1
|
Schulz KM, Chavez MC, Forrester-Fronstin Z. The effects of pharmacologic estradiol on anxiety-related behavior in adolescent and adult female mice. Physiol Behav 2025; 294:114862. [PMID: 40056705 PMCID: PMC11972893 DOI: 10.1016/j.physbeh.2025.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
Early pubertal onset during adolescence is consistently linked with increased risk of anxiety and depression in girls. Although estradiol tends to have anxiolytic effects on behavior in adulthood, whether estradiol's anxiolytic actions change pre- to post-adolescent development is not clear. Using a rodent model, the current study tested whether anxiety-like responses to estradiol differ before and after adolescence in female mice. Prepubertal and adult C57BL/6 mice were ovariectomized, implanted with vehicle- or estradiol-filled silastic capsules, and behavioral tested 6 days later in the open field and elevated zero maze. A pharmacologic dose of estradiol was administered in silastic capsules (0.72 μg/0.02 mL) to maximize behavioral responses at both ages. In the open field, estradiol implants decreased anxiety-like behavior in adolescent females (relative to vehicle) and had negligible effects on anxiety-related behavior in adult females. These data suggest that adolescence is associated with changes in behavioral responsiveness to estradiol. In the elevated zero maze, adolescent females displayed higher levels of anxiety-like behavior than adults, irrespective of estradiol treatment. These findings demonstrate that substantial changes in anxiety-related behavior occur during adolescence, including an assay-dependent shift in behavioral responsiveness to estradiol.
Collapse
Affiliation(s)
- Kalynn M Schulz
- Department of Psychology, University of Tennessee, Knoxville, TN, USA.
| | - Marcia C Chavez
- Department of Psychology, University of Tennessee, Knoxville, TN, USA
| | - Zoey Forrester-Fronstin
- Department of Psychology, University of Tennessee, Knoxville, TN, USA; Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
2
|
Aspesi D, Bass N, Kavaliers M, Choleris E. The Role of Androgens and Estrogens in Social Interactions and Social Cognition. Neuroscience 2025; 568:476-502. [PMID: 37080448 DOI: 10.1016/j.neuroscience.2023.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Gonadal hormones are becoming increasingly recognized for their effects on cognition. Estrogens, in particular, have received attention for their effects on learning and memory that rely upon the functioning of various brain regions. However, the impacts of androgens on cognition are relatively under investigated. Testosterone, as well as estrogens, have been shown to play a role in the modulation of different aspects of social cognition. This review explores the impact of testosterone and other androgens on various facets of social cognition including social recognition, social learning, social approach/avoidance, and aggression. We highlight the relevance of considering not only the actions of the most commonly studied steroids (i.e., testosterone, 17β-estradiol, and dihydrotestosterone), but also that of their metabolites and precursors, which interact with a plethora of different receptors and signalling molecules, ultimately modulating behaviour. We point out that it is also essential to investigate the effects of androgens, their precursors and metabolites in females, as prior studies have mostly focused on males. Overall, a comprehensive analysis of the impact of steroids such as androgens on behaviour is fundamental for a full understanding of the neural mechanisms underlying social cognition, including that of humans.
Collapse
Affiliation(s)
- Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph, Canada
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph, Canada
| | - Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Guelph, Canada; Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Canada.
| |
Collapse
|
3
|
Schulz KM, Chavez MC, Forrester-Fronstin Z. Adolescent development of anxiety-related behavior and shifts in behavioral responsiveness to estradiol in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610911. [PMID: 39282269 PMCID: PMC11398342 DOI: 10.1101/2024.09.02.610911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Early pubertal onset during adolescence is consistently linked with increased risk of anxiety and depression in girls. Although estradiol tends to have anxiolytic effects in adulthood, whether sensitivity to estradiol's anxiolytic actions increases during adolescence is not clear. Using a rodent model, the current study tested the hypothesis that a shift in sensitivity to the anxiolytic effects of estradiol occurs during adolescence. To test this hypothesis, prepubertal and adult C57BL/6 female mice were ovariectomized, implanted with vehicle- or estradiol-filled silastic capsules, and behavioral tested one week later in the open field and elevated zero maze. Our hypothesis predicted that estradiol would decrease anxiety-related behavior to a greater extent in adults than in adolescent females, however, our results did not support this hypothesis. In the open field, estradiol implants significantly decreased anxiety-like behavior in adolescent females (relative to vehicle) and had little to no effect on the behavior of adults. These data suggest that adolescence is associated with a downward shift in sensitivity to the anxiolytic effects of estradiol on behavior in the open field. In contrast, although estradiol treatment did not influence anxiety-like responses in the elevated zero maze in early adolescent or adult females, adolescent females displayed significantly higher levels of anxiety-like behavior than adults. These findings demonstrate that substantial changes in anxiety-related behavior occur during adolescence, including a context-dependent shift in behavioral responsiveness to estradiol.
Collapse
Affiliation(s)
| | | | - Zoey Forrester-Fronstin
- Department of Psychology, University of Tennessee, Knoxville
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY
| |
Collapse
|
4
|
Haider MZ, Sahebkar A, Eid AH. Selective Activation of G Protein-coupled Estrogen Receptor 1 Attenuates Atherosclerosis. Curr Med Chem 2024; 31:4312-4319. [PMID: 37138482 DOI: 10.2174/0929867330666230501231528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 05/05/2023]
Abstract
Atherosclerosis remains a leading contributor to cardiovascular disease-associated morbidity and mortality. Interestingly, atherosclerosis-associated mortality rate is higher in men than women. This suggested a protective role for estrogen in the cardiovasculature. These effects of estrogen were initially thought to be mediated by the classic estrogen receptors, ER alpha, and beta. However, genetic knockdown of these receptors did not abolish estrogen's vasculoprotective effects suggesting that the other membranous Gprotein coupled estrogen receptor, GPER1, maybe the actual mediator. Indeed, in addition to its role in vasotone regulation, this GPER1 appears to play important roles in regulating vascular smooth cell phenotype, a critical player in the onset of atherosclerosis. Moreover, GPER1-selective agonists appear to reduce LDL levels by promoting the expression of LDL receptors as well as potentiating LDL re-uptake in liver cells. Further evidence also show that GPER1 can downregulate Proprotein Convertase Subtilisin/ Kexin type 9, leading to suppression of LDL receptor breakdown. Here, we review how selective activation of GPER1 might prevent or suppress atherosclerosis, with less side effects than those of the non-selective estrogen.
Collapse
Affiliation(s)
- Mohammad Zulqurnain Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Amirhossein Sahebkar
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
5
|
Hodes GE, Bangasser D, Sotiropoulos I, Kokras N, Dalla C. Sex Differences in Stress Response: Classical Mechanisms and Beyond. Curr Neuropharmacol 2024; 22:475-494. [PMID: 37855285 PMCID: PMC10845083 DOI: 10.2174/1570159x22666231005090134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 10/20/2023] Open
Abstract
Neuropsychiatric disorders, which are associated with stress hormone dysregulation, occur at different rates in men and women. Moreover, nowadays, preclinical and clinical evidence demonstrates that sex and gender can lead to differences in stress responses that predispose males and females to different expressions of similar pathologies. In this curated review, we focus on what is known about sex differences in classic mechanisms of stress response, such as glucocorticoid hormones and corticotrophin-releasing factor (CRF), which are components of the hypothalamicpituitary- adrenal (HPA) axis. Then, we present sex differences in neurotransmitter levels, such as serotonin, dopamine, glutamate and GABA, as well as indices of neurodegeneration, such as amyloid β and Tau. Gonadal hormone effects, such as estrogens and testosterone, are also discussed throughout the review. We also review in detail preclinical data investigating sex differences caused by recentlyrecognized regulators of stress and disease, such as the immune system, genetic and epigenetic mechanisms, as well neurosteroids. Finally, we discuss how understanding sex differences in stress responses, as well as in pharmacology, can be leveraged into novel, more efficacious therapeutics for all. Based on the supporting evidence, it is obvious that incorporating sex as a biological variable into preclinical research is imperative for the understanding and treatment of stress-related neuropsychiatric disorders, such as depression, anxiety and Alzheimer's disease.
Collapse
Affiliation(s)
| | - Debra Bangasser
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Ioannis Sotiropoulos
- Institute of Biosciences & Applications NCSR “Demokritos”, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Ryherd GL, Bunce AL, Edwards HA, Baumgartner NE, Lucas EK. Sex differences in avoidance behavior and cued threat memory dynamics in mice: Interactions between estrous cycle and genetic background. Horm Behav 2023; 156:105439. [PMID: 37813043 PMCID: PMC10810684 DOI: 10.1016/j.yhbeh.2023.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
Anxiety disorders are the most prevalent mental illnesses worldwide, exhibit high heritability, and affect twice as many women as men. To evaluate potential interactions between genetic background and cycling ovarian hormones on sex differences in susceptibility to negative valence behaviors relevant to anxiety disorders, we assayed avoidance behavior and cued threat memory dynamics in gonadally-intact adult male and female mice across four common inbred mouse strains: C57Bl/6J, 129S1/SVlmJ, DBA/2J, and BALB/cJ. Independent of sex, C57Bl/6J mice exhibited low avoidance but high threat memory, 129S1/SvlmJ mice high avoidance and high threat memory, DBA/2J mice low avoidance and low threat memory, and BALB/cJ mice high avoidance but low threat memory. Within-strain comparisons revealed reduced avoidance behavior in the high hormone phase of the estrous cycle (proestrus) compared to all other estrous phases in all strains except DBA/2J, which did not exhibit cycle-dependent behavioral fluctuations. Robust and opposing sex differences in threat conditioning and extinction training were found in the C57Bl/6J and 129S1/SvlmJ lines, whereas no sex differences were observed in the DBA/2J or BALB/cJ lines. C57Bl/6J males exhibited enhanced acute threat memory, whereas 129S1/SvlmJ females exhibited enhanced sustained threat memory, compared to their sex-matched littermates. These effects were not mediated by estrous cycle stage or sex differences in active versus passive defensive behavioral responses. Our data demonstrate that core features of behavioral endophenotypes relevant to anxiety disorders, such as avoidance and threat memory, are genetically driven yet dissociable and can be influenced further by cycling ovarian hormones.
Collapse
Affiliation(s)
- Garret L Ryherd
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Averie L Bunce
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Haley A Edwards
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Nina E Baumgartner
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Department of Psychiatry & Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth K Lucas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Department of Psychiatry & Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Acharya KD, Graham M, Raman H, Parakoyi AER, Corcoran A, Belete M, Ramaswamy B, Koul S, Sachar I, Derendorf K, Wilmer JB, Gottipati S, Tetel MJ. Estradiol-mediated protection against high-fat diet induced anxiety and obesity is associated with changes in the gut microbiota in female mice. Sci Rep 2023; 13:4776. [PMID: 36959275 PMCID: PMC10036463 DOI: 10.1038/s41598-023-31783-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
Decreased estrogens during menopause are associated with increased risk of anxiety, depression, type 2 diabetes and obesity. Similarly, depleting estrogens in rodents by ovariectomy, combined with a high-fat diet (HFD), increases anxiety and adiposity. How estrogens and diet interact to affect anxiety and metabolism is poorly understood. Mounting evidence indicates that gut microbiota influence anxiety and metabolism. Here, we investigated the effects of estradiol (E) and HFD on anxiety, metabolism, and their correlation with changes in gut microbiota in female mice. Adult C57BL/6J mice were ovariectomized, implanted with E or vehicle-containing capsules and fed a standard diet or HFD. Anxiety-like behavior was assessed and neuronal activation was measured by c-fos immunoreactivity throughout the brain using iDISCO. HFD increased anxiety-like behavior, while E reduced this HFD-dependent anxiogenic effect. Interestingly, E decreased neuronal activation in brain regions involved in anxiety and metabolism. E treatment also altered gut microbes, a subset of which were associated with anxiety-like behavior. These findings provide insight into gut microbiota-based therapies for anxiety and metabolic disorders associated with declining estrogens in menopausal women.
Collapse
Affiliation(s)
- Kalpana D Acharya
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Madeline Graham
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Harshini Raman
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | | | - Alexis Corcoran
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Merzu Belete
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, 08540, USA
| | - Bharath Ramaswamy
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, 08540, USA
| | - Shashikant Koul
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, 08540, USA
| | | | - Kevin Derendorf
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, 08540, USA
| | - Jeremy B Wilmer
- Department of Psychology, Wellesley College, Wellesley, MA, 02481, USA
| | - Srikanth Gottipati
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, 08540, USA
| | - Marc J Tetel
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA.
| |
Collapse
|
8
|
Abstract
Depression and anxiety disorders carry a tremendous worldwide burden and emerge as a significant cause of disability among western societies. Both disorders are known to disproportionally affect women, as they are twice more likely to be diagnosed and moreover, they are also prone to suffer from female-specific mood disorders. Importantly, the prevalence of these affective disorders has notably risen after the COVID pandemic, especially in women. In this chapter, we describe factors that are possibly contributing to the expression of such sex differences in depression and anxiety. For this, we overview the effect of transcriptomic and genetic factors, the immune system, neuroendocrine aspects, and cognition. Furthermore, we also provide evidence of sex differences in antidepressant response and their causes. Finally, we emphasize the importance to consider sex as a biological variable in preclinical and clinical research, which may facilitate the discovery and development of new and more efficacious antidepressant and anxiolytic pharmacotherapies for both women and men.
Collapse
Affiliation(s)
- Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
9
|
Effects of Early Weaning Associated with Alimentary Stress on Emotional and Feeding Behavior of Female Adult Wistar Rats. Behav Sci (Basel) 2022; 12:bs12060171. [PMID: 35735381 PMCID: PMC9220599 DOI: 10.3390/bs12060171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Maternal lactation proves crucial for mammals’ nutrition during their early development, influencing the development of adult physiological mechanisms. Its premature termination has been associated with several disorders, but these have been primarily documented in males, when they are most prevalent in women. Therefore, we subjected adult female Wistar rats to Early Weaning through maternal separation at age 15 days to acute alimentary stress in the form of visual and olfactory exposition to a cafeteria diet sans consumption for 22 days. We measured standard diet intake and water intake daily and cafeteria diet intake every 7 days. Additionally, we evaluated anxiety using the elevated plus maze and measured body weight in similar intervals. Results showed less consumption of the cafeteria diet among Early Weaning rats on day 2 and more time spent in the maze’s central area by the Early Weaning rats during the basal evaluation and in the maze’s open arms by control rats on day 7 when compared to the same group’s basal time. No other significant differences were found. These results show the importance of determining the impact that female steroidal gonadal hormones such as estradiol have upon feeding behavior and anxiety and determining to what degree these parameters are influenced by hormonal action.
Collapse
|
10
|
Effects of circulating estradiol on physiological, behavioural, and subjective correlates of anxiety: A double-blind, randomized, placebo-controlled trial. Psychoneuroendocrinology 2022; 138:105682. [PMID: 35123210 DOI: 10.1016/j.psyneuen.2022.105682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Anxiety-related behaviours as well as the prevalence of anxiety disorders show a large sex difference in humans. Clinical studies in humans as well as behavioural studies in rodents suggest that estradiol may have anxiolytic properties. In line with this, anxiety symptoms fluctuate with estradiol levels along the menstrual cycle. However, the influence of estradiol on subjective, behavioural, as well as physiological correlates of anxiety has never been systematically addressed in humans. We ran a double-blind, randomized, placebo-controlled study (N = 126) to investigate the effects of estradiol on anxiety in men and women. In healthy volunteers, circulating estradiol levels were elevated through estradiol administration over two consecutive days to simulate the rise in estradiol levels around ovulation. Subjective, behavioral, as well as, physiological correlates of anxiety were assessed using a virtual reality elevated plus-maze (EPM). Estradiol treatment reduced the physiological stress response with blunted heart rate response and lower cortisol levels compared to placebo treatment in both sexes. In contrast, respiration frequency was only reduced in women after estradiol treatment. Behavioural measures of anxiety as well as subjective anxiety on the EPM were not affected by estradiol treatment. In general, women showed more avoidance and less approach behavior and reported higher subjective anxiety levels on the EPM than men. These results highlight the limited anxiolytic properties of circulating levels of estradiol in humans, which influence physiological markers of anxiety but not approach and avoidance behaviour or subjective anxiety levels.
Collapse
|
11
|
Balthazart J. Membrane-initiated actions of sex steroids and reproductive behavior: A historical account. Mol Cell Endocrinol 2021; 538:111463. [PMID: 34582978 DOI: 10.1016/j.mce.2021.111463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/25/2023]
Abstract
It was assumed for a long time that sex steroids are activating reproductive behaviors by the same mechanisms that produce their morphological and physiological effects in the periphery. However during the last few decades an increasing number of examples were identified where behavioral effects of steroids were just too fast to be mediated via changes in DNA transcription. This progressively forced behavioral neuroendocrinologists to recognize that part of the effects of steroids on behavior are mediated by membrane-initiated events. In this review we present a selection of these early data that changed the conceptual landscape and we provide a summary the different types of membrane-associated receptors (estrogens, androgens and progestagens receptors) that are playing the most important role in the control of reproductive behaviors. Then we finally describe in more detail three separate behavioral systems in which membrane-initiated events have clearly been established to contribute to behavior control.
Collapse
|
12
|
Xu J, Gao P, Wu Y, Yin S, Zhu L, Xu S, Tang D, Cheung C, Jiao Y, Yu W, Li Y, Yang L. G protein-coupled estrogen receptor in the rostral ventromedial medulla contributes to the chronification of postoperative pain. CNS Neurosci Ther 2021; 27:1313-1326. [PMID: 34255932 PMCID: PMC8504531 DOI: 10.1111/cns.13704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
AIMS Chronification of postoperative pain is a common clinical phenomenon following surgical operation, and it perplexes a great number of patients. Estrogen and its membrane receptor (G protein-coupled estrogen receptor, GPER) play a crucial role in pain regulation. Here, we explored the role of GPER in the rostral ventromedial medulla (RVM) during chronic postoperative pain and search for the possible mechanism. METHODS AND RESULTS Postoperative pain was induced in mice or rats via a plantar incision surgery. Behavioral tests were conducted to detect both thermal and mechanical pain, showing a small part (16.2%) of mice developed into pain persisting state with consistent low pain threshold on 14 days after incision surgery compared with the pain recovery mice. Immunofluorescent staining assay revealed that the GPER-positive neurons in the RVM were significantly activated in pain persisting rats. In addition, RT-PCR and immunoblot analyses showed that the levels of GPER and phosphorylated μ-type opioid receptor (p-MOR) in the RVM of pain persisting mice were apparently increased on 14 days after incision surgery. Furthermore, chemogenetic activation of GPER-positive neurons in the RVM of Gper-Cre mice could reverse the pain threshold of pain recovery mice. Conversely, chemogenetic inhibition of GPER-positive neurons in the RVM could prevent mice from being in the pain persistent state. CONCLUSION Our findings demonstrated that the GPER in the RVM was responsible for the chronification of postoperative pain and the downstream pathway might be involved in MOR phosphorylation.
Collapse
MESH Headings
- Animals
- Chronic Pain/genetics
- Chronic Pain/physiopathology
- Hyperalgesia/psychology
- Male
- Medulla Oblongata/drug effects
- Mice
- Mice, Inbred C57BL
- Pain Measurement
- Pain, Postoperative/genetics
- Pain, Postoperative/physiopathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Estrogen/genetics
- Receptors, G-Protein-Coupled/genetics
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/genetics
Collapse
Affiliation(s)
- Jia‐Jia Xu
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Department of AnesthesiologyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Po Gao
- Department of AnesthesiologyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Ying Wu
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Su‐Qing Yin
- Department of AnesthesiologyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Ling Zhu
- Department of AnesthesiologyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Sai‐Hong Xu
- Department of AnesthesiologyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Dan Tang
- Department of AnesthesiologyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Chi‐Wai Cheung
- Department of AnesthesiologyThe University of Hong KongHong KongChina
| | - Ying‐Fu Jiao
- Department of AnesthesiologyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Wei‐Feng Yu
- Department of AnesthesiologyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yuan‐Hai Li
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Li‐Qun Yang
- Department of AnesthesiologyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| |
Collapse
|
13
|
Doncheck EM, Anderson EM, Konrath CD, Liddiard GT, DeBaker MC, Urbanik LA, Hearing MC, Mantsch JR. Estradiol Regulation of the Prelimbic Cortex and the Reinstatement of Cocaine Seeking in Female Rats. J Neurosci 2021; 41:5303-5314. [PMID: 33879537 PMCID: PMC8211550 DOI: 10.1523/jneurosci.3086-20.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 11/21/2022] Open
Abstract
Relapse susceptibility in women with substance use disorders (SUDs) has been linked to the estrogen, 17β-estradiol (E2). Our previous findings in female rats suggest that the influence of E2 on cocaine seeking can be localized to the prelimbic prefrontal cortex (PrL-PFC). Here, we investigated the receptor mechanisms through which E2 regulates the reinstatement of extinguished cocaine seeking. Sexually mature female rats underwent intravenous cocaine self-administration (0.5 mg/inf; 14 × 2 h daily) and extinction, and then were ovariectomized before reinstatement testing. E2 (10 µg/kg, i.p.) alone did not reinstate cocaine seeking, but it potentiated reinstatement when combined with an otherwise subthreshold priming dose of cocaine. A similar effect was observed following intra-PrL-PFC microinfusions of E2 and by systemic or intra-PrL-PFC administration of the estrogen receptor (ER)β agonist, DPN, but not agonists at ERα or the G-protein-coupled ER1 (GPER1). By contrast, E2-potentiated reinstatement was prevented by intra-PrL-PFC microinfusions of the ERβ antagonist, MPP, or the GPER1 antagonist, G15, but not an ERα antagonist. Whole-cell recordings in PrL-PFC layer (L)5/6 pyramidal neurons revealed that E2 decreases the frequency, but not amplitude, of GABAA-dependent miniature IPSCs (mIPSC). As was the case with E2-potentiated reinstatement, E2 reductions in mIPSC frequency were prevented by ERβ and GPER1, but not ERα, antagonists and mimicked by ERβ, but not GPER1, agonists. Altogether, the findings suggest that E2 activates ERβ and GPER1 in the PrL-PFC to attenuate the GABA-mediated constraint of key outputs that mediate cocaine seeking.
Collapse
Affiliation(s)
- Elizabeth M Doncheck
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Eden M Anderson
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Chaz D Konrath
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Gage T Liddiard
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Margot C DeBaker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Luke A Urbanik
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Matthew C Hearing
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
14
|
Dinh QN, Vinh A, Arumugam TV, Drummond GR, Sobey CG. G protein-coupled estrogen receptor 1: a novel target to treat cardiovascular disease in a sex-specific manner? Br J Pharmacol 2021; 178:3849-3863. [PMID: 33948934 DOI: 10.1111/bph.15521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
As an agonist of the classical nuclear receptors, estrogen receptor-α and -β (NR3A1/2), estrogen has been assumed to inhibit the development of cardiovascular disease in premenopausal women. Indeed, reduced levels of estrogen after menopause are believed to contribute to accelerated morbidity and mortality rates in women. However, estrogen replacement therapy has variable effects on cardiovascular risk in postmenopausal women, including increased serious adverse events. Interestingly, preclinical studies have shown that selective activation of the novel membrane-associated G protein-coupled estrogen receptor, GPER, can promote cardiovascular protection. These benefits are more evident in ovariectomised than intact females or in males. It is therefore possible that selective targeting of the GPER in postmenopausal women could provide cardiovascular protection with fewer adverse effects that are caused by conventional 'receptor non-specific' estrogen replacement therapy. This review describes new data regarding the merits of targeting GPER to treat cardiovascular disease with a focus on sex differences.
Collapse
Affiliation(s)
- Quynh Nhu Dinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
15
|
GPER-Deficient Rats Exhibit Lower Serum Corticosterone Level and Increased Anxiety-Like Behavior. Neural Plast 2020; 2020:8866187. [PMID: 32908490 PMCID: PMC7474769 DOI: 10.1155/2020/8866187] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 01/02/2023] Open
Abstract
Ample evidence suggests that estrogens have strong influences on the occurrence of stress-related mood disorders, but the underlying mechanisms remain poorly understood. Through multiple approaches, we demonstrate that the G protein-coupled estrogen receptor (GPER) is widely distributed along the HPA axis and in brain structures critically involved in mood control. Genetic ablation of GPER in the rat resulted in significantly lower basal serum corticosterone level but enhanced ACTH release in response to acute restraint stress, especially in the female. GPER−/− rats of either sex displayed increased anxiety-like behaviors and deficits in learning and memory. Additionally, GPER deficiency led to aggravation of anxiety-like behaviors following single-prolonged stress (SPS). SPS caused significant decreases in serum corticosterone in WT but not in GPER-deficient rats. The results highlight an important role of GPER at multiple sites in regulation of the HPA axis and mood.
Collapse
|
16
|
Eid RS, Lieblich SE, Duarte-Guterman P, Chaiton JA, Mah AG, Wong SJ, Wen Y, Galea LAM. Selective activation of estrogen receptors α and β: Implications for depressive-like phenotypes in female mice exposed to chronic unpredictable stress. Horm Behav 2020; 119:104651. [PMID: 31790664 DOI: 10.1016/j.yhbeh.2019.104651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 01/19/2023]
Abstract
The estrogen receptor (ER) mechanisms by which 17β-estradiol influences depressive-like behaviour have primarily been investigated acutely and not within an animal model of depression. Therefore, the current study aimed to dissect the contribution of ERα and ERβ to the effects of 17β-estradiol under non-stress and chronic stress conditions. Ovariectomized (OVX) or sham-operated mice were treated chronically (47 days) with 17β-estradiol (E2), the ERβ agonist diarylpropionitrile (DPN), the ERα agonist propylpyrazole-triol (PPT), or vehicle. On day 15 of treatment, mice from each group were assigned to chronic unpredictable stress (CUS; 28 days) or non-CUS conditions. Mice were assessed for anxiety- and depressive-like behaviour and hypothalamic-pituitary-adrenal (HPA) axis function. Cytokine and chemokine levels, and postsynaptic density protein 95 were measured in the hippocampus and frontal cortex, and adult hippocampal neurogenesis was assessed. Overall, the effects of CUS were more robust that those of estrogenic treatments, as seen by increased immobility in the tail suspension test (TST), reduced PSD-95 expression, reduced neurogenesis in the ventral hippocampus, and HPA axis negative feedback dysregulation. However, we also observe CUS-dependent and -independent effects of ovarian status and estrogenic treatments. The effects of CUS on PSD-95 expression, the cytokine milieu, and in TST were largely driven by PPT and DPN, indicating that these treatments were not protective. Independent of CUS, estradiol increased neurogenesis in the dorsal hippocampus, blunted the corticosterone response to an acute stressor, and increased anxiety-like behaviour. These findings provide insights into the complexities of estrogen signaling in modulating depressive-like phenotypes under non-stress and chronic stress conditions.
Collapse
Affiliation(s)
- Rand S Eid
- Graduate program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie E Lieblich
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Paula Duarte-Guterman
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jessica A Chaiton
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Amanda G Mah
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Sarah J Wong
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Yanhua Wen
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Abstract
Estrogens are critical in driving sex-typical social behaviours that are ethologically relevant in mammals. This is due to both production of local estrogens and signaling by these ligands, particularly in an interconnected set of nuclei called the social behavioural network (SBN). The SBN is a sexually dimorphic network studied predominantly in rodents that is thought to underlie the display of social behaviour in mammals. Signalling by the predominant endogenous estrogen, 17β-estradiol, can be either via the classical genomic or non-classical rapid pathway. In the classical genomic pathway, 17β-estradiol binds the intracellular estrogen receptors (ER) α and β which act as ligand-dependent transcription factors to regulate transcription. In the non-genomic pathway, 17β-estradiol binds a putative plasma membrane ER (mER) such as GPR30/GPER1 to rapidly signal via kinases or calcium flux. Though GPER1's role in sexual dimorphism has been explored to a greater extent in cardiovascular physiology, less is known about its role in the brain. In the last decade, activation of GPER1 has been shown to be important for lordosis and social cognition in females. In this review we will focus on several mechanisms that may contribute to sexually dimorphic behaviors including the colocalization of these estrogen receptors in the SBN, interplay between the signaling pathways activated by these different estrogen receptors, and the role of these receptors in development and the maintenance of the SBN, all of which remain underexplored.
Collapse
|
18
|
Macêdo DS, Sanders LLO, das Candeias R, Montenegro CDF, de Lucena DF, Chaves Filho AJM, Seeman MV, Monte AS. G Protein-Coupled Estrogen Receptor 1 (GPER) as a Novel Target for Schizophrenia Drug Treatment. SCHIZOPHRENIA BULLETIN OPEN 2020; 1. [DOI: 10.1093/schizbullopen/sgaa062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
AbstractThe observation that a person’s sex influences the onset age of schizophrenia, the course of the disease, and antipsychotic treatment response suggests a possible role for estrogen receptors in the pathophysiology of schizophrenia. Indeed, treatment with adjunctive estrogen or selective estrogen receptor modulators (SERMs) are known to reduce schizophrenia symptoms. While estrogen receptors (ER)α and ERβ have been studied, a third and more recently discovered estrogen receptor, the G protein-coupled estrogen receptor 1 (GPER), has been largely neglected. GPER is a membrane receptor that regulates non-genomic estrogen functions, such as the modulation of emotion and inflammatory response. This review discusses the possible role of GPER in brain impairments seen in schizophrenia and in its potential as a therapeutic target. We conducted a comprehensive literature search in the PubMed/MEDLINE database, using the following search terms: “Schizophrenia,” “Psychosis,” “GPER1 protein,” “Estrogen receptors,” “SERMS,” “GPER1 agonism, “Behavioral symptoms,” “Brain Inflammation.” Studies involving GPER in schizophrenia, whether preclinical or human studies, have been scarce, but the results are encouraging. Agonism of the GPER receptor could prove to be an essential mechanism of action for a new class of “anti-schizophrenia” drugs.
Collapse
Affiliation(s)
- Danielle S Macêdo
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Lia Lira Olivier Sanders
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
- Centro Universitário Christus-Unichristus, Fortaleza, CE, Brazil
| | - Raimunda das Candeias
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Cyntia de Freitas Montenegro
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
- Centro Universitário Christus-Unichristus, Fortaleza, CE, Brazil
| | - David Freitas de Lucena
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Adriano José Maia Chaves Filho
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Mary V Seeman
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Aline Santos Monte
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
- Health Science Institute, University of International Integration of Afro-Brazilian Lusophony—UNILAB, Redenção, CE, Brazil
| |
Collapse
|
19
|
Peng J, Zuo Y, Huang L, Okada T, Liu S, Zuo G, Zhang G, Tang J, Xia Y, Zhang JH. Activation of GPR30 with G1 attenuates neuronal apoptosis via src/EGFR/stat3 signaling pathway after subarachnoid hemorrhage in male rats. Exp Neurol 2019; 320:113008. [DOI: 10.1016/j.expneurol.2019.113008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/16/2019] [Accepted: 07/05/2019] [Indexed: 12/21/2022]
|
20
|
Roque C, Mendes-Oliveira J, Duarte-Chendo C, Baltazar G. The role of G protein-coupled estrogen receptor 1 on neurological disorders. Front Neuroendocrinol 2019; 55:100786. [PMID: 31513775 DOI: 10.1016/j.yfrne.2019.100786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 02/06/2023]
Abstract
G protein-coupled estrogen receptor 1 (GPER) is a membrane-associated estrogen receptor (ER) associated with rapid estrogen-mediated effects. Over recent years GPER emerged has a potential therapeutic target to induce neuroprotection, avoiding the side effects elicited by the activation of classical ERs. The putative neuroprotection triggered by GPER selective activation was demonstrated in mood disorders, Alzheimer's disease or Parkinson's disease of male and female in vivo rodent models. In others, like ischemic stroke, the results are contradictory and currently there is no consensus on the role played by this receptor. However, it seems clear that sex is a biological variable that may impact the results. The major objective of this review is to provide an overview about the physiological effects of GPER in the brain and its putative contribution in neurodegenerative disorders, discussing the data about the signaling pathways involved, as well as, the diverse effects observed.
Collapse
Affiliation(s)
- C Roque
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - J Mendes-Oliveira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - C Duarte-Chendo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - G Baltazar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
21
|
Barker TH, Kind KL, Groves PD, Howarth GS, Whittaker AL. Oestrous phase cyclicity influences judgment biasing in rats. Behav Processes 2018; 157:678-684. [PMID: 29653156 DOI: 10.1016/j.beproc.2018.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 11/19/2022]
Abstract
The identification of cognitive bias has become an important measure of animal welfare. Negative cognitive biases develop from a tendency for animals to process novel information pessimistically. Judgment-bias testing is the commonplace methodology to detect cognitive biases. However, concerns with these methods have been frequently-reported; one of which being the discrepancy between male and female cognitive expression. The current study assessed the factors of social status and oestrus, to investigate whether oestrous cycle rotation, or subordination stress encouraged an increase in pessimistic responses. Female Sprague-Dawley rats (n = 24) were trained on an active-choice judgment bias paradigm. Responses to the ambiguous probe were recorded as optimistic or pessimistic. Oestrous phase was determined by assessing vaginal cytology in stained vaginal cell smears. Rats in the dioestrous phase and those rats considered to be subordinate demonstrated an increased percentage of pessimistic responses. However, no interaction between these factors was observed. This suggests that oestrous cyclicity can influence the judgment biases of female animals; a previously unreported finding. On this basis, researchers should be encouraged to account for both oestrous phase cyclicity and social status as an additional fixed effect in study design.
Collapse
Affiliation(s)
- Timothy Hugh Barker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, Australia.
| | - Karen Lee Kind
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, Australia
| | - Peta Danielle Groves
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, Australia
| | - Gordon Stanley Howarth
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, Australia; Gastroenterology Department, Children, Youth and Women's Health Service, Adelaide, South Australia, Australia
| | - Alexandra Louise Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, Australia
| |
Collapse
|
22
|
Ogawa S, Tsukahara S, Choleris E, Vasudevan N. Estrogenic regulation of social behavior and sexually dimorphic brain formation. Neurosci Biobehav Rev 2018; 110:46-59. [PMID: 30392880 DOI: 10.1016/j.neubiorev.2018.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
It has long been known that the estrogen, 17β-estradiol (17β-E), plays a central role for female reproductive physiology and behavior. Numerous studies have established the neurochemical and molecular basis of estrogenic induction of female sexual behavior, i.e., lordosis, in animal models. In addition, 17β-E also regulates male-type sexual and aggressive behavior. In males, testosterone secreted from the testes is irreversibly aromatized to 17β-E in the brain. We discuss the contribution of two nuclear receptor isoforms, estrogen receptor (ER)α and ERβ to the estrogenic regulation of sexually dimorphic brain formation and sex-typical expression of these social behaviors. Furthermore, 17β-E is a key player for social behaviors such as social investigation, preference, recognition and memory as well as anxiety-related behaviors in social contexts. Recent studies also demonstrated that not only nuclear receptor-mediated genomic signaling but also membrane receptor-mediated non-genomic actions of 17β-E may underlie the regulation of these behaviors. Finally, we will discuss how rapidly developing research tools and ideas allow us to investigate estrogenic action by emphasizing behavioral neural networks.
Collapse
Affiliation(s)
- Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, WhiteKnights Campus, Reading, RG6 6AS, United Kingdom
| |
Collapse
|
23
|
Hadjimarkou MM, Vasudevan N. GPER1/GPR30 in the brain: Crosstalk with classical estrogen receptors and implications for behavior. J Steroid Biochem Mol Biol 2018; 176:57-64. [PMID: 28465157 DOI: 10.1016/j.jsbmb.2017.04.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/16/2017] [Accepted: 04/23/2017] [Indexed: 12/31/2022]
Abstract
The GPER1/GPR30 is a membrane estrogen receptor (mER) that binds 17β-estradiol (17β-E) with high affinity and is thought to play a role in cancer progression and cardiovascular health. Though widespread in the central nervous system, less is known about this receptor's function in the brain. GPER1 has been shown to activate kinase cascades and calcium flux within cells rapidly, thus fitting in with the idea of being a mER that mediates non-genomic signaling by estrogens. Signaling from GPER1 has been shown to improve spatial memory, possibly via release of neurotransmitters and generation of new spines on neurons in the hippocampus. In addition, GPER1 activation contributes to behaviors that denote anxiety and to social behaviors such as social memory and lordosis behavior in mice. In the male hippocampus, GPER1 activation has also been shown to phosphorylate the classical intracellular estrogen receptor (ER)α, suggesting that crosstalk with ERα is important in the display of these behaviors, many of which are absent in ERα-null mice. In this review, we present a number of categories of such crosstalk, using examples from literature. The function of GPER1 as an ERα collaborator or as a mER in different tissues is relevant to understanding both normal physiology and abnormal pathology, mediated by estrogen signaling.
Collapse
Affiliation(s)
- Maria M Hadjimarkou
- School of Humanities and Social Sciences, University of Nicosia, 1700 Nicosia, Cyprus.
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, Reading, United Kingdom RG6 6AS, United Kingdom.
| |
Collapse
|
24
|
Orhan FÖ, Kurutaş EB, Doğaner A, Türker E, Özcü SŞT, Güngör M, Çakmak S. Serum levels of GPER-1 in euthymic bipolar patients. Neuropsychiatr Dis Treat 2018; 14:855-862. [PMID: 29618927 PMCID: PMC5875407 DOI: 10.2147/ndt.s158822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Estrogen and its receptors have been suggested as playing a role in the pathogenesis of bipolar disorder (BD). Estrogen functions through the estrogen receptors alpha and beta and the recently discovered G-protein-coupled estrogen receptor-1 (GPER-1). The aim of this study was to evaluate serum GPER-1 levels in euthymic BD patients. PATIENTS AND METHODS The study population consisted of 38 euthymic outpatients meeting the criteria for BD in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and 35 age- and gender-matched healthy controls. Medical histories were obtained and physical examinations and laboratory tests conducted. RESULTS Serum GPER-1 levels were measured in both patients and controls and found to be significantly higher in the BD patients than in controls. These results were not influenced by the medications in use. CONCLUSION The results of this study demonstrated that GPER-1 may play a role in BD pathophysiology.
Collapse
Affiliation(s)
- Fatma Özlem Orhan
- Department of Psychiatry, Faculty of Medicine, Kahramanmaraş Sütçüimam University, Kahramanmaras, Turkey
| | - Ergül Belge Kurutaş
- Department of Biochemistry, Faculty of Medicine, Kahramanmaraş Sütçüimam University, Kahramanmaras, Turkey
| | - Adem Doğaner
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Kahramanmaraş Sütçüimam University, Kahramanmaras, Turkey
| | - Ebru Türker
- Department of Psychiatry, Faculty of Medicine, Kahramanmaraş Sütçüimam University, Kahramanmaras, Turkey
| | - Safiye Şeyma Taner Özcü
- Department of Bioengineering, Institute of Science, Kahramanmaraş Sütçüimam University, Kahramanmaras, Turkey
| | - Meltem Güngör
- Vocational High School, Toros University, Mersin, Turkey
| | - Seyfettin Çakmak
- Department of Psychiatry, Faculty of Medicine, Kahramanmaraş Sütçüimam University, Kahramanmaras, Turkey
| |
Collapse
|
25
|
Findikli E, Kurutas EB, Camkurt MA, Karaaslan MF, Izci F, Fındıklı HA, Kardaş S, Dag B, Altun H. Increased Serum G Protein-coupled Estrogen Receptor 1 Levels and Its Diagnostic Value in Drug Naïve Patients with Major Depressive Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2017; 15:337-342. [PMID: 29073745 PMCID: PMC5678488 DOI: 10.9758/cpn.2017.15.4.337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/13/2016] [Accepted: 10/26/2016] [Indexed: 12/22/2022]
Abstract
Objective The facts that depression is more prevalent in females than in males and females are exposed to depression more commonly during certain hormonal fluctuating periods indicate the role of sex hormones in physiopathology. Estrogen acts over estrogen receptors alpha and beta and recently identified G protein-coupled estrogen receptor 1 (GPER1). The present study aimed, for the first time, to evaluate serum GPER1 levels in drug-naïve major depressive disorder (MDD) patients. Methods The study included 56 newly diagnosed drug-naïve MDD patients aged between 18 and 50 years and 42 age- and gender-matched healthy volunteers. Medical history was obtained and physical examinations, laboratory tests, and the Hamilton Depression Rating Scale (HAM-D), Hamilton Anxiety Rating Scale (HAM-A) were performed. The serum GPER1 levels were measured. Results The HAM-D score was significantly higher in the MDD patients than in the controls. The GPER1 level was significantly higher in the MDD patients than in the controls. A positive correlation was found with GPER1 levels and depression scores. The receiver operating characteristic analysis revealed sensitivity, specificity, positive predictive value, and negative predictive value as 82.1%, 90.5%, 92.0%, and 79.2%, respectively, for the presence of depression, when the serum GPER1 value was ≥0.16. Conclusion This study demonstrated significantly higher serum GPER1 levels in the MDD patients than in the controls, a positive correlation was found between GPER1 levels and depression scores and serum GPER1 level was valuable in predicting the presence of depression.
Collapse
Affiliation(s)
- Ebru Findikli
- Department of Psychiatry, Faculty of Medicine, Kahramanmaraş Sütçü Imam University, Kahramanmaraş, Turkey
| | - Ergül Belge Kurutas
- Department of Biochemistry, Faculty of Medicine, Kahramanmaraş Sütçü Imam University, Kahramanmaraş, Turkey
| | - Mehmet Akif Camkurt
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Kahramanmaraş Sütçü Imam University, Kahramanmaraş, Turkey
| | - Mehmet Fatih Karaaslan
- Department of Psychiatry, Faculty of Medicine, Kahramanmaraş Sütçü Imam University, Kahramanmaraş, Turkey
| | - Filiz Izci
- Department of Psychiatry, Afşin State Hospital, Kahramanmaraş, Turkey
| | | | - Selçuk Kardaş
- Department of Psychiatry, Faculty of Medicine, Kahramanmaraş Sütçü Imam University, Kahramanmaraş, Turkey
| | - Berat Dag
- Department of Psychiatry, Faculty of Medicine, Kahramanmaraş Sütçü Imam University, Kahramanmaraş, Turkey
| | - Hatice Altun
- Department of Internal Medicine, Adıyaman University, Adıyaman, Turkey
| |
Collapse
|
26
|
Hawley W, Battista C, Divack S, Morales Núñez N. The role of estrogen G-protein coupled receptor 30 (GPR30) and sexual experience in sexual incentive motivation in male rats. Physiol Behav 2017; 177:176-181. [DOI: 10.1016/j.physbeh.2017.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/23/2017] [Accepted: 05/01/2017] [Indexed: 01/26/2023]
|
27
|
Postpartum estrogen withdrawal impairs GABAergic inhibition and LTD induction in basolateral amygdala complex via down-regulation of GPR30. Eur Neuropsychopharmacol 2017; 27:759-772. [PMID: 28619359 DOI: 10.1016/j.euroneuro.2017.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/22/2017] [Accepted: 05/29/2017] [Indexed: 01/22/2023]
Abstract
Postpartum estrogen (E2) withdrawal is known to be a particularly vulnerable time for depressive symptoms. In this study, ovariectomized (OVX) mice were treated with co-administration of estradiol benzoate and progesterone (E2/P4) followed by administration of E2 alone (E2) and a subsequent E2 withdrawal (EW) to mimic the hormonal changes during pregnancy and postpartum. The objective of this study was to investigate the influence of E2 withdrawal after hormone-simulated pregnancy on synaptic function and plasticity in basolateral amygdala complex (BLA). In comparison to control mice, EW mice spent less time in the central portion of open-field test and open arms of elevated plus-maze. Excitatory postsynaptic potentials (EPSPs) slopes at external capsule BLA synapse were reduced in E2/P4-mice, recovered in E2-mice, and increased in EW-mice. EW-mice showed a significant increase in duration of EPSPs and paired-pulse inhibition (PPI) with multi-spike responses of EPSPs and impairment of long-term depression (LTD) induction, which were corrected by GABAAR agonist muscimol. Levels of estrogen receptor (ER) GPR30, ERα and ERβ expression in BLA of EW-mice were lower than those in control mice. The bath-application of GPR30 agonist G-1 in BLA of EW-mice recovered the GABAAR-mediated inhibition and LTD indication, but ERβ agonist DPN or ERα agonist PPT could not. A single BLA-injection of G-1 rather than DPN or PPT in EW-mice could partially relieve the anxiety-like behaviors. The results indicate that postpartum E2 withdrawal causes dysfunction of GABAAR-mediated inhibition in the BLA through reducing GPR30 expression, which impairs LTD induction and causes anxiety-like behaviors.
Collapse
|
28
|
Alexander A, Irving AJ, Harvey J. Emerging roles for the novel estrogen-sensing receptor GPER1 in the CNS. Neuropharmacology 2017; 113:652-660. [DOI: 10.1016/j.neuropharm.2016.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023]
|
29
|
Fındıklı E, Camkurt MA, Karaaslan MF, Kurutas EB, Altun H, İzci F, Fındıklı HA, Kardas S. Serum levels of G protein-coupled estrogen receptor 1 (GPER1) in drug-naive patients with generalized anxiety disorder. Psychiatry Res 2016; 244:312-6. [PMID: 27512921 DOI: 10.1016/j.psychres.2016.04.098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/08/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
Sex hormones, particularly estrogen, are suggested to play a role in the physiopathology of generalized anxiety disorder (GAD). Estrogen functions through the estrogen receptors alpha and beta and the recently discovered G protein-coupled estrogen receptor 1 (GPER1). This study aimed, for the first time, to evaluate serum GPER1 levels in drug-naive patients with GAD. This study included 40 newly diagnosed drug-naive patients with GAD aged between 18 and 50 years and 40 age- and gender-matched healthy controls. Medical histories were obtained, and physical examinations and laboratory tests were conducted; the Hamilton Anxiety Rating Scale (HAM-A) was also used for all participants. Serum GPER1 levels were measured. The serum GPER1 level was significantly higher in the patients with GAD than in the controls. A positive significant correlation was observed between the GPER1 level and the HAM-A score. The receiver operating characteristic analysis revealed a sensitivity, specificity, positive predictive value, and negative predictive value of 85.0%, 82.5%, 82.9%, and 84.6%, respectively, for the presence of anxiety when the serum GPER1 value was ≥0.14 (the area under the curve was 0.904.). In conclusion, this study demonstrated that GPER1 levels were associated with the anxiety levels of patients, and that the serum GPER1 level was a valuable predictor of the presence of anxiety independent of gender.
Collapse
Affiliation(s)
- Ebru Fındıklı
- Department of Psychiatry, Sütçü İmam University, Kahramanmaras, Turkey.
| | | | | | | | - Hatice Altun
- Department of Child and Adolescent Psychiatry, Sütçü İmam University, Kahramanmaras, Turkey
| | - Filiz İzci
- Department of Psychiatry, Bilim University, İstanbul, Turkey
| | | | - Selçuk Kardas
- Department of Psychiatry, Sütçü İmam University, Kahramanmaras, Turkey
| |
Collapse
|
30
|
Borrow AP, Handa RJ. Estrogen Receptors Modulation of Anxiety-Like Behavior. VITAMINS AND HORMONES 2016; 103:27-52. [PMID: 28061972 DOI: 10.1016/bs.vh.2016.08.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens' effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic-pituitary-adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems.
Collapse
Affiliation(s)
- A P Borrow
- Colorado State University, Fort Collins, CO, United States
| | - R J Handa
- Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
31
|
Datta S, Samanta D, Sinha P, Chakrabarti N. Gender features and estrous cycle variations of nocturnal behavior of mice after a single exposure to light at night. Physiol Behav 2016; 164:113-22. [DOI: 10.1016/j.physbeh.2016.05.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 01/10/2023]
|
32
|
Borrow AP, Stranahan AM, Suchecki D, Yunes R. Neuroendocrine Regulation of Anxiety: Beyond the Hypothalamic-Pituitary-Adrenal Axis. J Neuroendocrinol 2016; 28. [PMID: 27318180 DOI: 10.1111/jne.12403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/20/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023]
Abstract
The central nervous system regulates and responds to endocrine signals, and this reciprocal relationship determines emotional processing and behavioural anxiety. Although the hypothalamic-pituitary-adrenal (HPA) axis remains the best-characterised system for this relationship, other steroid and peptide hormones are increasingly recognised for their effects on anxiety-like behaviour and reward. The present review examines recent developments related to the role of a number of different hormones in anxiety, including pregnane neurosteroids, gut peptides, neuropeptides and hormonal signals derived from fatty acids. Findings from both basic and clinical studies suggest that these alternative systems may complement or occlude stress-induced changes in anxiety and anxiety-like behaviour. By broadening the scope of mechanisms for depression and anxiety, it may be possible to develop novel strategies to attenuate stress-related psychiatric conditions. The targets for these potential therapies, as discussed in this review, encompass multiple circuits and systems, including those outside of the HPA axis.
Collapse
Affiliation(s)
- A P Borrow
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - A M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - D Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - R Yunes
- Instituto de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Universidad de Mendoza, Mendoza, Argentina
- Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
33
|
Duarte-Guterman P, Lieblich SE, Chow C, Galea LAM. Estradiol and GPER Activation Differentially Affect Cell Proliferation but Not GPER Expression in the Hippocampus of Adult Female Rats. PLoS One 2015; 10:e0129880. [PMID: 26075609 PMCID: PMC4468121 DOI: 10.1371/journal.pone.0129880] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/14/2015] [Indexed: 12/22/2022] Open
Abstract
Estradiol increases cell proliferation in the dentate gyrus of the female rodent but it is not known whether the G protein-coupled estrogen receptor (GPER), a membrane receptor, is involved in this process, nor whether there are regional differences in estradiol’s effects on cell proliferation. Thus, we investigated whether estradiol exerts its effects on cell proliferation in the dorsal and ventral dentate gyrus through GPER, using the GPER agonist, G1, and antagonist, G15. Ovariectomized adult female rats received a single injection of either: 17β-estradiol (10 μg), G1 (0.1, 5, 10 μg), G15 (40 μg), G15 and estradiol, or vehicle (oil, DMSO, or oil+DMSO). After 30 min, animals received an injection of bromodeoxyuridine (BrdU) and were perfused 24 h later. Acute treatment with estradiol increased, while the GPER agonist G1 (5 μg) decreased, the number of BrdU+ cells in the dentate gyrus relative to controls. The GPER antagonist, G15 increased the number of BrdU+ cells relative to control in the dorsal region and decreased the number of BrdU+ cells in the ventral region. However, G15 treatment in conjunction with estradiol partially eliminated the estradiol-induced increase in cell proliferation in the dorsal dentate gyrus. Furthermore, G1 decreased the expression of GPER in the dentate gyrus but not the CA1 and CA3 regions of the hippocampus. In summary, we found that activation of GPER decreased cell proliferation and GPER expression in the dentate gyrus of young female rats, presenting a potential and novel estrogen-independent role for this receptor in the adult hippocampus.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Department of Psychology, Program in Neuroscience, Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie E. Lieblich
- Department of Psychology, Program in Neuroscience, Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carmen Chow
- Department of Psychology, Program in Neuroscience, Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liisa A. M. Galea
- Department of Psychology, Program in Neuroscience, Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
34
|
Heimovics SA, Trainor BC, Soma KK. Rapid Effects of Estradiol on Aggression in Birds and Mice: The Fast and the Furious. Integr Comp Biol 2015; 55:281-93. [PMID: 25980562 DOI: 10.1093/icb/icv048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Across invertebrates and vertebrates, steroids are potent signaling molecules that affect nearly every cell in the organism, including cells of the nervous system. Historically, researchers have focused on the genomic (or "nuclear-initiated") effects of steroids. However, all classes of steroids also have rapid non-genomic (or "membrane-initiated") effects, although there is far less basic knowledge of these non-genomic effects. In particular, steroids synthesized in the brain ("neurosteroids") have genomic and non-genomic effects on behavior. Here, we review evidence that estradiol has rapid effects on aggression, an important social behavior, and on intracellular signaling cascades in relevant regions of the brain. In particular, we focus on studies of song sparrows (Melospiza melodia) and Peromyscus mice, in which estradiol has rapid behavioral effects under short photoperiods only. Furthermore, in captive Peromyscus, estrogenic compounds (THF-diols) in corncob bedding profoundly alter the rapid effects of estradiol. Environmental factors in the laboratory, such as photoperiod, diet, and bedding, are critical variables to consider in experimental design. These studies are consistent with the hypothesis that locally-produced steroids are more likely than systemic steroids to act via non-genomic mechanisms. Furthermore, these studies illustrate the dynamic balance between genomic and non-genomic signaling for estradiol, which is likely to be relevant for other steroids, behaviors, and species.
Collapse
Affiliation(s)
- Sarah A Heimovics
- *Department of Biology, University of St Thomas, St Paul, MN 55105, USA;
| | - Brian C Trainor
- Department of Psychology, University of California-Davis, Davis, CA 95616, USA
| | - Kiran K Soma
- Departments of Psychology and Zoology, Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, V6T 1Z7, Canada
| |
Collapse
|
35
|
Grassi D, Lagunas N, Calmarza-Font I, Diz-Chaves Y, Garcia-Segura LM, Panzica GC. Chronic unpredictable stress and long-term ovariectomy affect arginine-vasopressin expression in the paraventricular nucleus of adult female mice. Brain Res 2014; 1588:55-62. [PMID: 25218558 DOI: 10.1016/j.brainres.2014.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 11/18/2022]
Abstract
Arginine-Vasopressin (AVP) may regulate the hypothalamic-pituitary-adrenal axis (HPA) and its effects on depressive responses. In a recent study, we demonstrated that Chronic Unpredictable Stress (CUS) depressive effects are enhanced by long-term ovariectomy (a model of post-menopause). In the present study, we investigated the effects of long-term ovariectomy and CUS on AVP expression in different subdivision of the paraventricular nucleus (PVN) of female mice. Both long-term ovariectomy and CUS affect AVP immunoreactivity in some of the PVN subnuclei of adult female mice. In particular, significant changes on AVP immunoreactivity were observed in magnocellular subdivisions, the paraventricular lateral magnocellular (PaLM) and the paraventricular medial magnocellular (PaMM), the 2 subnuclei projecting to the neurohypophysis for the hormonal regulation of body homeostasis. AVP immunoreactivity was decreased in the PaLM by both the long-term deprivation of ovarian hormones and the CUS. In contrast, AVP immunoreactivity was increased in the PaMM by CUS, whereas it was decreased by ovariectomy. Therefore, present results suggest morphological and functional differences among the PVN's subnuclei and complex interactions among CUS, gonadal hormones and AVP immunoreactivity.
Collapse
Affiliation(s)
- D Grassi
- Cajal Institute, CSIC, Madrid, Spain; University of Torino, Department of Neuroscience "Rita Levi Montalcini", Torino, Italy; Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - N Lagunas
- Cajal Institute, CSIC, Madrid, Spain
| | | | | | | | - G C Panzica
- University of Torino, Department of Neuroscience "Rita Levi Montalcini", Torino, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy; National Institute of Neuroscience (INN), Torino, Italy.
| |
Collapse
|
36
|
Kastenberger I, Schwarzer C. GPER1 (GPR30) knockout mice display reduced anxiety and altered stress response in a sex and paradigm dependent manner. Horm Behav 2014; 66:628-36. [PMID: 25236887 PMCID: PMC4213071 DOI: 10.1016/j.yhbeh.2014.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/05/2014] [Accepted: 09/07/2014] [Indexed: 01/03/2023]
Abstract
The putative estrogen receptor GPER1 (the former orphan receptor GPR30) is discussed to be involved in emotional and cognitive functions and stress control. We recently described the induction of anxiety-like effects by the GPER1 agonist G-1 upon systemic injection into mice. To contribute to a better understanding of the role of GPER1 in anxiety and stress, we investigated germ-line GPER1 deficient mice. Our experiments revealed marked differences between the sexes. A mild but consistent phenotype of increased exploratory drive was observed in the home cage, the elevated plus maze and the light-dark choice test in male GPER1 KO mice. In contrast, female GPER1-KO mice displayed a less pronounced phenotype in these tests. Estrous-stage dependent mild anxiolytic-like effects were observed solely in the open field test. Notably, we observed a strong shift in acute stress coping behavior in the tail suspension test and basal corticosterone levels in different phases of the estrous cycle in female GPER1-KO mice. Our data, in line with previous reports, suggest that GPER1 is involved in anxiety and stress control. Surprisingly, its effects appear to be stronger in male than female mice.
Collapse
Affiliation(s)
- Iris Kastenberger
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, A-6020 Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, A-6020 Innsbruck, Austria.
| |
Collapse
|
37
|
Mechanisms of estradiol in fear circuitry: implications for sex differences in psychopathology. Transl Psychiatry 2014; 4:e422. [PMID: 25093600 PMCID: PMC4150242 DOI: 10.1038/tp.2014.67] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/02/2014] [Accepted: 06/23/2014] [Indexed: 12/11/2022] Open
Abstract
Over the past two decades, substantial knowledge has been attained about the mechanisms underlying the acquisition and subsequent extinction of conditioned fear. Knowledge gained on the biological basis of Pavlovian conditioning has led to the general acceptance that fear extinction may be a useful model in understanding the underlying mechanisms in the pathophysiology of anxiety disorders and may also be a good model for current therapies treating these disorders. Lacking in the current knowledge is how men and women may or may not differ in the biology of fear and its extinction. It is also unclear how the neural correlates of fear extinction may mediate sex differences in the etiology, maintenance, and prevalence of psychiatric disorders. In this review, we begin by highlighting the epidemiological differences in incidence rate. We then discuss how estradiol (E2), a primary gonadal hormone, may modulate the mechanisms of fear extinction and mediate some of the sex differences observed in psychiatric disorders.
Collapse
|
38
|
Balasubramanian P, Subramanian M, Nunez JL, MohanKumar SM, MohanKumar P. Chronic estradiol treatment decreases Brain Derived Neurotrophic Factor (BDNF) expression and monoamine levels in the amygdala – Implications for behavioral disorders. Behav Brain Res 2014; 261:127-33. [DOI: 10.1016/j.bbr.2013.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 12/11/2022]
|
39
|
Hart D, Nilges M, Pollard K, Lynn T, Patsos O, Shiel C, Clark SM, Vasudevan N. Activation of the G-protein coupled receptor 30 (GPR30) has different effects on anxiety in male and female mice. Steroids 2014; 81:49-56. [PMID: 24240011 DOI: 10.1016/j.steroids.2013.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The GPR30, a former orphan GPCR, is a putative membrane estrogen receptor that can activate rapid signaling pathways such as extracellular regulated kinase (ERK) in a variety of cells and may contribute to estrogen's effects in the central nervous system. The distribution of GPR30 in the limbic system predicts a role for this receptor in the regulation of learning and memory and anxiety by estrogens. Though acute G-1 treatment is reported to be anxiogenic in ovariectomised female mice and in gonadally intact male mice, the effect of GPR30 activation is unknown in gonadectomised male mice. In this study, we show that an acute administration of G-1 to gonadectomised male mice, but not female mice, was anxiolytic on an elevated plus maze task, without affecting locomotor activity. In addition, though G-1 treatment did not regulate ERK, it was associated with increased estrogen receptor (ER)α phosphorylation in the ventral, but not dorsal, hippocampus of males. In the female, G-1 increased the ERK activation solely in the dorsal hippocampus, independent of state anxiety. This is the first study to report an anxiolytic effect of GPR30 activation in male mice, in a rapid time frame that is commensurate with non-genomic signaling by estrogen.
Collapse
Affiliation(s)
- David Hart
- Biological Chemistry Program, Tulane University, New Orleans, LA 70118, United States
| | - Mary Nilges
- Neuroscience Program, Tulane University, New Orleans, LA 70118, United States
| | - Kevin Pollard
- Neuroscience Program, Tulane University, New Orleans, LA 70118, United States
| | - Tucker Lynn
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, United States
| | - Olivia Patsos
- Neuroscience Program, Tulane University, New Orleans, LA 70118, United States
| | - Cassidy Shiel
- Department of Psychology, Tulane University, New Orleans, LA 70118, United States
| | - Sara M Clark
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, United States
| | - Nandini Vasudevan
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA 70118, United States; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States.
| |
Collapse
|
40
|
Mamounis KJ, Yang JA, Yasrebi A, Roepke TA. Estrogen response element-independent signaling partially restores post-ovariectomy body weight gain but is not sufficient for 17β-estradiol's control of energy homeostasis. Steroids 2014; 81:88-98. [PMID: 24252383 PMCID: PMC3947695 DOI: 10.1016/j.steroids.2013.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The steroid 17β-estradiol (E2) modulates energy homeostasis by reducing feeding behavior and increasing energy expenditure primarily through estrogen receptor α (ERα)-mediated mechanisms. Intact ERαKO female mice develop obesity as adults exhibiting decreased energy expenditure and increased fat deposition. However, intact transgenic female mice expressing a DNA-binding-deficient ERα (KIKO) are not obese and have similar energy expenditure, activity and fat deposition as to wild type (WT) females, suggesting that non-estrogen response element (ERE)-mediated signaling is important in E2 regulation of energy homeostasis. Initial reports did not examine the effects of ovariectomy on energy homeostasis or E2's attenuation of post-ovariectomy body weight gain. Therefore, we sought to determine if low physiological doses of E2 (250 ng QOD) known to suppress post-ovariectomy body weight gain in WT females would suppress body weight gain in ovariectomized KIKO females. We observed that the post-ovariectomy increase in body weight was significantly greater in WT females than in KIKO females. Furthermore, E2 did not significantly attenuate the body weight gain in KIKO females as it did in WT females. E2 replacement suppressed food intake and fat accumulation while increasing nighttime oxygen consumption and activity only in WT females. E2 replacement also increased arcuate POMC gene expression in WT females only. These data suggest that in the intact female, ERE-independent mechanisms are sufficient to maintain normal energy homeostasis and to partially restore the normal response to ovariectomy. However, they are not sufficient for E2's suppression of post-ovariectomy body weight gain and its effects on metabolism and activity.
Collapse
Affiliation(s)
- Kyle J Mamounis
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jennifer A Yang
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
41
|
McAllister CE, Mi Z, Mure M, Li Q, Muma NA. GPER1 stimulation alters posttranslational modification of RGSz1 and induces desensitization of 5-HT1A receptor signaling in the rat hypothalamus. Neuroendocrinology 2014; 100:228-39. [PMID: 25402859 PMCID: PMC4305009 DOI: 10.1159/000369467] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/18/2014] [Indexed: 12/28/2022]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal axis is a consistent biological characteristic of depression, and response normalization coincides with clinical responsiveness to antidepressant medications. Desensitization of serotonin 1A receptor (5-HT1AR) signaling in the hypothalamic paraventricular nucleus of the hypothalamus (PVN) follows selective serotonin reuptake inhibitor (SSRI) antidepressant treatment and contributes to the antidepressant response. Estradiol alone produces a partial desensitization of 5-HT1AR signaling and synergizes with SSRIs to result in a complete and more rapid desensitization than with SSRIs alone as measured by a decrease in the oxytocin and adrenocorticotrophic hormone (ACTH) responses to 5-HT1AR stimulation. G protein-coupled estrogen receptor 1 (GPER1) is necessary for estradiol-induced desensitization of 5-HT1AR signaling, although the underlying mechanisms are still unclear. We now find that stimulation of GPER1 with the selective agonist G-1 and nonselective stimulation of estrogen receptors dramatically alter isoform expression of a key component of the 5-HT1AR signaling pathway, RGSz1, a GTPase-activating protein selective for Gαz, the Gα subunit necessary for 5-HT1AR-mediated hormone release. RGSz1 isoforms are differentially glycosylated, SUMOylated, and phosphorylated, and differentially distributed in subcellular organelles. High-molecular-weight RGSz1 is SUMOylated and glycosylated, localized to the detergent-resistant microdomain (DRM) of the cell membrane, and increased by estradiol and G-1 treatment. Because activated Gαz also localizes to the DRM, increased DRM-localized RGSz1 by estradiol and G-1 could reduce Gαz activity, functionally uncoupling 5-HT1AR signaling. Peripheral G-1 treatment produced a partial reduction in oxytocin and ACTH responses to 5-HT1AR stimulation similar to direct injections into the PVN. Together, these results identify GPER1 and RGSz1 as novel targets for the treatment of depression.
Collapse
Affiliation(s)
| | - Zhen Mi
- Department of Pharmacology and Toxicology, University of Kansas
| | - Minae Mure
- Department of Chemistry, University of Kansas
| | - Qian Li
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine
| | - Nancy A Muma
- Department of Pharmacology and Toxicology, University of Kansas
- Corresponding Author: Nancy A. Muma, Malott Hall Rm 5064, 1251 Wescoe Hall Dr., Lawrence, KS 66045-7572, , Telephone: +1 785 864 4002, Fax: +1 785 864 5219
| |
Collapse
|
42
|
Anchan D, Clark S, Pollard K, Vasudevan N. GPR30 activation decreases anxiety in the open field test but not in the elevated plus maze test in female mice. Brain Behav 2014; 4:51-9. [PMID: 24653954 PMCID: PMC3937706 DOI: 10.1002/brb3.197] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 12/23/2022] Open
Abstract
The GPR30 is a novel estrogen receptor (ER) that is a candidate membrane ER based on its binding to 17β estradiol and its rapid signaling properties such as activation of the extracellular-regulated kinase (ERK) pathway. Its distribution in the mouse limbic system predicts a role for this receptor in the estrogenic modulation of anxiety behaviors in the mouse. A previous study showed that chronic administration of a selective agonist to the GPR30 receptor, G-1, in the female rat can improve spatial memory, suggesting that GPR30 plays a role in hippocampal-dependent cognition. In this study, we investigated the effect of a similar chronic administration of G-1 on behaviors that denote anxiety in adult ovariectomized female mice, using the elevated plus maze (EPM) and the open field test as well as the activation of the ERK pathway in the hippocampus. Although estradiol benzoate had no effect on behaviors in the EPM or the open field, G-1 had an anxiolytic effect solely in the open field that was independent of ERK signaling in either the ventral or dorsal hippocampus. Such an anxiolytic effect may underlie the ability of G-1 to increase spatial memory, by acting on the hippocampus.
Collapse
Affiliation(s)
- Divya Anchan
- Neuroscience Program, Tulane University New Orleans, 70118, Louisiana
| | - Sara Clark
- Cell and Molecular Biology Department, Tulane University New Orleans, 70118, Louisiana
| | - Kevin Pollard
- Neuroscience Program, Tulane University New Orleans, 70118, Louisiana
| | - Nandini Vasudevan
- Cell and Molecular Biology Department, Tulane University New Orleans, 70118, Louisiana
| |
Collapse
|
43
|
Anchan D, Gafur A, Sano K, Ogawa S, Vasudevan N. Activation of the GPR30 receptor promotes lordosis in female mice. Neuroendocrinology 2014; 100:71-80. [PMID: 25012534 DOI: 10.1159/000365574] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 06/26/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Estrogens are important effectors of reproduction and are critical for upregulating female reproductive behavior or lordosis in females. In addition to the importance of transcriptional regulation of genes by 17β-estradiol-bound estrogen receptors (ER), extranuclear signal transduction cascades such as protein kinase A (PKA) are also important in regulating female sexual receptivity. GPR30 (G-protein coupled receptor 30), also known as GPER1, a putative membrane ER (mER), is a G protein-coupled receptor that binds 17β-estradiol with an affinity that is similar to that possessed by the classical nuclear ER and activates both PKA and extracellular-regulated kinase signaling pathways. The high expression of GPR30 in the ventromedial hypothalamus, a region important for lordosis behavior as well as kinase cascades activated by this receptor, led us to hypothesize that GPR30 may regulate lordosis behavior in female rodents. METHOD In this study, we investigated the ability of G-1, a selective agonist of GPR30, to regulate lordosis in the female mouse by administering this agent prior to progesterone in an estradiol-progesterone priming paradigm prior to testing with stud males. RESULTS As expected, 17β-estradiol benzoate (EB), but not sesame oil, increased lordosis behavior in female mice. G-1 also increased lordosis behavior in female mice and decreased the number of rejective responses towards male mice, similar to the effect of EB. The selective GPR30 antagonist G-15 blocked these effects. CONCLUSION This study demonstrates that activation of the mER GPR30 stimulates social behavior in a rodent model in a manner similar to EB.
Collapse
Affiliation(s)
- Divya Anchan
- Neuroscience Program, Tulane University, New Orleans, La., USA
| | | | | | | | | |
Collapse
|
44
|
Ruiz-Palmero I, Hernando M, Garcia-Segura LM, Arevalo MA. G protein-coupled estrogen receptor is required for the neuritogenic mechanism of 17β-estradiol in developing hippocampal neurons. Mol Cell Endocrinol 2013; 372:105-15. [PMID: 23545157 DOI: 10.1016/j.mce.2013.03.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 02/28/2013] [Accepted: 03/21/2013] [Indexed: 01/29/2023]
Abstract
Estradiol promotes neuritogenesis in developing hippocampal neurons by a mechanism involving the upregulation of neurogenin 3, a Notch-regulated transcription factor. In this study we have explored whether G-protein coupled estrogen receptor 1 (GPER) participates in this hormonal action. GPER agonists (17β-estradiol, G1, ICI 182,780) increased neurogenin 3 expression and neuritogenesis in mouse primary hippocampal neurons and this effect was blocked by the GPER antagonist G15 and by a siRNA for GPER. In addition, GPER agonists increased Akt phosphorylation in ser473, which is indicative of the activation of phosphoinositide-3-kinase (PI3K). G15 or GPER silencing prevented the estrogenic induction of Akt phosphorylation. Furthermore, the PI3K inhibitor wortmannin prevented the effect of G1 and estradiol on neurogenin 3 expression and the effect of estradiol on neuritogenesis. These findings suggest that GPER participates in the control of hippocampal neuritogenesis by a mechanism involving the activation of PI3K signaling.
Collapse
|
45
|
Mandillo S, Golini E, Marazziti D, Di Pietro C, Matteoni R, Tocchini-Valentini GP. Mice lacking the Parkinson's related GPR37/PAEL receptor show non-motor behavioral phenotypes: age and gender effect. GENES BRAIN AND BEHAVIOR 2013; 12:465-77. [DOI: 10.1111/gbb.12041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 02/15/2013] [Accepted: 04/05/2013] [Indexed: 12/14/2022]
Affiliation(s)
- S. Mandillo
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| | - E. Golini
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| | - D. Marazziti
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| | - C. Di Pietro
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| | - R. Matteoni
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| | - G. P. Tocchini-Valentini
- CNR-National Research Council, IBCN-Institute of Cell Biology and Neurobiology; EMMA-Infrafrontier-IMPC; Monterotondo Scalo; Rome; Italy
| |
Collapse
|