | - Yu Wu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083 People's Republic of China
| | - Xiao-Song Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083 People's Republic of China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083 People's Republic of China
| | - Yu-Chen Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, 100083 People's Republic of China
| |
Collapse
|
13
|
Janpaijit S, Sukprasansap M, Tencomnao T, Prasansuklab A. Anti-Neuroinflammatory Potential of Areca Nut Extract and Its Bioactive Compounds in Anthracene-Induced BV-2 Microglial Cell Activation. Nutrients 2024; 16:2882. [PMID: 39275198 PMCID: PMC11397359 DOI: 10.3390/nu16172882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Particulate matter (PM2.5) containing polycyclic aromatic hydrocarbons (PAHs) is of considerable environmental importance worldwide due to its adverse effects on human health, which are associated with neurodegenerative diseases (NDDs). Areca catechu L. (AC) fruit is known to possess various pharmacological properties; however, the anti-neuroinflammatory roles of AC on the suppression of PAH-induced neuroinflammation are still limited. Thus, we focused on the effects and related signaling cascades of AC and its active compounds against anthracene-induced toxicity and inflammation in mouse microglial BV-2 cells. Phytochemicals in the ethanolic extract of AC (ACEE) were identified using LC-MS, and molecular docking was conducted to screen the interaction between compounds and target proteins. Significant bioactive compounds in ACEE such as arecoline, (-)-epicatechin, and syringic acid were evinced through the LC-MS spectrum. The docking study revealed that (-)-epicatechin showed the highest binding affinities against NF-κB. For cell-based approaches, anthracene induced intracellular ROS, mRNA levels of TNF-α, IL-1β, and IL-6, and the release of TNF-α through enhancing JNK, p38, and NF-κB signaling pathways. However, the co-treatment of cells with ACEE or (-)-epicatechin could reverse those anthracene-induced changes. The overall study suggested that ACEE-derived bioactive compounds such as (-)-epicatechin may be developed as a potential anti-neuroinflammatory agent by preventing inflammation-mediated NDDs.
Collapse
Affiliation(s)
- Sakawrat Janpaijit
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura), Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Tewin Tencomnao
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura), Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura), Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Xiang K, Wang B, Wang L, Zhang Y, Li H, Luo Y. Oxidative Stress, Oxidative Damage, and Cell Apoptosis: Toxicity Induced by Arecoline in Caenorhabditis elegans and Screening of Mitigating Agents. Toxins (Basel) 2024; 16:352. [PMID: 39195762 PMCID: PMC11359293 DOI: 10.3390/toxins16080352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
As the areca nut market is expanding, there is a growing concern regarding areca nut toxicity. Areca nut alkaloids are the major risky components in betel nuts, and their toxic effects are not fully understood. Here, we investigated the parental and transgenerational toxicity of varied doses of areca nut alkaloids in Caenorhabditis elegans. The results showed that the minimal effective concentration of arecoline is 0.2-0.4 mM. First, arecoline exhibited transgenerational toxicity on the worms' longevity, oviposition, and reproduction. Second, the redox homeostasis of C. elegans was markedly altered under exposure to 0.2-0.4 mM arecoline. The mitochondrial membrane potential was thereafter impaired, which was also associated with the induction of apoptosis. Moreover, antioxidant treatments such as lycopene could significantly ameliorate the toxic effects caused by arecoline. In conclusion, arecoline enhances the ROS levels, inducing neurotoxicity, developmental toxicity, and reproductive toxicity in C. elegans through dysregulated oxidative stress, cell apoptosis, and DNA damage-related gene expression. Therefore, the drug-induced production of reactive oxygen species (ROS) may be crucial for its toxic effects, which could be mitigated by antioxidants.
Collapse
Affiliation(s)
- Kaiping Xiang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.X.); (B.W.); (L.W.); (Y.Z.)
| | - Bing Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.X.); (B.W.); (L.W.); (Y.Z.)
| | - Lanying Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.X.); (B.W.); (L.W.); (Y.Z.)
| | - Yunfei Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.X.); (B.W.); (L.W.); (Y.Z.)
| | - Hanzeng Li
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yanping Luo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (K.X.); (B.W.); (L.W.); (Y.Z.)
| |
Collapse
|
15
|
Chen QY, Zhang Y, Ma Y, Zhuo M. Inhibition of cortical synaptic transmission, behavioral nociceptive, and anxiodepressive-like responses by arecoline in adult mice. Mol Brain 2024; 17:39. [PMID: 38886822 PMCID: PMC11184806 DOI: 10.1186/s13041-024-01106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Areca nut, the seed of Areca catechu L., is one of the most widely consumed addictive substances in the world after nicotine, ethanol, and caffeine. The major effective constituent of A. catechu, arecoline, has been reported to affect the central nervous system. Less is known if it may affect pain and its related emotional responses. In this study, we found that oral application of arecoline alleviated the inflammatory pain and its induced anxiolytic and anti-depressive-like behavior. Arecoline also increased the mechanical nociceptive threshold and alleviated depression-like behavior in naïve mice. In the anterior cingulate cortex (ACC), which acts as a hinge of nociception and its related anxiety and depression, by using the multi-electrode field potential recording and whole-cell patch-clamp recording, we found that the evoked postsynaptic transmission in the ACC of adult mice has been inhibited by the application of arecoline. The muscarinic receptor is the major receptor of the arecoline in the ACC. Our results suggest that arecoline alleviates pain, anxiety, and depression-like behavior in both physiological and pathological conditions, and this new mechanism may help to treat patients with chronic pain and its related anxiety and disorder in the future.
Collapse
Affiliation(s)
- Qi-Yu Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, Chinese Academy of Sciences Shenzhen Institute of Advanced Technology, Shenzhen, China
- Zhuomin International Institute for Brain Research, Qingdao, China
| | - Yuxiang Zhang
- Zhuomin International Institute for Brain Research, Qingdao, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yujie Ma
- Zhuomin International Institute for Brain Research, Qingdao, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Min Zhuo
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China.
- Zhuomin International Institute for Brain Research, Qingdao, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Room #3342, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
16
|
Sun Y, Feng J, Hou W, Qi H, Liu Y. Comprehensive insights into areca nut: active components and omics technologies for bioactivity evaluation and quality control. Front Pharmacol 2024; 15:1407212. [PMID: 38873426 PMCID: PMC11169615 DOI: 10.3389/fphar.2024.1407212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Areca nut (AN), the fruit or seed of Areca catechu Linn, has many uses, including chewing and medicinal purposes. It has sparked worries about health due to the presence of alkaloids. Chewing AN may have a variety of negative consequences; however, the medicinal use of AN has no notable adverse effects. To completely understand and effectively use AN, researchers have investigated its chemical makeup or biological activity, analyzed the variations between different AN species and different periods, and improved extraction and processing procedures. Today, an increasing number of researchers are exploring the underlying reasons for AN variations, as well as the molecular mechanisms of biosynthesis of chemical components, to comprehend and change AN at the genetic level. This review presents an overview of the clinical study, pharmacology, and detection of the main bioactive components in AN, and the main factors influencing their content, delving into the omics applications in AN research. On the basis of the discussions and summaries, this review identifies current research gaps and proposes future directions for investigation.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Feng
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Wencheng Hou
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Huasha Qi
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Yangyang Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| |
Collapse
|
17
|
Han S, Chen Y, Huang Y, Jin L, Ma Y. Arecoline promotes Akt-c-Myc-driven aerobic glycolysis in esophageal epithelial cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:2794-2802. [PMID: 38282581 DOI: 10.1002/tox.24159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Aerobic glycolysis is a typical metabolic rearrangement for tumorigenesis. Arecoline is of explicit carcinogenicity, numerous works demonstrate its mutagenicity, genotoxicity, and cytotoxicity. However, the effects of arecoline on aerobic glycolysis of esophageal epithelial cells remain unclear. In the present study, 5 μM arecoline efficiently increased HK2 expression to induce aerobic glycolysis in Het-1A-Are and NE2-Are cells. The mechanistic analysis showed that arecoline activated the Akt-c-Myc signaling pathway and reduced the GSK3β-mediated phosphorylation of c-Myc on Thr58 to prevent its ubiquitination and destruction, subsequently promoting HK2 transcription and expression. Taken together, these results suggest that arecoline can induce aerobic glycolysis of esophageal epithelial cells and further confirm that arecoline is a carcinogen harmful to human health.
Collapse
Affiliation(s)
- Shuangze Han
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingji Chen
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Huang
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Longyu Jin
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuchao Ma
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Li M, Deng Z, Xie C, Chen J, Yuan Z, Rahhal O, Tang Z. Fibroblast activating protein promotes the proliferation, migration, and activation of fibroblasts in oral submucous fibrosis. Oral Dis 2024; 30:1252-1263. [PMID: 37357365 DOI: 10.1111/odi.14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVES Fibroblast activating protein (FAP) is associated with various organ fibrosis. However, the expression and molecular function of FAP in oral submucous fibrosis (OSF) is still unclear. MATERIALS AND METHODS The high-performance liquid chromatography was used to detect the presence of alkaloids in areca nut extract (ANE). Real-time qPCR, Western blot, and Immunohistochemistry assay were used to analyze the expression of FAP mRNA or protein in OSF and normal oral tissue. A chi-squared test analyzed the relationship between FAP protein expression and clinicopathological data of OSF patients. CCK-8, Wound-healing, and Transwell migration assay were employed to assess the effect of the proliferation and migration ability of hOMF cells with FAP overexpression or knockdown. The expression level of a-SMA, FSP1, and P13K-Akt signaling pathways-related protein in hOMF cells transfected with FAP overexpression or knockdown plasmid was verified by western blot assay. RESULTS The four specific areca alkaloids (Arecoline, Guvacine, Arecaidine, and Guvacoline) were successfully detected in the ANE. The viability of hOMF cells was significantly improved in the 50 μg/mL ANE group and was inhibited in the 5 and 50 mg/mL ANE groups. The expression of FAP was upregulated in OSF tissues, and hOMF cells treated with 50 μg/mL ANE and was related to pathology grade, clinical stage, and history of chewing betel nut. Additionally, FAP may promote the proliferation, migration, and activation of hOMF cells through the P13K-Akt signaling pathway. CONCLUSIONS This study found that ANE had a bidirectional effect on the viability of hOMF cells, and the FAP gene was a potential therapeutic target in OSF.
Collapse
Affiliation(s)
- Ming Li
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhiyuan Deng
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Changqin Xie
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Juan Chen
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | | | - Omar Rahhal
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
19
|
Sun J, Zhang K, Yin Y, Qi Y, Li S, Sun H, Luo M, Sun Y, Yu Z, Yang J, Wu J, Chen L, Xu W, Dong L. Arecoline-Induced Hepatotoxicity in Rats: Screening of Abnormal Metabolic Markers and Potential Mechanisms. TOXICS 2023; 11:984. [PMID: 38133385 PMCID: PMC10748282 DOI: 10.3390/toxics11120984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Arecoline is a pyridine alkaloid derived from areca nut in the Arecaceae family. It has extensive medicinal activity, such as analgesic, anti-inflammatory, and anti-allergic. However, the toxicity of Arecoline limits its application. Most current studies on its toxicity mainly focus on immunotoxicity, carcinogenesis, and cancer promotion. However, there are few systematic studies on its hepatotoxicity and mechanisms. Therefore, this research explored the mechanism of hepatotoxicity induced by Arecoline in rats and analyzed endogenous metabolite changes in rat plasma by combining network toxicology with metabolomics. The differential metabolites after Arecoline exposure, such as D-Lysine, N4-Acetylaminobutanal, and L-Arginine, were obtained by metabolomics study, and these differential metabolites were involved in the regulation of lipid metabolism, amino acid metabolism, and vitamin metabolism. Based on the strategy of network toxicology, Arecoline can affect the HIF-1 signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, and other concerning pathways by regulating critical targets, such as ALB, CASP3, EGFR, and MMP9. Integration of metabolomics and network toxicology results were further analyzed, and it was concluded that Arecoline may induce hepatotoxicity by mediating oxidative stress, inflammatory response, energy and lipid metabolism, and cell apoptosis.
Collapse
Affiliation(s)
- Jing Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (M.L.); (J.Y.); (J.W.)
| | - Kai Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Yihui Yin
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Yunpeng Qi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Siyuan Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Haonan Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Min Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (M.L.); (J.Y.); (J.W.)
| | - Yixuan Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Zhiying Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Jie Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (M.L.); (J.Y.); (J.W.)
| | - Jingjing Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (M.L.); (J.Y.); (J.W.)
| | - Lijuan Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Wenjuan Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| | - Ling Dong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; (J.S.); (K.Z.); (Y.Y.); (Y.Q.); (S.L.); (H.S.); (Y.S.); (Z.Y.); (L.C.)
| |
Collapse
|
20
|
Zhou L, Tan J, Dai Y, Zhu K, Xiao Y, Wu D, Wang Z, Tan Y, Qin Y. Jiawei Danxuan Koukang Alleviates Arecoline Induced Oral Mucosal Lesions: Network Pharmacology and the Combined Ultra-High Performance Liquid Chromatography (UPLC) and Mass Spectrometry (MS). Drug Des Devel Ther 2023; 17:3085-3101. [PMID: 37854130 PMCID: PMC10581390 DOI: 10.2147/dddt.s413897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/29/2023] [Indexed: 10/20/2023] Open
Abstract
Purpose Arecoline is one of the main toxic components of arecoline to cause oral mucosal lesions or canceration, which seriously affects the survival and life quality of patients. This study analyzed the mechanism of Jiawei Danxuan Koukang (JDK) in alleviating arecoline induced oral mucosal lesions, to provide new insights for the treatment of oral submucosal fibrosis (OSF) or cancerosis. Methods Metabolomics was applied to analyze the composition of JDK and serum metabolites. The active ingredients of JDK were analyzed by the combined ultra-high performance liquid chromatography and mass spectrometry. The target network of JDK, metabolites and OSF was analyzed by network pharmacology, and molecular docking. Oral mucosal lesions and fibrosis were analyzed by HE and Masson staining. Cell differentiation, proliferation and apoptosis were detected. The expressions of α-SMA, Collagen I, Vimentin, Snail, E-cadherin, AR and NOTCH1 were detected by Western blot. Results Arecoline induced the gradual atrophy and thinning of rat oral mucosal, collagen accumulation, the increase expressions of fibrosis-related proteins and Th17/Treg ratio. JDK inhibited arecoline-induced oral mucosal lesions and inflammatory infiltration. Arecoline induced changes of serum metabolites in Aminoacyl-tRNA biosynthesis, Alanine, aspartate and glutamate metabolism and Arginine biosynthesis pathways, which were reversed by M-JDK. Quercetin and AR were the active ingredients and key targets of JDK, metabolites and OSF interaction. Arecoline promoted the expression of AR protein, and the proliferation of oral fibroblasts. Quercetin inhibited the effect of arecoline on oral fibroblasts, but was reversed by AR overexpression. Arecoline induced NOTCH1 expression in CAL27 and SCC-25 cells, and promoted cell proliferation, but was reversed by M-JDK or quercetin. Conclusion JDK improved the arecoline-induced OSF and serum metabolite functional pathway. Quercetin targeted AR protein to improve arecoline-induced OSF. JDK and quercetin inhibited arecoline-induced NOTCH1 protein expression in CAL27 and SCC-25 cells to play an anti-oral cancer role.
Collapse
Affiliation(s)
- Linghang Zhou
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Jin Tan
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Yuzhe Dai
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Keke Zhu
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Yanbo Xiao
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Dan Wu
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Zongkang Wang
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Yisi Tan
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Yijie Qin
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| |
Collapse
|
21
|
Li G, Yu Q, Li M, Zhang D, Yu J, Yu X, Xia C, Lin J, Han L, Huang H. Phyllanthus emblica fruits: a polyphenol-rich fruit with potential benefits for oral management. Food Funct 2023; 14:7738-7759. [PMID: 37529983 DOI: 10.1039/d3fo01671d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The fruit of Phyllanthus emblica Linn., which mainly grows in tropical and subtropical regions, is well-known for its medicine and food homology properties. It has a distinctive flavor, great nutritional content, and potent antioxidant, anti-inflammatory, anti-cancer and immunoregulatory effects. According to an increasing amount of scientific and clinical evidence, this fruit shows significant potential for application and development in the field of oral health management. Through the supplementation of vitamins, superoxide dismutase (SOD) and other nutrients reduce virulence expression of various oral pathogens, prevent tissue and mucosal damage caused by oxidative stress, etc. Phyllanthus emblica fruit can promote saliva secretion, regulate the balance of the oral microecology, prevent and treat oral cancer early, promote alveolar bone remodeling and aid mucosal wound healing. Thus, it plays a specific role in the prevention and treatment of common oral disorders, producing surprising results. For instance, enhancing the effectiveness of scaling and root planing in the treatment of periodontitis, relieving mucosal inflammation caused by radiotherapy for oral cancer, and regulating the blood glucose metabolism to alleviate oral discomfort. Herein, we systematically review the latest research on the use of Phyllanthus emblica fruit in the management of oral health and examine the challenges and future research directions based on its chemical composition and characteristics.
Collapse
Affiliation(s)
- Gefei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qiang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Mengqi Li
- Pharmacy department, Sichuan Nursing Vocational College, Chengdu 610100, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ji Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaohan Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chenxi Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Haozhou Huang
- State key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| |
Collapse
|
22
|
Liu S, Zhang T, Li Z, Wang Y, Liu L, Song Z. Antibacterial mechanism of areca nut essential oils against Streptococcus mutans by targeting the biofilm and the cell membrane. Front Cell Infect Microbiol 2023; 13:1140689. [PMID: 37701779 PMCID: PMC10494717 DOI: 10.3389/fcimb.2023.1140689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction Dental caries is one of the most common and costly biofilm-dependent oral diseases in the world. Streptococcus mutans is the major cariogenic pathogen of dental caries. S. mutans synthesizes extracellular polysaccharides by autologous glucosyltransferases, which then promotes bacterial adhesion and cariogenic biofilm formation. The S. mutans biofilm is the principal target for caries treatment. This study was designed to explore the antibacterial activity and mechanisms of areca nut essential oil (ANEO) against S. mutans. Methods The ANEOs were separated by negative pressure hydro-distillation. The Kirby-Bauer method and broth microdilution method were carried out to evaluate the antibacterial activity of different ANEOs. The antibacterial mechanism was revealed by crystal violet staining, XTT reduction, microbial adhesion to hydrocarbon test, extracellular polysaccharide production assay, glucosyltransferase activity assay, lactate dehydrogenase leaking, propidium iodide staining and scanning electron microscopy (SEM). The cytotoxicity of ANEOs was determine by MTT assay. Results The ANEOs separated at different temperatures exhibited different levels of antibacterial activity against S. mutans, and the ANEO separated at 70°C showed the most prominent bacteriostatic activity. Anti-biofilm experiments showed that the ANEOs attenuated the adhesion ability of S. mutans by decreasing the surface hydrophobicity of the bacteria, prevented S. mutans biofilm formation by inhibiting glucosyltransferase activity, reducing extracellular polysaccharide synthesis, and reducing the total biofilm biomass and activity. SEM further demonstrated the destructive effects of the ANEOs on the S. mutans biofilm. Cell membrane-related experiments indicated that the ANEOs destroyed the integrity of the cell membrane, resulting in the leakage of lactic dehydrogenase and nucleic acids. SEM imaging of S. mutans cell showed the disruption of the cellular morphology by the ANEOs. The cytotoxicity assay suggested that ANEO was non-toxic towards normal oral epithelial cells. Discussion This study displayed that ANEOs exerted antibacterial activity against S. mutans primarily by affecting the biofilm and disrupting the integrity of the cell membrane. ANEOs has the potential to be developed as an antibacterial agent for preventing dental caries. Additionally, a new method for the separation of essential oil components is presented.
Collapse
Affiliation(s)
- Shuwei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, Changchun, China
- College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, China
| | - Tiantian Zhang
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, Changchun, China
- College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, China
| | - Zhijin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, Changchun, China
- Xiamen Key Laboratory of Natural Medicine Research and Development, Xiamen Health and Medical Big Data Center (Xiamen Medicine Research Institute), Xiamen, China
| | - Yan Wang
- College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, Changchun, China
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, Changchun, China
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| |
Collapse
|
23
|
Yi S, Chen K, Sakao K, Ikenaga M, Wang Y, Hou DX. Assessment of Areca Nut Bioactivities in Western Diet-Induced Mice NAFLD Model. Nutrients 2023; 15:nu15102403. [PMID: 37242285 DOI: 10.3390/nu15102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The areca nut is often consumed as a chewing food in the Asian region. Our previous study revealed that the areca nut is rich in polyphenols with high antioxidant activity. In this study, we further assessed the effects and molecular mechanisms of the areca nut and its major ingredients on a Western diet-induced mice dyslipidemia model. Male C57BL/6N mice were divided into five groups and fed with a normal diet (ND), Western diet (WD), WD with areca nut extracts (ANE), areca nut polyphenols (ANP), and arecoline (ARE) for 12 weeks. The results revealed that ANP significantly reduced WD-induced body weight, liver weight, epididymal fat, and liver total lipid. Serum biomarkers showed that ANP ameliorated WD-enhanced total cholesterol and non-high-density lipoprotein (non-HDL). Moreover, analysis of cellular signaling pathways revealed that sterol regulatory element-binding protein 2 (SREBP2) and enzyme 3-hydroxy-3-methylglutaryld coenzyme A reductase (HMGCR) were significantly downregulated by ANP. The results of gut microbiota analysis revealed that ANP increased the abundance of beneficial bacterium Akkermansias and decreased the abundance of the pathogenic bacterium Ruminococcus while ARE shown the opposite result to ANP. In summary, our data indicated that areca nut polyphenol ameliorated WD-induced dyslipidemia by increasing the abundance of beneficial bacteria in the gut microbiota and reducing the expressions of SREBP2 and HMGCR while areca nut ARE inhibited this improvement potential.
Collapse
Affiliation(s)
- Shuhan Yi
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Keyu Chen
- School of Physical Education and Health, Health Service and Management, Hunan University of Technology and Business, Changsha 410205, China
| | - Kozue Sakao
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Makoto Ikenaga
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - De-Xing Hou
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
24
|
Liu PF, Chang YF. The Controversial Roles of Areca Nut: Medicine or Toxin? Int J Mol Sci 2023; 24:ijms24108996. [PMID: 37240342 DOI: 10.3390/ijms24108996] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Areca nut (AN) is used for traditional herbal medicine and social activities in several countries. It was used as early as about A.D. 25-220 as a remedy. Traditionally, AN was applied for several medicinal functions. However, it was also reported to have toxicological effects. In this review article, we updated recent trends of research in addition to acquire new knowledge about AN. First, the history of AN usage from ancient years was described. Then, the chemical components of AN and their biological functions was compared; arecoline is an especially important compound in AN. AN extract has different effects caused by different components. Thus, the dual effects of AN with pharmacological and toxicological effects were summarized. Finally, we described perspectives, trends and challenges of AN. It will provide the insight of removing or modifying the toxic compounds of AN extractions for enhancing their pharmacological activity to treat several diseases in future applications.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
25
|
Oral Submucous Fibrosis: Etiological Mechanism, Malignant Transformation, Therapeutic Approaches and Targets. Int J Mol Sci 2023; 24:ijms24054992. [PMID: 36902423 PMCID: PMC10003551 DOI: 10.3390/ijms24054992] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Oral submucosal fibrosis (OSF) is a chronic, progressive and potentially malignant oral disorder with a high regional incidence and malignant rate. With the development of the disease, the normal oral function and social life of patients are seriously affected. This review mainly introduces the various pathogenic factors and mechanisms of OSF, the mechanism of malignant transformation into oral squamous cell carcinoma (OSCC), and the existing treatment methods and new therapeutic targets and drugs. This paper summarizes the key molecules in the pathogenic and malignant mechanism of OSF, the miRNAs and lncRNAs with abnormal changes, and the natural compounds with therapeutic effects, which provides new molecular targets and further research directions for the prevention and treatment of OSF.
Collapse
|
26
|
Shakya S, Khan IM, Shakya B, Siddique YH, Varshney H, Jyoti S. Protective effect of the newly synthesized and characterized charge transfer (CT) complex against arecoline induced toxicity in third-instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9: experimental and theoretical mechanistic insights. J Mater Chem B 2023; 11:1262-1278. [PMID: 36648430 DOI: 10.1039/d2tb02362h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Agents that suppress the toxic effect of arecoline (a chemical present in the Areca nut fruit) have become a need of the hour owing to its several harmful effects on human beings. Although some drug molecules have been developed for this purpose, yet, simple, easy to prepare, and economical molecules with remarkable potency are still a challenge to design. The present work thus becomes important as it involves the synthesis of a new charge transfer complex (CTC) material, which has, for the first time, been screened to investigate its effect on the toxic effects of arecoline. The newly designed material (CL), which is generated from the reaction between 2,4,6-trinitrophenol (TNP) and pyrazole (PYZ), has been crystallized by a slow evaporation method and characterized by employing spectral studies including single crystal X-ray crystallography. Spectrophotometry studies with the inclusion of the Benesi-Hildebrand equation reveal 1 : 1 stoichiometry and physical parameters of CL. Assays were used for determining the protective effect of CL against arecoline. CL was found to (dose-dependently) decrease β-galactosidase activity, damage in tissue and DNA damage caused by arecoline (80 μM) in the third-instar larvae of the transgenic Drosophila melanogaster (hsp70-lacZ)Bg9. The possible mechanism of this effect was explored through fluorescence and UV-vis spectroscopy. The possibility of suppression of arecoline action on the muscarinic acetylcholine receptor 1-G11 protein complex (found in the cell membrane) in the presence of CL was studied theoretically by molecular docking. Density functional theory (DFT) also theoretically supported various aspects of the designed material concerning the energy profile of the orbitals (HOMO-LUMO) as well as the energy minimized structure. Furthermore, time dependent (TD) DFT corroborated the electronic properties of the designed material.
Collapse
Affiliation(s)
- Sonam Shakya
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Ishaat M Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Barkha Shakya
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | | | - Himanshi Varshney
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Smita Jyoti
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
27
|
Genetic and epigenetic instability induced by betel quid associated chemicals. Toxicol Rep 2023; 10:223-234. [PMID: 36845258 PMCID: PMC9945799 DOI: 10.1016/j.toxrep.2023.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/06/2023] Open
Abstract
Over the years, betel quid chewing and tobacco use have attracted considerable interest as they are implicated as the most likely causative risk factors of oral and esophageal cancers. Although areca nut use and betel quid chewing may lead to apoptosis, chronic exposure to areca nut and slaked lime may promote pre-malignant and malignant transformation of oral cells. The putative mutagenic and carcinogenic mechanisms may involve endogenous nitrosation of areca and tobacco alkaloids as well as the presence of direct alkylating agents in betel quid and smokeless tobacco. Metabolic activation of carcinogenic N-nitrosamines by phase-I enzymes is required not only to elicit the genotoxicity via the reactive intermediates but also to potentiate the mutagenicity with the sporadic alkylations of nucleotide bases, resulting in the formation of diverse DNA adducts. Persistent DNA adducts provides the impetus for genetic and epigenetic lesions. The genetic and epigenetic factors cumulatively influence the development and progression of disorders such as cancer. Accumulation of numerous genetic and epigenetic aberrations due to long-term betel quid (with or without tobacco) chewing and tobacco use culminates into the development of head and neck cancers. We review recent evidence that supports putative mechanisms for mutagenicity and carcinogenicity of betel quid chewing along with tobacco (smoking and smokeless) use. The detailed molecular mechanisms of the extent of accumulation and patterns of genetic alterations, indicative of the prior exposure to carcinogens and alkylating agents because of BQ chewing and tobacco use, have not yet been elucidated.
Collapse
|
28
|
Yi S, Zou L, Li Z, Sakao K, Wang Y, Hou DX. In Vitro Antioxidant Activity of Areca Nut Polyphenol Extracts on RAW264.7 Cells. Foods 2022; 11:foods11223607. [PMID: 36429198 PMCID: PMC9689504 DOI: 10.3390/foods11223607] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Chewing areca nuts is a popular hobby in the Asian region, and areca nuts are rich in polyphenols, although some alkaloids are included. In this study, we explored the antioxidant activity of areca nut polyphenols (ANP) in lipopolysaccharides (LPS)-stimulated RAW264.7 cells. The results revealed that ANP reduced the level of reactive oxygen species (ROS) in LPS-stimulated RAW264.7 cells and enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). RNA-seq analysis showed that ANP down-regulated the transcription of genes related to the cancer pathway at 160 μg/mL, and the inflammatory pathway as well as viral infection pathway at 320 μg/mL. The cellular signaling analysis further revealed that the expressions of these genes were regulated by the mitogen-activated protein kinase (MAPK) pathway, and ANP downregulated the activation of the MAPK signaling pathway stimulated by LPS. Collectively, our findings showed that ANP inhibited the MAPK pathway and activated the Nrf2/HO-1 antioxidant pathways to reduce ROS generation induced by LPS.
Collapse
Affiliation(s)
- Shuhan Yi
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Luyan Zou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
- National Engineering Center of Plant Functional Components Utilization, Changsha 410128, China
| | - Kozue Sakao
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
- National Engineering Center of Plant Functional Components Utilization, Changsha 410128, China
- Correspondence: (Y.W.); (D.-X.H.); Tel.: +86-73184617007 (Y.W.); +81-099-285-8649 (D.-X.H.)
| | - De-Xing Hou
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: (Y.W.); (D.-X.H.); Tel.: +86-73184617007 (Y.W.); +81-099-285-8649 (D.-X.H.)
| |
Collapse
|
29
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
30
|
Li YX, Hsiao CH, Chang YF. N-acetyl cysteine prevents arecoline-inhibited C2C12 myoblast differentiation through ERK1/2 phosphorylation. PLoS One 2022; 17:e0272231. [PMID: 35901044 PMCID: PMC9333315 DOI: 10.1371/journal.pone.0272231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Arecoline is known to induce reactive oxygen species (ROS). Our previous studies showed that arecoline inhibited myogenic differentiation and acetylcholine receptor cluster formation of C2C12 myoblasts. N-acetyl-cysteine (NAC) is a known ROS scavenger. We hypothesize that NAC scavenges the excess ROS caused by arecoline. In this article we examined the effect of NAC on the inhibited myoblast differentiation by arecoline and related mechanisms. We found that NAC less than 2 mM is non-cytotoxic to C2C12 by viability analysis. We further demonstrated that NAC attenuated the decreased number of myotubes and nuclei in each myotube compared to arecoline treatment by H & E staining. We also showed that NAC prevented the decreased expression level of the myogenic markers, myogenin and MYH caused by arecoline, using immunocytochemistry and western blotting. Finally, we found that NAC restored the decreased expression level of p-ERK1/2 by arecoline. In conclusion, our results indicate that NAC attenuates the damage of the arecoline-inhibited C2C12 myoblast differentiation by the activation/phosphorylation of ERK. This is the first report to demonstrate that NAC has beneficial effects on skeletal muscle myogenesis through ERK1/2 upon arecoline treatment. Since defects of skeletal muscle associates with several diseases, NAC can be a potent drug candidate in diseases related to defects in skeletal muscle myogenesis.
Collapse
Affiliation(s)
- Yi-Xuan Li
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hung Hsiao
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
31
|
Xie H, Jing R, Liao X, Chen H, Xie X, Dai H, Pan L. Arecoline promotes proliferation and migration of human HepG2 cells through activation of the PI3K/AKT/mTOR pathway. Hereditas 2022; 159:29. [PMID: 35836300 PMCID: PMC9281068 DOI: 10.1186/s41065-022-00241-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
Background Arecoline is a well-known risk factor for oral submucosal fibrosis and cancer. However, the mechanistic correlation between arecoline and hepatocellular cancer remains elusive. Here, we investigated the effect of arecoline on the proliferation and migration of human HepG2 hepatoma cells and its potential oncogenic mechanisms. Methods Bioinformatic technologies were used to identify the deferentially expressed miRNAs (DE-miRNAs) and hub target genes of arecoline-induced cancers. These DE-miRNAs, hub genes and pathway were proved in arecoline-treated HepG2 cells. Results A total of 86 DE-miRNAs and 460 target genes were identified. These target genes are associated with DNA-templated regulation of transcription and other biological processes. Significant molecular functions were protein binding, calcium ion binding, and enrichment in the nucleus and cytoplasm. These genes are involved in the PI3K-AKT pathway. CDK1, CCND1, RAF1, CDKN1B and BTRC were defined as the top 5 hub target genes, and patients with high expression of CDK1 showed poor prognosis. Compared with control group, 2.5 µM arecoline treatment increased the proliferation and migration ability of the HepG2 cells. Treatment with 2.5 µM arecoline increased the levels of miR-21-3p, miR-21-5p and miR-1267, upregulated the expression of PI3K-AKT pathway factors, CDK1, CCND1 but decreased RAF1 expression. Conclusion A low concentration arecoline can induce the proliferation and migration of HepG2 cells, with the potential mechanism of action linked to high levels of exosomal miR-21 and miR-1267, activation of the PI3K-AKT pathway, upregulation of CDK1 and CCND1, and downregulation of RAF1.
Collapse
Affiliation(s)
- Hai Xie
- Department of Anesthesiology, Guangxi Medical University Affiliated Cancer Hospital, He Di Rd No.71, Nanning, 530021, PR China.,Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China.,Department of Anesthesiology, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Ren Jing
- Department of Anesthesiology, Guangxi Medical University Affiliated Cancer Hospital, He Di Rd No.71, Nanning, 530021, PR China.,Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoting Liao
- Department of Anesthesiology, Guangxi Medical University Affiliated Cancer Hospital, He Di Rd No.71, Nanning, 530021, PR China.,Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Haishao Chen
- Department of Anesthesiology, Guangxi Medical University Affiliated Cancer Hospital, He Di Rd No.71, Nanning, 530021, PR China.,Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xianlong Xie
- Department of Anesthesiology, Guangxi Medical University Affiliated Cancer Hospital, He Di Rd No.71, Nanning, 530021, PR China.,Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Huijun Dai
- Department of Anesthesiology, Guangxi Medical University Affiliated Cancer Hospital, He Di Rd No.71, Nanning, 530021, PR China.,Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Affiliated Cancer Hospital, He Di Rd No.71, Nanning, 530021, PR China. .,Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China.
| |
Collapse
|
32
|
Li J, Chen S, Liao Y, Wang H, Zhou D, Zhang B. Arecoline Is Associated With Inhibition of Cuproptosis and Proliferation of Cancer-Associated Fibroblasts in Oral Squamous Cell Carcinoma: A Potential Mechanism for Tumor Metastasis. Front Oncol 2022; 12:925743. [PMID: 35875097 PMCID: PMC9303015 DOI: 10.3389/fonc.2022.925743] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMetastatic disease remains the primary cause of death in patients with oral squamous cell carcinoma (OSCC), especially those who use betel nut. The different steps of the metastatic cascade rely on reciprocal interactions between cancer cells and the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are regarded as a significant component in the TME of OSCC. However, the precise mechanisms regulating CAFs in OSCC are poorly understood.MethodsThirteen genes related to the arecoline were analyzed to explore the significant ones involved in arecoline-related OSCC metastasis. The GSE139869 (n = 10) and The Cancer Genome Atlas (TCGA)-OSCC data (n = 361) were mined for the identification of the differentially expressed genes. The least absolute shrinkage and selection operator (LASSO) regression was performed to identify the independent prognostic signatures. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to explore the functional enrichment of selected genes, and gene set enrichment analysis of cuproptosis-related genes was completed. Spearman’s analysis and Tumor Immune Estimation Resource (TIMER) were used to visualize the correlation between the infiltration of CAFs and the gene expression. The correlation analysis of the cells and different genes, including CAF infiltration and transcripts per million expression, was assessed. The relationship between arecoline and CAFs was confirmed by cell counting kit-8 assay (CCK-8). CancerSEA was searched to identify the single-cell phenotype.ResultArecoline-associated fibrosis-related OSCC differentially expressed genes (AFOC-DEGs), namely, PLAU, IL1A, SPP1, CCL11, TERT, and COL1A2, were screened out and selected from the Gene Expression Omnibus (GEO) database and TCGA database. AFOC-DEGs were highly expressed in OSCC, which led to poor survival of patients. Functional enrichment analysis, protein–protein interaction network construction, and Spearman’s correlation analysis all suggested that AFOC-DEGs were closely associated with cuproptosis. Cellular experiments demonstrated that arecoline stimulation could significantly increase the cell viability of CAFs. Single-sample Gene Set Enrichment Analysis (ssGSEA) results showed that GLS and MTF1 were highly expressed when fibroblasts proliferated at high enrichment levels. In addition, analysis of single-cell sequencing results suggested that OSCC cells with high expression of AFOC-DEGs were associated with OSCC metastasis.ConclusionWe found a close association between arecoline, cuproptosis, and CAFs, which might play an important role in the metastasis of OSCC.
Collapse
Affiliation(s)
- Jinfei Li
- Department of Stomatology, Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuangyi Chen
- Department of Stomatology, Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuxuan Liao
- Department of Stomatology, Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongyi Wang
- Department of Stomatology, Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Dawei Zhou
- Department of Stomatology, Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Zhang
- Department of Stomatology, Third Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Bo Zhang,
| |
Collapse
|
33
|
Gao SL, Tang YY, Jiang JM, Zou W, Zhang P, Tang XQ. Improvement of autophagic flux mediates the protection of hydrogen sulfide against arecoline-elicited neurotoxicity in PC12 cells. Cell Cycle 2022; 21:1077-1090. [PMID: 35316162 PMCID: PMC9037498 DOI: 10.1080/15384101.2022.2040932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Arecoline, the most abundant alkaloid of the areca nut, induces toxicity to neurons. Hydrogen sulfide (H2S) is an endogenous gas with neuroprotective effects. We recently found that arecoline reduced endogenous H2S content in PC12 cells. In addition, exogenously administration of H2S alleviated the neurotoxicity of arecoline on PC12 cells. Increasing evidence has demonstrated the neuroprotective role of improvement of autophagic flux. Therefore, the aim of the present work is to explore whether improvement of autophagic flux mediates the protection of H2S against arecoline-caused neurotoxicity. Transmission electron microscope (TEM) for observation of ultrastructural morphology. Western blotting was used to detect protein expression of the related markers. Functional analysis contained LDH release assay, Hoechst 33,258 nuclear staining and flow cytometry were used to detect cytotoxicity and apoptosis. In the present work, we found that arecoline disrupted autophagy flux in PC12 cells as evidenced by accumulation of autophagic vacuoles, increase in LC3II/LC3I, and upregulation of p62 expression in PC12 cells. Notably, we found that sodium hydrosulfide (NaHS), the donor of H2S improved arecoline-blocked autophagy flux in PC12 cells. Furthermore, we found that blocking autophagic flux by chloroquine (CQ), the inhibitor of autophagy flux, antagonized the inhibitory role of NaHS in arecoline-induced cytotoxicity apoptosis and endoplasmic reticulum (ER) stress. In conclusion, H2S improves arecoline-caused disruption of autophagic flux to exert its protection against the neurotoxicity of arecoline.
Collapse
Affiliation(s)
- Sheng-Lan Gao
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, GD, China
- Department of Physiology, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, HN, China
- CONTACT Sheng-Lan Gao Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, GD524001, China
| | - Yi-Yun Tang
- Department of Physiology, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, HN, China
| | - Jia-Mei Jiang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, HN, China
| | - Wei Zou
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, HN, China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, HN, China
| | - Xiao-Qing Tang
- Department of Physiology, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, HN, China
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, HN, China
- Xiao-Qing Tang The First Affiliated Hospital, Institute of Neuroscience, Hengyang Medical School, University of South China,Hengyang, HN 421001, China
| |
Collapse
|
34
|
Betel Nut Chewing Is Associated with the Risk of Kidney Stone Disease. J Pers Med 2022; 12:jpm12020126. [PMID: 35207614 PMCID: PMC8879579 DOI: 10.3390/jpm12020126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Betel nut chewing injures bodily health. Although, the relationship between betel nut chewing and kidney stone disease (KSD) is unknown. (2) Methods: We analyzed 43,636 men from Taiwan Biobank. We divided them into two groups on the status of betel nut chewing, the never-chewer and ever-chewer groups. Self-reported diagnosed KSD was defined as the subject’s medical history of KSD in the questionnaire. Logistic regression was used to analyze the association of betel nut chewing and the risk of KSD. (3) Results: The mean age of subjects in the present study was 50 years, and 16% were ever-chewers. KSD was observed in 3759 (10.3%) and 894 (12.6%) participants in the group of never-chewer and ever-chewer groups, respectively. Higher risk of KSD was found in participants with betel nut chewing compared with to without betel nut chewing (odds ratio (OR), 1.094; 95% confidence interval (95% CI), 1.001 to 1.196). Furthermore, the daily amounts of betel nut chewing >30 quids was associated with a more than 1.5-fold increase (OR, 1.571; 95% CI, 1.186 to 2.079) in the odds of KSD; (4) Conclusions: Our study suggests that betel nut chewing is associated with the risk of KSD and warrants further attention to this problem.
Collapse
|
35
|
Ayu Kade Sutariati G, Mila Rahni N, Corina Rakian T, Madiki A, Risqi Maharani R, Mudi L, Nurhayati Yusuf D, Ngurah Adhi Wibawa G. Scarification and Seed Biomatriconditioning Effect Using Endophytic-Rhizobacteria in Areca Nut ( Areca catechu L.) Seedling Vigor. Pak J Biol Sci 2022; 25:168-174. [PMID: 35234006 DOI: 10.3923/pjbs.2022.168.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Intensive and commercial development of areca nut requires the provision of high-vigour areca nut. This study aimed to evaluate the effect of scarification and seeds biomatriconditioning using endophytic-rhizobacteria in increasing seedlings vigor of areca nut. <b>Materials and Methods:</b> The research was carried out at the Agronomy Unit of Agrotechnology Laboratory, Agriculture Faculty, Halu Oleo University, from November, 2020-March, 2021. The research design was split-plot in a Completely Randomized Design (CRD). The main plot, seed scarification, consisted of 2 treatments, without scarification and scarification. Sub-plots, seeds biomatriconditioning using endophytic-rhizobacteria, consisted of 6 treatments, control, L1-R, M5-R, LA6-R, LA2-E and RJ6-R. <b>Results:</b> The results showed that the scarification treatment did not affect the seedlings vigor of the areca nut. Seed biomatriconditioning using endophytic-rhizobacteria was able to increase seedling vigor both without scarification and with scarification. There were 3 isolates of endophytic-rhizobacteria which were more able to increase the vigor of areca nut without scarification, namely L1-R, LA6-R and LA2-E, with an increase of 137, 104 and 102%, respectively compared to the control, while in scarified seeds, L1-R isolate was able to increase the seedlings vigor of areca nut by 194% compared to the control. <b>Conclusion:</b> Scarification treatment did not affect the vigor of the areca nut. Seed biomatriconditioning with endophytic-rhizobacteria was able to increase the vigor of areca nut seeds either without scarification or with scarification.
Collapse
|
36
|
Chen X, He Y, Deng Y. Chemical Composition, Pharmacological, and Toxicological Effects of Betel Nut. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1808081. [PMID: 34457017 PMCID: PMC8387188 DOI: 10.1155/2021/1808081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/07/2021] [Indexed: 01/18/2023]
Abstract
Betel nut, the fruit of Areca catechu L, has a long medical history in Southeast Asia. It is native to Malaysia and is cultivated and processed extensively in subtropical regions, such as South China and India. Betel nut almost appears as a "snack" in various occasions in most parts of China. Clinically, betel nut can play a certain pharmacology role and was used in malaria, ascariasis, arthritis, enterozoic abdominalgia, stagnation of food, diarrhea, edema, and beriberi. The nervous excitement of betel nut chewing has made it gradually become popular. However, chewing betel nut can induce oral submucosal fibrosis (OSF) and oral cancer (OC). At the same time, long-term chewing of betel nut also causes inhaled asthma, sperm reducing, betel quid dependence (BQD), and uterine and esophageal cancers. The main components of processed betel nut are the goal of this review. This study will mainly start from the pharmacological activity and toxicology study of betel nut in recent years, aiming to seek its advantages and disadvantages. In the meantime, this study will analyze and emphasize that betel nut and arecoline are the high-risk factors for oral cancer, which should arouse attention and vigilance of the public.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanru Deng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
37
|
A cocktail of carcinogens from betel quid chewing. Arch Toxicol 2021; 95:2223-2224. [PMID: 33895881 DOI: 10.1007/s00204-021-03055-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
|
38
|
Reply to the commentary by Sarode and Sarode on "Genetic toxicology and toxicokinetics of arecoline and related areca nut compounds: an updated review". Arch Toxicol 2021; 95:1861-1862. [PMID: 33846819 DOI: 10.1007/s00204-021-03039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
|
39
|
Sarode SC, Sarode GS. Comment on "Genetic toxicology and toxicokinetics of arecoline and related areca nut compounds: an updated review". Arch Toxicol 2021; 95:1859-1860. [PMID: 33738546 DOI: 10.1007/s00204-021-03027-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/10/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, 411018, India.
| | - Gargi S Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, 411018, India
| |
Collapse
|