1
|
Li X, Wang X, Xue L, Luo L, Hu L, Jiang W. RAGE/AP-1/OTR signaling pathway in rat hippocampus DG involved in CUS induced depressive-like behaviors. Behav Brain Res 2025; 485:115540. [PMID: 40090553 DOI: 10.1016/j.bbr.2025.115540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
There has been a growing body of evidence indicating that the oxytocin (OT) system plays a significant role in the neurophysiology of chronic stress-related mood disorders in recent years. However, the precise alterations for the OT system in response to chronic stress and the underlying mechanism remains unclear. The present study demonstrated that chronic unpredictable stress (CUS) resulted in a reduction in the expression of RAGE and OTR, as well as an inhibition of AP-1 phosphorylation. RAGE knockdown in hippocampus DG induced depressive-like behaviors, down-regulated the OTR protein and mRNA levels, and reduced the AP-1 phosphorylation. The administration of OT via the nasal route reversed the depressive-like behaviors induced by RAGE knockdown, increased the levels of BDNF expression and AP-1 phosphorylation. On the other hand, RAGE over-expression in the hippocampus DG resisted the effects of CUS on depression-like behaviors, AP-1 phosphorylation, and OTR expression. These finding suggested that RAGE signaling pathway is involved in CUS induced depressive-like behaviors at least partially by regulating OTR expression.
Collapse
Affiliation(s)
- Xuemei Li
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xin Wang
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Lifen Xue
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Lan Luo
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Lingxiao Hu
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wengao Jiang
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Imamura K, Bota A, Shirafuji T, Takumi T. The blues and rhythm. Neurosci Res 2025; 211:49-56. [PMID: 38000448 DOI: 10.1016/j.neures.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023]
Abstract
Most organisms, including humans, show daily rhythms in many aspects of physiology and behavior, and abnormalities in the rhythms are potential risk factors for various diseases. Mood disorders such as depression are no exception. Accumulating evidence suggests strong associations between circadian disturbances and the development of depression. Numerous studies have shown that interventions to circadian rhythms trigger depression-like phenotypes in human cases and animal models. Conversely, mood changes can affect circadian rhythms as symptoms of depression. Our preliminary data suggest that the phosphorylation signal pathway of the clock protein may act as a common pathway for mood and clock regulation. We hypothesize that mood regulation and circadian rhythms may influence each other and may share a common regulatory mechanism. This review provides an overview of circadian disturbances in animal models and human patients with depression.
Collapse
Affiliation(s)
- Kiyomichi Imamura
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
| | - Ayaka Bota
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
| | - Toshihiko Shirafuji
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan; RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe 650-0047, Japan.
| |
Collapse
|
3
|
Lv S, Huang Y, Ma Y, Teng J. Antidepressant mechanism of traditional Chinese medicine: Involving regulation of circadian clock genes. Medicine (Baltimore) 2024; 103:e36266. [PMID: 38306565 PMCID: PMC10843535 DOI: 10.1097/md.0000000000036266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/01/2023] [Indexed: 02/04/2024] Open
Abstract
Numerous studies have demonstrated an intimate relationship between circadian rhythm disorders and the development and prevention of depression. The biological clock genes, which constitute the molecular basis of endogenous circadian rhythms, hold promising prospects for depression treatment. Based on an extensive review of recent domestic and international research, this article presents a comprehensive analysis of how traditional Chinese medicine (TCM) intervenes in depression by regulating circadian rhythms. The findings indicate that TCM exerts its antidepressant effects by targeting specific biological clock genes such as Bmal1, clock, Arntl, Per1, Per2, Per3, Nr1d1, Cry2, and Dbp, as well as regulating circadian rhythms of hormone secretion. However, most current research is still confined to basic experimental studies, lacking clinical double-blind control trials to further validate these viewpoints. Furthermore, there is insufficient research on the signal transduction pathway between biological clock genes and pathological changes in depression. Additionally, further clarification is needed regarding the specific targets of TCM on the biological clock genes.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
RAGE signaling pathway is involved in CUS-induced depression-like behaviors by regulating the expression of NR2A and NR2B in rat hippocampus DG. Exp Neurol 2023; 361:114299. [PMID: 36521778 DOI: 10.1016/j.expneurol.2022.114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/26/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
NMDA receptors play pivotal roles in the neurobiology of chronic stress-induced mood disorders. But the mechanism for chronic stress to disturb the expression of NMDA receptor subunits is still unclear. Recent researches indicated the involvement RAGE signaling pathway in regulation of glutamate system functions. In this study, we hypothesized RAGE signaling pathway mediated chronic stress-induced alteration in the expression of NMDA receptor subunits, leading to depressive-like behaviors. CUS decreased the expression of RAGE, NR2A, and NR2B, inhibited the phosphorylation of transcript factor ERK and CREB in rat hippocampus DG. RAGE knockdown in hippocampus DG by RAGE shRNA lentiviral particles induced depressive-like behaviors, reduced the mRNA and protein expression of NR2A and NR2B, and inhibited the phosphorylation of ERK and CREB. RAGE over-expression in hippocampus DG by RAGE adenovirus particles reversed the effects of CUS on depressive-like behaviors, ERK and CREB phosphorylation, and NR2A and NR2B expression. Our findings suggests that RAGE signaling pathway at least partially participates in the regulation of NR2A and NR2B expression, which mediates the effects of chronic stress on the depressive-like behaviors. These data provide evidence for RAGE signaling as a possible new pathway through which chronic stress results in the maladaptation of NMDA receptors.
Collapse
|
5
|
Aquino GA, Sousa CNS, Medeiros IS, Almeida JC, Cysne Filho FMS, Santos Júnior MA, Vasconcelos SMM. Behavioral alterations, brain oxidative stress, and elevated levels of corticosterone associated with a pressure injury model in male mice. J Basic Clin Physiol Pharmacol 2022; 33:789-801. [PMID: 34390639 DOI: 10.1515/jbcpp-2021-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/17/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Sustained stress can cause physiological disruption in crucial systems like the endocrine, autonomic, and central nervous system. In general, skin damages are physical stress present in hospitalized patients. Also, these pressure injuries lead to pathophysiological mechanisms involved in the neurobiology of mood disorders. Here, we aimed to investigate the behavioral alterations, oxidative stress, and corticosterone levels in the brain areas of mice submitted to the model of pressure injury (PI). METHODS The male mice behaviors were assessed in the open field test (OFT), elevated plus maze test (EPM), tail suspension test (TST), and sucrose preference test (SPT). Then, we isolated the prefrontal cortex (PFC), hippocampus (HP), and striatum (ST) by brain dissection. The nonprotein sulfhydryl groups (NP-SH) and malondialdehyde (MDA) were measured in the brain, and also the plasma corticosterone levels were verified. RESULTS PI model decreased the locomotor activity of animals (p<0.05). Considering the EPM test, the PI group showed a decrease in the open arm activity (p<0.01), and an increase in the closed arm activity (p<0.05). PI group showed an increment in the immobility time (p<0.001), and reduced sucrose consumption (p<0.0001) compared to the control groups. Regarding the oxidative/nitrosative profile, all brain areas from the PI group exhibited a reduction in the NP-SH levels (p<0.0001-p<0.01), and an increase in the MDA level (p<0.001-p<0.01). Moreover, the PI male mice presented increased levels of plasma corticosterone (p<0.05). CONCLUSIONS Our findings suggest that the PI model induces depressive and anxiety-like behaviors. Furthermore, it induces pathophysiological mechanisms like the neurobiology of depression.
Collapse
Affiliation(s)
- Gabriel A Aquino
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Caren N S Sousa
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Ingridy S Medeiros
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Jamily C Almeida
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Francisco M S Cysne Filho
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Manuel A Santos Júnior
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Silvânia M M Vasconcelos
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
6
|
Valeri J, O’Donovan SM, Wang W, Sinclair D, Bollavarapu R, Gisabella B, Platt D, Stockmeier C, Pantazopoulos H. Altered expression of somatostatin signaling molecules and clock genes in the hippocampus of subjects with substance use disorder. Front Neurosci 2022; 16:903941. [PMID: 36161151 PMCID: PMC9489843 DOI: 10.3389/fnins.2022.903941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Substance use disorders are a debilitating group of psychiatric disorders with a high degree of comorbidity with major depressive disorder. Sleep and circadian rhythm disturbances are commonly reported in people with substance use disorder and major depression and associated with increased risk of relapse. Hippocampal somatostatin signaling is involved in encoding and consolidation of contextual memories which contribute to relapse in substance use disorder. Somatostatin and clock genes also have been implicated in depression, suggesting that these molecules may represent key converging pathways involved in contextual memory processing in substance use and major depression. We used hippocampal tissue from a cohort of subjects with substance use disorder (n = 20), subjects with major depression (n = 20), subjects with comorbid substance use disorder and major depression (n = 24) and psychiatrically normal control subjects (n = 20) to test the hypothesis that expression of genes involved in somatostatin signaling and clock genes is altered in subjects with substance use disorder. We identified decreased expression of somatostatin in subjects with substance use disorder and in subjects with major depression. We also observed increased somatostatin receptor 2 expression in subjects with substance use disorder with alcohol in the blood at death and decreased expression in subjects with major depression. Expression of the clock genes Arntl, Nr1d1, Per2 and Cry2 was increased in subjects with substance use disorder. Arntl and Nr1d1 expression in comparison was decreased in subjects with major depression. We observed decreased expression of Gsk3β in subjects with substance use disorder. Subjects with comorbid substance use disorder and major depression displayed minimal changes across all outcome measures. Furthermore, we observed a significant increase in history of sleep disturbances in subjects with substance use disorder. Our findings represent the first evidence for altered somatostatin and clock gene expression in the hippocampus of subjects with substance use disorder and subjects with major depression. Altered expression of these molecules may impact memory consolidation and contribute to relapse risk.
Collapse
Affiliation(s)
- Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Sinead M. O’Donovan
- Department of Neuroscience, University of Toledo Medical Center, Toledo, OH, United States
| | - Wei Wang
- Department of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - David Sinclair
- Department of Neuroscience, University of Toledo Medical Center, Toledo, OH, United States
| | - Ratna Bollavarapu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Donna Platt
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Craig Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
- *Correspondence: Harry Pantazopoulos,
| |
Collapse
|
7
|
Linking Depression to Epigenetics: Role of the Circadian Clock. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:43-53. [PMID: 34773225 DOI: 10.1007/978-3-030-81147-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The circadian clock governs multiple biological functions at the molecular level and plays an essential role in providing temporal diversity of behavior and physiology including neuronal activity. Studies spanning the past two decades have deciphered the molecular mechanisms of the circadian clock, which appears to operate as an essential interface in linking cellular metabolism to epigenetic control. Accumulating evidence illustrates that disruption of circadian rhythms through jet lag, shift work, and temporary irregular life-style could lead to depression-like symptoms. Remarkably, abnormal neuronal activity and depression-like behavior appear in animals lacking elements of the molecular clock. Recent studies demonstrate that neuronal and synaptic gene induction is under epigenetic control, and robust epigenetic remodeling is observed under depression and related psychiatric disorders. Thus, the intertwined links between the circadian clock and epigenetics may point to novel approaches for antidepressant treatments, epigenetic therapy, and chronotherapy. In this chapter we summarize how the circadian clock is involved in neuronal functions and depressive-like behavior and propose that potential strategies for antidepressant therapy by incorporating circadian genomic and epigenetic rewiring of neuronal signaling pathways.
Collapse
|
8
|
Wang XL, Wang DQ, Jiao FC, Ding KM, Ji YB, Lu L, Yuan K, Gao GF, Li SX. Diurnal rhythm disruptions induced by chronic unpredictable stress relate to depression-like behaviors in rats. Pharmacol Biochem Behav 2021; 204:173156. [PMID: 33675839 DOI: 10.1016/j.pbb.2021.173156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 11/15/2022]
Abstract
The relationship between circadian rhythms and mood disorders has been established. Circadian dysregulations are believed to exacerbate the severity of mood disorders and vice versa. Although many studies on diurnal changes of clock genes in animal model of depression have been performed from the RNA level, only a few studies have been carried out from the protein level. In this study, we investigated the diurnal changes induced by chronic unpredictable stress (CUS) using free-running wheel test and Western Blotting (WB). Besides, we examined the depression-like behaviors of rats by sucrose preference test (SPT) and forced swim test (FST). We found that CUS induced significant reductions in the quantity of free-running wheel activity and rhythmic disruptions of clock proteins in hippocampus. Furthermore, we found that the amplitude of PER1 in CA1 was positively related to the severity of depression-like behaviors. These results suggest that CUS results in both changes in diurnal rhythms and in depression-like behaviors and that it is suggested that these changes are related.
Collapse
Affiliation(s)
- Xin-Ling Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China
| | - De-Quan Wang
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China
| | - Fu-Chao Jiao
- Qingdao Agricultural University, Qingdao 266109, China
| | - Kai-Mo Ding
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China; Zhenjiang Mental Health Center, Zhenjiang, Jiangsu Province, China
| | - Yan-Bin Ji
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China; Center of Psychiatry, Anhui Medical University, Mental Health Center of Anhui Province, Hefei 230032, China
| | - Lin Lu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China; Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Kai Yuan
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - George Fu Gao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China.
| |
Collapse
|
9
|
Moriya S, Takahashi H, Masukawa D, Yamada M, Ishigooka J, Nishimura K. Ziprasidone, a second-generation antipsychotic, affects core clock gene mRNA expression in mice. J Pharmacol Sci 2020; 144:57-59. [PMID: 32624301 DOI: 10.1016/j.jphs.2020.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 01/25/2023] Open
Abstract
Some psychiatric diseases are associated with disruptions in the circadian clock system. Ziprasidone (ZIP), a second-generation antipsychotic, is widely used for psychiatry-related pharmacotherapy but its mechanism has not been clearly elucidated. We measured clock gene fluctuation patterns in the hippocampus and the amygdala in ZIP-treated mice. ZIP significantly increased Per1, Per2, and Bmal1 mRNA 2 h after the lights were turned off (ZT14) in the hippocampus, but not in the amygdala. These results suggest that ZIP might affect clock gene regulation, which could represent the pathway underlying symptom amelioration.
Collapse
Affiliation(s)
- Shunpei Moriya
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo, 162-8666, Japan; Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, 890-8544, Japan.
| | - Hitoshi Takahashi
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Makiko Yamada
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Jun Ishigooka
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo, 162-8666, Japan; CNS Pharmacological Research Institute, Shibuya-ku, Tokyo, 151-0051, Japan
| | - Katsuji Nishimura
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
10
|
Yang F, Wang H, Chen H, Ran D, Tang Q, Weng P, Sun Y, Jiang W. RAGE Signaling pathway in hippocampus dentate gyrus involved in GLT-1 decrease induced by chronic unpredictable stress in rats. Brain Res Bull 2020; 163:49-56. [PMID: 32621862 DOI: 10.1016/j.brainresbull.2020.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/17/2020] [Accepted: 06/28/2020] [Indexed: 11/26/2022]
Abstract
A pivotal role of glutamatergic neurotransmission in the pathophysiology of major depressive disorder (MDD) has been supported in preclinical and clinical studies. Glutamate transporters are responsible for rapid uptake of glutamate to maintain glutamate homeostasis. Down-regulation of glutamate transporters has been reported in MDD patients and animal models. However, the mechanism for stress-induced modulation of glutamate transporter expression is poorly understood. Receptor for advanced glycosylation end products (RAGE), a member of immunoglobulin family, is found expressed widely in brain and play important roles in neuronal development, neurite growth, neurogenesis and neuroinflammation. Our study showed chronic unpredictable stress (CUS) induced depressive-like behaviors and reduced RAGE expression in hippocampus DG, CA1 and CA3 areas. The protein levels of GLT-1, p-CREB and p-p65 decreased in hippocampus DG as well. Knockdown of RAGE expression in hippocampus DG with RAGE shRNA lentivirus particles induced depressive-like behaviors. Meanwhile, the protein and mRNA levels of GLT-1 were significantly decreased as well as phosphorylation of CREB and p65. Neither CUS nor RAGE knockdown altered GLAST protein and mRNA levels. These findings suggested that RAGE/CREB-NF-κB signaling pathway in hippocampus DG involved in modulation of GLT-1 expression, which possibly contributed to the depressive-like behavior induced by CUS.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Huali Chen
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Dongzhi Ran
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qiang Tang
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ping Weng
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yuzhuo Sun
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wengao Jiang
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Wang XL, Wang DQ, Jiao FC, Ding KM, Ji YB, Lu L, Yuan K, Gao GF, Li SX. Diurnal rhythm disruptions induced by chronic unpredictable stress relate to depression-like behaviors in rats. Pharmacol Biochem Behav 2020; 194:172939. [PMID: 32437704 DOI: 10.1016/j.pbb.2020.172939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 11/27/2022]
Abstract
The relationship between circadian rhythms and mood disorders has been established, circadian dysregulations are believed to exacerbate the severity of mood disorders and vice versa. Although many studies on diurnal changes of clock genes in animal model of depression have been performed from the RNA level, only a few studies have been carried out from the protein level. In this study, we investigated the diurnal changes induced by chronic unpredictable stress (CUS) using various methods, including free-running wheel test, enzyme-linked immunosorbent assay (ELISA) and Western Blotting (WB). Besides, we examined the depression-like behaviors of rats by sucrose preference test (SPT) and forced swim test (FST). We found that CUS induced significant reductions in the quantity of free-running wheel activity and the amplitude of melatonin secretion rhythm. We also found that CUS induced rhythmic disruptions of clock proteins in hippocampus. Furthermore, we found that the amplitude of PER1 in CA1 was positively related to the severity of depression-like behaviors. These results suggest that stress results in both changes in circadian rhythms and in depression-like behaviors and that it is suggested that these changes are related.
Collapse
Affiliation(s)
- Xin-Ling Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing101408, China; National Institute on Drug Dependence, Peking University, Beijing100191, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China
| | - De-Quan Wang
- National Institute on Drug Dependence, Peking University, Beijing100191, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China
| | - Fu-Chao Jiao
- Qingdao Agricultural University, Qingdao266109, China
| | - Kai-Mo Ding
- National Institute on Drug Dependence, Peking University, Beijing100191, China; Zhenjiang Mental Health Center, Zhenjiang, Jiangsu Province, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China
| | - Yan-Bin Ji
- National Institute on Drug Dependence, Peking University, Beijing100191, China; Center of Psychiatry, Anhui Medical University, Mental Health Center of Anhui Province, Hefei230032, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China
| | - Lin Lu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing101408, China; National Institute on Drug Dependence, Peking University, Beijing100191, China; Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Peking University, Beijing100191, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China; Peking University Sixth Hospital, Peking University, Beijing100191, China
| | - Kai Yuan
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Peking University, Beijing100191, China; Peking University Sixth Hospital, Peking University, Beijing100191, China
| | - George Fu Gao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing101408, China; Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China; Chinese Center for Disease Control and Prevention, Beijing102206, China.
| | - Su-Xia Li
- National Institute on Drug Dependence, Peking University, Beijing100191, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China.
| |
Collapse
|
12
|
Begemann K, Neumann A, Oster H. Regulation and function of extra-SCN circadian oscillators in the brain. Acta Physiol (Oxf) 2020; 229:e13446. [PMID: 31965726 DOI: 10.1111/apha.13446] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Most organisms evolved endogenous, so called circadian clocks as internal timekeeping mechanisms allowing them to adapt to recurring changes in environmental demands brought about by 24-hour rhythms such as the light-dark cycle, temperature variations or changes in humidity. The mammalian circadian clock system is based on cellular oscillators found in all tissues of the body that are organized in a hierarchical fashion. A master pacemaker located in the suprachiasmatic nucleus (SCN) synchronizes peripheral tissue clocks and extra-SCN oscillators in the brain with each other and with external time. Different time cues (so called Zeitgebers) such as light, food intake, activity and hormonal signals reset the clock system through the SCN or by direct action at the tissue clock level. While most studies on non-SCN clocks so far have focused on peripheral tissues, several extra-SCN central oscillators were characterized in terms of circadian rhythm regulation and output. Some of them are directly innervated by the SCN pacemaker, while others receive indirect input from the SCN via other neural circuits or extra-brain structures. The specific physiological function of these non-SCN brain oscillators as well as their role in the regulation of the circadian clock network remains understudied. In this review we summarize our current knowledge about the regulation and function of extra-SCN circadian oscillators in different brain regions and devise experimental approaches enabling us to unravel the organization of the circadian clock network in the central nervous system.
Collapse
Affiliation(s)
| | | | - Henrik Oster
- Institute of Neurobiology University of Lübeck Lübeck Germany
| |
Collapse
|
13
|
Chen X, Hu Q, Zhang K, Teng H, Li M, Li D, Wang J, Du Q, Zhao M. The clock-controlled chemokine contributes to neuroinflammation-induced depression. FASEB J 2020; 34:8357-8366. [PMID: 32329129 DOI: 10.1096/fj.201900581rrr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022]
Abstract
The circadian rhythm plays a central role in immune function, and its disruption has been closely linked to the etiology of depression. However, the mechanisms underlying the association between depression and circadian rhythm remain unclear. We found that mice deficient of Per2, a central clock component of circadian output, were resilient to neuroinflammation-induced depressive behavior. After repeated central lipopolysaccharide (LPS) injections, MCP-1, MIP-1β, and RANTES increased in wild type (WT) but not in Per2-deficient mice. In addition, intracerebroventricular injection of RANTES resulted in depression-like behavior, and Met-RANTES, a CCR5 antagonist, could reverse depression-like behavior induced by LPS treatments. These results indicated that the Per2 gene contributes to depression via chemokines, especially RANTES. Furthermore, BMAL1 expression decreased in LPS-treated Per2-deficient mice and BMAL1 could bind to the promoter of Rantes, indicating clock gene can act as a regulator for neuroinflammation. In conclusion, Rantes, a clock-controlled gene (CCG), is involved in clock-immunological mechanisms underlying the effects of Per2 on neuroinflammation-induced depression-like behavior.
Collapse
Affiliation(s)
- Xiaojuan Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qianying Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ke Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huajing Teng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Mingzhen Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Dan Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiesi Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Quansheng Du
- Department of Life Sciences, National Natural Science Foundation of China, Beijing, China
| | - Mei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Wang XL, Yuan K, Zhang W, Li SX, Gao GF, Lu L. Regulation of Circadian Genes by the MAPK Pathway: Implications for Rapid Antidepressant Action. Neurosci Bull 2020; 36:66-76. [PMID: 30859414 PMCID: PMC6940409 DOI: 10.1007/s12264-019-00358-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests that the circadian rhythm plays a critical role in mood regulation, and circadian disturbances are often found in patients with major depressive disorder (MDD). The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway is involved in mediating entrainment of the circadian system. Furthermore, the MAPK/ERK signaling pathway has been shown to be involved in the pathogenesis of MDD and the rapid onset of action of antidepressant therapies, both pharmaceutical and non-pharmaceutical. This review provides an overview of the involvement of the MAPK/ERK pathway in modulating the circadian system in the rapid action of antidepressant therapies. This pathway holds much promise for the development of novel, rapid-onset-of-action therapeutics for MDD.
Collapse
Affiliation(s)
- Xin-Ling Wang
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Kai Yuan
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100191, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, 100191, China.
| | - George Fu Gao
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China.
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Lin Lu
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100191, China.
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, 100191, China.
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, 100191, China.
| |
Collapse
|
15
|
Mendoza J. Circadian insights into the biology of depression: Symptoms, treatments and animal models. Behav Brain Res 2019; 376:112186. [PMID: 31473283 DOI: 10.1016/j.bbr.2019.112186] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
In depression, symptoms range from loss of motivation and energy to suicidal thoughts. Moreover, in depression alterations might be also observed in the sleep-wake cycle and in the daily rhythms of hormonal (e.g., cortisol, melatonin) secretion. Both, the sleep-wake cycle and hormonal rhythms, are regulated by the internal biological clock within the hypothalamic suprachiasmatic nucleus (SCN). Therefore, a dysregulation of the internal mechanism of the SCN might lead in the disturbance of temporal physiology and depression. Hence, circadian symptoms in mood disorders can be used as important biomarkers for the prevention and treatment of depression. Disruptions of daily rhythms in physiology and behavior are also observed in animal models of depression, giving thus an important tool of research for the understanding of the circadian mechanisms implicated in mood disorders. This review discusses the alterations of daily rhythms in depression, and how circadian perturbations might lead in mood changes and depressive-like behavior in humans and rodents respectively. The use of animal models with circadian disturbances and depressive-like behaviors will help to understand the central timing mechanisms underlying depression, and how treating the biological clock(s) it may be possible to improve mood.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212 University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France.
| |
Collapse
|
16
|
Sato S, Sassone-Corsi P. Circadian and epigenetic control of depression-like behaviors. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2018.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Ma HY, Liu ZF, Xu YF, Hu XD, Sun N, Li XR, Zhang KR. The association study of CLOCK gene polymorphisms with antidepressant effect in Chinese with major depressive disorder. Per Med 2018; 16:115-122. [PMID: 30569826 DOI: 10.2217/pme-2018-0123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM Major depressive disorder (MDD) is a common psychiatric disorder with a complicated pathogenesis and genetic predisposition. The objective of this article is to explore the relationship between the four SNPs of circadian locomotor output cycles kaput (CLOCK) gene (rs11932595, rs12504300, rs3805148, rs534654) and the efficacy of antidepressants. Materials & methods: This study enrolled a total of 600 patients, who met the DSM-V diagnostic criteria for MDD. All subjects were treated with single selective serotonin reuptake inhibitors. The HAMD17 and adverse reaction scale (TESS/UKU) were used to assess the efficacy of antidepressants and adverse effects. The PCR and DNA sequencing analysis were used to genotype loci of CLOCK gene. RESULTS The antidepressants efficacy of subjects with rs11932595 AA genotype was significantly higher than those with GG+GA genotypes (p = 0.035). But this p-value was not significant after false discovery rate (FDR) adjustment. CONCLUSION The variant of CLOCK gene may be associated with the efficacy of selective serotonin reuptake inhibitors in Chinese Han MDD patients.
Collapse
Affiliation(s)
- Hui-Ying Ma
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan 030000, People's Republic of China
| | - Zhi-Fen Liu
- The First Hospital of Shanxi Medical University in South Jiefang Road, Taiyuan, Shanxi Province, People's Republic of China
| | - Yi-Fan Xu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan 030000, People's Republic of China
| | - Xiao-Dong Hu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan 030000, People's Republic of China
| | - Ning Sun
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan 030000, People's Republic of China
| | - Xin-Rong Li
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan 030000, People's Republic of China
| | - Ke-Rang Zhang
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan 030000, People's Republic of China
| |
Collapse
|
18
|
Schuch JB, Genro JP, Bastos CR, Ghisleni G, Tovo-Rodrigues L. The role of CLOCK gene in psychiatric disorders: Evidence from human and animal research. Am J Med Genet B Neuropsychiatr Genet 2018; 177:181-198. [PMID: 28902457 DOI: 10.1002/ajmg.b.32599] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
The circadian clock system drives daily rhythms in physiology, metabolism, and behavior in mammals. Molecular mechanisms of this system consist of multiple clock genes, with Circadian Locomotor Output Cycles Kaput (CLOCK) as a core member that plays an important role in a wide range of behaviors. Alterations in the CLOCK gene are associated with common psychiatric disorders as well as with circadian disturbances comorbidities. This review addresses animal, molecular, and genetic studies evaluating the role of the CLOCK gene on many psychiatric conditions, namely autism spectrum disorder, schizophrenia, attention-deficit/hyperactivity disorder, major depressive disorder, bipolar disorder, anxiety disorder, and substance use disorder. Many animal experiments focusing on the effects of the Clock gene in behavior related to psychiatric conditions have shown consistent biological plausibility and promising findings. In humans, genetic and gene expression studies regarding disorder susceptibility, sleep disturbances related comorbidities, and response to pharmacological treatment, in general, are in agreement with animal studies. However, the number of controversial results is high. Literature suggests that the CLOCK gene exerts important influence on these conditions, and influences the susceptibility to phenotypes of psychiatric disorders.
Collapse
Affiliation(s)
- Jaqueline B Schuch
- Laboratory of Immunosenescence, Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Julia P Genro
- Graduate Program in Bioscience, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Clarissa R Bastos
- Laboratory of Clinical Neuroscience, Graduate Program in Health and Behavior, Universidade Católica de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gabriele Ghisleni
- Laboratory of Clinical Neuroscience, Graduate Program in Health and Behavior, Universidade Católica de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luciana Tovo-Rodrigues
- Graduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
19
|
Bering T, Carstensen MB, Wörtwein G, Weikop P, Rath MF. The Circadian Oscillator of the Cerebral Cortex: Molecular, Biochemical and Behavioral Effects of Deleting the Arntl Clock Gene in Cortical Neurons. Cereb Cortex 2018; 28:644-657. [PMID: 28052921 DOI: 10.1093/cercor/bhw406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/20/2016] [Indexed: 11/13/2022] Open
Abstract
A molecular circadian oscillator resides in neurons of the cerebral cortex, but its role is unknown. Using the Cre-LoxP method, we have here abolished the core clock gene Arntl in those neurons. This mouse represents the first model carrying a deletion of a circadian clock component specifically in an extrahypothalamic cell type of the brain. Molecular analyses of clock gene expression in the cerebral cortex of the Arntl conditional knockout mouse revealed disrupted circadian expression profiles, whereas clock gene expression in the suprachiasmatic nucleus was still rhythmic, thus showing that Arntl is required for normal function of the cortical circadian oscillator. Daily rhythms in running activity and temperature were not influenced, whereas the resynchronization response to experimental jet-lag exhibited minor though significant differences between genotypes. The tail-suspension test revealed significantly prolonged immobility periods in the knockout mouse indicative of a depressive-like behavioral state. This phenotype was accompanied by reduced norepinephrine levels in the cerebral cortex. Our data show that Arntl is required for normal cortical clock function and further give reason to suspect that the circadian oscillator of the cerebral cortex is involved in regulating both circadian biology and mood-related behavior and biochemistry.
Collapse
Affiliation(s)
- Tenna Bering
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Services of the Capital Region of Denmark, DK-2100 Copenhagen, Denmark
| | - Mikkel Bloss Carstensen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Gitta Wörtwein
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1014 Copenhagen, Denmark
| | - Pia Weikop
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Mental Health Services of the Capital Region of Denmark, DK-2100 Copenhagen, Denmark
| | - Martin Fredensborg Rath
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
20
|
Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus. Neural Plast 2017; 2017:1504507. [PMID: 29230328 PMCID: PMC5694588 DOI: 10.1155/2017/1504507] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/28/2022] Open
Abstract
Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus (SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical studies that provide evidence both for and against a causal role for the SCN in mood disorders.
Collapse
|
21
|
Bowrey HE, James MH, Aston-Jones G. New directions for the treatment of depression: Targeting the photic regulation of arousal and mood (PRAM) pathway. Depress Anxiety 2017; 34:588-595. [PMID: 28489327 PMCID: PMC5797474 DOI: 10.1002/da.22635] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 11/09/2022] Open
Abstract
Both preclinical and clinical studies demonstrate that depression is strongly associated with reduced light availability, which in turn contributes to decreased function of brain regions that control mood. Here, we review findings that support a critical pathway for the control of mood that depends upon ambient light. We put forward a novel hypothesis, functionally linking retina to locus coeruleus (LC) in depression, and discuss the role of norepinephrine in affective disease. Finally, we discuss how utilizing the chemogenetic tool Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to precisely control this retina-LC circuit may be used as a novel therapeutic to treat depression.
Collapse
Affiliation(s)
- Hannah E. Bowrey
- Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ, USA,Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Morgan H. James
- Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ, USA,The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
22
|
Deussing JM, Jakovcevski M. Histone Modifications in Major Depressive Disorder and Related Rodent Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:169-183. [PMID: 28523546 DOI: 10.1007/978-3-319-53889-1_9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Major depressive disorder (MDD) is a multifactorial disease, weakly linked to multiple genetic risk factors. In contrast to that, environmental factors and "gene × environment" interaction between specific risk genes and environmental factors, such as severe or early stress exposure, have been strongly linked to MDD vulnerability. Stressors can act on the interface between an organism and the environment, the epigenome. The molecular foundation for the impact of stressors on the risk to develop MDD is based on the hormonal stress response itself: the glucocorticoid receptor (GR, encoded by NR3C1). NR3C1 can directly interact with the epigenome in the cell nucleus. Besides DNA methylation, histone modifications have been reported to be crucial targets for the interaction with the stress response system. Here, we review critical findings on the impact of the most relevant histone modifications, i.e. histone acetylation and methylation, in the context of MDD and related animal models. We discuss new treatment options which have been based on these findings, including histone deacetylase inhibitors (HDACis) and drugs targeting specific histone marks, closely linked to psychiatric disease. In this context we talk about contemporary and future approaches required to fully understand (1) the epigenetics of stress-related disease and (2) the mode of action of potential MDD drugs targeting histone modifications. This includes harnessing the unprecedented potentials of genome-wide analysis of the epigenome and transcriptome, in a cell type-specific manner, and the use of epigenome editing technologies to clearly link epigenetic marks on specific genomic loci to functional relevance.
Collapse
Affiliation(s)
- Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr. 2, 80804, Munich, Bavaria, Germany
| | - Mira Jakovcevski
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr. 2, 80804, Munich, Bavaria, Germany.
| |
Collapse
|
23
|
Tani N, Ikeda T, Oritani S, Michiue T, Ishikawa T. Role of Circadian Clock Genes in Sudden Cardiac Death: A Pilot Study. J HARD TISSUE BIOL 2017. [DOI: 10.2485/jhtb.26.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Naoto Tani
- Department of Legal Medicine, Osaka City University Medical School
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC)
| | - Tomoya Ikeda
- Department of Legal Medicine, Osaka City University Medical School
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC)
| | - Shigeki Oritani
- Department of Legal Medicine, Osaka City University Medical School
| | - Tomomi Michiue
- Department of Legal Medicine, Osaka City University Medical School
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC)
| | - Takaki Ishikawa
- Department of Legal Medicine, Osaka City University Medical School
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center (MLCPI-SC)
| |
Collapse
|
24
|
Christiansen SL, Bouzinova EV, Fahrenkrug J, Wiborg O. Altered Expression Pattern of Clock Genes in a Rat Model of Depression. Int J Neuropsychopharmacol 2016; 19:pyw061. [PMID: 27365111 PMCID: PMC5137278 DOI: 10.1093/ijnp/pyw061] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Abnormalities in circadian rhythms may be causal factors in development of major depressive disorder. The biology underlying a causal relationship between circadian rhythm disturbances and depression is slowly being unraveled. Although there is no direct evidence of dysregulation of clock gene expression in depressive patients, many studies have reported single-nucleotide polymorphisms in clock genes in these patients. METHODS In the present study we investigated whether a depression-like state in rats is associated with alternations of the diurnal expression of clock genes. The validated chronic mild stress (CMS) animal model of depression was used to investigate rhythmic expression of three clock genes: period genes 1 and 2 (Per1 and Per2) and Bmal1. Brain and liver tissue was collected from 96 animals after 3.5 weeks of CMS (48 control and 48 depression-like rats) at a 4h sampling interval within 24h. We quantified expression of clock genes on brain sections in the prefrontal cortex, nucleus accumbens, pineal gland, suprachiasmatic nucleus, substantia nigra, amygdala, ventral tegmental area, subfields of the hippocampus, and the lateral habenula using in situ hybridization histochemistry. Expression of clock genes in the liver was monitored by real-time quantitative polymerase chain reaction (PCR). RESULTS We found that the effect of CMS on clock gene expression was selective and region specific. Per1 exhibits a robust diurnal rhythm in most regions of interest, whereas Bmal1 and in particular Per2 were susceptible to CMS. CONCLUSION The present results suggest that altered expression of investigated clock genes is likely associated with the induction of a depression-like state in the CMS model.
Collapse
Affiliation(s)
| | | | | | - O Wiborg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark (Drs Christiansen, Bouzinova, and Wiborg); Department of Clinical Biochemistry, Faculty of Health Sciences, University of Copenhagen, Denmark (Dr Fahrenkrug).
| |
Collapse
|
25
|
Logan RW, McClung CA. Animal models of bipolar mania: The past, present and future. Neuroscience 2016; 321:163-188. [PMID: 26314632 PMCID: PMC4766066 DOI: 10.1016/j.neuroscience.2015.08.041] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is the sixth leading cause of disability in the world according to the World Health Organization and affects nearly six million (∼2.5% of the population) adults in the United State alone each year. BD is primarily characterized by mood cycling of depressive (e.g., helplessness, reduced energy and activity, and anhedonia) and manic (e.g., increased energy and hyperactivity, reduced need for sleep, impulsivity, reduced anxiety and depression), episodes. The following review describes several animal models of bipolar mania with a focus on more recent findings using genetically modified mice, including several with the potential of investigating the mechanisms underlying 'mood' cycling (or behavioral switching in rodents). We discuss whether each of these models satisfy criteria of validity (i.e., face, predictive, and construct), while highlighting their strengths and limitations. Animal models are helping to address critical questions related to pathophysiology of bipolar mania, in an effort to more clearly define necessary targets of first-line medications, lithium and valproic acid, and to discover novel mechanisms with the hope of developing more effective therapeutics. Future studies will leverage new technologies and strategies for integrating animal and human data to reveal important insights into the etiology, pathophysiology, and treatment of BD.
Collapse
Affiliation(s)
- R W Logan
- University of Pittsburgh School of Medicine, Department of Psychiatry, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, United States
| | - C A McClung
- University of Pittsburgh School of Medicine, Department of Psychiatry, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, United States.
| |
Collapse
|
26
|
Chen C, Meng SQ, Xue YX, Han Y, Sun CY, Deng JH, Chen N, Bao YP, Zhang FL, Cao LL, Zhu WG, Shi J, Song WH, Lu L. Epigenetic modification of PKMζ rescues aging-related cognitive impairment. Sci Rep 2016; 6:22096. [PMID: 26926225 PMCID: PMC4772003 DOI: 10.1038/srep22096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/05/2016] [Indexed: 12/18/2022] Open
Abstract
Cognition is impacted by aging. However, the mechanisms that underlie aging-associated cognitive impairment are unclear. Here we showed that cognitive decline in aged rats was associated with changes in DNA methylation of protein kinase Mζ (PKMζ) in the prelimbic cortex (PrL). PKMζ is a crucial molecule involved in the maintenance of long-term memory. Using different behavioral models, we confirmed that aged rats exhibited cognitive impairment in memory retention test 24 h after training, and overexpression of PKMζ in the PrL rescued cognitive impairment in aged rats. After fear conditioning, the protein levels of PKMζ and the membrane expression of GluR2 increased in the PrL in young and adult rats but not in aged rats, and the levels of methylated PKMζ DNA in the PrL decreased in all age groups, whereas the levels of unmethylated PKMζ DNA increased only in young and adult rats. We also found that environmentally enriched housing reversed the hypermethylation of PKMζ and restored cognitive performance in aged rats. Inactivation of PKMζ prevented the potentiating effects of environmental enrichment on memory retention in aged rats. These results indicated that PKMζ might be a potential target for the treatment of aging-related cognitive impairment, suggesting a potential therapeutic avenue.
Collapse
Affiliation(s)
- Chen Chen
- Institute of Mental Health, Peking University Sixth Hospital, and Key Laboratory of Mental Health, Beijing 100191, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Shi-Qiu Meng
- Institute of Mental Health, Peking University Sixth Hospital, and Key Laboratory of Mental Health, Beijing 100191, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Cheng-Yu Sun
- Institute of Mental Health, Peking University Sixth Hospital, and Key Laboratory of Mental Health, Beijing 100191, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Jia-Hui Deng
- Institute of Mental Health, Peking University Sixth Hospital, and Key Laboratory of Mental Health, Beijing 100191, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Na Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Yan-Ping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Fei-Long Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Lin-Lin Cao
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Wei-Hong Song
- Brain Research Centre, Departments of Medicine and Psychiatry, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Lin Lu
- Institute of Mental Health, Peking University Sixth Hospital, and Key Laboratory of Mental Health, Beijing 100191, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Yin X, Gao Y, Shi HS, Song L, Wang JC, Shao J, Geng XH, Xue G, Li JL, Hou YN. Overexpression of SIRT6 in the hippocampal CA1 impairs the formation of long-term contextual fear memory. Sci Rep 2016; 6:18982. [PMID: 26732053 PMCID: PMC4702175 DOI: 10.1038/srep18982] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/02/2015] [Indexed: 12/31/2022] Open
Abstract
Histone modifications have been implicated in learning and memory. Our previous transcriptome data showed that expression of sirtuins 6 (SIRT6), a member of Histone deacetylases (HDACs) family in the hippocampal cornu ammonis 1 (CA1) was decreased after contextual fear conditioning. However, the role of SIRT6 in the formation of memory is still elusive. In the present study, we found that contextual fear conditioning inhibited translational expression of SIRT6 in the CA1. Microinfusion of lentiviral vector-expressing SIRT6 into theCA1 region selectively enhanced the expression of SIRT6 and impaired the formation of long-term contextual fear memory without affecting short-term fear memory. The overexpression of SIRT6 in the CA1 had no effect on anxiety-like behaviors or locomotor activity. Also, we also found that SIRT6 overexpression significantly inhibited the expression of insulin-like factor 2 (IGF2) and amounts of proteins and/or phosphoproteins (e.g. Akt, pAkt, mTOR and p-mTOR) related to the IGF2 signal pathway in the CA1. These results demonstrate that the overexpression of SIRT6 in the CA1 impaired the formation of long-term fear memory, and SIRT6 in the CA1 may negatively modulate the formation of contextual fear memory via inhibiting the IGF signaling pathway.
Collapse
Affiliation(s)
- Xi Yin
- Department of Functional region of Diagnosis, Hebei Medical University Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Yuan Gao
- Department of Biochemistry and Molecular Biology, College of basic medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Hai-Shui Shi
- Department of Biochemistry and Molecular Biology, College of basic medicine, Hebei Medical University, Shijiazhuang 050017, China.,Department of Pharmacy, the Bethune International Peace Hospital of PLA, Shijiazhuang 050082, China
| | - Li Song
- Department of Biochemistry and Molecular Biology, College of basic medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Jie-Chao Wang
- Department of vasculocardiology, Hebei Province Geriatric Hospital, Shijiazhuang, 050011, China
| | - Juan Shao
- Department of Senile Disease, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xu-Hong Geng
- Department of Functional region of Diagnosis, Hebei Medical University Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Gai Xue
- Department of Pharmacy, the Bethune International Peace Hospital of PLA, Shijiazhuang 050082, China
| | - Jian-Li Li
- Department of Pharmacy, the Bethune International Peace Hospital of PLA, Shijiazhuang 050082, China
| | - Yan-Ning Hou
- Department of Pharmacy, the Bethune International Peace Hospital of PLA, Shijiazhuang 050082, China
| |
Collapse
|
28
|
Chronic mild stress-induced alterations of clock gene expression in rat prefrontal cortex: modulatory effects of prolonged lurasidone treatment. Pharmacol Res 2015; 104:140-50. [PMID: 26742719 DOI: 10.1016/j.phrs.2015.12.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/18/2022]
Abstract
Disruptions of biological rhythms are known to be associated with depressive disorders, suggesting that abnormalities in the molecular clock may contribute to the development of these disorders. These mechanisms have been extensively characterized in the suprachiasmatic nucleus, but little is know about the role exerted by individual clock genes in brain structures that are important for depressive disorders. Using the chronic mild stress model we found a significant reduction of BMAL1 and CLOCK protein levels in the nuclear compartment of the prefrontal cortex of CMS rats, which was paralleled by a down-regulation of the expression of several target genes, including Pers and Crys but also Reverbβ and Pparα. Interestingly, chronic treatment with the multi receptor modulator lurasidone (3mg/kg for 5 weeks) was able to normalize the molecular changes induced by CMS exposure in prefrontal cortex, but it was also able to regulate some of these genes within the hippocampus. We believe that changes in clock genes expression after CMS exposure may contribute to the disturbances associated with depressive disorders and that the ability of chronic lurasidone to normalize such alterations may be relevant for its therapeutic properties in ameliorating functions that are deteriorated in patients with major depression and other stress-related disorders.
Collapse
|
29
|
de Sousa CNS, Meneses LN, Vasconcelos GS, Silva MCC, da Silva JC, Macêdo D, de Lucena DF, Vasconcelos SMM. Reversal of corticosterone-induced BDNF alterations by the natural antioxidant alpha-lipoic acid alone and combined with desvenlafaxine: Emphasis on the neurotrophic hypothesis of depression. Psychiatry Res 2015; 230:211-9. [PMID: 26350703 DOI: 10.1016/j.psychres.2015.08.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 08/11/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022]
Abstract
Brain derived neurotrophic factor (BDNF) is linked to the pathophysiology of depression. We hypothesized that BDNF is one of the neurobiological pathways related to the augmentation effect of alpha-lipoic acid (ALA) when associated with antidepressants. Female mice were administered vehicle or CORT 20mg/kg during 14 days. From the 15th to 21st days the animals were divided in groups that were further administered: vehicle, desvenlafaxine (DVS) 10 or 20mg/kg, ALA 100 or 200mg/kg or the combinations of DVS10+ALA100, DVS20+ALA100, DVS10+ALA200 or DVS20+ALA200. ALA or DVS alone or in combination reversed CORT-induced increase in immobility time in the forced swimming test and decrease in sucrose preference, presenting, thus, an antidepressant-like effect. DVS10 alone reversed CORT-induced decrease in BDNF in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST). The same was observed in the HC and ST of ALA200 treated animals. The combination of DVS and ALA200 reversed CORT-induced alterations in BDNF and even, in some cases, increased the levels of this neurotrophin when compared to vehicle-treated animals in HC and ST. Taken together, these results suggest that the combination of the DVS+ALA may be valuable for treating conditions in which BDNF levels are decreased, such as depression.
Collapse
Affiliation(s)
- Caren Nádia Soares de Sousa
- Neuropsychopharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | - Lucas Nascimento Meneses
- Neuropsychopharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | - Germana Silva Vasconcelos
- Neuropsychopharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | - Márcia Calheiros Chaves Silva
- Neuropsychopharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | | | - Danielle Macêdo
- Neuropsychopharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | - David Freitas de Lucena
- Neuropsychopharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | - Silvânia Maria Mendes Vasconcelos
- Neuropsychopharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
30
|
Moriya S, Tahara Y, Sasaki H, Ishigooka J, Shibata S. Housing under abnormal light-dark cycles attenuates day/night expression rhythms of the clock genes Per1, Per2, and Bmal1 in the amygdala and hippocampus of mice. Neurosci Res 2015; 99:16-21. [PMID: 26026603 DOI: 10.1016/j.neures.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/12/2015] [Accepted: 05/13/2015] [Indexed: 01/28/2023]
Abstract
Although the results of previous studies have suggested that disruptions in circadian rhythms are involved in the pathogenesis of depression, no studies have examined the interaction of clock gene expression deficit and depression state. In this study, we examined clock gene expression levels and depressive-like behavior in mice housed under 3.5h light, 3.5h dark (T = 7) conditions to investigate the association between clock gene expression and depressive state. C57BL/6J mice were housed under a T = 24 cycle (12h light, 12h dark) or a T = 7 cycle and clock gene expression levels in the hippocampus and the amygdala were measured by real-time RT-PCR. Depressive state was evaluated by the forced swim test (FST). Although circadian rhythms of Per1 and Per2 clock gene expression in the hippocampus and amygdala were still detected under T = 7 conditions, rhythmicity and expression levels of both significantly decreased. Mice housed with a T = 7 cycle showed increased immobile time in the FST than those with a T = 24 cycle. The present results suggest that the presence of a depressive state around the early active phase of activity may be related to impairment of rhythmicity and expression levels of Per1 and Per2 genes under abnormal light-dark conditions.
Collapse
Affiliation(s)
- Shunpei Moriya
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Jun Ishigooka
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
31
|
Xue YX, Zhu ZZ, Han HB, Liu JF, Meng SQ, Chen C, Yang JL, Wu P, Lu L. Overexpression of Protein Kinase Mζ in the Prelimbic Cortex Enhances the Formation of Long-Term Fear Memory. Neuropsychopharmacology 2015; 40:2146-56. [PMID: 25722116 PMCID: PMC4613603 DOI: 10.1038/npp.2015.56] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/29/2015] [Accepted: 02/24/2015] [Indexed: 12/22/2022]
Abstract
Neuroplasticity in the prefrontal cortex (PFC) after fear conditioning has been suggested to regulate the formation and expression of fear memory. Protein kinase Mζ (PKMζ), an isoform of protein kinase C with persistent activity, is involved in the formation and maintenance of memory. However, less is known about the role of PKMζ in the PFC in the formation of fear memory. We investigated whether the overexpression of PKMζ enhances the formation of auditory fear memory in rats. We found that microinfusion of lentiviral vector-expressing PKMζ into the prelimbic cortex (PrL) selectively enhanced the expression of PKMζ without influencing the expression of other isoforms of PKC. The overexpression of PKMζ in the PrL enhanced the formation of long-term fear memory without affecting short-term fear memory, whereas the overexpression of PKMζ in the infralimbic cortex had no effect on either short-term or long-term fear memory. The overexpression of PKMζ in the PrL had no effect on anxiety-like behavior or locomotor activity. We also found that PKMζ overexpression potentiated the fear conditioning-induced increase in the membrane levels of glutamate subunit 2 of AMPA receptors in the PrL. These results demonstrate that the overexpression of PKMζ in the PrL but not infralimbic cortex selectively enhanced the formation of long-term fear memory, and PKMζ in the PrL may be involved in the formation of fear memory.
Collapse
Affiliation(s)
- Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Zhen-Zhen Zhu
- Tianjin Medical University, Tianjin, China
- Center of Tianjin Mental Health Center, Tianjin, China
| | - Hai-Bin Han
- Tianjin Medical University, Tianjin, China
- Center of Tianjin Mental Health Center, Tianjin, China
| | - Jian-Feng Liu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Shi-Qiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Chen Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jian-Li Yang
- Tianjin Medical University, Tianjin, China
- Center of Tianjin Mental Health Center, Tianjin, China
| | - Ping Wu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
32
|
Bunney BG, Li JZ, Walsh DM, Stein R, Vawter MP, Cartagena P, Barchas JD, Schatzberg AF, Myers RM, Watson SJ, Akil H, Bunney WE. Circadian dysregulation of clock genes: clues to rapid treatments in major depressive disorder. Mol Psychiatry 2015; 20:48-55. [PMID: 25349171 PMCID: PMC4765913 DOI: 10.1038/mp.2014.138] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/06/2014] [Accepted: 09/10/2014] [Indexed: 12/19/2022]
Abstract
Conventional antidepressants require 2-8 weeks for a full clinical response. In contrast, two rapidly acting antidepressant interventions, low-dose ketamine and sleep deprivation (SD) therapy, act within hours to robustly decrease depressive symptoms in a subgroup of major depressive disorder (MDD) patients. Evidence that MDD may be a circadian-related illness is based, in part, on a large set of clinical data showing that diurnal rhythmicity (sleep, temperature, mood and hormone secretion) is altered during depressive episodes. In a microarray study, we observed widespread changes in cyclic gene expression in six regions of postmortem brain tissue of depressed patients matched with controls for time-of-death (TOD). We screened 12 000 transcripts and observed that the core clock genes, essential for controlling virtually all rhythms in the body, showed robust 24-h sinusoidal expression patterns in six brain regions in control subjects. In MDD patients matched for TOD with controls, the expression patterns of the clock genes in brain were significantly dysregulated. Some of the most robust changes were seen in anterior cingulate (ACC). These findings suggest that in addition to structural abnormalities, lesion studies, and the large body of functional brain imaging studies reporting increased activation in the ACC of depressed patients who respond to a wide range of therapies, there may be a circadian dysregulation in clock gene expression in a subgroup of MDDs. Here, we review human, animal and neuronal cell culture data suggesting that both low-dose ketamine and SD can modulate circadian rhythms. We hypothesize that the rapid antidepressant actions of ketamine and SD may act, in part, to reset abnormal clock genes in MDD to restore and stabilize circadian rhythmicity. Conversely, clinical relapse may reflect a desynchronization of the clock, indicative of a reactivation of abnormal clock gene function. Future work could involve identifying specific small molecules capable of resetting and stabilizing clock genes to evaluate if they can rapidly relieve symptoms and sustain improvement.
Collapse
Affiliation(s)
- BG Bunney
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - JZ Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - DM Walsh
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - R Stein
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - MP Vawter
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - P Cartagena
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - JD Barchas
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - AF Schatzberg
- Department of Psychiatry, Stanford University, Palo Alto, CA, USA
| | - RM Myers
- HudsonAlpha, Institute for Biotechnology, Huntsville, AL, USA
| | - SJ Watson
- Department of Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - H Akil
- Department of Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - WE Bunney
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
33
|
Savalli G, Diao W, Schulz S, Todtova K, Pollak DD. Diurnal oscillation of amygdala clock gene expression and loss of synchrony in a mouse model of depression. Int J Neuropsychopharmacol 2015; 18:pyu095. [PMID: 25522426 PMCID: PMC4376549 DOI: 10.1093/ijnp/pyu095] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Disturbances in circadian rhythm-related physiological and behavioral processes are frequently observed in depressed patients and several clock genes have been identified as risk factors for the development of mood disorders. However, the particular involvement of the circadian system in the pathophysiology of depression and its molecular regulatory interface is incompletely understood. METHODS A naturalistic animal model of depression based upon exposure to chronic mild stress was used to induce anhedonic behavior in mice. Micro-punch dissection was used to isolate basolateral amygdala tissue from anhedonic mice followed by quantitative real-time PCR-based analysis of gene expression. RESULTS Here we demonstrate that chronic mild stress-induced anhedonic behavior is associated with disturbed diurnal oscillation of the expression of Clock, Cry2, Per1, Per3, Id2, Rev-erbα, Ror-β and Ror-γ in the mouse basolateral amygdala. Clock gene desynchronization was accompanied by disruption of the diurnal expressional pattern of vascular endothelial growth factor A expression in the basolateral amygdala of anhedonic mice, also reflected in alterations of circulating vascular endothelial growth factor A levels. CONCLUSION We propose that aberrant control of diurnal rhythmicity related to depression may indeed directly result from the illness itself and establish an animal model for the further exploration of the molecular mechanisms mediating the involvement of the circadian system in the pathophysiology of mood disorders.
Collapse
Affiliation(s)
- Giorgia Savalli
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Weifei Diao
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Stefan Schulz
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Kristina Todtova
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria.
| |
Collapse
|
34
|
Neuropeptide trefoil factor 3 attenuates naloxone-precipitated withdrawal in morphine-dependent mice. Psychopharmacology (Berl) 2014; 231:4659-68. [PMID: 24825609 DOI: 10.1007/s00213-014-3615-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/28/2014] [Indexed: 02/06/2023]
Abstract
RATIONALE The persistence of physical dependence and craving in addicts is considered to contribute to relapse. Increasing evidence indicates that neuropeptide systems are associated with several phases of drug addiction, but little is known about whether the neuropeptide trefoil factor affects withdrawal symptoms. OBJECTIVES This study aims to investigate the potential effects of the neuropeptide trefoil factor 3 (TFF3) on naloxone-precipitated withdrawal symptoms in morphine-dependent mice. RESULTS Mice received increasing doses of morphine over 3 days. On day 4, the mice were injected with TFF3 (1.0 mg/kg, i.p.) 30 min after the last dose of morphine. Thirty minutes after TFF3 treatment, naloxone (1 mg/kg, i.p.) was injected, and body weight, jumping behavior, wet-dog shakes, and locomotor activity were assessed 30 min later. Naloxone caused significant weight loss and increased jumping behavior and wet-dog shakes in morphine-dependent mice. TFF3 (1.0 mg/kg) reversed these behavioral symptoms caused by morphine withdrawal, suggesting that TFF3 might ameliorate physical dependence associated with opiate addiction. Furthermore, TFF3 pretreatment significantly reduced morphine withdrawal-induced increases in plasma corticosterone and adrenocorticotropic hormone levels. The glucocorticoid receptor agonist RU486 blocked the behavioral effects of TFF3 on morphine withdrawal symptoms. Finally, Fos expression in the medial prefrontal cortex which was decreased during morphine withdrawal was increased by TFF3 pretreatment. CONCLUSION These findings indicate that TFF3 might be a potential therapeutic candidate for opiate addiction by regulating glucocorticoid secretion and neuronal activation in the prefrontal cortex.
Collapse
|
35
|
Diurnal cortisol rhythms in youth from risky families: effects of cumulative risk exposure and variation in the serotonin transporter gene-linked polymorphic region (5-HTTLPR) [corrected]. Dev Psychopathol 2014; 26:999-1019. [PMID: 24955777 DOI: 10.1017/s0954579414000558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Building on research on cumulative risk and psychopathology, this study examines how cumulative risk exposure is associated with altered diurnal cortisol rhythms in an ethnically diverse, low-income sample of youth. In addition, consistent with a diathesis-stress perspective, this study explores whether the effect of environmental risk is moderated by allelic variation in the promoter region of the serotonin transporter gene-linked polymorphic region (5-HTTLPR). Results show that youth with greater cumulative risk exposure had flatter diurnal cortisol slopes, regardless of 5-HTTLPR genotype. However, the association of cumulative risk with average cortisol output (area under the curve [AUC]) was moderated by the 5-HTTLPR genotype. Among youth homozygous for the long allele, greater cumulative risk exposure was associated with lower cortisol AUC, driven by significant reductions in cortisol levels at waking. In contrast, there was a trend-level association between greater cumulative risk and higher cortisol AUC among youth carrying the short allele, driven by a trend-level increase in bedtime cortisol levels. Findings are discussed with regard to the relevance of dysregulated diurnal cortisol rhythms for the development of psychopathology and the implications of genetically mediated differences in psychophysiological adaptations to stress.
Collapse
|
36
|
Jager J, O'Brien WT, Manlove J, Krizman EN, Fang B, Gerhart-Hines Z, Robinson MB, Klein PS, Lazar MA. Behavioral changes and dopaminergic dysregulation in mice lacking the nuclear receptor Rev-erbα. Mol Endocrinol 2014; 28:490-8. [PMID: 24552589 DOI: 10.1210/me.2013-1351] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The regulation of behavior by the molecular components of the circadian clock is not well understood. Here we report that mice lacking the nuclear receptor Rev-erbα, a potent transcriptional repressor and core clock component, displayed marked hyperactivity and impaired response habituation in novel environments. In addition, Rev-erbα knockout (KO) mice were deficient in short-term, long-term, and contextual memories and also showed impairment in nest-building ability. Together, these results suggest that Rev-erbα KO mice manifest defective hippocampal function. Interestingly, the changes in novelty-induced locomotor activity of Rev-erbα KO mice were comparable at multiple times of day, potentially due to the muted amplitude of Rev-erbα oscillation in the hippocampus of wild-type mice. Hippocampal dopamine turnover was increased in Rev-erbα KO mice, due to up-regulation of tyrosine hydroxylase, the rate-limiting enzyme in dopamine production, and pharmacologic inhibition of tyrosine hydroxylase activity partially rescued locomotor hyperactivity. These findings reveal a novel, nonredundant function for Rev-erbα that links a core component of the circadian gene-regulatory network to the control of dopaminergic and hippocampus-dependent behaviors.
Collapse
Affiliation(s)
- Jennifer Jager
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism (J.J., B.F., Z.G-H., M.A.L.), Department of Neurosciences (W.T.O., J.M.), and Division of Hematology-Oncology, Department of Medicine (P.S.K.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104; and Children's Hospital of Philadelphia Research Institute (E.N.K., M.B.R.), Departments of Pediatrics and Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Daulatzai MA. Neurotoxic Saboteurs: Straws that Break the Hippo’s (Hippocampus) Back Drive Cognitive Impairment and Alzheimer’s Disease. Neurotox Res 2013; 24:407-59. [DOI: 10.1007/s12640-013-9407-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/06/2013] [Accepted: 06/17/2013] [Indexed: 12/29/2022]
|