1
|
Bjorness TE, Greene RW. Orexin-mediated motivated arousal and reward seeking. Peptides 2024; 180:171280. [PMID: 39159833 DOI: 10.1016/j.peptides.2024.171280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The neuromodulator orexin has been identified as a key factor for motivated arousal including recent evidence that sleep deprivation-induced enhancement of reward behavior is modulated by orexin. While orexin is not necessary for either reward or arousal behavior, orexin neurons' broad projections, ability to sense the internal state of the animal, and high plasticity of signaling in response to natural rewards and drugs of abuse may underlie heightened drug seeking, particularly in a subset of highly motivated reward seekers. As such, orexin receptor antagonists have gained deserved attention for putative use in addiction treatments. Ongoing and future clinical trials are expected to identify individuals most likely to benefit from orexin receptor antagonist treatment to promote abstinence, such as those with concurrent sleep disorders or high craving, while attention to methodological considerations will aid interpretation of the numerous preclinical studies investigating disparate aspects of the role of orexin in reward and arousal.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Research Service, VA North Texas Health Care System, Dallas, TX 75126, USA; Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Robert W Greene
- Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
2
|
Sun Y, Tisdale RK, Yamashita A, Kilduff TS. Peripheral vs. core body temperature as hypocretin/orexin neurons degenerate: Exercise mitigates increased heat loss. Peptides 2023; 164:171002. [PMID: 36963505 PMCID: PMC10337601 DOI: 10.1016/j.peptides.2023.171002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
Hypocretins/Orexins (Hcrt/Ox) are hypothalamic neuropeptides implicated in diverse functions, including body temperature regulation through modulation of sympathetic vasoconstrictor tone. In the current study, we measured subcutaneous (Tsc) and core (Tb) body temperature as well as activity in a conditional transgenic mouse strain that allows the inducible ablation of Hcrt/Ox-containing neurons by removal of doxycycline (DOX) from their diet (orexin-DTA mice). Measurements were made during a baseline, when mice were being maintained on food containing DOX, and over 42 days while the mice were fed normal chow which resulted in Hcrt/Ox neuron degeneration. The home cages of the orexin-DTA mice were equipped with running wheels that were either locked or unlocked. In the presence of a locked running wheel, Tsc progressively decreased on days 28 and 42 in the DOX(-) condition, primarily during the dark phase (the major active period for rodents). This nocturnal reduction in Tsc was mitigated when mice had access to unlocked running wheels. In contrast to Tsc, Tb was largely maintained until day 42 in the DOX(-) condition even when the running wheel was locked. Acute changes in both Tsc and Tb were observed preceding, during, and following cataplexy. Our results suggest that ablation of Hcrt/Ox-containing neurons results in elevated heat loss, likely through reduced sympathetic vasoconstrictor tone, and that exercise may have some therapeutic benefit to patients with narcolepsy, a disorder caused by Hcrt/Ox deficiency. Acute changes in body temperature may facilitate prediction of cataplexy onset and lead to interventions to mitigate its occurrence.
Collapse
Affiliation(s)
- Yu Sun
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA.
| | - Ryan K Tisdale
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Akira Yamashita
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA; Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Thomas S Kilduff
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| |
Collapse
|
3
|
Sex-dependent role of orexin deficiency in feeding behavior and affective state of mice following intermittent access to a Western diet - Implications for binge-like eating behavior. Physiol Behav 2023; 260:114069. [PMID: 36572152 DOI: 10.1016/j.physbeh.2022.114069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Binge eating disorder is a debilitating disease characterized by recurrent episodes of excessive food consumption and associated with psychiatric comorbidities. Despite a growing body of research investigating the neurobiological underpinnings of eating disorders, specific treatments are lacking. Given its fundamental role in feeding behaviors, we investigated the role of the orexin (hypocretin) neuropeptide system in binge-like eating and associated phenotypes. Specifically, we submitted female and male orexin-deficient mice to a paradigm of intermittent access (once weekly for 24 h) to a Western diet (WD) to induce binge-like eating. Additionally, we measured their anxiety-like behavior and plasma corticosterone levels. All mice showed binge-like eating in response to the intermittent WD access, but females did so to a greater extent than males. While orexin deficiency did not affect binge-like eating in this paradigm, we found that female orexin-deficient mice generally weighed more, and they expressed increased hypophagia and stress levels compared to wild-type mice following binge-like eating episodes. These detrimental effects of orexin deficiency were marginal or absent in males. Moreover, male wild-type mice expressed post-binge anxiety, but orexin-deficient mice did not. In conclusion, these results extend our knowledge of orexin's role in dysregulated eating and associated negative affective states, and contribute to the growing body of evidence indicating a sexual dimorphism of the orexin system. Considering that many human disorders, and especially eating disorders, have a strong sex bias, our findings further emphasize the importance of testing both female and male subjects.
Collapse
|
4
|
Levine AS, Jewett DC, Kotz CM, Olszewski PK. Behavioral plasticity: Role of neuropeptides in shaping feeding responses. Appetite 2022; 174:106031. [PMID: 35395362 DOI: 10.1016/j.appet.2022.106031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/12/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Abstract
Behavioral plasticity refers to changes occurring due to external influences on an organism, including adaptation, learning, memory and enduring influences from early life experience. There are 2 types of behavioral plasticity: "developmental", which refers to gene/environment interactions affecting a phenotype, and "activational" which refers to innate physiology and can involve structural physiological changes of the body. In this review, we focus on feeding behavior, and studies involving neuropeptides that influence behavioral plasticity - primarily opioids, orexin, neuropeptide Y, and oxytocin. In each section of the review, we include examples of behavioral plasticity as it relates to actions of these neuropeptides. It can be concluded from this review that eating behavior is influenced by a number of external factors, including time of day, type of food available, energy balance state, and stressors. The reviewed work underscores that environmental factors play a critical role in feeding behavior and energy balance, but changes in eating behavior also result from a multitude of non-environmental factors, such that there can be no single mechanism or variable that can explain ingestive behavior.
Collapse
Affiliation(s)
- Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, 55113, USA.
| | - David C Jewett
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Catherine M Kotz
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA; Geriatric, Research, Education and Clinical Center, Minneapolis Veterans Affairs Health, Minneapolis, MN, 55417, USA
| | - Pawel K Olszewski
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, 55113, USA; Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA; Faculty of Science and Engineering, University of Waikato, Hamilton, 3240, New Zealand
| |
Collapse
|
5
|
Elahdadi Salmani M, Sarfi M, Goudarzi I. Hippocampal orexin receptors: Localization and function. VITAMINS AND HORMONES 2022; 118:393-421. [PMID: 35180935 DOI: 10.1016/bs.vh.2021.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Orexin (hypocretin) is secreted from the perifornical/lateral hypothalamus and is well known for sleep regulation. Orexin has two, orexin A and B, transcripts and two receptors, type 1 and 2 (OX1R and OX2R), located in the plasma membrane of neurons in different brain areas, including the hippocampus involved in learning, memory, seizures, and epilepsy, as physiologic and pathologic phenomena. OX1R is expressed in the dentate gyrus and CA1 and the OX2R in the CA3 areas. Orexin enhances learning and memory as well as reward, stress, seizures, and epilepsy, partly through OX1Rs, while either aggravating or alleviating those phenomena via OX2Rs. OX1Rs activation induces long-term changes of synaptic responses in the hippocampus, an age and concentration-dependent manner. Briefly, we will review the localization and functions of hippocampal orexin receptors, their role in learning, memory, stress, reward, seizures, epilepsy, and hippocampal synaptic plasticity.
Collapse
Affiliation(s)
| | | | - Iran Goudarzi
- School of Biology, Damghan University, Damghan, Iran
| |
Collapse
|
6
|
Pantazis CB, James MH, O’Connor S, Shin N, Aston-Jones G. Orexin-1 receptor signaling in ventral tegmental area mediates cue-driven demand for cocaine. Neuropsychopharmacology 2022; 47:741-751. [PMID: 34635803 PMCID: PMC8782853 DOI: 10.1038/s41386-021-01173-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 02/03/2023]
Abstract
Drug-associated sensory cues increase motivation for drug and the orexin system is importantly involved in this stimulus-enhanced motivation. Ventral tegmental area (VTA) is a major target by which orexin signaling modulates reward behaviors, but it is unknown whether this circuit is necessary for cue-driven motivation for cocaine. Here, we investigated the role of VTA orexin signaling in cue-driven motivation for cocaine using a behavioral economics (BE) paradigm. We found that infusion of the orexin-1 receptor (Ox1R) antagonist SB-334867 (SB) into VTA prior to BE testing reduced motivation when animals were trained to self-administer cocaine with discrete cues and tested on BE with those cues. SB had no effect when animals were trained to self-administer cocaine without cues or tested on BE without cues, indicating that learning to associate cues with drug delivery during self-administration training was necessary for cues to recruit orexin signaling in VTA. These effects were specific to VTA, as injections of SB immediately dorsal had no effect. Moreover, intra-VTA SB did not have an impact on locomotor activity, or low- or high-effort consumption of sucrose. Finally, we microinjected a novel retrograde adeno-associated virus (AAVretro) containing an orexin-specific short hairpin RNA (OxshRNA) into VTA to knock down orexin in the hypothalamus-VTA circuit. These injections significantly reduced orexin expression in lateral hypothalamus (LH) and decreased cue-driven motivation. These studies demonstrate a role for orexin signaling in VTA, specifically when cues predict drug reward.
Collapse
Affiliation(s)
- Caroline B. Pantazis
- grid.430387.b0000 0004 1936 8796Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ USA ,grid.94365.3d0000 0001 2297 5165Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| | - Morgan H. James
- grid.430387.b0000 0004 1936 8796Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers Unviversity, Piscataway, NJ USA
| | - Shayna O’Connor
- grid.430387.b0000 0004 1936 8796Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ USA
| | - Noah Shin
- grid.430387.b0000 0004 1936 8796Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Cell Biology and Neuroscience Department, Rutgers University-New Brunswick, Piscataway, NJ USA
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA.
| |
Collapse
|
7
|
Muthmainah M, Gogos A, Sumithran P, Brown RM. Orexins (hypocretins): The intersection between homeostatic and hedonic feeding. J Neurochem 2021; 157:1473-1494. [PMID: 33608877 DOI: 10.1111/jnc.15328] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022]
Abstract
Orexins are hypothalamic neuropeptides originally discovered to play a role in the regulation of feeding behaviour. The broad connections of orexin neurons to mesocorticolimbic circuitry suggest they may play a role in mediating reward-related behaviour beyond homeostatic feeding. Here, we review the role of orexin in a variety of eating-related behaviour, with a focus on reward and motivation, and the neural circuits driving these effects. One emerging finding is the involvement of orexins in hedonic and appetitive behaviour towards palatable food, in addition to their role in homeostatic feeding. This review discusses the brain circuitry and possible mechanisms underlying the role of orexins in these behaviours. Overall, there is a marked bias in the literature towards studies involving male subjects. As such, future work needs to be done to involve female subjects. In summary, orexins play an important role in driving motivation for high salient rewards such as highly palatable food and may serve as the intersection between homeostatic and hedonic feeding.
Collapse
Affiliation(s)
- Muthmainah Muthmainah
- The Florey Institute of Neuroscience and Mental Health, Mental Health Research Theme, Parkville, Melbourne, Vic., Australia.,The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Vic., Australia.,Department of Anatomy, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Andrea Gogos
- The Florey Institute of Neuroscience and Mental Health, Mental Health Research Theme, Parkville, Melbourne, Vic., Australia
| | - Priya Sumithran
- Department of Medicine (Austin), University of Melbourne, Heidelberg, Vic., Australia.,Department of Endocrinology, Austin Health, Heidelberg, Vic., Australia
| | - Robyn M Brown
- The Florey Institute of Neuroscience and Mental Health, Mental Health Research Theme, Parkville, Melbourne, Vic., Australia.,The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Vic., Australia
| |
Collapse
|
8
|
Lee J, Raycraft L, Johnson AW. The dynamic regulation of appetitive behavior through lateral hypothalamic orexin and melanin concentrating hormone expressing cells. Physiol Behav 2020; 229:113234. [PMID: 33130035 DOI: 10.1016/j.physbeh.2020.113234] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The lateral hypothalamic area (LHA) is a heterogeneous brain structure extensively studied for its potent role in regulating energy balance. The anatomical and molecular diversity of the LHA permits the orchestration of responses to energy sensing cues from the brain and periphery. Two of the primary cell populations within the LHA associated with integration of this information are Orexin (ORX) and Melanin Concentrating Hormone (MCH). While both of these non-overlapping populations exhibit orexigenic properties, the activities of these two systems support feeding behavior through contrasting mechanisms. We describe the anatomical and functional properties as well as interaction with other neuropeptides and brain reward and hedonic systems. Specific outputs relating to arousal, food seeking, feeding, and metabolism are coordinated through these mechanisms. We then discuss how both the ORX and MCH systems harmonize in a divergent yet overall cooperative manner to orchestrate feeding behavior through transitions between various appetitive states, and thus offer novel insights into LHA allostatic control of appetite.
Collapse
Affiliation(s)
| | | | - Alexander W Johnson
- Department of Psychology; Neuroscience Program, Michigan State University, East Lansing.
| |
Collapse
|
9
|
Couvineau A, Voisin T, Nicole P, Gratio V, Abad C, Tan YV. Orexins as Novel Therapeutic Targets in Inflammatory and Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2019; 10:709. [PMID: 31695678 PMCID: PMC6817618 DOI: 10.3389/fendo.2019.00709] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/02/2019] [Indexed: 02/05/2023] Open
Abstract
Orexins [orexin-A (OXA) and orexin-B (OXB)] are two isoforms of neuropeptides produced by the hypothalamus. The main biological actions of orexins, focused on the central nervous system, are to control the sleep/wake process, appetite and feeding, energy homeostasis, drug addiction, and cognitive processes. These effects are mediated by two G protein-coupled receptor (GPCR) subtypes named OX1R and OX2R. In accordance with the synergic and dynamic relationship between the nervous and immune systems, orexins also have neuroprotective and immuno-regulatory (i.e., anti-inflammatory) properties. The present review gathers recent data demonstrating that orexins may have a therapeutic potential in several pathologies with an immune component including multiple sclerosis, Alzheimer's disease, narcolepsy, obesity, intestinal bowel diseases, septic shock, and cancers.
Collapse
Affiliation(s)
- Alain Couvineau
- INSERM UMR1149/Inflammation Research Center (CRI), Team “From Inflammation to Cancer in Digestive Diseases” Labeled by “la Ligue Nationale Contre le Cancer”, University of Paris, Paris, France
| | - Thierry Voisin
- INSERM UMR1149/Inflammation Research Center (CRI), Team “From Inflammation to Cancer in Digestive Diseases” Labeled by “la Ligue Nationale Contre le Cancer”, University of Paris, Paris, France
| | - Pascal Nicole
- INSERM UMR1149/Inflammation Research Center (CRI), Team “From Inflammation to Cancer in Digestive Diseases” Labeled by “la Ligue Nationale Contre le Cancer”, University of Paris, Paris, France
| | - Valérie Gratio
- INSERM UMR1149/Inflammation Research Center (CRI), Team “From Inflammation to Cancer in Digestive Diseases” Labeled by “la Ligue Nationale Contre le Cancer”, University of Paris, Paris, France
| | - Catalina Abad
- University of Rouen Normandy, INSERM U1234 PANTHER, IRIB, Rouen, France
| | - Yossan-Var Tan
- University of Rouen Normandy, INSERM U1234 PANTHER, IRIB, Rouen, France
| |
Collapse
|
10
|
Meffre J, Sicre M, Diarra M, Marchessaux F, Paleressompoulle D, Ambroggi F. Orexin in the Posterior Paraventricular Thalamus Mediates Hunger-Related Signals in the Nucleus Accumbens Core. Curr Biol 2019; 29:3298-3306.e4. [DOI: 10.1016/j.cub.2019.07.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/23/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022]
|
11
|
Wang P, Wang M, Zhang L, Zhong S, Jiang W, Wang Z, Sun C, Zhang S, Liu Z. Functional characterization of an orexin neuropeptide in amphioxus reveals an ancient origin of orexin/orexin receptor system in chordate. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1655-1669. [PMID: 30945108 DOI: 10.1007/s11427-018-9421-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/10/2018] [Indexed: 01/09/2023]
Abstract
Amphioxus belongs to the subphylum cephalochordata, an extant representative of the most basal chordates, whose regulation of endocrine system remains ambiguous. Here we clearly demonstrated the existence of a functional orexin neuropeptide in amphioxus, which is able to interact with orexin receptor, activate both PKC and PKA pathways, decrease leptin expression, and stimulate lipogenesis. We also showed the transcription level of amphioxus orexin was affected by fasting or temperature, indicating a role of this gene in the regulation of energy balance. In addition, the expression of the amphioxus orexin was detected at cerebral vesicle, which has been proposed to be a homolog of the vertebrate brain. These data collectively suggest that a functional orexin neuropeptide has already emerged in amphioxus, which provide insights into the evolutionary origin of orexin in chordate and the functional homology between the cerebral vesicle and vertebrate brain.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Evolution & Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Meng Wang
- Institute of Evolution & Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Liping Zhang
- Institute of Evolution & Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Shenjie Zhong
- Institute of Evolution & Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Wanyue Jiang
- Institute of Evolution & Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Ziyue Wang
- Institute of Evolution & Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Chen Sun
- Institute of Evolution & Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Zhenhui Liu
- Institute of Evolution & Marine Biodiversity, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
12
|
Summers CH, Yaeger JDW, Staton CD, Arendt DH, Summers TR. Orexin/hypocretin receptor modulation of anxiolytic and antidepressive responses during social stress and decision-making: Potential for therapy. Brain Res 2018; 1731:146085. [PMID: 30590027 DOI: 10.1016/j.brainres.2018.12.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/15/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Hypothalmic orexin/hypocretin (Orx) neurons in the lateral and dorsomedial perifornical region (LH-DMH/PeF) innervate broadly throughout the brain, and receive similar inputs. This wide distribution, as well as two Orx peptides (OrxA and OrxB) and two Orx receptors (Orx1 and Orx2) allow for functionally related but distinctive behavioral outcomes, that include arousal, sleep-wake regulation, food seeking, metabolism, feeding, reward, addiction, and learning. These are all motivational functions, and tie the orexin systems to anxiety and depression as well. We present evidence, that for affective behavior, Orx1 and Orx2 receptors appear to have opposing functions. The majority of research on anxiety- and depression-related outcomes has focused on Orx1 receptors, which appear to have primarily anxiogenic and pro-depressive actions. Although there is significant research suggesting contrary findings, the primary potential for pharmacotherapies linked to the Orx1 receptor is via antagonists to block anxious and depressive behavior. Dual orexin receptor antagonists have been approved for treatment of sleep disorders, and are likely candidates for adaptation for affect disorder treatments. However, we present evidence here that demonstrates the Orx2 receptors are anxiolytic and antidepressive. Using a new experimental pre-clinical model of anxious and depressive behavior stimulated by social stress and decision-making that produces two stable behavioral phenotypes, Escape/Resilient and Stay/Susceptible, we tested the effects of intracerebroventricular injections of Orx2 agonist and antagonist drugs. Over ten behavioral measures, we have demonstrated that Orx2 agonists promote resilience, as well as anxiolytic and antidepressive behavior. In contrast, Orx2 antagonists or knockdown kindle anxious and pro-depressive behavior plus increase susceptibility. The results suggest that the Orx2 receptor may be a useful target for pharmacotherapies to treat anxiety and depression.
Collapse
Affiliation(s)
- Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA.
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| | - Clarissa D Staton
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| | - David H Arendt
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA
| | - Tangi R Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| |
Collapse
|
13
|
Duffy CM, Hofmeister JJ, Nixon JP, Butterick TA. High fat diet increases cognitive decline and neuroinflammation in a model of orexin loss. Neurobiol Learn Mem 2018; 157:41-47. [PMID: 30471346 DOI: 10.1016/j.nlm.2018.11.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/26/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022]
Abstract
Midlife obesity is a risk factor for cognitive decline and is associated with the earlier onset of Alzheimer's disease (AD). Diets high in saturated fat potentiate the onset of obesity, microglial activation, and neuroinflammation. Signaling deficiencies in the hypothalamic peptide orexin and/or orexin fiber loss are linked to neurodegeneration, cognitive impairment, and neuroinflammation. Prior studies show that orexin is neuroprotective, suppresses neuroinflammation, and that treatment with orexin improves cognitive processes in orexin/ataxin-3 (O/A3) mice, a transgenic mouse model of orexin neurodegeneration. Our overall hypothesis is that loss of orexin contributes to high fat diet (HFD)-induced hippocampal neuroinflammation and cognitive decline. To examine this, we tested male O/A3 mice (7-8 mo. of age) in a two-way active avoidance (TWAA) hippocampus-dependent memory task. We tested whether (1) orexin loss impaired cognitive function; (2) HFD worsened cognitive impairment; and (3) HFD increased microglial activation and neuroinflammation. O/A3 mice showed significant impairments in TWAA task learning vs. wild type (WT) mice (increased escapes p < 0.05, reduced avoidances p < 0.0001). Mice were then placed on HFD (45% total fat, 31.4% saturated fat) or remained on normal chow (NC; 4% total fat and 1% saturated fat), and TWAA was retested at 2 and 4 weeks. Learning impairment was evident at both 2 and 4 weeks in O/A3 mice fed HFD for following diet exposure vs. WT mice on normal chow or HFD (increased escapes, reduced avoidances p < 0.05). Additionally, O/A3 mice had increased gene expression of the microglial activation marker Iba-1 (measured via qRT-PCR, p < 0.001). Further characterization of the microglial immune response genes in hippocampal tissue revealed a significant increase in CX3 chemokine receptor 1 (CX3CR1), tumor necrosis factor-alpha (TNF-α) and the mitochondria-associated enzyme immune responsive gene-1 (Irg1). Collectively, our results indicate that orexin loss impairs memory, and that HFD accelerates hippocampus-dependent learning deficits and the onset of neuroinflammation.
Collapse
Affiliation(s)
- C M Duffy
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, United States; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, United States
| | - J J Hofmeister
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, United States; Minneapolis Center for Veterans Research and Education, Minneapolis, MN, United States
| | - J P Nixon
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, United States; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, United States; Minneapolis Center for Veterans Research and Education, Minneapolis, MN, United States
| | - T A Butterick
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, United States; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, United States; Minneapolis Center for Veterans Research and Education, Minneapolis, MN, United States.
| |
Collapse
|
14
|
Schmeichel BE, Matzeu A, Koebel P, Vendruscolo LF, Sidhu H, Shahryari R, Kieffer BL, Koob GF, Martin-Fardon R, Contet C. Knockdown of hypocretin attenuates extended access of cocaine self-administration in rats. Neuropsychopharmacology 2018; 43:2373-2382. [PMID: 29703996 PMCID: PMC6180106 DOI: 10.1038/s41386-018-0054-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/22/2022]
Abstract
The hypocretin/orexin (HCRT) neuropeptide system regulates feeding, arousal state, stress responses, and reward, especially under conditions of enhanced motivational relevance. In particular, HCRT neurotransmission facilitates drug-seeking behavior in circumstances that demand increased effort and/or motivation to take the drug. The present study used a shRNA-encoding adeno-associated viral vector to knockdown Hcrt expression throughout the dorsal hypothalamus in adult rats and determine the role of HCRT in cocaine self-administration. Chronic Hcrt silencing did not impact cocaine self-administration under short-access conditions, but robustly attenuated cocaine intake under extended access conditions, a model that mimics key features of compulsive cocaine taking. In addition, Hcrt silencing decreased motivation for both cocaine and a highly palatable food reward (i.e., sweetened condensed milk; SCM) under a progressive ratio schedule of reinforcement, but did not alter responding for SCM under a fixed ratio schedule. Importantly, Hcrt silencing did not affect food or water consumption, and had no consequence for general measures of arousal and stress reactivity. At the molecular level, chronic Hcrt knockdown reduced the number of neurons expressing dynorphin (DYN), and to a smaller extent melanin-concentrating hormone (MCH), in the dorsal hypothalamus. These original findings support the hypothesis that HCRT neurotransmission promotes operant responding for both drug and non-drug rewards, preferentially under conditions requiring a high degree of motivation. Furthermore, the current study provides compelling evidence for the involvement of the HCRT system in cocaine self-administration also under low-effort conditions in rats allowed extended access, possibly via functional interactions with DYN and MCH signaling.
Collapse
Affiliation(s)
- Brooke E Schmeichel
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| | - Alessandra Matzeu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Pascale Koebel
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Harpreet Sidhu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Roxana Shahryari
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Brigitte L Kieffer
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France
- Douglas Institute Research Centre, McGill University, Montréal, QC, Canada
| | - George F Koob
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Rémi Martin-Fardon
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Candice Contet
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
15
|
Barson JR. Orexin/hypocretin and dysregulated eating: Promotion of foraging behavior. Brain Res 2018; 1731:145915. [PMID: 30125533 DOI: 10.1016/j.brainres.2018.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022]
Abstract
At its discovery, orexin/hypocretin (OX) was hypothesized to promote food intake. Subsequently, with the identification of the participation of OX in numerous other phenomena, including arousal and drug seeking, this neuropeptide was proposed to be involved in highly motivated behaviors. The present review develops the hypothesis that the primary evolutionary function of OX is to promote foraging behavior, seeking for food under conditions of limited availability. Thus, it will first describe published literature on OX and homeostatic food intake, which shows that OX neurons are activated by conditions of food deprivation and in turn stimulate food intake. Next, it will present literature on excessive and binge-like food intake, which demonstrates that OX stimulates both intake and willingness to work for palatable food. Importantly, studies show that binge-like eating can be inhibited by OX antagonists at doses far lower than those required to suppress homeostatic intake (3 mg/kg vs. 30 mg/kg), suggesting that an OX-based pharmacotherapy, at the right dose, could specifically control dysregulated eating. Finally, the review will discuss the role of OX in foraging behavior, citing literature which shows that OX neurons, which are activated during the anticipation of food reward, can promote a number of phenomena involved in successful foraging, including food-anticipatory locomotor behavior, olfactory sensitivity, visual attention, spatial memory, and mastication. Thus, OX may promote homeostatic eating, as well as binge eating of palatable food, due to its ability to stimulate and coordinate the activities involved in foraging behavior.
Collapse
Affiliation(s)
- Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
16
|
Hurley SW, Arseth HA, Johnson AK. Orexin neurons couple neural systems mediating fluid balance with motivation-related circuits. Behav Neurosci 2018; 132:284-292. [PMID: 29952605 DOI: 10.1037/bne0000250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During extracellular dehydration, neural systems that sense deficits in body fluid homeostasis operate in tandem with those that mediate motivation and reward in order to promote ingestive behaviors that restore fluid balance. We hypothesized that hypothalamic orexin (Ox) neurons act as an interface to couple brain regions sensing and processing information about body fluid status with central nervous system motivation and reward systems. An initial set of anterograde and retrograde tracing experiments suggested that structures along the lamina terminalis (LT), a region of the forebrain that serves to monitor and integrate information reflecting body fluid balance, project to hypothalamic Ox neurons that, in turn, project to dopamine neurons in the ventral tegmental area (VTA). A second set of experiments determined whether Ox neuron activation is associated with extracellular dehydration and the seeking out and consumption of water and saline. An elevation of Fos-like immunoreactivity in Ox neurons was observed in fluid-depleted rats that were allowed to ingest water and sodium. A final experiment was conducted to determine whether Ox release in the VTA promotes thirst and salt appetite. Bilateral microinjection of the Ox Type I receptor antagonist SB-408124 into the VTA prior to acute extracellular dehydration attenuated fluid intake. Together, these studies support the hypothesis that structures along the LT modulate activity in the VTA through actions of orexinergic neurons that have cell bodies in the hypothalamus. This pathway may function to facilitate sustained consumption of fluids necessary for restoration of fluid balance. (PsycINFO Database Record
Collapse
Affiliation(s)
- Seth W Hurley
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill
| | - Heather A Arseth
- Department of Psychological and Brain Sciences, University of Iowa
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, University of Iowa
| |
Collapse
|
17
|
Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018; 9:413. [PMID: 29928253 PMCID: PMC5997825 DOI: 10.3389/fneur.2018.00413] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/18/2018] [Indexed: 01/01/2023] Open
Abstract
The lateral hypothalamus is comprised of a heterogeneous mix of neurons that serve to integrate and regulate sleep, feeding, stress, energy balance, reward, and motivated behavior. Within these populations, the hypocretin/orexin neurons are among the most well studied. Here, we provide an overview on how these neurons act as a central hub integrating sensory and physiological information to tune arousal and motivated behavior accordingly. We give special attention to their role in sleep-wake states and conditions of hyper-arousal, as is the case with stress-induced anxiety. We further discuss their roles in feeding, drug-seeking, and sexual behavior, which are all dependent on the motivational state of the animal. We further emphasize the application of powerful techniques, such as optogenetics, chemogenetics, and fiber photometry, to delineate the role these neurons play in lateral hypothalamic functions.
Collapse
Affiliation(s)
- Susan M Tyree
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Jeremy C Borniger
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
18
|
Martin-Fardon R, Cauvi G, Kerr TM, Weiss F. Differential role of hypothalamic orexin/hypocretin neurons in reward seeking motivated by cocaine versus palatable food. Addict Biol 2018; 23:6-15. [PMID: 27558790 DOI: 10.1111/adb.12441] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 01/31/2023]
Abstract
Hypothalamic orexin/hypocretin (Orx/Hcrt) neurons are thought to mediate both food-reinforced behaviors and behavior motivated by drugs of abuse. However, the relative role of the Orx/Hcrt system in behavior motivated by food versus drugs of abuse remains unclear. This investigation addressed this question by contrasting hypothalamic Orx/Hcrt neuronal activation associated with reinstatement of reward seeking induced by stimuli conditioned to cocaine (COC) versus highly palatable food reward, sweetened condensed milk (SCM). Orx/Hcrt neuronal activation in the lateral hypothalamus, dorsomedial hypothalamus and perifornical area, determined by dual c-fos/orx immunocytochemistry, was quantified in rat brains, following reinstatement of reward seeking induced by a discriminative stimulus (S+ ) conditioned to COC or SCM. The COC S+ and SCM S+ initially produced the same magnitude of reward seeking. However, over four subsequent tests, behavior induced by the SCM S+ decreased to extinction levels, whereas reinstatement induced by the COC S+ perseverated at undiminished levels. Following both the first and fourth tests, the percentage of Orx/Hcrt cells expressing Fos was significantly increased in all hypothalamic subregions in rats tested with the COC S+ but not rats tested with the SCM S+ . These findings point toward a role for the Orx/Hcrt system in perseverating, compulsive-like COC seeking but not behavior motivated by palatable food. Moreover, analysis of the Orx/Hcrt recruitment patterns suggests that failure of Orx/Hcrt neurons in the lateral hypothalamus to respond to inhibitory inputs from Orx/Hcrt neurons in the dorsomedial hypothalamus/perifornical area may contribute to the perseverating nature of COC seeking.
Collapse
Affiliation(s)
- Rémi Martin-Fardon
- Molecular and Cellular Neuroscience Department; The Scripps Research Institute; La Jolla CA USA
| | - Gabrielle Cauvi
- Molecular and Cellular Neuroscience Department; The Scripps Research Institute; La Jolla CA USA
| | - Tony M. Kerr
- Molecular and Cellular Neuroscience Department; The Scripps Research Institute; La Jolla CA USA
| | - Friedbert Weiss
- Molecular and Cellular Neuroscience Department; The Scripps Research Institute; La Jolla CA USA
| |
Collapse
|
19
|
Mavanji V, Butterick TA, Duffy CM, Nixon JP, Billington CJ, Kotz CM. Orexin/hypocretin treatment restores hippocampal-dependent memory in orexin-deficient mice. Neurobiol Learn Mem 2017; 146:21-30. [PMID: 29107703 DOI: 10.1016/j.nlm.2017.10.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/02/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022]
Abstract
Orexin A is produced in neurons of the lateral, perifornical and dorsomedial regions of the lateral hypothalamic area, which then project widely throughout the central nervous system to regulate arousal state, sleep-wake architecture, energy homeostasis and cognitive processes. Disruption of orexin signaling leads to sleep disturbances and increased body mass index, but recent studies also indicate that orexin neuron activation improves learning and memory. We hypothesized that hippocampal orexin receptor activation improves memory. To test this idea, we obtained orexin/ataxin-3 (O/A3) mice, which become deficient in orexin neurons by about 12 weeks of age. We first measured hippocampal orexin receptor 1 (OX1R) gene expression and protein levels, then tested acquisition and consolidation of two-way active avoidance (TWAA) memory, a hippocampal-dependent learning and memory task. Finally, we determined if exogenous intra-hippocampal OXA treatment could reverse cognitive impairment (as determined by TWAA) in OA/3 mice. We showed that OX1R mRNA expression and protein levels were significantly elevated in O/A3 mice, indicating the potential for preserved orexin responsiveness. The O/A3 mice were significantly impaired in TWAA memory vs. control mice, but OXA treatment (both acute and chronic) reversed these memory deficits. These results demonstrate that orexin plays an important role in hippocampal-dependent consolidation of two-way active avoidance memory, and orexin replacement can rescue the cognitive impairment.
Collapse
Affiliation(s)
- Vijayakumar Mavanji
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417 USA
| | - Tammy A Butterick
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417 USA; Department of Food Science and Nutrition, University of Minnesota, St Paul, MN 55108 USA; Minnesota Obesity Center, St Paul, MN 55108 USA
| | - Cayla M Duffy
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417 USA; Department of Food Science and Nutrition, University of Minnesota, St Paul, MN 55108 USA; Minnesota's Discovery, Research and Innovation Economy, Brain Conditions, University of Minnesota, Minneapolis, MN 55455
| | - Joshua P Nixon
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417 USA; Department of Food Science and Nutrition, University of Minnesota, St Paul, MN 55108 USA
| | - Charles J Billington
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417 USA; Minnesota Obesity Center, St Paul, MN 55108 USA; Department of Medicine, University of Minnesota, Minneapolis, MN 55455 USA
| | - Catherine M Kotz
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417 USA; Minnesota Obesity Center, St Paul, MN 55108 USA; Geriatric Research Education Clinical Center, Veterans Affairs Health Care System, Minneapolis, MN 55417 USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455 USA.
| |
Collapse
|
20
|
Goforth PB, Myers MG. Roles for Orexin/Hypocretin in the Control of Energy Balance and Metabolism. Curr Top Behav Neurosci 2017; 33:137-156. [PMID: 27909992 DOI: 10.1007/7854_2016_51] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The neuropeptide hypocretin is also commonly referred to as orexin, since its orexigenic action was recognized early. Orexin/hypocretin (OX) neurons project widely throughout the brain and the physiologic and behavioral functions of OX are much more complex than initially conceived based upon the stimulation of feeding. OX most notably controls functions relevant to attention, alertness, and motivation. OX also plays multiple crucial roles in the control of food intake, metabolism, and overall energy balance in mammals. OX signaling not only promotes food-seeking behavior upon short-term fasting to increase food intake and defend body weight, but, conversely, OX signaling also supports energy expenditure to protect against obesity. Furthermore, OX modulates the autonomic nervous system to control glucose metabolism, including during the response to hypoglycemia. Consistently, a variety of nutritional cues (including the hormones leptin and ghrelin) and metabolites (e.g., glucose, amino acids) control OX neurons. In this chapter, we review the control of OX neurons by nutritional/metabolic cues, along with our current understanding of the mechanisms by which OX and OX neurons contribute to the control of energy balance and metabolism.
Collapse
Affiliation(s)
- Paulette B Goforth
- Department of Pharmacology, University of Michigan, 1000 Wall St, 5131 Brehm Tower, Ann Arbor, MI, 48105, USA
| | - Martin G Myers
- Departments of Internal Medicine, and Molecular and Integrative Physiology, University of Michigan, 1000 Wall St, 6317 Brehm Tower, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
21
|
Role of Lateral Hypothalamic Orexin (Hypocretin) Neurons in Alcohol Use and Abuse: Recent Advances. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40495-016-0069-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Xu Y, An BY, Xi XB, Li ZW, Li FY. MicroRNA-9 controls apoptosis of neurons by targeting monocyte chemotactic protein-induced protein 1 expression in rat acute spinal cord injury model. Brain Res Bull 2016; 121:233-40. [PMID: 26812136 DOI: 10.1016/j.brainresbull.2016.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/30/2015] [Accepted: 01/21/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVE For the purpose of an early identification of intervention targets for acute spinal cord injury (ASCI), we investigated the changes in expression levels of microRNA-9 (miR-9) and MCPIP1 in rat ASCI model. METHOD A total of 108 healthy rats were randomly divided into non-ASCI group (n=18) and five ASCI groups, 6h, 12h, 24h, 3 days and 7 days, representing the experimental time points following ASCI (n=18 per group). Hematoxylin and eosin (HE) staining was used to assess the ASCI damage, and quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH) were employed for the detection of miR-9 and MCPIP1 mRNA expression. RESULTS HE staining results showed normal neuronal morphology in the non-ASCI group, but spinal cord tissue at 6h after ASCI showed developing neuronal necrosis. Acute inflammatory response was evident at 12h and 24h, with immune cells infiltrating into the gray matter. Vascular permeability increased and the nerve cells in gray-white matter exhibited extensive damage and necrosis at 24h and 7 days after ASCI. MiR-9 expression in ASCI tissue was significantly lower than that in normal spinal cord tissue. Statistical analysis showed a significant decrease in miR-9 expression in all the ASCI groups, compared to the non-ASCI group. Results from real-time PCR analysis revealed that MCPIP1 expression in all the ASCI groups was significantly higher than the non-ASCI group, and MCPIP1 expressions gradually increased with times at 6h-24h after ASCI. ISH revealed the following results after ASCI (1) miR-9 and MCPIP1 mRNA expression mainly distributed in ventral horn motor neurons, (2) miR-9 expression was high at 7 day after ASCI and (3) in the non-ASCI group, MCPIP1 expression was high at 6h, 12h, 24h and 3 days. CONCLUSION MCPIP1 is significantly up-regulated after ASCI. The negative relationship between MCPIP1 and miR-9 suggest that MCPIP1 mRNA could be a target of miR-9 during ASCI. Thus, miR-9 is a marker for apoptosis in neurons, and an excellent therapeutic target for ASCI patients.
Collapse
Affiliation(s)
- Yong Xu
- Shanghai Traumatology and Orthopedics Research Institute, Shanghai 200020, China; Department of Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medcine, Shanghai 200025, China.
| | - Bao-Yan An
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medcine, Shanghai 200025, China
| | - Xiao-Bing Xi
- Department of Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medcine, Shanghai 200025, China
| | - Zhong-Wei Li
- Shanghai Traumatology and Orthopedics Research Institute, Shanghai 200020, China; Department of Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medcine, Shanghai 200025, China
| | - Fei-Yue Li
- Shanghai Traumatology and Orthopedics Research Institute, Shanghai 200020, China; Department of Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medcine, Shanghai 200025, China
| |
Collapse
|
23
|
Hsu TM, Hahn JD, Konanur VR, Noble EE, Suarez AN, Thai J, Nakamoto EM, Kanoski SE. Hippocampus ghrelin signaling mediates appetite through lateral hypothalamic orexin pathways. eLife 2015; 4. [PMID: 26745307 PMCID: PMC4695382 DOI: 10.7554/elife.11190] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/06/2015] [Indexed: 12/14/2022] Open
Abstract
Feeding behavior rarely occurs in direct response to metabolic deficit, yet the overwhelming majority of research on the biology of food intake control has focused on basic metabolic and homeostatic neurobiological substrates. Most animals, including humans, have habitual feeding patterns in which meals are consumed based on learned and/or environmental factors. Here we illuminate a novel neural system regulating higher-order aspects of feeding through which the gut-derived hormone ghrelin communicates with ventral hippocampus (vHP) neurons to stimulate meal-entrained conditioned appetite. Additional results show that the lateral hypothalamus (LHA) is a critical downstream substrate for vHP ghrelin-mediated hyperphagia and that vHP ghrelin activated neurons communicate directly with neurons in the LHA that express the neuropeptide, orexin. Furthermore, activation of downstream orexin-1 receptors is required for vHP ghrelin-mediated hyperphagia. These findings reveal novel neurobiological circuitry regulating appetite through which ghrelin signaling in hippocampal neurons engages LHA orexin signaling.
Collapse
Affiliation(s)
- Ted M Hsu
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, United States.,Neuroscience Program, University of Southern California, Los Angeles, United States
| | - Joel D Hahn
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Vaibhav R Konanur
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Emily E Noble
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Andrea N Suarez
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Jessica Thai
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Emily M Nakamoto
- Neuroscience Program, University of Southern California, Los Angeles, United States
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, United States.,Neuroscience Program, University of Southern California, Los Angeles, United States
| |
Collapse
|
24
|
Linehan V, Trask RB, Briggs C, Rowe TM, Hirasawa M. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons. Eur J Neurosci 2015; 42:1976-83. [PMID: 26036709 DOI: 10.1111/ejn.12967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/28/2015] [Indexed: 01/11/2023]
Abstract
Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours.
Collapse
Affiliation(s)
- Victoria Linehan
- Division of Biomedical Sciences, Memorial University, St. John's, Newfoundland, Canada, A1B3V6
| | - Robert B Trask
- Division of Biomedical Sciences, Memorial University, St. John's, Newfoundland, Canada, A1B3V6
| | - Chantalle Briggs
- Division of Biomedical Sciences, Memorial University, St. John's, Newfoundland, Canada, A1B3V6.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada, B3H4R2
| | - Todd M Rowe
- Division of Biomedical Sciences, Memorial University, St. John's, Newfoundland, Canada, A1B3V6
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Memorial University, St. John's, Newfoundland, Canada, A1B3V6
| |
Collapse
|
25
|
Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev 2015; 20:63-73. [PMID: 25462194 DOI: 10.1016/j.arr.2014.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/19/2014] [Accepted: 11/14/2014] [Indexed: 02/03/2023]
Abstract
The hypothalamic neuropeptides orexin A and B (hypocretin 1 and 2) are important homeostatic mediators of central control of energy metabolism and maintenance of sleep/wake states. Dysregulation or loss of orexin signaling has been linked to narcolepsy, obesity, and age-related disorders. In this review, we present an overview of our current understanding of orexin function, focusing on sleep disorders, energy balance, and aging, in both rodents and humans. We first discuss animal models used in studies of obesity and sleep, including loss of function using transgenic or viral-mediated approaches, gain of function models using exogenous delivery of orexin receptor agonist, and naturally-occurring models in which orexin responsiveness varies by individual. We next explore rodent models of orexin in aging, presenting evidence that orexin loss contributes to age-related changes in sleep and energy balance. In the next section, we focus on clinical importance of orexin in human obesity, sleep, and aging. We include discussion of orexin loss in narcolepsy and potential importance of orexin in insomnia, correlations between animal and human studies of age-related decline, and evidence for orexin involvement in age-related changes in cognitive performance. Finally, we present a summary of recent studies of orexin in neurodegenerative disease. We conclude that orexin acts as an integrative homeostatic signal influencing numerous brain regions, and that this pivotal role results in potential dysregulation of multiple physiological processes when orexin signaling is disrupted or lost.
Collapse
|
26
|
GE TONG, QIN HAO, WANG XU, YANG SHUSEN, GUO LI, HAN WEI, CHANG HUIYING. Effects of Thoracic Epidural Anesthesia on Cardiac Function and Myocardial Cell Apoptosis in Isoproterenol-Induced Chronic Heart Failure Rats. J Interv Cardiol 2014; 27:446-55. [PMID: 25267251 DOI: 10.1111/joic.12147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- TONG GE
- Department of Respiratory Medicine; the Second Hospital of Harbin; Harbin 150000 P.R. China
| | - HAO QIN
- Department of Respiratory Medicine; the Second Hospital of Harbin; Harbin 150000 P.R. China
| | - XU WANG
- Department of Cardiology; The First Affiliated Hospital of Harbin Medical University; Harbin P.R. China
| | - SHU-SEN YANG
- Department of Cardiology; The First Affiliated Hospital of Harbin Medical University; Harbin P.R. China
| | - LI GUO
- Department of Respiratory Medicine; the Second Hospital of Harbin; Harbin 150000 P.R. China
| | - WEI HAN
- Department of Cardiology; The First Affiliated Hospital of Harbin Medical University; Harbin P.R. China
| | - HUI-YING CHANG
- Department of Cardiology; The First Affiliated Hospital of Harbin Medical University; Harbin P.R. China
| |
Collapse
|
27
|
Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014; 171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/16/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
The hypocretins (Hcrts), also known as orexins, are two peptides derived from a single precursor produced in the posterior lateral hypothalamus. Over the past decade, the orexin system has been associated with numerous physiological functions, including sleep/arousal, energy homeostasis, endocrine, visceral functions and pathological states, such as narcolepsy and drug abuse. Here, we review the discovery of Hcrt/orexins and their receptors and propose a hypothesis as to how the orexin system orchestrates these multifaceted physiological functions.
Collapse
Affiliation(s)
- Jingcheng Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
28
|
Abstract
Addiction is a chronic relapsing disorder which presents a significant global health burden and unmet medical need. The orexin/hypocretin system is an attractive potential therapeutic target as demonstrated by the successful clinical trials of antagonist medications like Suvorexant for insomnia. It is composed of two neuropeptides, orexin-A and orexin-B and two excitatory and promiscuous G-protein coupled receptors, OX1 and OX2. Orexins are known to have a variety of functions, most notably in regulating arousal, appetite and reward. The orexins have been shown to have a role in mediating the effects of several drugs of abuse, such as cocaine, morphine and alcohol via projections to key brain regions such as the ventral tegmental area, nucleus accumbens and prefrontal cortex. However, it has not yet been demonstrated whether the dual orexin receptor antagonists (DORAs) under development for insomnia are ideal drugs for the treatment of addiction. The question of whether to use a DORA or single orexin receptor antagonist (SORA) for the treatment of addiction is a key question that will need to be answered in order to maximize the clinical utility of orexin receptor antagonists. This review will examine the role of the orexin/hypocretin system in addiction, orexin-based pharmacotherapies under development and factors affecting the selection of one or both orexin receptors as drug targets for the treatment of addiction.
Collapse
|
29
|
Cason AM, Aston-Jones G. Role of orexin/hypocretin in conditioned sucrose-seeking in female rats. Neuropharmacology 2014; 86:97-102. [PMID: 25036612 DOI: 10.1016/j.neuropharm.2014.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 11/24/2022]
Abstract
The orexin/hypocretin system has recently been implicated in reward-seeking, especially for highly salient food and drug rewards. Given that eating disorders affect women more than men, we reasoned that the orexin system may be strongly engaged in female rats, and during periods of food restriction as we recently reported in male rats. Therefore, the present study examined the involvement of the orexin system in operant responding for sucrose, and in cue-induced reinstatement of extinguished sucrose-seeking, in ad libitum fed vs. food-restricted female subjects. Female Sprague Dawley rats were trained to self-administer sucrose pellets, and we determined the effects of pretreatment with the OxR1 receptor antagonist SB 334867 (SB; 10-30 mg/kg) on fixed ratio (FR) sucrose self-administration, and on cue-induced reinstatement of extinguished sucrose-seeking. SB decreased sucrose self-administration in food-restricted but not in ad libitum-fed females. SB did not alter active lever responding during cue-induced reinstatement of sucrose-seeking in either feeding group. These results confirm our previous results in male rats that signaling at the OxR1 receptor is involved in the sucrose reinforcement and self-administration in food-restricted subjects. However, the finding that SB is ineffective at attenuating cue-induced reinstatement in females, but was effective in food-restricted males, leads us to conclude that food seeking induced by conditioned stimuli engages the orexin system differentially in males and females.
Collapse
Affiliation(s)
- Angie M Cason
- Department of Neurosciences, Medical University of South Carolina, Basic Science Building 406, 173 Ashley Avenue, MSC 510, Charleston, SC 29425, USA.
| | - Gary Aston-Jones
- Department of Neurosciences, Medical University of South Carolina, Basic Science Building 406, 173 Ashley Avenue, MSC 510, Charleston, SC 29425, USA
| |
Collapse
|
30
|
Quarta D, Smolders I. Rewarding, reinforcing and incentive salient events involve orexigenic hypothalamic neuropeptides regulating mesolimbic dopaminergic neurotransmission. Eur J Pharm Sci 2014; 57:2-10. [DOI: 10.1016/j.ejps.2014.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/19/2014] [Indexed: 12/22/2022]
|
31
|
Chen X, Li S, Kirouac GJ. Blocking of corticotrophin releasing factor receptor-1 during footshock attenuates context fear but not the upregulation of prepro-orexin mRNA in rats. Pharmacol Biochem Behav 2014; 120:1-6. [PMID: 24491435 DOI: 10.1016/j.pbb.2014.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 10/25/2022]
Abstract
Hypothalamic neuropeptides called orexins (hypocretins) are well known for their roles in promoting arousal. Orexins have also been shown to play a role in fear and anxiety produced by the exposure of rats to an acute episode of moderately intense footshocks. Recent evidence indicates that stress activates orexin neurons through a corticotropin releasing factor (CRF) mechanism. In this study, we examined the effect of a CRF receptor-1 (CRF-R1) antagonist antalarmin (20mg/kg, i.p.) given before shock exposure on subsequent expression of contextual fear and the levels of prepro-orexin (ppOX) mRNA in the hypothalamus. Antalarmin decreased fear and ultrasonic vocalization expression to the shock context at 2 and 10 days after shock exposure. However, antalarmin did not prevent the increases in ppOX mRNA produced by the shock experience. This study provides evidence that blocking of CRF-R1 at the time of footshocks attenuates contextual fear. While an increase in the activity of the orexin system may contribute to fear, this activation does not appear to be sufficient for fear expression.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sa Li
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gilbert J Kirouac
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Psychiatry, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
32
|
Teske JA, Billington CJ, Kotz CM. Mechanisms underlying obesity resistance associated with high spontaneous physical activity. Neuroscience 2013; 256:91-100. [PMID: 24161277 DOI: 10.1016/j.neuroscience.2013.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 12/12/2022]
Abstract
Obesity resistance due to elevated orexin signaling is accompanied by high levels of spontaneous physical activity (SPA). The behavioral and neural mechanisms underlying this observation have not been fully worked out. We determined the contribution of hypothalamic orexin receptors (OXRs) to SPA stimulated by orexin A (OXA), whether OXA-stimulated SPA was secondary to arousal and whether voluntary wheel running led to compensations in 24-h SPA. We further tested whether orexin action on dopamine one receptors (DA1R) in the substantia nigra (SN) plays an important role in the generation of SPA. To test this, SPA response was determined in lean and obese rats with cannulae targeted toward the rostral lateral hypothalamus (rLH) or SN. Sleep/wake states were also measured in rats with rLH cannula and electroencephalogram/electromyogram radiotelemetry transmitters. SPA in lean rats was more sensitive to antagonism of the OX1R and in the early response to the orexin 2 agonist. OXA increased arousal equally in lean and obese rodents, which is discordant from the greater SPA response in lean rats. Obesity-resistant rats ran more and wheel running was directly related to 24-h SPA levels. The OX1R antagonist, SB-334867-A, and the DA1R antagonist, SCH3390, in SN more effectively reduced SPA stimulated by OXA in obesity-resistant rats. These data suggest OXA-stimulated SPA is not secondary to enhanced arousal, propensity for SPA parallels inclination to run and that orexin action on dopaminergic neurons in SN may participate in the mediation of SPA and running wheel activity.
Collapse
Affiliation(s)
- J A Teske
- Department of Nutritional Sciences, University of Arizona and Southern Arizona, VA Health Care System, Tucson, AZ, USA; Minneapolis VA Health Care System, Minneapolis, MN 55417, USA; Minnesota Obesity Center, 1334 Eckles Avenue, Saint Paul, MN 55108, USA; Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, Saint Paul, MN 55108, USA.
| | - C J Billington
- Minneapolis VA Health Care System, Minneapolis, MN 55417, USA; Minnesota Obesity Center, 1334 Eckles Avenue, Saint Paul, MN 55108, USA; Department of Medicine, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA; Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, Saint Paul, MN 55108, USA.
| | - C M Kotz
- Minneapolis VA Health Care System, Minneapolis, MN 55417, USA; Minnesota Obesity Center, 1334 Eckles Avenue, Saint Paul, MN 55108, USA; Geriatric Research, Education and Clinical Center, One Veterans Drive, Minneapolis, MN 55417, USA; Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, Saint Paul, MN 55108, USA.
| |
Collapse
|
33
|
Abstract
The propensity to select and consume palatable nutrients is strongly influenced by the rewarding effects of food. Neural processes integrating reward, emotional states and decision-making can supersede satiety signals to promote excessive caloric intake and weight gain. While nutritional habits are influenced by reward-based neural mechanisms, nutrition and its impact on energy metabolism, in turn, plays an important role in the control of food reward. Feeding modulates the release of metabolic hormones that have an important influence on central controls of appetite. Nutrients themselves are also an essential source of energy fuel, while serving as key metabolites and acting as signalling molecules in the neural pathways that control feeding and food reward. Along these lines, this review discusses the impact of nutritionally regulated hormones and select macronutrients on the behavioural and neural processes underlying the rewarding effects of food.
Collapse
|
34
|
Attenuation of saccharin-seeking in rats by orexin/hypocretin receptor 1 antagonist. Psychopharmacology (Berl) 2013; 228:499-507. [PMID: 23494235 PMCID: PMC3707982 DOI: 10.1007/s00213-013-3051-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/27/2013] [Indexed: 12/28/2022]
Abstract
RATIONALE The orexin (Orx)/hypocretin system has been implicated in reward-seeking, especially for highly salient food and drug rewards. We recently demonstrated that signaling at the OxR1 receptor is involved in sucrose reinforcement and reinstatement of sucrose-seeking elicited by sucrose-paired cues in food-restricted rats. Because sucrose reinforcement has both a hedonic and caloric component, it remains unknown what aspect of this reward drives its reinforcing value. OBJECTIVES The present study examined the involvement of the Orx system in operant responding for saccharin, a noncaloric, hedonic (sweet) reward, and in cue-induced reinstatement of extinguished saccharin-seeking in ad libitum-fed vs food-restricted male subjects. METHODS Male Sprague Dawley rats were fed ad libitum or food-restricted and trained to self-administer saccharin. We determined the effects of pretreatment with the OxR1 receptor antagonist SB-334867 (SB; 10-30 mg/kg) on fixed ratio (FR) saccharin self-administration and on cue-induced reinstatement of extinguished saccharin-seeking. RESULTS SB decreased responding and number of reinforcers earned during FR responding for saccharin and decreased cue-induced reinstatement of extinguished saccharin-seeking. All of these effects were obtained similarly in food-restricted and ad libitum-fed rats. CONCLUSIONS These results indicate that signaling at the OxR1 receptor is involved in saccharin reinforcement and reinstatement of saccharin-seeking elicited by saccharin-paired cues regardless of food restriction. These findings lead us to conclude that the Orx system contributes to the motivational effects of hedonic food rewards, independently of caloric value and homeostatic needs.
Collapse
|
35
|
Boutrel B, Steiner N, Halfon O. The hypocretins and the reward function: what have we learned so far? Front Behav Neurosci 2013; 7:59. [PMID: 23781178 PMCID: PMC3680710 DOI: 10.3389/fnbeh.2013.00059] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/19/2013] [Indexed: 01/15/2023] Open
Abstract
A general consensus acknowledges that drug consumption (including alcohol, tobacco, and illicit drugs) constitutes the leading cause of preventable death worldwide. But the global burden of drug abuse extends the mortality statistics. Indeed, the comorbid long-term debilitating effects of the disease also significantly deteriorate the quality of life of individuals suffering from addiction disorders. Despite the large body of evidence delineating the cellular and molecular adaptations induced by chronic drug consumption, the brain mechanisms responsible for drug craving and relapse remain insufficiently understood, and even the most recent developments in the field have not brought significant improvement in the management of drug dependence. Though, recent preclinical evidence suggests that disrupting the hypocretin (orexin) system may serve as an anticraving medication therapy. Here, we discuss how the hypocretins, which orchestrate normal wakefulness, metabolic health and the execution of goal-oriented behaviors, may be compromised and contribute to elicit compulsive drug seeking. We propose an overview on the most recent studies demonstrating an important role for the hypocretin neuropeptide system in the regulation of drug reward and the prevention of drug relapse, and we question the relevance of disrupting the hypocretin system to alleviate symptoms of drug addiction.
Collapse
Affiliation(s)
- Benjamin Boutrel
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital Lausanne, Switzerland ; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Lausanne University Hospital Lausanne, Switzerland
| | | | | |
Collapse
|
36
|
Petrovich GD. Forebrain networks and the control of feeding by environmental learned cues. Physiol Behav 2013; 121:10-8. [PMID: 23562305 DOI: 10.1016/j.physbeh.2013.03.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/06/2013] [Indexed: 01/23/2023]
Abstract
The motivation to eat is driven by a complex sum of physiological and non-physiological influences computed by the brain. Physiological signals that inform the brain about energy and nutrient needs are the primary drivers, but environmental signals unrelated to energy balance also control appetite and eating. The two components could act in concert to support the homeostatic regulation of food intake. Often, however, environmental influences rival physiological control and stimulate eating irrespective of satiety, or inhibit eating irrespective of hunger. If persistent, such maladaptive challenges to the physiological system could lead to dysregulated eating and ultimately to eating disorders. Nevertheless, the brain mechanisms underlying environmental contribution in the control of food intake are poorly understood. This paper provides an overview in recent advances in deciphering the critical brain systems using rodent models for environmental control by learned cues. These models use associative learning to compete with the physiological control, and in one preparation food cues stimulate a meal despite satiety, while in another preparation fear cues stop a meal despite hunger. Thus far, four forebrain regions have been identified as part of the essential cue induced feeding circuitry. These are telencephalic areas critical for associative learning, memory encoding, and decision making, the amygdala, hippocampus and prefrontal cortex and the lateral hypothalamus, which functions to integrate feeding, reward, and motivation. This circuitry also engages two orexigenic peptides, ghrelin and orexin. A parallel amygdalar circuitry supports fear cue cessation of feeding. These findings illuminate the brain mechanisms underlying environmental control of food intake and might be also relevant to aspects of human appetite and maladaptive overeating and undereating.
Collapse
Affiliation(s)
- Gorica D Petrovich
- Department of Psychology, Boston College, Chestnut Hill, MA, United States.
| |
Collapse
|
37
|
Cason AM, Aston-Jones G. Role of orexin/hypocretin in conditioned sucrose-seeking in rats. Psychopharmacology (Berl) 2013; 226:155-65. [PMID: 23096770 PMCID: PMC3572270 DOI: 10.1007/s00213-012-2902-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/27/2012] [Indexed: 11/30/2022]
Abstract
RATIONALE The orexin/hypocretin system has recently been implicated in reward-seeking, especially for highly salient food and drug rewards. We reasoned that this system may be strongly engaged during periods of reward restriction, including food restriction. OBJECTIVES This study examined the involvement of the orexin (Orx) system in responding for sucrose, and in cue-induced reinstatement of extinguished sucrose-seeking, in ad libitum fed versus food-restricted male subjects. METHODS Sprague-Dawley rats (n = 108) were trained to self-administer sucrose, and we determined the effects of pretreatment with the OxR1 receptor antagonist SB-334867 (SB; 10-30 mg/kg) on fixed ratio (FR) or progressive ratio (PR) sucrose self-administration, as well as on cue-induced reinstatement of sucrose-seeking. Finally, expression of the immediate early gene c-fos in Orx neurons was examined after self-administration, late extinction or cue-induced reinstatement of sucrose seeking. RESULTS SB decreased lever responding (by about 1/3) and the number of reinforcers earned during FR, and less so during PR, schedules and decreased cue-induced reinstatement to sucrose-seeking to extinction levels, predominately in food-restricted rats. Additionally, Fos expression in Orx neurons in perifornical and dorsomedial hypothalamus was increased during extinction. CONCLUSIONS These results indicate that signaling at the OxR1 receptor is involved in pronounced sucrose reinforcement, and reinstatement of sucrose-seeking elicited by sucrose-paired cues, in food-restricted subjects. These findings lead us to conclude that conditioned activation of Orx neurons increases motivation for food reward during food restriction.
Collapse
Affiliation(s)
- Angie M Cason
- Department of Neurosciences, Medical University of South Carolina, Basic Science Building 406, 173 Ashley Avenue, MSC 510, Charleston, SC 29425, USA
| | | |
Collapse
|
38
|
Mang GM, Dürst T, Bürki H, Imobersteg S, Abramowski D, Schuepbach E, Hoyer D, Fendt M, Gee CE. The dual orexin receptor antagonist almorexant induces sleep and decreases orexin-induced locomotion by blocking orexin 2 receptors. Sleep 2012; 35:1625-35. [PMID: 23204605 PMCID: PMC3490355 DOI: 10.5665/sleep.2232] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
STUDY OBJECTIVES Orexin peptides activate orexin 1 and orexin 2 receptors (OX(1)R and OX(2)R), regulate locomotion and sleep-wake. The dual OX(1)R/OX(2)R antagonist almorexant reduces activity and promotes sleep in multiple species, including man. The relative contributions of the two receptors in locomotion and sleep/wake regulation were investigated in mice. DESIGN Mice lacking orexin receptors were used to determine the contribution of OX(1)R and OX(2)R to orexin A-induced locomotion and to almorexant-induced sleep. SETTING N/A. PATIENTS OR PARTICIPANTS C57BL/6J mice and OX(1)R(+/+), OX(1)R(-/-), OX(2)R(+/+), OX(2)R(-/-) and OX(1)R(-/-)/OX(2)R(-/-) mice. INTERVENTIONS Intracerebroventricular orexin A; oral dosing of almorexant. MEASUREMENTS AND RESULTS Almorexant attenuated orexin A-induced locomotion. As in other species, almorexant dose-dependently increased rapid eye movement sleep (REM) and nonREM sleep in mice. Almorexant and orexin A were ineffective in OX(1)R(-/-)/OX(2)R(-/-) mice. Both orexin A-induced locomotion and sleep induction by almorexant were absent in OX(2)R(-/-) mice. Interestingly, almorexant did not induce cataplexy in wild-type mice under conditions where cataplexy was seen in mice lacking orexins and in OX(1)R(-/-)/OX(2)R(-/-) mice. Almorexant dissociates very slowly from OX(2)R as measured functionally and in radioligand binding. Under non equilibrium conditions in vitro, almorexant was a dual antagonist whereas at equilibrium, almorexant became OX(2)R selective. CONCLUSIONS In vivo, almorexant specifically inhibits the actions of orexin A. The two known orexin receptors mediate sleep induction by almorexant and orexin A-induced locomotion. However, OX(2)R activation mediates locomotion induction by orexin A and antagonism of OX(2)R is sufficient to promote sleep in mice.
Collapse
Affiliation(s)
- Géraldine M. Mang
- Novartis Institutes for BioMedical Research, Basel, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Thomas Dürst
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Hugo Bürki
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Edi Schuepbach
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Daniel Hoyer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
- Department of Pharmacology, School of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Markus Fendt
- Novartis Institutes for BioMedical Research, Basel, Switzerland
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Christine E. Gee
- Novartis Institutes for BioMedical Research, Basel, Switzerland
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
39
|
Erken HA, Erken G, Genç O, Kortunay S, Sahiner M, Turgut G, Turgut S. Orexins cause epileptic activity. Peptides 2012; 37:161-4. [PMID: 22771311 DOI: 10.1016/j.peptides.2012.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 11/21/2022]
Abstract
Orexins have been implicated in the regulation of sleep-wake cycle, energy homeostasis, drinking behavior, analgesia, attention, learning and memory but their effects on epileptic activity are controversial. We investigated whether intracortical injections of orexin A (100 pmol) and B (100 pmol) cause epileptic activity in rats. We observed epileptic seizure findings on these two groups rats. Orexin A and B also significantly increased total EEG power spectrum. Our findings indicate that orexins cause epileptic activity.
Collapse
|
40
|
Avolio E, Alò R, Mele M, Carelli A, Canonaco A, Bucarelli L, Canonaco M. Amygdalar excitatory/inhibitory circuits interacting with orexinergic neurons influence differentially feeding behaviors in hamsters. Behav Brain Res 2012; 234:91-9. [DOI: 10.1016/j.bbr.2012.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/13/2012] [Indexed: 12/29/2022]
|
41
|
Selective Fos induction in hypothalamic orexin/hypocretin, but not melanin-concentrating hormone neurons, by a learned food-cue that stimulates feeding in sated rats. Neuroscience 2012; 224:70-80. [PMID: 22922124 DOI: 10.1016/j.neuroscience.2012.08.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/31/2022]
Abstract
Associative learning can enable cues from the environment to stimulate feeding in the absence of physiological hunger. How learned cues are integrated with the homeostatic regulatory system is unknown. Here we examined whether the underlying mechanism involves the hypothalamic orexigenic neuropeptide regulators orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH). We used a Pavlovian conditioning procedure to train food-restricted rats to associate a discrete cue, a tone, with food pellets distinct from their regular lab chow diet. Rats in the conditioned group (Paired) received presentations of a tone immediately prior to food delivery, while the rats in the control group (Unpaired) received random presentations of the same number of tones and food pellets. After conditioning rats were allowed ad libitum access to lab chow for at least 10days before testing. At test sated rats were presented with the tones in their home cages, and then one group was allowed to consume food pellets, while another group was left undisturbed until sacrifice for Fos induction analysis. The tone cue stimulated food consumption in this setting; rats in the Paired group consumed larger amounts of food pellets than rats in the Unpaired group. To examine Fos induction we processed the brain tissue using fluorescent immunohistochemistry methods for combined detection of Fos and characterization of ORX and MCH neurons. We found a greater percentage of ORX and Fos double-labeled neurons in the Paired compared to the Unpaired condition, specifically in the perifornical area. In contrast, there were very few MCH neurons with Fos induction in both the Paired and Unpaired conditions. Thus, the food-cue selectively induced Fos in ORX but not in MCH neurons. These results suggest a role for ORX in cue-induced feeding that occurs in the absence of physiological hunger.
Collapse
|
42
|
Olarte-Sánchez CM, Valencia Torres L, Body S, Cassaday HJ, Bradshaw CM, Szabadi E. Effect of orexin-B-saporin-induced lesions of the lateral hypothalamus on performance on a progressive ratio schedule. J Psychopharmacol 2012; 26:871-86. [PMID: 21926428 DOI: 10.1177/0269881111409607] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has been suggested that a sub-population of orexinergic neurones whose somata lie in the lateral hypothalamic area (LHA) play an important role in regulating the reinforcing value of both food and drugs. This experiment examined the effect of disruption of orexinergic mechanisms in the LHA on performance on the progressive ratio schedule of reinforcement, in which the response requirement increases progressively for successive reinforcers. The data were analysed using a mathematical model which yields a quantitative index of reinforcer value and dissociates effects of interventions on motor and motivational processes. Rats were trained under a progressive ratio schedule using food-pellet reinforcement. They received bilateral injections of conjugated orexin-B-saporin (OxSap) into the LHA or sham lesions. Training continued for a further 40 sessions after surgery. Equations were fitted to the response rate data from each rat, and the parameters of the model were derived for successive blocks of 10 sessions. The OxSap lesion reduced the number of orexin-containing neurones in the LHA by approximately 50% compared with the sham-lesioned group. The parameter expressing the incentive value of the reinforcer was not significantly altered by the lesion. However, the parameter related to the maximum response rate was significantly affected, suggesting that motor capacity was diminished in the OxSap-lesioned group. The results indicate that OxSap lesions of the LHA disrupted food-reinforced responding on the progressive ratio schedule. It is suggested that this disruption was brought about by a change in non-motivational (motor) processes.
Collapse
Affiliation(s)
- C M Olarte-Sánchez
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Hull EM. Sex, drugs and gluttony: how the brain controls motivated behaviors. Physiol Behav 2011; 104:173-7. [PMID: 21554895 PMCID: PMC3107928 DOI: 10.1016/j.physbeh.2011.04.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
Bart Hoebel has forged a view of an integrated neural network that mediates both natural rewards and drug use. He pioneered the use of microdialysis, and also effectively used electrical stimulation, lesions, microinjections, and immunohistochemistry. He found that feeding, stimulant drug administration, and electrical stimulation of the lateral hypothalamus (LH) all increased dopamine (DA) release in the nucleus accumbens (NAc). However, whereas DA in the NAc enhanced motivation, DA in the LH inhibited motivated behaviors. The Hull lab has pursued some of those ideas. We have suggested that serotonin (5-HT) in the perifornical LH inhibits sexual behavior by inhibiting orexin/hypocretin neurons (OX/HCRT), which would otherwise excite neurons in the mesocorticolimbic DA tract. We have shown that DA release in the medial preoptic area (MPOA) is very important for male sexual behavior, and that testosterone, glutamate, nitric oxide (NO) and previous sexual experience promote MPOA DA release and mating. Future research should follow Bart Hoebel's emphasis on neural systems and interactions among brain areas and neurotransmitters.
Collapse
Affiliation(s)
- Elaine M Hull
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, United States.
| |
Collapse
|
45
|
Thompson JL, Borgland SL. A role for hypocretin/orexin in motivation. Behav Brain Res 2011; 217:446-53. [PMID: 20920531 DOI: 10.1016/j.bbr.2010.09.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 09/24/2010] [Indexed: 12/11/2022]
Abstract
Obesity and drug addiction, both a result of aberrant motivated behavior, are growing problems in western society. Increased dopamine neurotransmission occurs with both drug-seeking and ingestive behaviors and has been linked to effort related functions. Hypocretin/orexin (Hcrt/ox) neurons have long been known to mediate arousal and feeding. Over the last 5 years, hcrt/ox has been demonstrated to play a novel role in mediating a variety of reward-seeking behaviors and can modulate the activity and output of dopamine neurons. Here, we propose that hcrt/ox action on mesolimbic dopamine circuitry serves to promote effort to obtain highly salient natural or drug rewards.
Collapse
Affiliation(s)
- Jennifer L Thompson
- Department of Anesthesiology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
46
|
Pandit R, de Jong JW, Vanderschuren LJMJ, Adan RAH. Neurobiology of overeating and obesity: the role of melanocortins and beyond. Eur J Pharmacol 2011; 660:28-42. [PMID: 21295024 DOI: 10.1016/j.ejphar.2011.01.034] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/10/2011] [Accepted: 01/13/2011] [Indexed: 01/07/2023]
Abstract
The alarming increase in the incidence of obesity and obesity-associated disorders makes the etiology of obesity a widely studied topic today. As opposed to 'homeostatic feeding', where food intake is restricted to satisfy one's biological needs, the term 'non-homeostatic' feeding refers to eating for pleasure or the trend to over-consume (palatable) food. Overconsumption is considered a crucial factor in the development of obesity. Exaggerated consumption of (palatable) food, coupled to a loss of control over food intake despite awareness of its negative consequences, suggests that overeating may be a form of addiction. At a molecular level, insulin and leptin resistance are hallmarks of obesity. In this review, we specifically address the question how leptin resistance contributes to enhanced craving for (palatable) food. Since dopamine is a key player in the motivation for food, the interconnection between dopamine, leptin and neuropeptides related to feeding will be discussed. Understanding the mechanisms by which these neuropeptidergic systems hijack the homeostatic feeding mechanisms, thus leading to overeating and obesity is the primary aim of this review. The melanocortin system, one of the crucial neuropeptidergic systems modulating feeding behavior will be extensively discussed. The inter-relationship between neuronal populations in the arcuate nucleus and other areas regulating energy homeostasis (lateral hypothalamus, paraventricular nucleus, ventromedial hypothalamus etc.) and reward circuitry (the ventral tegmental area and nucleus accumbens) will be evaluated and scrutinized.
Collapse
Affiliation(s)
- Rahul Pandit
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Mori K, Kim J, Sasaki K. Electrophysiological effects of orexin-B and dopamine on rat nucleus accumbens shell neurons in vitro. Peptides 2011; 32:246-52. [PMID: 21055430 DOI: 10.1016/j.peptides.2010.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
Abstract
Orexin (ORX) plays a critical role in reward-seeking behavior for natural rewards and drugs of abuse. The mesolimbic dopamine (DA) pathway that projects into the nucleus accumbens (NAc) from the ventral tegmental area is deeply involved in the neural mechanisms underlying reward, drug abuse and motivation. A recent study demonstrated that ORX-immunopositive fibers densely project into the shell of the NAc (NAcSh), suggesting that the NAcSh might be a site of the interaction between the ORXergic and DAergic systems for reward-seeking behavior. Therefore, the electrophysiological effects of ORX-B and DA on NAcSh neurons were examined extracellularly in rat brain slice preparations. ORX-B excited approximately 78% of neurons tested and inhibited 4%, whereas DA excited 50% and inhibited 22% of NAcSh neurons. These excitations and inhibitions persisted during synaptic blockade in a low-Ca(2+)/high-Mg(2+) solution. DA-induced excitation was attenuated by SCH23390 or sulpiride, whereas DA-induced inhibition was suppressed by sulpiride. Of the neurons that were excited by ORX-B, 71% and 18% were excited and inhibited by DA, respectively. In 63% of neurons that were excited by ORX-B, the simultaneous application of ORX-B and DA increased the firing rate to two times greater than ORX-B alone, whereas, the simultaneous application significantly decreased the neuronal firing rate by 73% in the remaining 37% compared to ORX-B. These results suggest that an interaction between the ORXergic and DAergic systems occurs in the NAcSh and that the NAcSh is involved in the neural mechanisms in which ORX participates in the regulation of reward-seeking behavior.
Collapse
Affiliation(s)
- Kyohei Mori
- Division of Bio-information Engineering, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555, Japan
| | | | | |
Collapse
|
48
|
Kenny PJ. Tobacco dependence, the insular cortex and the hypocretin connection. Pharmacol Biochem Behav 2011; 97:700-7. [PMID: 20816891 PMCID: PMC3011037 DOI: 10.1016/j.pbb.2010.08.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 08/21/2010] [Accepted: 08/27/2010] [Indexed: 12/23/2022]
Abstract
Tobacco use is a major cause of disease and premature death in the United States. Nicotine is considered the key component of tobacco responsible for addiction in human smokers. Accumulating evidence supports an important role for the hypocretin (orexin) neuropeptide system in regulating the reinforcing properties of most major drugs of abuse, including nicotine. Here, data showing that nicotine activates hypocretin-producing neurons in the lateral hypothalamus, and that disruption of hypocretin transmission decreases nicotine self-administration behavior in rats will be reviewed. Recent findings suggesting that plasma hypocretin levels may be related to the magnitude of cigarette craving in abstinent smokers will be discussed. Finally, the data suggesting that hypocretin transmission in the insular cortex may play an important role in regulating nicotine self-administration behavior in rats will be reviewed. This latter finding may provide mechanistic insight into the apparent disruption of tobacco addiction reported in human smokers with stroke-associated damage to the insular cortex.
Collapse
Affiliation(s)
- Paul J Kenny
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
49
|
Di Sebastiano AR, Wilson-Pérez HE, Lehman MN, Coolen LM. Lesions of orexin neurons block conditioned place preference for sexual behavior in male rats. Horm Behav 2011; 59:1-8. [PMID: 20851122 DOI: 10.1016/j.yhbeh.2010.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 08/31/2010] [Accepted: 09/05/2010] [Indexed: 11/28/2022]
Abstract
The hypothalamic neuropeptide orexin (hypocretin) mediates reward related to drugs of abuse and food intake. However, a role for orexin in sexual reward has yet to be investigated. Orexin neurons are activated by sexual behavior, but endogenous orexin does not appear to be essential for sexual performance and motivation in male rats. Therefore, the goal of the current study was to test the hypothesis that orexin is critically involved in processing of sexual reward in male rats. First, it was demonstrated following exposure to conditioned contextual cues associated with sexual behavior in a conditioned place preference paradigm that cFos expression is induced in orexin neurons, indicating activation of orexin neurons by cues predicting sexual reward. Next, orexin-cell specific lesions were utilized to determine the functional role of orexin in sexual reward processing. Hypothalami of adult male rats were infused with orexin-B-conjugated saporin, resulting in greater than 80% loss of orexin neurons in the perifornical-dorsomedial and lateral hypothalamus. Orexin lesions did not affect expression of sexual behavior, but prevented formation of conditioned place preference for a sexual behavior paired chamber. In contrast, intact sham-treated males or males with partial lesions developed a conditioned place preference for mating. Orexin lesioned males maintained the ability to form a conditioned place aversion to lithium chloride-induced visceral illness, indicating that orexin lesions did not disrupt associative contextual memory. Overall, these findings suggest that orexin is not essential for sexual performance or motivation, but is critical for reward processing and conditioned cue-induced seeking of sexual behavior.
Collapse
|
50
|
Matsuo E, Mochizuki A, Nakayama K, Nakamura S, Yamamoto T, Shioda S, Sakurai T, Yanagisawa M, Shiuchi T, Minokoshi Y, Inoue T. Decreased Intake of Sucrose Solutions in Orexin Knockout Mice. J Mol Neurosci 2010; 43:217-24. [DOI: 10.1007/s12031-010-9475-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
|