1
|
Lakshminarasimhan K, Buck J, Kellendonk C, Horga G. A corticostriatal learning mechanism linking excess striatal dopamine and auditory hallucinations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643990. [PMID: 40166304 PMCID: PMC11956939 DOI: 10.1101/2025.03.18.643990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Auditory hallucinations are linked to elevated striatal dopamine, but their underlying computational mechanisms have been obscured by regional heterogeneity in striatal dopamine signaling. To address this, we developed a normative circuit model in which corticostriatal plasticity in the ventral striatum is modulated by reward prediction errors to drive reinforcement learning while that in the sensory-dorsal striatum is modulated by sensory prediction errors derived from internal belief to drive self-supervised learning. We then validate the key predictions of this model using dopamine recordings across striatal regions in mice, as well as human behavior in a hybrid learning task. Finally, we find that changes in learning resulting from optogenetic stimulation of the sensory striatum in mice and individual variability in hallucination proneness in humans are best explained by selectively enhancing dopamine levels in the model sensory striatum. These findings identify plasticity mechanisms underlying biased learning of sensory expectations as a biologically plausible link between excess dopamine and hallucinations.
Collapse
Affiliation(s)
- Kaushik Lakshminarasimhan
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
| | - Justin Buck
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - Guillermo Horga
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Chan RCK, Wang LL, Huang J, Wang Y, Lui SSY. Anhedonia Across and Beyond the Schizophrenia Spectrum. Schizophr Bull 2025; 51:293-308. [PMID: 39326030 PMCID: PMC11908851 DOI: 10.1093/schbul/sbae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Anhedonia refers to the diminished ability to experience pleasure, and is a core feature of schizophrenia (SCZ). The neurocognitive and neural correlates of anhedonia remain elusive. Based on several influential theoretical models for negative symptoms, this selective review proposed four important neurocognitive domains, which may unveil the neurobiological mechanisms of anhedonia. The authors critically reviewed the current evidence regarding value representation of reward, prospection, emotion-behavior decoupling, and belief updating in the Chinese setting, covering both behavioral and neuroimaging research. We observed a limited application of the transdiagnostic approach in previous studies on the four domains, and the lack of adequate measures to tap into the expressivity deficit in SCZ. Despite many behavioral paradigms for these four domains utilized both social and non-social stimuli, previous studies seldom focused on the social-versus-non-social differentiation. We further advocated several important directions for future research.
Collapse
Affiliation(s)
- Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-ling Wang
- School of Psychology, Shanghai Normal University, Shanghai, China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Simon S Y Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
3
|
Şair YB, Yılmaz Yıldırım E, Zeybek RE, Şallı Başaran G, Sevinçok L. From garden to madness: herbal products and psychotic experiences. Neurocase 2024; 30:198-203. [PMID: 39611748 DOI: 10.1080/13554794.2024.2436217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Psychotic symptoms, characterized by hallucinations, delusions, and cognitive disturbances, are associated with various psychiatric and neurological disorders. This manuscript explores two cases of acute psychotic episodes triggered by the regular consumption of herbal products. The cases highlight the need for increased awareness of the potential toxic side effects of herbal products. The impact of herbal ingredients like maca and matcha on neurotransmitter activity is explored, shedding light on the underlying mechanisms leading to psychosis. The manuscript highlights the need to report both the benefits and risks of herbal products, challenging the misconception that they are inherently safe.
Collapse
Affiliation(s)
- Yaşan Bilge Şair
- Psychiatry Department, Adnan Menderes University Hospital, Aydın, Turkey
| | | | - Rabia Elif Zeybek
- Psychiatry Department, Adnan Menderes University Hospital, Aydın, Turkey
| | | | - Levent Sevinçok
- Psychiatry Department, Adnan Menderes University Hospital, Aydın, Turkey
| |
Collapse
|
4
|
Wang X, Yan C, Yang PY, Xia Z, Cai XL, Wang Y, Kwok SC, Chan RCK. Unveiling the potential of machine learning in schizophrenia diagnosis: A meta-analytic study of task-based neuroimaging data. Psychiatry Clin Neurosci 2024; 78:157-168. [PMID: 38013639 DOI: 10.1111/pcn.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
The emergence of machine learning (ML) techniques has opened up new avenues for identifying biomarkers associated with schizophrenia (SCZ) using task-related fMRI (t-fMRI) designs. To evaluate the effectiveness of this approach, we conducted a comprehensive meta-analysis of 31 t-fMRI studies using a bivariate model. Our findings revealed a high overall sensitivity of 0.83 and specificity of 0.82 for t-fMRI studies. Notably, neuropsychological domains modulated the classification performance, with selective attention demonstrating a significantly higher specificity than working memory (β = 0.98, z = 2.11, P = 0.04). Studies involving older, chronic patients with SCZ reported higher sensitivity (P <0.015) and specificity (P <0.001) than those involving younger, first-episode patients or high-risk individuals for psychosis. Additionally, we found that the severity of negative symptoms was positively associated with the specificity of the classification model (β = 7.19, z = 2.20, P = 0.03). Taken together, these results support the potential of using task-based fMRI data in combination with machine learning techniques to identify biomarkers related to symptom outcomes in SCZ, providing a promising avenue for improving diagnostic accuracy and treatment efficacy. Future attempts to deploy ML classification should consider the factors of algorithm choice, data quality and quantity, as well as issues related to generalization.
Collapse
Affiliation(s)
- Xuan Wang
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- Neuropsychology and Applied Cognitive Neuroscience Laboratory; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
| | | | - Zheng Xia
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xin-Lu Cai
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Sze Chai Kwok
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- Phylo-Cognition Laboratory, Division of Natural and Applied Sciences, Data Science Research Center, Duke Kunshan University, Kunshan, China
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Laricchiuta D, Papi M, Decandia D, Panuccio A, Cutuli D, Peciccia M, Mazzeschi C, Petrosini L. The role of glial cells in mental illness: a systematic review on astroglia and microglia as potential players in schizophrenia and its cognitive and emotional aspects. Front Cell Neurosci 2024; 18:1358450. [PMID: 38419655 PMCID: PMC10899480 DOI: 10.3389/fncel.2024.1358450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Schizophrenia is a complex and severe mental disorder that affects approximately 1% of the global population. It is characterized by a wide range of symptoms, including delusions, hallucinations, disorganized speech and behavior, and cognitive impairment. Recent research has suggested that the immune system dysregulation may play a significant role in the pathogenesis of schizophrenia, and glial cells, such as astroglia and microglia known to be involved in neuroinflammation and immune regulation, have emerged as potential players in this process. The aim of this systematic review is to summarize the glial hallmarks of schizophrenia, choosing as cellular candidate the astroglia and microglia, and focusing also on disease-associated psychological (cognitive and emotional) changes. We conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched PubMed, Scopus, and Web of Science for articles that investigated the differences in astroglia and microglia in patients with schizophrenia, published in the last 5 years. The present systematic review indicates that changes in the density, morphology, and functioning of astroglia and microglia may be involved in the development of schizophrenia. The glial alterations may contribute to the pathogenesis of schizophrenia by dysregulating neurotransmission and immune responses, worsening cognitive capabilities. The complex interplay of astroglial and microglial activation, genetic/epigenetic variations, and cognitive assessments underscores the intricate relationship between biological mechanisms, symptomatology, and cognitive functioning in schizophrenia.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Martina Papi
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Davide Decandia
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Anna Panuccio
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Debora Cutuli
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Maurizio Peciccia
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Claudia Mazzeschi
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Laura Petrosini
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
6
|
Yang X, Song Y, Zou Y, Li Y, Zeng J. Neural correlates of prediction error in patients with schizophrenia: evidence from an fMRI meta-analysis. Cereb Cortex 2024; 34:bhad471. [PMID: 38061699 DOI: 10.1093/cercor/bhad471] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 01/19/2024] Open
Abstract
Abnormal processes of learning from prediction errors, i.e. the discrepancies between expectations and outcomes, are thought to underlie motivational impairments in schizophrenia. Although dopaminergic abnormalities in the mesocorticolimbic reward circuit have been found in patients with schizophrenia, the pathway through which prediction error signals are processed in schizophrenia has yet to be elucidated. To determine the neural correlates of prediction error processing in schizophrenia, we conducted a meta-analysis of whole-brain neuroimaging studies that investigated prediction error signal processing in schizophrenia patients and healthy controls. A total of 14 studies (324 schizophrenia patients and 348 healthy controls) using the reinforcement learning paradigm were included. Our meta-analysis showed that, relative to healthy controls, schizophrenia patients showed increased activity in the precentral gyrus and middle frontal gyrus and reduced activity in the mesolimbic circuit, including the striatum, thalamus, amygdala, hippocampus, anterior cingulate cortex, insula, superior temporal gyrus, and cerebellum, when processing prediction errors. We also found hyperactivity in frontal areas and hypoactivity in mesolimbic areas when encoding prediction error signals in schizophrenia patients, potentially indicating abnormal dopamine signaling of reward prediction error and suggesting failure to represent the value of alternative responses during prediction error learning and decision making.
Collapse
Affiliation(s)
- Xun Yang
- School of Public Policy and Administration, Chongqing University, No. 174, Shazhengjie, Shapingba, Chongqing, China
| | - Yuan Song
- School of Public Policy and Administration, Chongqing University, No. 174, Shazhengjie, Shapingba, Chongqing, China
| | - Yuhan Zou
- School of Economics and Business Administration, Chongqing University, No. 174, Shazhengjie, Shapingba, Chongqing, China
| | - Yilin Li
- Psychology and Neuroscience Department, University of St Andrews, Forbes 1 DRA, Buchanan Garden, St Andrews, Fife, United Kingdom
| | - Jianguang Zeng
- School of Economics and Business Administration, Chongqing University, No. 174, Shazhengjie, Shapingba, Chongqing, China
| |
Collapse
|
7
|
Wang X, Zhang Y, Huang J, Wang Y, Niu Y, Lui SSY, Hui L, Chan RCK. Revisiting reward impairments in schizophrenia spectrum disorders: a systematic review and meta-analysis for neuroimaging findings. Psychol Med 2023; 53:7189-7202. [PMID: 36994747 DOI: 10.1017/s0033291723000703] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
BACKGROUND Abnormal reward functioning is central to anhedonia and amotivation symptoms of schizophrenia (SCZ). Reward processing encompasses a series of psychological components. This systematic review and meta-analysis examined the brain dysfunction related to reward processing of individuals with SCZ spectrum disorders and risks, covering multiple reward components. METHODS After a systematic literature search, 37 neuroimaging studies were identified and divided into four groups based on their target psychology components (i.e. reward anticipation, reward consumption, reward learning, effort computation). Whole-brain Seed-based d Mapping (SDM) meta-analyses were conducted for all included studies and each component. RESULTS The meta-analysis for all reward-related studies revealed reduced functional activation across the SCZ spectrum in the striatum, orbital frontal cortex, cingulate cortex, and cerebellar areas. Meanwhile, distinct abnormal patterns were found for reward anticipation (decreased activation of the cingulate cortex and striatum), reward consumption (decreased activation of cerebellum IV/V areas, insula and inferior frontal gyri), and reward learning processing (decreased activation of the striatum, thalamus, cerebellar Crus I, cingulate cortex, orbitofrontal cortex, and parietal and occipital areas). Lastly, our qualitative review suggested that decreased activation of the ventral striatum and anterior cingulate cortex was also involved in effort computation. CONCLUSIONS These results provide deep insights on the component-based neuro-psychopathological mechanisms for anhedonia and amotivation symptoms of the SCZ spectrum.
Collapse
Affiliation(s)
- Xuan Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yinghao Zhang
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhe Niu
- Department of Psychology, University of California, San Diego, La Jolla, USA
| | - Simon S Y Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Li Hui
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Jia J, Peng H, Tian R, Zhou H, Zheng H, Liu B, Lu Y. Gm527 deficiency in dentate gyrus improves memory through upregulating dopamine D1 receptor pathway. CNS Neurosci Ther 2023; 29:3290-3306. [PMID: 37248637 PMCID: PMC10580352 DOI: 10.1111/cns.14259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
AIMS Dopamine D1 receptor (D1R) hypofunction is associated with negative and cognitive symptoms in schizophrenia; therefore, the mechanism of D1R function modulation needs further investigation. Gm527 is the rodent homologous of the schizophrenia-related gene C14orf28, encoding a predicated D1R-interacting protein. However, the role of Gm527-D1R interaction in schizophrenia needs to be clarified. METHODS Gm527-floxed mice were generated and crossed with D1-Cre mice (D1:Gm527-/-) to knockout Gm527 in D1R-positive neurons. Then behavioral tests were performed to explore the schizophrenia-related phenotypes. Immunofluorescence, fluorescence in situ hybridization, electrophysiological recording, quantitative real-time PCR, and western blotting were conducted to investigate the mechanisms. RESULTS Working memory, long-term memories, and adult neurogenesis in the DG were enhanced in D1:Gm527-/- mice. LTP was also increased in the DG in D1:Gm527-/- mice, resulting from the Gm527 knockout-induced D1R expression enhancement on the plasma membrane and subsequently cAMP signaling and NMDA receptor pathways activation. The requirement of Gm527 knockout in the DG was confirmed by reversing Gm527 expression or knockdown Gm527 in the DG D1R-positive neurons through AAV-CAG-FLEX-Gm527-GFP or AAV-CMV-FLEX-EGFP-Gm527-RNAi injection. CONCLUSIONS The DG Gm527 knockout induces D1R hyperfunction in improving schizophrenia cognitive symptoms.
Collapse
Affiliation(s)
- Jie Jia
- Department of Physiology, School of Basic MedicineTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Hualing Peng
- Department of Physiology, School of Basic MedicineTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Rui Tian
- Department of Physiology, School of Basic MedicineTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Hong Zhou
- Department of Physiology, School of Basic MedicineTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Hua Zheng
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bo Liu
- Department of Otorhinolaryngology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yisheng Lu
- Department of Physiology, School of Basic MedicineTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
9
|
Shatalina E, Ashok AH, Wall MB, Nour MM, Myers J, Reis Marques T, Rabiner EA, Howes OD. Reward processing in schizophrenia and its relation to Mu opioid receptor availability and negative symptoms: A [ 11C]-carfentanil PET and fMRI study. Neuroimage Clin 2023; 39:103481. [PMID: 37517175 PMCID: PMC10400918 DOI: 10.1016/j.nicl.2023.103481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/17/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Reward processing deficits are a core feature of schizophrenia and are thought to underlie negative symptoms. Pre-clinical evidence suggests that opioid neurotransmission is linked to reward processing. However, the contribution of Mu Opioid Receptor (MOR) signalling to the reward processing abnormalities in schizophrenia is unknown. Here, we examined the association between MOR availability and the neural processes underlying reward anticipation in patients with schizophrenia using multimodal neuroimaging. METHOD 37 subjects (18 with Schizophrenia with moderate severity negative symptoms and 19 age and sex-matched healthy controls) underwent a functional MRI scan while performing the Monetary Incentive Delay (MID) task to measure the neural response to reward anticipation. Participants also had a [11C]-carfentanil PET scan to measure MOR availability. RESULTS Reward anticipation was associated with increased neural activation in a widespread network of brain regions including the striatum. Patients with schizophrenia had both significantly lower MOR availability in the striatum as well as striatal hypoactivation during reward anticipation. However, there was no association between MOR availability and striatal neural activity during reward anticipation in either patient or controls (Pearson's Correlation, controls df = 17, r = 0.321, p = 0.18, patients df = 16, r = 0.295, p = 0.24). There was no association between anticipation-related neural activation and negative symptoms (r = -0.120, p = 0.14) or anhedonia severity (social r = -0.365, p = 0.14 physical r = -0.120, p = 0.63). CONCLUSIONS Our data suggest reduced MOR availability in schizophrenia might not underlie striatal hypoactivation during reward anticipation in patients with established illness. Therefore, other mechanisms, such as dopamine dysfunction, warrant further investigation as treatment targets for this aspect of the disorder.
Collapse
Affiliation(s)
- Ekaterina Shatalina
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK; Psychiatric Imaging Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK; Department of Psychosis, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, UK
| | - Abhishekh H Ashok
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK; Psychiatric Imaging Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK; Department of Psychosis, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, UK; Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK; Department of Radiology, University of Cambridge, Cambridge, UK
| | - Matthew B Wall
- Invicro, London, UK; Faculty of Medicine, Imperial College London, London, UK; Clinical Psychopharmacology Unit, University College London, London, UK
| | - Matthew M Nour
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK; Wellcome Centre for Human Neuroimaging (WCHN), University College London, London, UK
| | - Jim Myers
- Faculty of Medicine, Imperial College London, London, UK
| | - Tiago Reis Marques
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK; Psychiatric Imaging Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK; Department of Psychosis, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, UK
| | - Eugenii A Rabiner
- Invicro, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK; Psychiatric Imaging Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK; Department of Psychosis, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, UK.
| |
Collapse
|
10
|
Tangmose K, Rostrup E, Bojesen KB, Sigvard A, Glenthøj BY, Nielsen MØ. Clinical response to treatment with a partial dopamine agonist is related to changes in reward processing. Psychiatry Res 2023; 326:115308. [PMID: 37399765 DOI: 10.1016/j.psychres.2023.115308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023]
Abstract
Aberrant neuronal coding of reward processing has been linked to psychosis. It remains unresolved how treatment with a partial dopamine agonist affects reward processing, and whether treatment affects reward processing differently in patients responding and not responding to treatment. Here, 33 antipsychotic-naïve psychosis patients and 33 matched healthy controls underwent functional magnetic resonance imaging before and after patients received aripiprazole monotherapy for six weeks. Processing of motivational salient events and negative outcome evaluation (NOE) was examined using a monetary incentive delay task. Psychopathology was assessed with the Positive and Negative Syndrome Scale, and responders were identified by having ≥30% reduction in positive symptoms (N=21). At baseline, patients displayed an increased NOE signal in the caudate and dorsolateral prefrontal cortex compared to healthy controls. In the caudate, the NOE signal was normalized at follow-up, and normalization was driven by responders. In responders only, there was a significant improvement in the motivational salience signal in the caudate at follow-up. Motivational salience and NOE signals in the caudate may be associated with a dopaminergic mechanism in patients characterized as responders which may not be the case in non-responders. Likewise, non-dopaminergic mechanism may underly abnormal NOE processing in dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, Rigshospitalet, Glostrup, Denmark
| | - Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Anne Sigvard
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Purcell JR, Brown JW, Tullar RL, Bloomer BF, Kim DJ, Moussa-Tooks AB, Dolan-Bennett K, Bangert BM, Wisner KM, Lundin NB, O'Donnell BF, Hetrick WP. Insular and Striatal Correlates of Uncertain Risky Reward Pursuit in Schizophrenia. Schizophr Bull 2023; 49:726-737. [PMID: 36869757 PMCID: PMC10154703 DOI: 10.1093/schbul/sbac206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
BACKGROUND AND HYPOTHESIS Risk-taking in specific contexts can be beneficial, leading to rewarding outcomes. Schizophrenia is associated with disadvantageous decision-making, as subjects pursue uncertain risky rewards less than controls. However, it is unclear whether this behavior is associated with more risk sensitivity or less reward incentivization. Matching on demographics and intelligence quotient (IQ), we determined whether risk-taking was more associated with brain activation in regions affiliated with risk evaluation or reward processing. STUDY DESIGN Subjects (30 schizophrenia/schizoaffective disorder, 30 controls) completed a modified, fMRI Balloon Analogue Risk Task. Brain activation was modeled during decisions to pursue risky rewards and parametrically modeled according to risk level. STUDY RESULTS The schizophrenia group exhibited less risky-reward pursuit despite previous adverse outcomes (Average Explosions; F(1,59) = 4.06, P = .048) but the comparable point at which risk-taking was volitionally discontinued (Adjusted Pumps; F(1,59) = 2.65, P = .11). Less activation was found in schizophrenia via whole brain and region of interest (ROI) analyses in the right (F(1,59) = 14.91, P < 0.001) and left (F(1,59) = 16.34, P < 0.001) nucleus accumbens (NAcc) during decisions to pursue rewards relative to riskiness. Risk-taking correlated with IQ in schizophrenia, but not controls. Path analyses of average ROI activation revealed less statistically determined influence of anterior insula upon dorsal anterior cingulate bilaterally (left: χ2 = 12.73, P < .001; right: χ2 = 9.54, P = .002) during risky reward pursuit in schizophrenia. CONCLUSIONS NAcc activation in schizophrenia varied less according to the relative riskiness of uncertain rewards compared to controls, suggesting aberrations in reward processing. The lack of activation differences in other regions suggests similar risk evaluation. Less insular influence on the anterior cingulate may relate to attenuated salience attribution or inability for risk-related brain region collaboration to sufficiently perceive situational risk.
Collapse
Affiliation(s)
- John R Purcell
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Joshua W Brown
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Rachel L Tullar
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Bess F Bloomer
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Dae-Jin Kim
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Alexandra B Moussa-Tooks
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Katherine Dolan-Bennett
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Department of Psychological and Brain Science, Washington University, St. Louise, MO, USA
| | - Brianna M Bangert
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Krista M Wisner
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Nancy B Lundin
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Brian F O'Donnell
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - William P Hetrick
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| |
Collapse
|
12
|
Tangmose K, Rostrup E, Bojesen KB, Sigvard A, Jessen K, Johansen LB, Glenthøj BY, Nielsen MØ. Reward disturbances in antipsychotic-naïve patients with first-episode psychosis and their association to glutamate levels. Psychol Med 2023; 53:1629-1638. [PMID: 37010221 DOI: 10.1017/s0033291721003305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Aberrant anticipation of motivational salient events and processing of outcome evaluation in striatal and prefrontal regions have been suggested to underlie psychosis. Altered glutamate levels have likewise been linked to schizophrenia. Glutamatergic abnormalities may affect the processing of motivational salience and outcome evaluation. It remains unresolved, whether glutamatergic dysfunction is associated with the coding of motivational salience and outcome evaluation in antipsychotic-naïve patients with first-episode psychosis. METHODS Fifty-one antipsychotic-naïve patients with first-episode psychosis (22 ± 5.2 years, female/male: 31/20) and 52 healthy controls (HC) matched on age, sex, and parental education underwent functional magnetic resonance imaging and magnetic resonance spectroscopy (3T) in one session. Brain responses to motivational salience and negative outcome evaluation (NOE) were examined using a monetary incentive delay task. Glutamate levels were estimated in the left thalamus and anterior cingulate cortex using LCModel. RESULTS Patients displayed a positive signal change to NOE in the caudate (p = 0.001) and dorsolateral prefrontal cortex (DLPFC; p = 0.003) compared to HC. No group difference was observed in motivational salience or in levels of glutamate. There was a different association between NOE signal in the caudate and DLPFC and thalamic glutamate levels in patients and HC due to a negative correlation in patients (caudate: p = 0.004, DLPFC: p = 0.005) that was not seen in HC. CONCLUSIONS Our findings confirm prior findings of abnormal outcome evaluation as a part of the pathophysiology of schizophrenia. The results also suggest a possible link between thalamic glutamate and NOE signaling in patients with first-episode psychosis.
Collapse
Affiliation(s)
- Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Anne Sigvard
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Jessen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Louise Baruël Johansen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
- Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Rodrigues-Neves AC, Ambrósio AF, Gomes CA. Microglia sequelae: brain signature of innate immunity in schizophrenia. Transl Psychiatry 2022; 12:493. [PMID: 36443303 PMCID: PMC9705537 DOI: 10.1038/s41398-022-02197-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Schizophrenia is a psychiatric disorder with significant impact on individuals and society. The current pharmacologic treatment, which principally alleviates psychosis, is focused on neurotransmitters modulation, relying on drugs with severe side effects and ineffectiveness in a significant percentage of cases. Therefore, and due to difficulties inherent to diagnosis and treatment, it is vital to reassess alternative cellular and molecular drug targets. Distinct risk factors - genetic, developmental, epigenetic, and environmental - have been associated with disease onset and progression, giving rise to the proposal of different pathophysiological mechanisms and putative pharmacological targets. Immunity is involved and, particularly microglia - innate immune cells of the central nervous system, critically involved in brain development - have captured attention as cellular players. Microglia undergo marked morphologic and functional alterations in the human disease, as well as in animal models of schizophrenia, as reported in several original papers. We cluster the main findings of clinical studies by groups of patients: (1) at ultra-high risk of psychosis, (2) with a first episode of psychosis or recent-onset schizophrenia, and (3) with chronic schizophrenia; in translational studies, we highlight the time window of appearance of particular microglia alterations in the most well studied animal model in the field (maternal immune activation). The organization of clinical and translational findings based on schizophrenia-associated microglia changes in different phases of the disease course may help defining a temporal pattern of microglia changes and may drive the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- A. Catarina Rodrigues-Neves
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - António. F. Ambrósio
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Catarina A. Gomes
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| |
Collapse
|
14
|
Zeng J, Yan J, Cao H, Su Y, Song Y, Luo Y, Yang X. Neural substrates of reward anticipation and outcome in schizophrenia: a meta-analysis of fMRI findings in the monetary incentive delay task. Transl Psychiatry 2022; 12:448. [PMID: 36244990 PMCID: PMC9573872 DOI: 10.1038/s41398-022-02201-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 01/10/2023] Open
Abstract
Dysfunction of the mesocorticolimbic dopaminergic reward system is a core feature of schizophrenia (SZ), yet its precise contributions to different stages of reward processing and their relevance to disease symptomology are not fully understood. We performed a coordinate-based meta-analysis, using the monetary incentive delay task, to identify which brain regions are implicated in different reward phases in functional magnetic resonance imaging in SZ. A total of 17 studies (368 SZ and 428 controls) were included in the reward anticipation, and 10 studies (229 SZ and 281 controls) were included in the reward outcome. Our meta-analysis revealed that during anticipation, patients showed hypoactivation in the striatum, anterior cingulate cortex, median cingulate cortex (MCC), amygdala, precentral gyrus, and superior temporal gyrus compared with controls. Striatum hypoactivation was negatively associated with negative symptoms and positively associated with the proportion of second-generation antipsychotic users (percentage of SGA users). During outcome, patients displayed hyperactivation in the striatum, insula, amygdala, hippocampus, parahippocampal gyrus, cerebellum, postcentral gyrus, and MCC, and hypoactivation in the dorsolateral prefrontal cortex (DLPFC) and medial prefrontal cortex (mPFC). Hypoactivity of mPFC during outcome was negatively associated with positive symptoms. Moderator analysis showed that the percentage of SGA users was a significant moderator of the association between symptom severity and brain activity in both the anticipation and outcome stages. Our findings identified the neural substrates for different reward phases in SZ and may help explain the neuropathological mechanisms underlying reward processing deficits in the disorder.
Collapse
Affiliation(s)
- Jianguang Zeng
- grid.190737.b0000 0001 0154 0904School of Economics and Business Administration, Chongqing University, Chongqing, 400044 China
| | - Jiangnan Yan
- grid.190737.b0000 0001 0154 0904School of Economics and Business Administration, Chongqing University, Chongqing, 400044 China
| | - Hengyi Cao
- grid.250903.d0000 0000 9566 0634Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Hempstead, NY USA ,grid.440243.50000 0004 0453 5950Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY USA
| | - Yueyue Su
- grid.190737.b0000 0001 0154 0904School of Public Affairs, Chongqing University, Chongqing, 400044 China
| | - Yuan Song
- grid.190737.b0000 0001 0154 0904School of Public Affairs, Chongqing University, Chongqing, 400044 China
| | - Ya Luo
- grid.412901.f0000 0004 1770 1022Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
15
|
Adam Yaple Z, Tolomeo S, Yu R. Spatial and chronic differences in neural activity in medicated and unmedicated schizophrenia patients. Neuroimage Clin 2022; 35:103029. [PMID: 35569228 PMCID: PMC9112098 DOI: 10.1016/j.nicl.2022.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/10/2022] [Accepted: 04/28/2022] [Indexed: 11/07/2022]
Abstract
The medicated schizophrenia group yielded concordant activity among three right lateralized frontal clusters and a left lateralized parietal cluster. The unmedicated schizophrenia group yielded concordant activity among right lateralized frontal-parietal regions. A neural compensatory mechanism in schizophrenia.
A major caveat with investigations on schizophrenic patients is the difficulty to control for medication usage across samples as disease-related neural differences may be confounded by medication usage. Following a thorough literature search (632 records identified), we included 37 studies with a total of 740 medicated schizophrenia patients and 367 unmedicated schizophrenia patients. Here, we perform several meta-analyses to assess the neurofunctional differences between medicated and unmedicated schizophrenic patients across fMRI studies to determine systematic regions associated with medication usage. Several clusters identified by the meta-analysis on the medicated group include three right lateralized frontal clusters and a left lateralized parietal cluster, whereas the unmedicated group yielded concordant activity among right lateralized frontal-parietal regions. We further explored the prevalence of activity within these regions across illness duration and task type. These findings suggest a neural compensatory mechanism across these regions both spatially and chronically, offering new insight into the spatial and temporal dynamic neural differences among medicated and unmedicated schizophrenia patients.
Collapse
Affiliation(s)
| | - Serenella Tolomeo
- Social and Cognitive Computing Department, Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore, Singapore
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China; Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China; Department of Physics, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
16
|
Culbreth AJ, Kasanova Z, Ross TJ, Salmeron BJ, Gold JM, Stein EA, Waltz JA. Schizophrenia Patients Show Largely Similar Salience Signaling Compared to Healthy Controls in an Observational Task Environment. Brain Sci 2021; 11:brainsci11121610. [PMID: 34942913 PMCID: PMC8699423 DOI: 10.3390/brainsci11121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
Recent evidence suggests that the aberrant signaling of salience is associated with psychotic illness. Salience, however, can take many forms in task environments. For example, salience may refer to any of the following: (1) the valence of an outcome, (2) outcomes that are unexpected, called reward prediction errors (PEs), or (3) cues associated with uncertain outcomes. Here, we measure brain responses to different forms of salience in the context of a passive PE-signaling task, testing whether patients with schizophrenia (SZ) showed aberrant signaling of particular types of salience. We acquired event-related MRI data from 29 SZ patients and 23 controls during the performance of a passive outcome prediction task. Across groups, we found that the anterior insula and posterior parietal cortices were activated to multiple different types of salience, including PE magnitude and heightened levels of uncertainty. However, BOLD activation to salient events was not significantly different between patients and controls in many regions, including the insula, posterior parietal cortices, and default mode network nodes. Such results suggest that deficiencies in salience processing in SZ may not result from an impaired ability to signal salience per se, but instead the ability to use such signals to guide future actions. Notably, no between-group differences were observed in BOLD signal changes associated with PE-signaling in the striatum. However, positive symptom severity was found to significantly correlate with the magnitudes of salience contrasts in default mode network nodes. Our results suggest that, in an observational environment, SZ patients may show an intact ability to activate striatal and cortical regions to rewarding and non-rewarding salient events. Furthermore, reduced deactivation of a hypothesized default mode network node for SZ participants with high levels of positive symptoms, following salient events, point to abnormalities in interactions of the salience network with other brain networks, and their potential importance to positive symptoms.
Collapse
Affiliation(s)
- Adam J. Culbreth
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA; (J.M.G.); (J.A.W.)
- Correspondence:
| | - Zuzana Kasanova
- Leuven Research & Development Spin-off & Innovation Unit, KU Leuven, Waaistraat 6-Box 5105, 3000 Leuven, Belgium;
| | - Thomas J. Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, MD 21224, USA; (T.J.R.); (B.J.S.); (E.A.S.)
| | - Betty J. Salmeron
- Neuroimaging Research Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, MD 21224, USA; (T.J.R.); (B.J.S.); (E.A.S.)
| | - James M. Gold
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA; (J.M.G.); (J.A.W.)
| | - Elliot A. Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, MD 21224, USA; (T.J.R.); (B.J.S.); (E.A.S.)
| | - James A. Waltz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA; (J.M.G.); (J.A.W.)
| |
Collapse
|
17
|
Magwai T, Shangase KB, Oginga FO, Chiliza B, Mpofana T, Xulu KR. DNA Methylation and Schizophrenia: Current Literature and Future Perspective. Cells 2021; 10:2890. [PMID: 34831111 PMCID: PMC8616184 DOI: 10.3390/cells10112890] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by dissociation of thoughts, idea, identity, and emotions. It has no central pathophysiological mechanism and precise diagnostic markers. Despite its high heritability, there are also environmental factors implicated in the development of schizophrenia. Epigenetic factors are thought to mediate the effects of environmental factors in the development of the disorder. Epigenetic modifications like DNA methylation are a risk factor for schizophrenia. Targeted gene approach studies attempted to find candidate gene methylation, but the results are contradictory. Genome-wide methylation studies are insufficient in literature and the available data do not cover different populations like the African populations. The current genome-wide studies have limitations related to the sample and methods used. Studies are required to control for these limitations. Integration of DNA methylation, gene expression, and their effects are important in the understanding of the development of schizophrenia and search for biomarkers. There are currently no precise and functional biomarkers for the disorder. Several epigenetic markers have been reported to be common in functional and peripheral tissue. This makes the peripheral tissue epigenetic changes a surrogate of functional tissue, suggesting common epigenetic alteration can be used as biomarkers of schizophrenia in peripheral tissue.
Collapse
Affiliation(s)
- Thabo Magwai
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
- National Health Laboratory Service, Department of Chemical Pathology, University of Kwa-Zulu Natal, Durban 4085, South Africa
| | - Khanyiso Bright Shangase
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Bonginkosi Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwa-Zulu Natal, Durban 4001, South Africa;
| | - Thabisile Mpofana
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Khethelo Richman Xulu
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| |
Collapse
|
18
|
Saleh Y, Jarratt-Barnham I, Fernandez-Egea E, Husain M. Mechanisms Underlying Motivational Dysfunction in Schizophrenia. Front Behav Neurosci 2021; 15:709753. [PMID: 34566594 PMCID: PMC8460905 DOI: 10.3389/fnbeh.2021.709753] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
Negative symptoms are a debilitating feature of schizophrenia which are often resistant to pharmacological intervention. The mechanisms underlying them remain poorly understood, and diagnostic methods rely on phenotyping through validated questionnaires. Deeper endo-phenotyping is likely to be necessary in order to improve current understanding. In the last decade, valuable behavioural insights have been gained through the use of effort-based decision making (EBDM) tasks. These have highlighted impairments in reward-related processing in schizophrenia, particularly associated with negative symptom severity. Neuroimaging investigations have related these changes to dysfunction within specific brain networks including the ventral striatum (VS) and frontal brain regions. Here, we review the behavioural and neural evidence associated with negative symptoms, shedding light on potential underlying mechanisms and future therapeutic possibilities. Findings in the literature suggest that schizophrenia is characterised by impaired reward based learning and action selection, despite preserved hedonic responses. Associations between amotivation and reward-processing deficits have not always been clear, and may be mediated by factors including cognitive dysfunction or dysfunctional or self-defeatist beliefs. Successful endo-phenotyping of negative symptoms as a function of objective behavioural and neural measurements is crucial in advancing our understanding of this complex syndrome. Additionally, transdiagnostic research–leveraging findings from other brain disorders, including neurological ones–can shed valuable light on the possible common origins of motivation disorders across diseases and has important implications for future treatment development.
Collapse
Affiliation(s)
- Youssuf Saleh
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Isaac Jarratt-Barnham
- Department of Psychiatry, Herchel Smith Building for Brain & Mind Sciences, University of Cambridge, Cambridge, United Kingdom.,Cambridge Psychosis Centre, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Emilio Fernandez-Egea
- Department of Psychiatry, Herchel Smith Building for Brain & Mind Sciences, University of Cambridge, Cambridge, United Kingdom.,Cambridge Psychosis Centre, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Csukly G, Szabó Á, Polgár P, Farkas K, Gyebnár G, Kozák LR, Stefanics G. Fronto-thalamic structural and effective connectivity and delusions in schizophrenia: a combined DTI/DCM study. Psychol Med 2021; 51:2083-2093. [PMID: 32329710 PMCID: PMC8426148 DOI: 10.1017/s0033291720000859] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/07/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Schizophrenia (SZ) is a complex disorder characterized by a range of behavioral and cognitive symptoms as well as structural and functional alterations in multiple cortical and subcortical structures. SZ is associated with reduced functional network connectivity involving core regions such as the anterior cingulate cortex (ACC) and the thalamus. However, little is known whether effective coupling, the directed influence of one structure over the other, is altered during rest in the ACC-thalamus network. METHODS We collected resting-state fMRI and diffusion-weighted MRI data from 18 patients and 20 healthy controls. We analyzed fronto-thalamic effective connectivity using dynamic causal modeling for cross-spectral densities in a network consisting of the ACC and the left and right medio-dorsal thalamic regions. We studied structural connectivity using fractional anisotropy (FA). RESULTS We found decreased coupling strength from the right thalamus to the ACC and from the right thalamus to the left thalamus, as well as increased inhibitory intrinsic connectivity in the right thalamus in patients relative to controls. ACC-to-left thalamus coupling strength correlated with the Positive and Negative Syndrome Scale (PANSS) total positive syndrome score and with delusion score. Whole-brain structural analysis revealed several tracts with reduced FA in patients, with a maximum decrease in white matter tracts containing fronto-thalamic and cingulo-thalamic fibers. CONCLUSIONS We found altered effective and structural connectivity within the ACC-thalamus network in SZ. Our results indicate that ACC-thalamus network activity at rest is characterized by reduced thalamus-to-ACC coupling. We suggest that positive symptoms may arise as a consequence of compensatory measures to imbalanced fronto-thalamic coupling.
Collapse
Affiliation(s)
- Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Ádám Szabó
- Magnetic Resonance Research Centre, Semmelweis University, Budapest, Hungary
| | - Patrícia Polgár
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gyula Gyebnár
- Magnetic Resonance Research Centre, Semmelweis University, Budapest, Hungary
| | - Lajos R. Kozák
- Magnetic Resonance Research Centre, Semmelweis University, Budapest, Hungary
| | - Gábor Stefanics
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wilfriedstrasse 6, 8032, Zurich, Switzerland
| |
Collapse
|
20
|
Fish S, Christidi F, Karavasilis E, Velonakis G, Kelekis N, Klein C, Stefanis NC, Smyrnis N. Interaction of schizophrenia and chronic cannabis use on reward anticipation sensitivity. NPJ SCHIZOPHRENIA 2021; 7:33. [PMID: 34135344 PMCID: PMC8209034 DOI: 10.1038/s41537-021-00163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/28/2021] [Indexed: 11/09/2022]
Abstract
Chronic cannabis use and schizophrenia are both thought to affect reward processing. While behavioural and neural effects on reward processing have been investigated in both conditions, their interaction has not been studied, although chronic cannabis use is common among these patients. In the present study eighty-nine participants divided into four groups (control chronic cannabis users and non-users; schizophrenia patient cannabis users and non-users) performed a two-choice decision task, preceded by monetary cues (high/low reward/punishment or neutral), while being scanned using functional magnetic resonance imaging. Reward and punishment anticipation resulted in activation of regions of interest including the thalamus, striatum, amygdala and insula. Chronic cannabis use and schizophrenia had opposing effects on reward anticipation sensitivity. More specifically control users and patient non-users showed faster behavioural responses and increased activity in anterior/posterior insula for high magnitude cues compared to control non-users and patient users. The same interaction pattern was observed in the activation of the right thalamus for reward versus punishment cues. This study provided evidence for interaction of chronic cannabis use and schizophrenia on reward processing and highlights the need for future research addressing the significance of this interaction for the pathophysiology of these conditions and its clinical consequences.
Collapse
Affiliation(s)
- Simon Fish
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece.,1st Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Athens, Greece
| | - Foteini Christidi
- Department of Medical Physics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Efstratios Karavasilis
- 2nd Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece
| | - Georgios Velonakis
- 2nd Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece
| | - Nikolaos Kelekis
- 2nd Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece
| | - Christoph Klein
- 2nd Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece.,Department of Child and Adolescent Psychiatry, Medical Faculty, University of Freiburg, Freiburg, Germany.,Department of Child and Adolescent Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Nicholas C Stefanis
- 1st Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Athens, Greece
| | - Nikolaos Smyrnis
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece. .,2nd Department of Psychiatry, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece.
| |
Collapse
|
21
|
Yaple ZA, Tolomeo S, Yu R. Abnormal prediction error processing in schizophrenia and depression. Hum Brain Mapp 2021; 42:3547-3560. [PMID: 33955106 PMCID: PMC8249895 DOI: 10.1002/hbm.25453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 11/19/2022] Open
Abstract
To make adaptive decisions under uncertainty, individuals need to actively monitor the discrepancy between expected outcomes and actual outcomes, known as prediction errors. Reward‐based learning deficits have been shown in both depression and schizophrenia patients. For this study, we compiled studies that investigated prediction error processing in depression and schizophrenia patients and performed a series of meta‐analyses. In both groups, positive t‐maps of prediction error tend to yield striatum activity across studies. The analysis of negative t‐maps of prediction error revealed two large clusters within the right superior and inferior frontal lobes in schizophrenia and the medial prefrontal cortex and bilateral insula in depression. The concordant posterior cingulate activity was observed in both patient groups, more prominent in the depression group and absent in the healthy control group. These findings suggest a possible role in dopamine‐rich areas associated with the encoding of prediction errors in depression and schizophrenia.
Collapse
Affiliation(s)
| | - Serenella Tolomeo
- Department of Psychology, National University of Singapore, Singapore
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China.,Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China.,Department of Physics, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
22
|
Brady MV, Vaccarino FM. Role of SHH in Patterning Human Pluripotent Cells towards Ventral Forebrain Fates. Cells 2021; 10:914. [PMID: 33923415 PMCID: PMC8073580 DOI: 10.3390/cells10040914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/03/2022] Open
Abstract
The complexities of human neurodevelopment have historically been challenging to decipher but continue to be of great interest in the contexts of healthy neurobiology and disease. The classic animal models and monolayer in vitro systems have limited the types of questions scientists can strive to answer in addition to the technical ability to answer them. However, the tridimensional human stem cell-derived organoid system provides the unique opportunity to model human development and mimic the diverse cellular composition of human organs. This strategy is adaptable and malleable, and these neural organoids possess the morphogenic sensitivity to be patterned in various ways to generate the different regions of the human brain. Furthermore, recapitulating human development provides a platform for disease modeling. One master regulator of human neurodevelopment in many regions of the human brain is sonic hedgehog (SHH), whose expression gradient and pathway activation are responsible for conferring ventral identity and shaping cellular phenotypes throughout the neural axis. This review first discusses the benefits, challenges, and limitations of using organoids for studying human neurodevelopment and disease, comparing advantages and disadvantages with other in vivo and in vitro model systems. Next, we explore the range of control that SHH exhibits on human neurodevelopment, and the application of SHH to various stem cell methodologies, including organoids, to expand our understanding of human development and disease. We outline how this strategy will eventually bring us much closer to uncovering the intricacies of human neurodevelopment and biology.
Collapse
Affiliation(s)
| | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520, USA;
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
- Yale Kavli Institute for Neuroscience, New Haven, CT 06520, USA
| |
Collapse
|
23
|
Hawkins PCT, Zelaya FO, O'Daly O, Holiga S, Dukart J, Umbricht D, Mehta MA. The effect of risperidone on reward-related brain activity is robust to drug-induced vascular changes. Hum Brain Mapp 2021; 42:2766-2777. [PMID: 33666305 PMCID: PMC8127149 DOI: 10.1002/hbm.25400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/22/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Dopamine (DA) mediated brain activity is intimately linked to reward‐driven cerebral responses, while aberrant reward processing has been implicated in several psychiatric disorders. fMRI has been a valuable tool in understanding the mechanism by which DA modulators alter reward‐driven responses and how they may exert their therapeutic effect. However, the potential effects of a pharmacological compound on aspects of neurovascular coupling may cloud the interpretability of the BOLD contrast. Here, we assess the effects of risperidone on reward driven BOLD signals produced by reward anticipation and outcome, while attempting to control for potential drug effects on regional cerebral blood flow (CBF) and cerebrovascular reactivity (CVR). Healthy male volunteers (n = 21) each received a single oral dose of either 0.5 mg, 2 mg of risperidone or placebo in a double‐blind, placebo‐controlled, randomised, three‐period cross‐over study design. Participants underwent fMRI scanning while performing the widely used Monetary Incentive Delay (MID) task to assess drug impact on reward function. Measures of CBF (Arterial Spin Labelling) and breath‐hold challenge induced BOLD signal changes (as a proxy for CVR) were also acquired and included as covariates. Risperidone produced divergent, dose‐dependent effects on separate phases of reward processing, even after controlling for potential nonneuronal influences on the BOLD signal. These data suggest the D2 antagonist risperidone has a wide‐ranging influence on DA‐mediated reward function independent of nonneuronal factors. We also illustrate that assessment of potential vascular confounds on the BOLD signal may be advantageous when investigating CNS drug action and advocate for the inclusion of these additional measures into future study designs.
Collapse
Affiliation(s)
- Peter C T Hawkins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando O Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Stefan Holiga
- Roche Pharma Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Juergen Dukart
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Umbricht
- Roche Pharma Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
24
|
Ramchandran K, Fiedorowicz J, Chen Z, Bu Y, Bechara A, Andreasen NC. Patients on the psychosis spectrum employ an alternate brain network to engage in complex decision-making. PLoS One 2020; 15:e0238774. [PMID: 32915832 PMCID: PMC7485831 DOI: 10.1371/journal.pone.0238774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/24/2020] [Indexed: 11/19/2022] Open
Abstract
Brain reward processing mechanisms that underlie complex decision-making are compromised in psychosis. The goal of this research was to advance our understanding of the underlying (1) neural mechanisms and (2) discrete neuro-economic/motivational processes that may be altered in complex decision-making in euthymic patients on the psychosis spectrum (PPS). Utilizing a functional magnetic resonance neuroimaging (fmri) paradigm of a well-validated laboratory measure of complex decision-making (Iowa Gambling Task-IGT), the brain activation patterns of a target group of PPS were compared to a demographically matched healthy comparison group (HMC). These two groups were also evaluated on real-life decision outcomes on day of scan. PPS primarily activate the Dorsal Attentional Network (DAN) in real-life decision outcomes and in achieving similar levels of performance on the IGT as the HMC, in-spite of dysregulated dopamine-based brain-reward circuit and salience network fmri activation patterns. However, PPS report more significant negative outcomes of their decision-making in real-life, compared to HMC. The differential engagement of brain networks by PPS on the IGT appear to be moderated by antipsychotic, dopamine antagonist, medication lifetime/daily dose levels. These findings may also be mediated by extent of dysregulation in brain reward circuitry and salience network associated with psychosis severity in the target PPS group. This is also evident in case studies of unmedicated PPS. We conclude by suggesting that the brain may adapt to this dysregulation by co-opting the DAN network, which is implicated in the related function of problem-solving, towards complex decision-making. The extent of utilization of the DAN network in complex decision-making may be moderated by psychosis severity.
Collapse
Affiliation(s)
| | - Jess Fiedorowicz
- University of Ottawa, Ottawa, Canada
- The Ottawa Hospital, Ottawa, Canada
| | - Zhaoying Chen
- Boston University, Boston, Massachusetts, United States of America
| | - Yilin Bu
- University of Iowa, Iowa City, Iowa, United States of America
| | - Antoine Bechara
- Boston University, Boston, Massachusetts, United States of America
- University of Southern California, Los Angeles, California, United States of America
| | | |
Collapse
|
25
|
Leroy A, Amad A, D'Hondt F, Pins D, Jaafari N, Thomas P, Jardri R. Reward anticipation in schizophrenia: A coordinate-based meta-analysis. Schizophr Res 2020; 218:2-6. [PMID: 31948895 DOI: 10.1016/j.schres.2019.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 11/17/2022]
Abstract
Reward processing impairments have been linked with positive and negative symptoms of schizophrenia. Here, we performed a coordinate-based meta-analysis that combined eleven BOLD-fMRI studies comparing reward anticipation signals between schizophrenia patients and healthy controls. We observed a reduced difference in activation in schizophrenia patients within a frontal-striatal network. Meta-regressions revealed that this functional signature was linked to the severity of psychotic symptoms and persisted even after controlling for the dose of antipsychotic medications.
Collapse
Affiliation(s)
- Arnaud Leroy
- Univ. Lille, INSERM U1172, CHU Lille, Centre Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Hôpital Fontan, plateforme CURE, F-59000 Lille, France.
| | - Ali Amad
- Univ. Lille, INSERM U1172, CHU Lille, Centre Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Hôpital Fontan, plateforme CURE, F-59000 Lille, France; Groupement De Recherche en Psychiatrie CNRS-3557, France
| | - Fabien D'Hondt
- Univ. Lille, INSERM U1172, CHU Lille, Centre Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Hôpital Fontan, plateforme CURE, F-59000 Lille, France; Centre national de ressources et de résilience Lille-Paris (CN2R), Lille, France
| | - Delphine Pins
- Univ. Lille, INSERM U1172, CHU Lille, Centre Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Hôpital Fontan, plateforme CURE, F-59000 Lille, France; Groupement De Recherche en Psychiatrie CNRS-3557, France
| | - Nematollah Jaafari
- Groupement De Recherche en Psychiatrie CNRS-3557, France; Unité de Recherche Clinique Intersectorielle en Psychiatrie Pierre Deniker, Centre Hospitalier Henri Laborit, 86021 Poitiers, France; Univ. Poitiers & CHU Poitiers, INSERM U1084, Laboratoire Expérimental et Clinique en Neurosciences, 86021 Poitiers, France
| | - Pierre Thomas
- Univ. Lille, INSERM U1172, CHU Lille, Centre Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Hôpital Fontan, plateforme CURE, F-59000 Lille, France; Groupement De Recherche en Psychiatrie CNRS-3557, France
| | - Renaud Jardri
- Univ. Lille, INSERM U1172, CHU Lille, Centre Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Hôpital Fontan, plateforme CURE, F-59000 Lille, France; Groupement De Recherche en Psychiatrie CNRS-3557, France
| |
Collapse
|
26
|
Blair Thies M, DeRosse P, Sarpal DK, Argyelan M, Fales CL, Gallego JA, Robinson DG, Lencz T, Homan P, Malhotra AK. Interaction of Cannabis Use Disorder and Striatal Connectivity in Antipsychotic Treatment Response. SCHIZOPHRENIA BULLETIN OPEN 2020; 1:sgaa014. [PMID: 32803161 PMCID: PMC7418867 DOI: 10.1093/schizbullopen/sgaa014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antipsychotic (AP) medications are the mainstay for the treatment of schizophrenia spectrum disorders (SSD), but their efficacy is unpredictable and widely variable. Substantial efforts have been made to identify prognostic biomarkers that can be used to guide optimal prescription strategies for individual patients. Striatal regions involved in salience and reward processing are disrupted as a result of both SSD and cannabis use, and research demonstrates that striatal circuitry may be integral to response to AP drugs. In the present study, we used functional magnetic resonance imaging (fMRI) to investigate the relationship between a history of cannabis use disorder (CUD) and a striatal connectivity index (SCI), a previously developed neural biomarker for AP treatment response in SSD. Patients were part of a 12-week randomized, double-blind controlled treatment study of AP drugs. A sample of 48 first-episode SSD patients with no more than 2 weeks of lifetime exposure to AP medications, underwent a resting-state fMRI scan pretreatment. Treatment response was defined a priori as a binary (response/nonresponse) variable, and a SCI was calculated in each patient. We examined whether there was an interaction between lifetime CUD history and the SCI in relation to treatment response. We found that CUD history moderated the relationship between SCI and treatment response, such that it had little predictive value in SSD patients with a CUD history. In sum, our findings highlight that biomarker development can be critically impacted by patient behaviors that influence neurobiology, such as a history of CUD.
Collapse
Affiliation(s)
- Melanie Blair Thies
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Pamela DeRosse
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Miklos Argyelan
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Christina L Fales
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Juan A Gallego
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Graduate Center—City University of New York, New York, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Delbert G Robinson
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Todd Lencz
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Philipp Homan
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Anil K Malhotra
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| |
Collapse
|
27
|
Laksono JP, Sumirtanurdin R, Dania H, Ramadhani FN, Perwitasari DA, Abdulah R, Barliana MI. Polymorphism of TPH2 Gene rs120074175 Is Not Associated with Risk Factors of Schizophrenia. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2019; 11:S601-S604. [PMID: 32148370 PMCID: PMC7020838 DOI: 10.4103/jpbs.jpbs_216_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022] Open
Abstract
CONTEXT Polymorphism on tryptophan hydroxylase 2 (TPH2) gene rs120074175 can cause the synthesis of neurotransmitter serotonin in the brain to reduce up to 80%. Reduced serotonin in the brain can cause dopamine release to occur continuously. Excess dopamine in the brain may cause positive symptom of schizophrenia. AIM The aim of this study was to investigate the genotype distribution of TPH2 rs120074175 gene on patients with schizophrenia at Prof. Dr. Soerojo Magelang Psychiatric Hospital, Indonesia, and the relationship between the genetic polymorphism of the TPH2 rs120074175 gene against risk factors of schizophrenia. SETTINGS AND DESIGN This was a cross-sectional study. MATERIALS AND METHODS The method used was amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). Whole blood from healthy subjects and patients with schizophrenia, Wizard genomic deoxyribonucleic acid (DNA) purification kit (Promega, Fitchburg, Wisconsin), PCR master mix (Promega), ARMS-PCR primers, ddH2O, agarose (Thermo Scientific, Seoul, South Korea), Tris, Acetic Acid, EDTA (TAE) 1X, ethidium bromide, loading dye 6×, and DNA ladder (Thermo Scientific) were the materials used. STATISTICAL ANALYSIS Hardy-Weinberg equilibrium and chi-square (χ2) tests were used. RESULTS The results showed that both groups (healthy subjects and patients with schizophrenia) at the Prof. Dr. Soerojo Magelang Psychiatric Hospital have a wild-type GG genotype (100%) without anyone having a mutant A allele. CONCLUSION TPH2 rs120074175 gene polymorphism was not associated with risk factors for schizophrenia.
Collapse
Affiliation(s)
- James P. Laksono
- Department Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Riyadi Sumirtanurdin
- Department Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Haafizah Dania
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Departement of Pharmacology and Clinical Pharmacy Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Fitri N. Ramadhani
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Dyah A. Perwitasari
- Departement of Pharmacology and Clinical Pharmacy Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
| | - Melisa I. Barliana
- Department Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
28
|
Chun CA, Brugger P, Kwapil TR. Aberrant Salience Across Levels of Processing in Positive and Negative Schizotypy. Front Psychol 2019; 10:2073. [PMID: 31620045 PMCID: PMC6759779 DOI: 10.3389/fpsyg.2019.02073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/26/2019] [Indexed: 01/07/2023] Open
Abstract
Schizotypy is a multidimensional construct conceptualized as the expression of the underlying vulnerability for schizophrenia. Certain traits of positive schizotypy, such as odd beliefs, unusual perceptual experiences, suspiciousness, and referential thinking show associations with aberrant salience. Positive schizotypy may involve hyper-attribution of salience toward insignificant events, whereas negative schizotypy may involve hypo-attribution of salience, even toward important events. Attribution of salience is thought to involve dopamine-mediated processes, a mechanism that is disrupted in schizotypy; however, little is known about the cognitive processes potentially underlying salience attribution. The present study assessed the relationship between aberrant salience and latent inhibition (LI), as well as their associations with positive and negative schizotypy. Salience was measured at various stages of processing, including visual salience, attributions of salience to contingency illusions, and self-reported experience of salience. Schizotypy traits were differentially associated with self-reported aberrant salience experiences: positive schizotypy showed positive associations (β = 0.67, f2 = 0.82, large effect) and negative schizotypy showed inverse associations (β = -0.20, f2 = 0.07, small effect). However, neither schizotypy dimension was associated with visual salience, contingency illusions, or LI. Salience processing across perceptual, cognitive, and experiential levels likely involves different mechanisms, some of which may not show major disruption in subclinical manifestations of schizotypy.
Collapse
Affiliation(s)
- Charlotte A. Chun
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, NC, United States
- Department of Psychology, Temple University, Philadelphia, PA, United States
| | - Peter Brugger
- Neuropsychology Unit, Department of Neurology, University Hospital Zürich, Zurich, Switzerland
| | - Thomas R. Kwapil
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, NC, United States
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
29
|
Del Fabro L, Delvecchio G, D'Agostino A, Brambilla P. Effects of olanzapine during cognitive and emotional processing in schizophrenia: A review of functional magnetic resonance imaging findings. Hum Psychopharmacol 2019; 34:e2693. [PMID: 30901117 DOI: 10.1002/hup.2693] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Olanzapine is an atypical antipsychotic that is widely used in the treatment of schizophrenia and has shown some degree of efficacy on negative and cognitive symptoms. We aimed to review the effects of olanzapine treatment on brain regions that are directly involved in cognitive and emotional processing. METHODS We used the PubMed database to perform a bibliographic search on functional magnetic resonance imaging studies that investigated the effects of olanzapine treatment on neural activity in patients with schizophrenia during cognitive and emotional tasks. RESULTS Despite the high variability of tasks and analysis methods employed, the weight of the evidence was consistent with the hypothesis that olanzapine treatment is associated with a normalization of brain activity in schizophrenia. Distinctive functional changes were found in frontal cortex and cingulate cortex activity during both cognitive and emotional tasks. During emotional processing, olanzapine treatment seems to specifically regulate the activity of the striatum and limbic system. CONCLUSIONS The results of the reviewed studies suggest that in patients with schizophrenia, olanzapine treatment might lead to a more physiological brain activity coupled with regulation of dopamine release. Future studies should further corroborate these hypotheses using larger samples and homogeneous experimental tasks.
Collapse
Affiliation(s)
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca'Granda, Ospedale Maggiore Policlinico, Milan.,Department of Psychiatry and Behavioural Sciences, UT Houston Medical School, Houston, TX, USA
| |
Collapse
|
30
|
Barkus E, Badcock JC. A Transdiagnostic Perspective on Social Anhedonia. Front Psychiatry 2019; 10:216. [PMID: 31105596 PMCID: PMC6491888 DOI: 10.3389/fpsyt.2019.00216] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Humans are highly social beings, yet people with social anhedonia experience reduced interest in or reward from social situations. Social anhedonia is a key facet of schizotypal personality, an important symptom of schizophrenia, and increasingly recognized as an important feature in a range of other psychological disorders. However, to date, there has been little examination of the similarities and differences in social anhedonia across diagnostic borders. Here, our goal was to conduct a selective review of social anhedonia in different psychological and life course contexts, including the psychosis continuum, depressive disorder, posttraumatic stress disorder, eating disorders, and autism spectrum disorders, along with developmental and neurobiological factors. Current evidence suggests that the nature and expression of social anhedonia vary across psychological disorders with some groups showing deficient learning about, enjoyment from, and anticipation of the pleasurable aspects of social interactions, while for others, some of these components appear to remain intact. However, study designs and methodologies are diverse, the roles of developmental and neurobiological factors are not routinely considered, and direct comparisons between diagnostic groups are rare-which prevents a more nuanced understanding of the underlying mechanisms involved. Future studies, parsing the wanting, liking, and learning components of social reward, will help to fill gaps in the current knowledge base. Consistent across disorders is diminished pleasure from social situations, subsequent withdrawal, and poorer social functioning in those who express social anhedonia. Nonetheless, feelings of loneliness often remain, which suggests the need for social connection is not entirely absent. Adolescence is a particularly important period of social and neural development and may provide a valuable window on the developmental origins of social anhedonia. Adaptive social functioning is key to recovery from mental health disorders; therefore, understanding the intricacies of social anhedonia will help to inform treatment and prevention strategies for a range of diagnostic categories.
Collapse
Affiliation(s)
- Emma Barkus
- Cognitive Basis of Atypical Behaviour Initiative (CBABi), School of Psychology, University of Wollongong, Wollongong, NSW, Australia
| | - Johanna C. Badcock
- Centre for Clinical Research in Neuropsychiatry (CCRN), Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
31
|
Larsen KM, Dzafic I, Siebner HR, Garrido MI. Alteration of functional brain architecture in 22q11.2 deletion syndrome – Insights into susceptibility for psychosis. Neuroimage 2019; 190:154-171. [DOI: 10.1016/j.neuroimage.2018.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 12/23/2022] Open
|
32
|
Prevalence of Obsessive-Compulsive Disorder in Patients With Schizophrenia and Outcome on Positive and Negative Symptoms, Cognition, and Quality of Life. J Nerv Ment Dis 2019; 207:239-245. [PMID: 30865076 DOI: 10.1097/nmd.0000000000000956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The objectives were to examine the prevalence of obsessive-compulsive disorder (OCD) in hospitalized patients with schizophrenia and to compare the clinical, cognitive, and functional characteristics of schizophrenia patients with and without OCD. This cross-sectional study, performed between May and August 2018, enrolled 308 patients (200 men and 108 women). The prevalence of OCD in patients with schizophrenia was 3.2%. An increase in patients having a mild β was significantly associated with higher social relationship score (β = 1.68) and the Memory Functioning Scale-Informant (MFS-I) version (β = 5.67). OCD did not affect the positive and negative symptoms of these patients. The prevalence of OCD in these patients was low (3.2%). Schizophrenia patients with and without OCD have comparable clinical profiles with few exceptions. The existence of OCD may affect the social relationship quality of life and the MFS-I version.
Collapse
|
33
|
Szczypiński JJ, Gola M. Dopamine dysregulation hypothesis: the common basis for motivational anhedonia in major depressive disorder and schizophrenia? Rev Neurosci 2018; 29:727-744. [PMID: 29573379 DOI: 10.1515/revneuro-2017-0091] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/30/2018] [Indexed: 12/12/2022]
Abstract
Abnormalities in reward processing are crucial symptoms of major depressive disorder (MDD) and schizophrenia (SCH). Recent neuroscientific findings regarding MDD have led to conclusions about two different symptoms related to reward processing: motivational and consummatory anhedonia, corresponding, respectively, to impaired motivation to obtain rewards ('wanting'), and diminished satisfaction from consuming them ('liking'). One can ask: which of these is common for MDD and SCH. In our review of the latest neuroscientific studies, we show that MDD and SCH do not share consummatory anhedonia, as SCH patients usually have unaltered liking. Therefore, we investigated whether motivational anhedonia is the common symptom across MDD and SCH. With regard to the similarities and differences between the neural mechanisms of MDD and SCH, here we expand the current knowledge of motivation deficits and present the common underlying mechanism of motivational anhedonia - the dopamine dysregulation hypothesis - stating that any prolonged dysregulation in tonic dopamine signaling that exceeds the given equilibrium can lead to striatal dysfunction and motivational anhedonia. The implications for further research and treatment of MDD and SCH are also discussed.
Collapse
Affiliation(s)
- Jan Józef Szczypiński
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093Warsaw, Poland.,Medical University of Warsaw, Chair of Psychiatry, Nowowiejska 27, 00-665Warsaw, Poland.,Center for Modern Interdisciplinary Technologies, Neurocognitive Laboratory, Wileńska 4, 87-100 Torun, Poland
| | - Mateusz Gola
- Swartz Center for Computational Neuroscience, Institute of Neural Computations, University of California San Diego, 9500 Gilman Drive, #0559, La Jolla, CA 92093-0559, USA.,Institute of Psychology, Polish Academy of Sciences, Clinical Neuroscience Lab, Jaracza 1, 00-001, Warsaw, Poland
| |
Collapse
|
34
|
Stepien M, Manoliu A, Kubli R, Schneider K, Tobler PN, Seifritz E, Herdener M, Kaiser S, Kirschner M. Investigating the association of ventral and dorsal striatal dysfunction during reward anticipation with negative symptoms in patients with schizophrenia and healthy individuals. PLoS One 2018; 13:e0198215. [PMID: 29912880 PMCID: PMC6005482 DOI: 10.1371/journal.pone.0198215] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background Negative symptoms are a core feature of schizophrenia and also found in healthy individuals in subclinical forms. According to the current literature the two negative symptom domains, apathy and diminished expression may have different underlying neural mechanisms. Previous observations suggest that striatal dysfunction is associated with apathy in schizophrenia. However, it is unclear whether apathy is specifically related to ventral or dorsal striatal alterations. Here, we investigated striatal dysfunction during reward anticipation in patients with schizophrenia and a non-clinical population, to determine whether it is associated with apathy. Methods Chronic schizophrenia patients (n = 16) and healthy controls (n = 23) underwent an event- related functional MRI, while performing a variant of the Monetary Incentive Delay Task. The two negative symptom domains were assessed in both groups using the Brief Negative Symptoms Scale. Results In schizophrenia patients, we saw a strong negative correlation between apathy and ventral and dorsal striatal activation during reward anticipation. In contrast, there was no correlation with diminished expression. In healthy controls, apathy was not correlated with ventral or dorsal striatal activation during reward anticipation. Conclusion This study replicates our previous findings of a correlation between ventral striatal activity and apathy but not diminished expression in chronic schizophrenia patients. The association between apathy and reduced dorsal striatal activity during reward anticipation suggests that impaired action-outcome selection is involved in the pathophysiology of motivational deficits in schizophrenia.
Collapse
Affiliation(s)
- Marta Stepien
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Andrei Manoliu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Roman Kubli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Karoline Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Philippe N. Tobler
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Marcus Herdener
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Center for Addictive Disorders, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Mental Health and Psychiatry, Geneva University Hospitals, Chemin du Petit-Bel-Air, Chêne-Bourg, Switzerland
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Center for Addictive Disorders, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
35
|
Li Z, Yan C, Lv QY, Yi ZH, Zhang JY, Wang JH, Lui SSY, Xu YF, Cheung EFC, Gur RE, Gur RC, Chan RCK. Striatal dysfunction in patients with schizophrenia and their unaffected first-degree relatives. Schizophr Res 2018; 195:215-221. [PMID: 28867519 DOI: 10.1016/j.schres.2017.08.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 12/15/2022]
Abstract
Despite empirical findings showing that patients with schizophrenia and their unaffected first-degree relatives have deficits in processing monetary incentives, it is unclear whether similar deficits could be demonstrated for affective incentives. Twenty-six patients with schizophrenia and 26 age and gender matched healthy controls; 23 unaffected first-degree relatives and 23 matched healthy controls were recruited to complete a Monetary Incentive Delay (MID) task and an Affective Incentive Delay (AID) task in a 3-Tesla MRI scanner. Hypoactivation in the dorsal striatum when anticipating monetary incentives were found in patients with schizophrenia and their unaffected first-degree relatives compared with healthy controls. Furthermore, patients with schizophrenia showed hyperactivation in the ventral striatum when receiving both monetary and affective incentives. These findings suggest that disorganized striatal function, regardless of incentive types, may be present in patients with schizophrenia and before the onset of illness in their first-degree unaffected relatives.
Collapse
Affiliation(s)
- Zhi Li
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, The University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Qin-Yu Lv
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Hui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Ye Zhang
- MRI Center, Shanghai Mental Health Centre, Shanghai, China
| | - Jin-Hong Wang
- MRI Center, Shanghai Mental Health Centre, Shanghai, China
| | - Simon S Y Lui
- Castle Peak Hospital, Hong Kong Special Administrative Region
| | - Yi-Feng Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, The University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
36
|
Chase HW, Loriemi P, Wensing T, Eickhoff SB, Nickl-Jockschat T. Meta-analytic evidence for altered mesolimbic responses to reward in schizophrenia. Hum Brain Mapp 2018; 39:2917-2928. [PMID: 29573046 DOI: 10.1002/hbm.24049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/25/2018] [Accepted: 03/08/2018] [Indexed: 11/08/2022] Open
Abstract
Dysfunction of reward-related neural circuitry in schizophrenia (SCZ) has been widely reported, and may provide insight into the motivational and cognitive disturbances that characterize the disorder. Although previous meta-analyses of reward learning paradigms in SCZ have been performed, a meta-analysis of whole-brain coordinate maps in SCZ alone has not been conducted. In this study, we performed an activation likelihood estimate (ALE) meta-analysis, and performed a follow-up analysis of functional connectivity and functional decoding of identified regions. We report several salient findings that extend prior work in this area. First, an alteration in reward-related activation was observed in the right ventral striatum, but this was not solely driven by hypoactivation in the SCZ group compared to healthy controls. Second, the region was characterized by functional connectivity primarily with the lateral prefrontal cortex and pre-supplementary motor area (preSMA), as well as subcortical regions such as the thalamus which show structural deficits in SCZ. Finally, although the meta-analysis showed no regions outside the ventral striatum to be significantly altered, regions with higher functional connectivity with the ventral striatum showed a greater number of subthreshold foci. Together, these findings confirm the alteration of ventral striatal function in SCZ, but suggest that a network-based approach may assist future analysis of the functional underpinnings of the disorder.
Collapse
Affiliation(s)
- Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Polina Loriemi
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.,Juelich Aachen Research Alliance - Translational Brain Medicine, Aachen, Germany
| | - Tobias Wensing
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.,Juelich Aachen Research Alliance - Translational Brain Medicine, Aachen, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany.,Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.,Juelich Aachen Research Alliance - Translational Brain Medicine, Aachen, Germany.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.,Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
37
|
Dubol M, Trichard C, Leroy C, Sandu AL, Rahim M, Granger B, Tzavara ET, Karila L, Martinot JL, Artiges E. Dopamine Transporter and Reward Anticipation in a Dimensional Perspective: A Multimodal Brain Imaging Study. Neuropsychopharmacology 2018; 43:820-827. [PMID: 28829051 PMCID: PMC5809789 DOI: 10.1038/npp.2017.183] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/09/2017] [Accepted: 08/13/2017] [Indexed: 12/12/2022]
Abstract
Dopamine function and reward processing are highly interrelated and involve common brain regions afferent to the nucleus accumbens, within the mesolimbic pathway. Although dopamine function and reward system neural activity are impaired in most psychiatric disorders, it is unknown whether alterations in the dopamine system underlie variations in reward processing across a continuum encompassing health and these disorders. We explored the relationship between dopamine function and neural activity during reward anticipation in 27 participants including healthy volunteers and psychiatric patients with schizophrenia, depression, or cocaine addiction, using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) multimodal imaging with a voxel-based statistical approach. Dopamine transporter (DAT) availability was assessed with PET and [11C]PE2I as a marker of presynaptic dopamine function, and reward-related neural response was assessed using fMRI with a modified Monetary Incentive Delay task. Across all the participants, DAT availability in the midbrain correlated positively with the neural response to anticipation of reward in the nucleus accumbens. Moreover, this relationship was conserved in each clinical subgroup, despite the heterogeneity of mental illnesses examined. For the first time, a direct link between DAT availability and reward anticipation was detected within the mesolimbic pathway in healthy and psychiatric participants, and suggests that dopaminergic dysfunction is a common mechanism underlying the alterations of reward processing observed in patients across diagnostic categories. The findings support the use of a dimensional approach in psychiatry, as promoted by the Research Domain Criteria project to identify neurobiological signatures of core dysfunctions underling mental illnesses.
Collapse
Affiliation(s)
- Manon Dubol
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
| | - Christian Trichard
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
- EPS Barthelemy Durand, Etampes, France
| | - Claire Leroy
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
- Laboratoire Imagerie Moléculaire In Vivo (IMIV), CEA, INSERM, CNRS, Paris Sud University—Paris Saclay University, Orsay, France
| | - Anca-Larisa Sandu
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Mehdi Rahim
- Parietal Project Team—INRIA, CEA, Neurospin, Gif-Sur-Yvette, France
| | - Bernard Granger
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
- Tarnier Psychiatry Department, AP-HP, Cochin Hospital, Paris, France
| | - Eleni T Tzavara
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
- Tarnier Psychiatry Department, AP-HP, Cochin Hospital, Paris, France
- INSERM U1130 Research Unit, CNRS UMR 8246, UPMC UM CR18, Paris, France
| | - Laurent Karila
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
- AP-HP, Addiction Research and Treatment Center, Paul Brousse Hospital, Villejuif, France
| | - Jean-Luc Martinot
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
| | - Eric Artiges
- INSERM, Research Unit 1000 ‘Neuroimaging and Psychiatry’, Paris Sud University—Paris Saclay University, Paris Descartes University, Maison de Solenn, Paris & Service Hospitalier Frédéric Joliot, Orsay, France
- Groupe Hospitalier Nord Essonne, Psychiatry Department, Orsay, France
| |
Collapse
|
38
|
Nielsen MØ, Rostrup E, Broberg BV, Wulff S, Glenthøj B. Negative Symptoms and Reward Disturbances in Schizophrenia Before and After Antipsychotic Monotherapy. Clin EEG Neurosci 2018; 49:36-45. [PMID: 29145751 DOI: 10.1177/1550059417744120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Negative symptoms (NS) are a central part of the symptomatology of schizophrenia, which is highly correlated to the functional outcome. Disturbances of the brain reward system are suggested to be central in the pathogenesis of NS by decreasing motivation and hedonic experiences. In this study, we compared reward-related brain activity in patients improving and not improving in NS after treatment with amisulpride. METHODS Thirty-nine antipsychotic-naive patients and 49 healthy controls completed functional magnetic resonance imaging with a modified monetary incentive delay task. Psychopathology of the patients was characterised with Positive and Negative Syndrome Scale (PANSS), and they were treated with individual doses of amisulpride (mean 271 mg) for 6 weeks, after which the examinations were repeated. RESULTS Patients improved on positive, general, and total PANSS score after treatment ( P < .001). Fourteen patients had ≥20% improvement of NS, whereas 25 patients improved <20%. At baseline, one-way analysis of variance showed group difference bilaterally in the caudate nucleus and in the right nucleus accumbens (all P < .002), which was caused by decreased reward anticipation activity in the nonimproving patients compared to healthy controls. There was a significant group × time interaction, with the healthy controls and the improvers decreasing and the nonimprovers increasing in reward anticipation activity after treatment, most pronounced in the left caudate nucleus ( P = .001). DISCUSSION Patients improving in NS score had a less aberrant reward system at baseline, but reward related activity was reduced over time. Patients not improving in NS showed decreased striatal reward-activity at baseline, which improved over time. Whether this is associated with alteration in working memory and reward learning or with pronounced symptoms within specific domains of NS may be addressed in future studies.
Collapse
Affiliation(s)
- Mette Ødegaard Nielsen
- 1 Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Centre Glostrup, Denmark
| | - Egill Rostrup
- 1 Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Centre Glostrup, Denmark.,2 Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine Rigshospitalet, Glostrup, Denmark
| | - Brian Villumsen Broberg
- 1 Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Centre Glostrup, Denmark
| | - Sanne Wulff
- 1 Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Centre Glostrup, Denmark
| | - Birte Glenthøj
- 1 Center for Neuropsychiatric Schizophrenia Research (CNSR) & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Centre Glostrup, Denmark
| |
Collapse
|
39
|
Kirschner M, Hager OM, Muff L, Bischof M, Hartmann-Riemer MN, Kluge A, Habermeyer B, Seifritz E, Tobler PN, Kaiser S. Ventral Striatal Dysfunction and Symptom Expression in Individuals With Schizotypal Personality Traits and Early Psychosis. Schizophr Bull 2018; 44:147-157. [PMID: 27798223 PMCID: PMC5767950 DOI: 10.1093/schbul/sbw142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Striatal abnormalities play a crucial role in the pathophysiology of schizophrenia. Growing evidence suggests an association between aberrant striatal activity during reward anticipation and symptom dimensions in schizophrenia. However, it is not clear whether this holds across the psychosis continuum. The aim of the present study was to investigate alterations of ventral striatal activation during reward anticipation and its relationship to symptom expression in persons with schizotypal personality traits (SPT) and first-episode psychosis. Twenty-six individuals with high SPT, 26 patients with non-affective first-episode psychosis (including 13 with brief psychotic disorder (FEP-BPD) and 13 with first-episode schizophrenia [FEP-SZ]) and 25 healthy controls underwent event-related functional magnetic resonance imaging while performing a variant of the Monetary Incentive Delay task. Ventral striatal activation was positively correlated with total symptom severity, in particular with levels of positive symptoms. This association was observed across the psychosis continuum and within each subgroup. Patients with FEP-SZ showed the strongest elevation of striatal activation during reward anticipation, although symptom levels did not differ between groups in the psychosis continuum. While our results provide evidence that variance in striatal activation is mainly explained by dimensional symptom expression, patients with schizophrenia show an additional dysregulation of striatal activation. Trans-diagnostic approaches are promising in order to disentangle dimensional and categorical neural mechanisms in the psychosis continuum.
Collapse
Affiliation(s)
- Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland,To whom correspondence should be addressed; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland; tel: +41-44-384-36-14, fax: +41-44-383-44-56, e-mail:
| | - Oliver M Hager
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland,Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Larissa Muff
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Martin Bischof
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Matthias N Hartmann-Riemer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland,Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Agne Kluge
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Benedikt Habermeyer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Philippe N Tobler
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Stefan Kaiser
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Zhang B, Lin P, Shi H, Öngür D, Auerbach RP, Wang X, Yao S, Wang X. Mapping anhedonia-specific dysfunction in a transdiagnostic approach: an ALE meta-analysis. Brain Imaging Behav 2017; 10:920-39. [PMID: 26487590 PMCID: PMC4838562 DOI: 10.1007/s11682-015-9457-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Anhedonia is a prominent symptom in neuropsychiatric disorders, most markedly in major depressive disorder (MDD) and schizophrenia (SZ). Emerging evidence indicates an overlap in the neural substrates of anhedonia between MDD and SZ, which supported a transdiagnostic approach. Therefore, we used activation likelihood estimation (ALE) meta-analysis of functional magnetic resonance imaging studies in MDD and SZ to examine the neural bases of three subdomains of anhedonia: consummatory anhedonia, anticipatory anhedonia and emotional processing. ALE analysis focused specifically on MDD or SZ was used later to dissociate specific anhedonia-related neurobiological impairments from potential disease general impairments. ALE results revealed that consummatory anhedonia was associated with decreased activation in ventral basal ganglia areas, while anticipatory anhedonia was associated with more substrates in frontal-striatal networks except the ventral striatum, which included the dorsal anterior cingulate, middle frontal gyrus and medial frontal gyrus. MDD and SZ patients showed similar neurobiological impairments in anticipatory and consummatory anhedonia, but differences in the emotional experience task, which may also involve affective/mood general processing. These results support that anhedonia is characterized by alterations in reward processing and relies on frontal-striatal brain circuitry. The transdiagnostic approach is a promising way to reveal the overall neurobiological framework that contributes to anhedonia and could help to improve targeted treatment strategies.
Collapse
Affiliation(s)
- Bei Zhang
- Medical Psychological Institute, The Second Xiangya Hospital of Central South University, 139 Renmin (M) Road, Changsha, Hunan, 410011, People's Republic of China
| | - Pan Lin
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, People's Republic of China
| | - Huqing Shi
- Department of Psychology, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Dost Öngür
- Harvard Medical School and McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Randy P Auerbach
- Harvard Medical School and McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Xiaosheng Wang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, 410013, People's Republic of China
| | - Shuqiao Yao
- Medical Psychological Institute, The Second Xiangya Hospital of Central South University, 139 Renmin (M) Road, Changsha, Hunan, 410011, People's Republic of China
| | - Xiang Wang
- Medical Psychological Institute, The Second Xiangya Hospital of Central South University, 139 Renmin (M) Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
41
|
Barch DM, Carter CS, Gold JM, Johnson SL, Kring AM, MacDonald AW, Pizzagalli DA, Ragland JD, Silverstein SM, Strauss ME. Explicit and implicit reinforcement learning across the psychosis spectrum. JOURNAL OF ABNORMAL PSYCHOLOGY 2017; 126:694-711. [PMID: 28406662 PMCID: PMC5503766 DOI: 10.1037/abn0000259] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Motivational and hedonic impairments are core features of a variety of types of psychopathology. An important aspect of motivational function is reinforcement learning (RL), including implicit (i.e., outside of conscious awareness) and explicit (i.e., including explicit representations about potential reward associations) learning, as well as both positive reinforcement (learning about actions that lead to reward) and punishment (learning to avoid actions that lead to loss). Here we present data from paradigms designed to assess both positive and negative components of both implicit and explicit RL, examine performance on each of these tasks among individuals with schizophrenia, schizoaffective disorder, and bipolar disorder with psychosis, and examine their relative relationships to specific symptom domains transdiagnostically. None of the diagnostic groups differed significantly from controls on the implicit RL tasks in either bias toward a rewarded response or bias away from a punished response. However, on the explicit RL task, both the individuals with schizophrenia and schizoaffective disorder performed significantly worse than controls, but the individuals with bipolar did not. Worse performance on the explicit RL task, but not the implicit RL task, was related to worse motivation and pleasure symptoms across all diagnostic categories. Performance on explicit RL, but not implicit RL, was related to working memory, which accounted for some of the diagnostic group differences. However, working memory did not account for the relationship of explicit RL to motivation and pleasure symptoms. These findings suggest transdiagnostic relationships across the spectrum of psychotic disorders between motivation and pleasure impairments and explicit RL. (PsycINFO Database Record
Collapse
|
42
|
Abstract
In the DSM5, negative symptoms are 1 of the 5 core dimensions of psychopathology evaluated for schizophrenia. However, negative symptoms are not pathognomonic-they are also part of the diagnostic criteria for other schizophrenia-spectrum disorders, disorders that sometimes have comorbid psychosis, diagnoses not in the schizophrenia-spectrum, and the general "nonclinical" population. Although etiological models of negative symptoms have been developed for chronic schizophrenia, there has been little attention given to whether these models have transdiagnostic applicability. In the current review, we examine areas of commonality and divergence in the clinical presentation and etiology of negative symptoms across diagnostic categories. It was concluded that negative symptoms are relatively frequent across diagnostic categories, but individual disorders may differ in whether their negative symptoms are persistent/transient or primary/secondary. Evidence for separate dimensions of volitional and expressive symptoms exists, and there may be multiple mechanistic pathways to the same symptom phenomenon among DSM-5 disorders within and outside the schizophrenia-spectrum (ie, equifinality). Evidence for a novel transdiagnostic etiological model is presented based on the Research Domain Criteria (RDoC) constructs, which proposes the existence of 2 such pathways-a hedonic pathway and a cognitive pathway-that can both lead to expressive or volitional symptoms. To facilitate treatment breakthroughs, future transdiagnostic studies on negative symptoms are warranted that explore mechanisms underlying volitional and expressive pathology.
Collapse
Affiliation(s)
- Gregory P Strauss
- Department of Psychology, University of Georgia, 125 Baldwin Street, Athens, GA 30602
| | - Alex S Cohen
- Department of Psychology, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
43
|
Hélie S, Shamloo F, Novak K, Foti D. The roles of valuation and reward processing in cognitive function and psychiatric disorders. Ann N Y Acad Sci 2017; 1395:33-48. [PMID: 28415138 DOI: 10.1111/nyas.13327] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In neuroeconomics, valuation refers to the process of assigning values to states and actions on the basis of the animal's current representation of the environment, while reward processing corresponds to processing the feedback received from the environment to update the values of states and actions. In this article, we review the brain circuits associated with valuation and reward processing and argue that these are fundamental processes critical to many cognitive functions. Specifically, we focus on the role of valuation and reward processing in attention, memory, decision making, and learning. Next, the extant neuroimaging literature on a number of psychiatric disorders is reviewed (i.e., addiction, pathological gambling, schizophrenia, and mood disorders), and an argument is made that associated deficits in cognitive functions can be explained in terms of abnormal valuation and reward processing. The review concludes with the impact of this framework in clinical settings and prescriptions for future research, in particular with regard to the conversions of qualitatively different valuation systems into a system of common currency.
Collapse
Affiliation(s)
- Sébastien Hélie
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Farzin Shamloo
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Keisha Novak
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Dan Foti
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
44
|
Grimm O, Kaiser S, Plichta MM, Tobler PN. Altered reward anticipation: Potential explanation for weight gain in schizophrenia? Neurosci Biobehav Rev 2017; 75:91-103. [DOI: 10.1016/j.neubiorev.2017.01.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 01/19/2023]
|
45
|
Bernard JA, Russell CE, Newberry RE, Goen JR, Mittal VA. Patients with schizophrenia show aberrant patterns of basal ganglia activation: Evidence from ALE meta-analysis. Neuroimage Clin 2017; 14:450-463. [PMID: 28275545 PMCID: PMC5328905 DOI: 10.1016/j.nicl.2017.01.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/23/2016] [Accepted: 01/31/2017] [Indexed: 12/29/2022]
Abstract
The diverse circuits and functional contributions of the basal ganglia, coupled with known differences in dopaminergic function in patients with schizophrenia, suggest they may be an important contributor to the etiology of the hallmark symptoms and cognitive dysfunction experienced by these patients. Using activation-likelihood-estimation meta-analysis of functional imaging research, we investigated differences in activation patterns in the basal ganglia in patients with schizophrenia, relative to healthy controls across task domains. This analysis included 42 functional neuroimaging studies, representing a variety of behavioral domains that have been linked to basal ganglia function in prior work. We provide important new information about the functional activation patterns and functional topography of the basal ganglia for different task domains in healthy controls. Crucially however, we demonstrate that across task domains, patients with schizophrenia show markedly decreased activation in the basal ganglia relative to healthy controls. Our results provide further support for basal ganglia dysfunction in patients with schizophrenia, and the broad dysfunction across task domains may contribute to the symptoms and cognitive deficits associated with schizophrenia.
Collapse
Affiliation(s)
- Jessica A. Bernard
- Department of Psychology, Texas A&M University, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, United States
| | - Courtney E. Russell
- Department of Psychology & Neuroscience, University of Colorado Boulder, United States
| | - Raeana E. Newberry
- Department of Psychology & Neuroscience, University of Colorado Boulder, United States
| | - James R.M. Goen
- Department of Psychology, Texas A&M University, United States
| | - Vijay A. Mittal
- Department of Psychology, Northwestern University, United States
- Department of Psychiatry, Northwestern University, United States
- Institute for Policy Research, Northwestern University, United States
- Department of Medical Social Sciences, Northwestern University, United States
| |
Collapse
|
46
|
Deserno L, Schlagenhauf F, Heinz A. Striatal dopamine, reward, and decision making in schizophrenia. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 27069382 PMCID: PMC4826774 DOI: 10.31887/dcns.2016.18.1/ldeserno] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elevated striatal dopamine function is one of the best-established findings in schizophrenia. In this review, we discuss causes and consequences of this striata! dopamine alteration. We first summarize earlier findings regarding striatal reward processing and anticipation using functional neuroimaging. Secondly, we present a series of recent studies that are exemplary for a particular research approach: a combination of theory-driven reinforcement learning and decision-making tasks in combination with computational modeling and functional neuroimaging. We discuss why this approach represents a promising tool to understand underlying mechanisms of symptom dimensions by dissecting the contribution of multiple behavioral control systems working in parallel. We also discuss how it can advance our understanding of the neurobiological implementation of such functions. Thirdly, we review evidence regarding the topography of dopamine dysfunction within the striatum. Finally, we present conclusions and outline important aspects to be considered in future studies.
Collapse
Affiliation(s)
- Lorenz Deserno
- Max Planck Fellow Group "Cognitive and Affective Control of Behavioral Adaptation," Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Psychiatry and Psychotherapy, Campus Charite Mitte, Charite - Universitatsmedizin Berlin, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Florian Schlagenhauf
- Max Planck Fellow Group "Cognitive and Affective Control of Behavioral Adaptation," Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Psychiatry and Psychotherapy, Campus Charite Mitte, Charite - Universitatsmedizin Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charite Mitte, Charite - Universitatsmedizin Berlin, Germany
| |
Collapse
|
47
|
Anticevic A, Schleifer C, Youngsun TC. Emotional and cognitive dysregulation in schizophrenia and depression: understanding common and distinct behavioral and neural mechanisms. DIALOGUES IN CLINICAL NEUROSCIENCE 2016. [PMID: 26869843 PMCID: PMC4734880 DOI: 10.31887/dcns.2015.17.4/aanticevic] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Emerging behavioral and neuroimaging studies in schizophrenia (SCZ) and major depressive disorder (MD) are mapping mechanisms of co-occurring and distinct affective disturbances across these disorders. This constitutes a critical goal towards developing rationally guided therapies for upstream neural pathways that contribute to comorbid symptoms across disorders. We highlight the current state of the art in our understanding of emotional dysregulation in SCZ versus MD by focusing on broad domains of behavioral function that can map onto underlying neural systems, namely deficits in hedonics, anticipatory behaviors, computations underlying value and effort, and effortful goal-directed behaviors needed to pursue rewarding outcomes. We highlight unique disturbances in each disorder that may involve dissociable neural systems, but also possible interactions between affect and cognition in MD versus SCZ. Finally, we review computational and translational approaches that offer mechanistic insight into how cellular-level disruptions can lead to complex affective disturbances, informing development of therapies across MD and SCZ.
Collapse
Affiliation(s)
- Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine; Interdepartmental Neuroscience Program, Yale University; NIAAA Center for the Translational Neuroscience of Alcoholism; Department of Psychology, Yale University; Division of Neurocognition, Neurogenetics & Neurocomputation, Yale University School of Medicine (Alan Anticevic) - New Haven, Connecticut, USA
| | | | | |
Collapse
|
48
|
Culbreth AJ, Westbrook A, Xu Z, Barch DM, Waltz JA. Intact Ventral Striatal Prediction Error Signaling in Medicated Schizophrenia Patients. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:474-483. [PMID: 28239676 DOI: 10.1016/j.bpsc.2016.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Midbrain dopaminergic neurons code a computational quantity, reward prediction error (RPE), which has been causally related to learning. Recently, this insight has been leveraged to link phenomenological and biological levels of understanding in psychiatric disorders, such as schizophrenia. However, results have been mixed, possibly due to small sample sizes. Here we present results from two studies with relatively large Ns to assess VS RPE in schizophrenia. METHODS In the current study we analyzed data from two independent studies, involving a total of 87 chronic medicated schizophrenia patients and 61 controls. Subjects completed a probabilistic reinforcement-learning task in conjunction with fMRI scanning. We fit each participant's choice behavior to a Q-learning model and derived trial-wise RPEs. We then modeled BOLD signal data with parametric regressor functions using these values to determine whether patient and control groups differed in prediction-error-related BOLD signal modulations. RESULTS Both groups demonstrated robust VS RPE BOLD activations. Interestingly, these BOLD activation patterns did not differ between groups in either study. This was true when we included all participants in the analysis, as well as when we excluded participants whose data was not sufficiently fit by the models. CONCLUSIONS These data demonstrate the utility of computational methods in isolating/testing underlying mechanisms of interest in psychiatric disorders. Importantly, similar VS RPE signal encoding across groups suggests that this mechanism does not drive task deficits in these patients. Deficits may instead stem from aberrant prefrontal/parietal circuits associated with maintenance and selection of goal-relevant information.
Collapse
Affiliation(s)
- Adam J Culbreth
- Department of Psychological and Brain Sciences, Washington University in Saint Louis
| | - Andrew Westbrook
- Department of Psychological and Brain Sciences, Washington University in Saint Louis
| | - Ziye Xu
- University of Maryland School of Medicine, Department of Psychiatry and Maryland Psychiatric Research Center
| | - Deanna M Barch
- Department of Psychological and Brain Sciences, Washington University in Saint Louis; Department of Psychiatry & Radiology, Washington University in Saint Louis
| | - James A Waltz
- University of Maryland School of Medicine, Department of Psychiatry and Maryland Psychiatric Research Center
| |
Collapse
|
49
|
Dowd EC, Frank MJ, Collins A, Gold JM, Barch DM. Probabilistic Reinforcement Learning in Patients With Schizophrenia: Relationships to Anhedonia and Avolition. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:460-473. [PMID: 27833939 PMCID: PMC5098503 DOI: 10.1016/j.bpsc.2016.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Anhedonia (a reduced experience of pleasure) and avolition (a reduction in goal-directed activity) are common features of schizophrenia that have substantial effects on functional outcome, but are poorly understood and treated. Here, we examined whether alterations in reinforcement learning may contribute to these symptoms in schizophrenia by impairing the translation of reward information into goal-directed action. METHODS 38 stable outpatients with schizophrenia or schizoaffective disorder and 37 healthy controls underwent fMRI during a probabilistic stimulus selection reinforcement learning task with dissociated choice- and feedback-related activation, followed by a behavioral transfer task allowing separate assessment of learning from positive versus negative outcomes. A Q-learning algorithm was used to examine functional activation relating to prediction error at the time of feedback and to expected value at the time of choice. RESULTS Behavioral results suggested a reduction in learning from positive feedback in patients; however, this reduction was unrelated to anhedonia/avolition severity. On fMRI analysis, prediction error-related activation at the time of feedback was highly similar between patients and controls. During early learning, patients activated regions in the cognitive control network to a lesser extent than controls. Correlation analyses revealed reduced responses to positive feedback in dorsolateral prefrontal cortex and caudate among those patients higher in anhedonia/avolition. CONCLUSIONS Together, these results suggest that anhedonia/avolition are as strongly related to cortical learning or higher-level processes involved in goal-directed behavior such as effort computation and planning as to striatally mediated learning mechanisms.
Collapse
Affiliation(s)
- Erin C Dowd
- Division of Biology and Biomedical Sciences, Neuroscience Program, Washington University in St. Louis
| | | | - Anne Collins
- Department of Psychology, University of California at Berkeley
| | - James M Gold
- Department of Psychiatry, Maryland Psychiatric Research Center
| | - Deanna M Barch
- Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis
| |
Collapse
|
50
|
Yan C, Wang Y, Su L, Xu T, Yin DZ, Fan MX, Deng CP, Wang ZX, Lui SSY, Cheung EFC, Chan RCK. Differential mesolimbic and prefrontal alterations during reward anticipation and consummation in positive and negative schizotypy. Psychiatry Res Neuroimaging 2016; 254:127-136. [PMID: 27419380 DOI: 10.1016/j.pscychresns.2016.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/09/2016] [Accepted: 06/23/2016] [Indexed: 01/07/2023]
Abstract
Schizotypy is associated with anhedonia. However, previous findings on the neural substrates of anhedonia in schizotypy are mixed. In the present study, we measured the neural substrates associated with reward anticipation and consummation in positive and negative schizotypy using functional MRI. The Monetary Incentive Delay task was administered to 33 individuals with schizotypy (18 positive schizotypy (PS),15 negative schizotypy (NS)) and 22 healthy controls. Comparison between schizotypy individuals and controls were performed using two-sample T tests for contrast images involving gain versus non-gain anticipation condition and gain versus non-gain consummation condition. Multiple comparisons were corrected using Monte Carlo Simulation correction of p<.05. The results showed no significant difference in brain activity between controls and schizotypy individuals as a whole during gain anticipation or consummation. However, during the consummatory phase, NS individuals rather than PS individuals showed diminished left amygdala and left putamen activity compared with controls. We observed significantly weaker activation at the left ventral striatum during gain anticipation in NS individuals compared with controls. PS individuals, however, exhibited enhanced right ventral lateral prefrontal activity. These findings suggest that different dimensions of schizotypy may be underlied by different neural dysfunctions in reward anticipation and consummation.
Collapse
Affiliation(s)
- Chao Yan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (MOE & STCSM), East China Normal University, Shanghai, China; Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Li Su
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Ting Xu
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Da-Zhi Yin
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Xia Fan
- Shanghai Key Laboratory of MRI, East China Normal University, Shanghai, China
| | - Ci-Ping Deng
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (MOE & STCSM), East China Normal University, Shanghai, China
| | - Zhao-Xin Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (MOE & STCSM), East China Normal University, Shanghai, China
| | - Simon S Y Lui
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Castle Peak Hospital, Hong Kong Special Administrative Region, China
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|