1
|
Seiglie MP, Umemori H. Adolescent alcohol exposure disrupts episodic-like memory by impairing dopamine synapses in the mouse prelimbic cortex. Neuropharmacology 2025; 265:110255. [PMID: 39643240 PMCID: PMC11789929 DOI: 10.1016/j.neuropharm.2024.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/21/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Heavy alcohol use during adolescence has a significant impact on cognitive functions, such as episodic memory, even after detoxification. However, in animal models, defects in episodic memory by adolescent alcohol exposure have not been consistently replicated, and thus, the brain regions and systems that are involved remain to be elucidated. Here, we show that adolescent alcohol exposure impairs episodic memory through the impairment of the dopamine system in the prelimbic region (PrL) of the medial prefrontal cortex in both females and males. Using mice as a model, we first show that adolescent alcohol exposure disrupts episodic-like memory in female and male adult mice. We then show that adolescent alcohol exposure decreases dopaminergic presynaptic terminals in the PrL in female and male mice. This decrease persists into adulthood. Finally, we show that the adult application of a D1 dopamine receptor agonist into the PrL of adolescent alcohol-exposed mice rescues episodic-like memory in female and male mice. Together, our results identify that dopaminergic synapses in the PrL play critical roles in the effects of adolescent alcohol use on episodic memory and provide a potential strategy to reverse memory deficits caused by adolescent alcohol use in both sexes.
Collapse
Affiliation(s)
- Mariel P Seiglie
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Zhao Y, Zhou YG, Chen JF. Targeting the adenosine A 2A receptor for neuroprotection and cognitive improvement in traumatic brain injury and Parkinson's disease. Chin J Traumatol 2024; 27:125-133. [PMID: 37679245 PMCID: PMC11138351 DOI: 10.1016/j.cjtee.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Adenosine exerts its dual functions of homeostasis and neuromodulation in the brain by acting at mainly 2 G-protein coupled receptors, called A1 and A2A receptors. The adenosine A2A receptor (A2AR) antagonists have been clinically pursued for the last 2 decades, leading to final approval of the istradefylline, an A2AR antagonist, for the treatment of OFF-Parkinson's disease (PD) patients. The approval paves the way to develop novel therapeutic methods for A2AR antagonists to address 2 major unmet medical needs in PD and traumatic brain injury (TBI), namely neuroprotection or improving cognition. In this review, we first consider the evidence for aberrantly increased adenosine signaling in PD and TBI and the sufficiency of the increased A2AR signaling to trigger neurotoxicity and cognitive impairment. We further discuss the increasing preclinical data on the reversal of cognitive deficits in PD and TBI by A2AR antagonists through control of degenerative proteins and synaptotoxicity, and on protection against TBI and PD pathologies by A2AR antagonists through control of neuroinflammation. Moreover, we provide the supporting evidence from multiple human prospective epidemiological studies which revealed an inverse relation between the consumption of caffeine and the risk of developing PD and cognitive decline in aging population and Alzheimer's disease patients. Collectively, the convergence of clinical, epidemiological and experimental evidence supports the validity of A2AR as a new therapeutic target and facilitates the design of A2AR antagonists in clinical trials for disease-modifying and cognitive benefit in PD and TBI patients.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
3
|
Majumdar M, Badwaik H. Trends on Novel Targets and Nanotechnology-Based Drug Delivery System in the Treatment of Parkinson's disease: Recent Advancement in Drug Development. Curr Drug Targets 2024; 25:987-1011. [PMID: 39313872 DOI: 10.2174/0113894501312703240826070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that impacts a significant portion of the population. Despite extensive research, an effective cure for PD remains elusive, and conventional pharmacological treatments often face limitations in efficacy and management of symptoms. There has been a lot of discussion about using nanotechnology to increase the bioavailability of small- molecule drugs to target cells in recent years. It is possible that PD treatment might become far more effective and have fewer side effects if medication delivery mechanisms were to be improved. Potential alternatives to pharmacological therapy for molecular imaging and treatment of PD may lie in abnormal proteins such as parkin, α-synuclein, leucine-rich repeat serine and threonine protein kinase 2. Published research has demonstrated encouraging outcomes when nanomedicine-based approaches are used to address the challenges of PD therapy. So, to address the present difficulties of antiparkinsonian treatment, this review outlines the key issues and limitations of antiparkinsonian medications, new therapeutic strategies, and the breadth of delivery based on nanomedicine. This review covers a wide range of subjects, including drug distribution in the brain, the efficacy of drug-loaded nano-carriers in crossing the blood-brain barrier, and their release profiles. In PD, the nano-carriers are also used. Novel techniques of pharmaceutical delivery are currently made possible by vesicular carriers, which eliminate the requirement to cross the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Manisha Majumdar
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| | - Hemant Badwaik
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| |
Collapse
|
4
|
Illes P, Ulrich H, Chen JF, Tang Y. Purinergic receptors in cognitive disturbances. Neurobiol Dis 2023; 185:106229. [PMID: 37453562 DOI: 10.1016/j.nbd.2023.106229] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Purinergic receptors (Rs) of the ATP/ADP, UTP/UDP (P2X, P2Y) and adenosine (A1, A2A)-sensitive classes broadly interfere with cognitive processes both under quasi normal and disease conditions. During neurodegenerative illnesses, high concentrations of ATP are released from the damaged neuronal and non-neuronal cells of the brain; then, this ATP is enzymatically degraded to adenosine. Thus, the primary injury in neurodegenerative diseases appears to be caused by various protein aggregates on which a superimposed damage mediated by especially P2X7 and A2AR activation develops; this can be efficiently prevented by small molecular antagonists in animal models of the above diseases, or are mitigated in the respective knockout mice. Dementia is a leading symptom in Alzheimer's disease (AD), and accompanies Parkinson's disease (PD) and Huntington's disease (HD), especially in the advanced states of these illnesses. Animal experimentation suggests that P2X7 and A2ARs are also involved in a number of psychiatric diseases, such as major depressive disorder (MDD), obsessive compulsive behavior, and attention deficit hyperactivity disorder. In conclusion, small molecular antagonists of purinergic receptors are expected to supply us in the future with pharmaceuticals which are able to combat in a range of neurological/psychiatric diseases the accompanying cognitive deterioration.
Collapse
Affiliation(s)
- Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Henning Ulrich
- International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Biochemistry and Molecular Biology, Chemistry Institute, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Whenzhou 325000, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
5
|
Ohno Y, Okita E, Kawai-Uchida M, Shoukei Y, Soshiroda K, Kanda T, Uchida S. The adenosine A 2A receptor antagonist/inverse agonist, KW-6356 enhances the anti-parkinsonian activity of L-DOPA with a low risk of dyskinesia in MPTP-treated common marmosets. J Pharmacol Sci 2023; 152:193-199. [PMID: 37257947 DOI: 10.1016/j.jphs.2023.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
The adenosine A2A receptor antagonist/inverse agonist, KW-6356 has been shown to be effective in Parkinson's disease (PD) patients as monotherapy and as an adjunct therapy to L-3,4-dihydroxyphenylalanine (L-DOPA)/decarboxylase inhibitor. However, the effects of KW-6356 combined with L-DOPA on anti-parkinsonian activity and established dyskinesia has not been investigated in preclinical experiments. We examined the effects of combination of KW-6356 with L-DOPA in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets. Oral administration of KW-6356 (1 mg/kg) enhanced the anti-parkinsonian activities of various doses of L-DOPA (2.5-10 mg/kg). In MPTP-treated common marmosets primed with L-DOPA to show dyskinesia, KW-6356 (1 mg/kg) also enhanced the anti-parkinsonian activities of various doses of L-DOPA (1.25-10 mg/kg) but not dyskinesia. Chronic co-administration of KW-6356 (1 mg/kg) with a low dose of L-DOPA (2.5 mg/kg) for 21 days increased the degree of dyskinesia induced by the low dose of L-DOPA, but the amplitude of dyskinesia induced by combined administration of KW-6356 (1 mg/kg) with L-DOPA (2.5 mg/kg) was lower than that induced by an optimal dose of L-DOPA (10 mg/kg). These results suggest that KW-6356 can be used to potentiate the effects of a wide range of L-DOPA doses with a low risk of dyskinesia for the treatment of PD.
Collapse
Affiliation(s)
- Yutaro Ohno
- Biomedical Science Research Laboratories 1, Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Eri Okita
- Research Core Function Laboratories, Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Mika Kawai-Uchida
- Research Core Function Laboratories, Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Youji Shoukei
- Research Core Function Laboratories, Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan
| | - Kazuhiro Soshiroda
- Research Core Function Laboratories, Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi-machi, Machida-shi, Tokyo, Japan
| | - Tomoyuki Kanda
- R&D Planning Department, R&D Division, Kyowa Kirin Co., Ltd., 1-9-2 Otemachi, Chiyoda-Ku, Tokyo, Japan
| | - Shinichi Uchida
- Biomedical Science Research Laboratories 1, Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, Japan.
| |
Collapse
|
6
|
Hook RW, Isobe M, Savulich G, Grant JE, Ioannidis K, Christmas D, Sahakian BJ, Robbins TW, Chamberlain SR. Role of adenosine A2A receptors in hot and cold cognition: Effects of single-dose istradefylline in healthy volunteers. Eur Neuropsychopharmacol 2023; 71:55-64. [PMID: 36989539 DOI: 10.1016/j.euroneuro.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023]
Abstract
The role of the adenosine neurochemical system in human cognition is under-studied, despite such receptors being distributed throughout the brain. The aim of this study was to shed light on the role of the adenosine A2A receptors in human cognition using single-dose istradefylline. Twenty healthy male participants, aged 19-49, received 20 mg istradefylline and placebo, in a randomized, double-blind, placebo-controlled cross-over design. Cognition was assessed using computerized cognitive tests, covering both cold (non-emotional) and hot (emotion-laden) domains. Cardiovascular data were recorded serially. Cognitive effects of istradefylline were explored using repeated measures analysis of variance and paired t-tests as appropriate. On the EMOTICOM battery, there was a significant effect of istradefylline versus placebo on the Social Information Preference task (t = 2.50, p = 0.02, d=-0.59), indicating that subjects on istradefylline interpreted social situations more positively. No other significant effects were observed on other cognitive tasks, nor in terms of cardiovascular measures (pulse and blood pressure). De-briefing indicated that blinding was successful, both for participants and the research team. Further exploration of the role of adenosine A2A receptors in emotional processing may be valuable, given that abnormalities in related cognitive functions are implicated in neuropsychiatric disorders. The role of adenosine systems in human cognition requires further clarification, including with different doses of istradefylline and over different schedules of administration.
Collapse
Affiliation(s)
| | - Masanori Isobe
- Department of Psychiatry, University of Cambridge, UK; Department of Psychiatry, Kyoto University, Japan
| | | | - Jon E Grant
- Department of Psychiatry, University of Chicago, Pritzker School of Medicine, USA
| | - Konstantinos Ioannidis
- Department of Psychiatry, University of Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK; Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| | - David Christmas
- Department of Psychiatry, University of Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | | | - Trevor W Robbins
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
| | - Samuel R Chamberlain
- Department of Psychiatry, University of Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK; Department of Psychiatry, University of Southampton, UK
| |
Collapse
|
7
|
Chen JF, Choi DS, Cunha RA. Striatopallidal adenosine A 2A receptor modulation of goal-directed behavior: Homeostatic control with cognitive flexibility. Neuropharmacology 2023; 226:109421. [PMID: 36634866 PMCID: PMC10132052 DOI: 10.1016/j.neuropharm.2023.109421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Dysfunction of goal-directed behaviors under stressful or pathological conditions results in impaired decision-making and loss of flexibility of thoughts and behaviors, which underlie behavioral deficits ranging from depression, obsessive-compulsive disorders and drug addiction. Tackling the neuromodulators fine-tuning this core behavioral element may facilitate the development of effective strategies to control these deficits present in multiple psychiatric disorders. The current investigation of goal-directed behaviors has concentrated on dopamine and glutamate signaling in the corticostriatal pathway. In accordance with the beneficial effects of caffeine intake on mood and cognitive dysfunction, we now propose that caffeine's main site of action - adenosine A2A receptors (A2AR) - represent a novel target to homeostatically control goal-directed behavior and cognitive flexibility. A2AR are abundantly expressed in striatopallidal neurons and colocalize and interact with dopamine D2, NMDA and metabotropic glutamate 5 receptors to integrate dopamine and glutamate signaling. Specifically, striatopallidal A2AR (i) exert an overall "break" control of a variety of cognitive processes, making A2AR antagonists a novel strategy for improving goal-directed behavior; (ii) confer homeostatic control of goal-directed behavior by acting at multiple sites with often opposite effects, to enhance cognitive flexibility; (iii) integrate dopamine and adenosine signaling through multimeric A2AR-D2R heterocomplexes allowing a temporally precise fine-tuning in response to local signaling changes. As the U.S. Food and Drug Administration recently approved the A2AR antagonist Nourianz® (istradefylline) to treat Parkinson's disease, striatal A2AR-mediated control of goal-directed behavior may offer a new and real opportunity for improving deficits of goal-directed behavior and enhance cognitive flexibility under various neuropsychiatric conditions. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, Wenzhou Medical University, Wenzhou, China; Department of Neurology, School of Medicine, Boston University, Boston, MA, USA.
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, USA; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
8
|
Khan MA, Haider N, Singh T, Bandopadhyay R, Ghoneim MM, Alshehri S, Taha M, Ahmad J, Mishra A. Promising biomarkers and therapeutic targets for the management of Parkinson's disease: recent advancements and contemporary research. Metab Brain Dis 2023; 38:873-919. [PMID: 36807081 DOI: 10.1007/s11011-023-01180-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Parkinson's disease (PD) is one of the progressive neurological diseases which affect around 10 million population worldwide. The clinical manifestation of motor symptoms in PD patients appears later when most dopaminergic neurons have degenerated. Thus, for better management of PD, the development of accurate biomarkers for the early prognosis of PD is imperative. The present work will discuss the potential biomarkers from various attributes covering biochemical, microRNA, and neuroimaging aspects (α-synuclein, DJ-1, UCH-L1, β-glucocerebrosidase, BDNF, etc.) for diagnosis, recent development in PD management, and major limitations with current and conventional anti-Parkinson therapy. This manuscript summarizes potential biomarkers and therapeutic targets, based on available preclinical and clinical evidence, for better management of PD.
Collapse
Affiliation(s)
- Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murtada Taha
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Sila Katamur (Halugurisuk), Kamrup, Changsari, Assam, 781101, India.
| |
Collapse
|
9
|
Weerasinghe-Mudiyanselage PD, Kang S, Kim JS, Moon C. Therapeutic Approaches to Non-Motor Symptoms of Parkinson's Disease: A Current Update on Preclinical Evidence. Curr Neuropharmacol 2023; 21:560-577. [PMID: 36200159 PMCID: PMC10207906 DOI: 10.2174/1570159x20666221005090126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being classified as a movement disorder, Parkinson's disease (PD) is characterized by a wide range of non-motor symptoms that significantly affect the patients' quality of life. However, clear evidence-based therapy recommendations for non-motor symptoms of PD are uncommon. Animal models of PD have previously been shown to be useful for advancing the knowledge and treatment of motor symptoms. However, these models may provide insight into and assess therapies for non-motor symptoms in PD. This paper highlights non-motor symptoms in preclinical models of PD and the current position regarding preclinical therapeutic approaches for these non-motor symptoms. This information may be relevant for designing future preclinical investigations of therapies for nonmotor symptoms in PD.
Collapse
Affiliation(s)
- Poornima D.E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
10
|
Wiprich MT, Altenhofen S, Gusso D, Vasques RDR, Zanandrea R, Kist LW, Bogo MR, Bonan CD. Modulation of adenosine signaling reverses 3-nitropropionic acid-induced bradykinesia and memory impairment in adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110602. [PMID: 35843370 DOI: 10.1016/j.pnpbp.2022.110602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder, characterized by motor dysfunction, psychiatric disturbance, and cognitive decline. In the early stage of HD, occurs a decrease in dopamine D2 receptors and adenosine A2A receptors (A2AR), while in the late stage also occurs a decrease in dopamine D1 receptors and adenosine A1 receptors (A1R). Adenosine exhibits neuromodulatory and neuroprotective effects in the brain and is involved in motor control and memory function. 3-Nitropropionic acid (3-NPA), a toxin derived from plants and fungi, may reproduce HD behavioral phenotypes and biochemical characteristics. This study investigated the effects of acute exposure to CPA (A1R agonist), CGS 21680 (A2AR agonist), caffeine (non-selective of A1R and A2AR antagonist), ZM 241385 (A2AR antagonist), DPCPX (A1R antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in an HD pharmacological model induced by 3-NPA in adult zebrafish. CPA, CGS 21680, caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered via i.p. in zebrafish after 3-NPA (at dose 60 mg/kg) chronic treatment. Caffeine and ZM 241385 reversed the bradykinesia induced by 3-NPA, while CGS 21680 potentiated the bradykinesia caused by 3-NPA. Moreover, CPA, caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA reversed the 3-NPA-induced memory impairment. Together, these data support the hypothesis that A2AR antagonists have an essential role in modulating locomotor function, whereas the activation of A1R and blockade of A2AR and A1R and modulation of adenosine levels may reduce the memory impairment, which could be a potential pharmacological strategy against late-stage symptoms HD.
Collapse
Affiliation(s)
- Melissa Talita Wiprich
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Darlan Gusso
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Rafaela da Rosa Vasques
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo Zanandrea
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza Wilges Kist
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Celular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mauricio Reis Bogo
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Celular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Mori A, Chen JF, Uchida S, Durlach C, King SM, Jenner P. The Pharmacological Potential of Adenosine A 2A Receptor Antagonists for Treating Parkinson's Disease. Molecules 2022; 27:2366. [PMID: 35408767 PMCID: PMC9000505 DOI: 10.3390/molecules27072366] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
The adenosine A2A receptor subtype is recognized as a non-dopaminergic pharmacological target for the treatment of neurodegenerative disorders, notably Parkinson's disease (PD). The selective A2A receptor antagonist istradefylline is approved in the US and Japan as an adjunctive treatment to levodopa/decarboxylase inhibitors in adults with PD experiencing OFF episodes or a wearing-off phenomenon; however, the full potential of this drug class remains to be explored. In this article, we review the pharmacology of adenosine A2A receptor antagonists from the perspective of the treatment of both motor and non-motor symptoms of PD and their potential for disease modification.
Collapse
Affiliation(s)
- Akihisa Mori
- Kyowa Kirin Co., Ltd., Tokyo 100-0004, Japan; (A.M.); (S.U.)
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, Wenzhou Medical University, Wenzhou 325015, China;
| | - Shinichi Uchida
- Kyowa Kirin Co., Ltd., Tokyo 100-0004, Japan; (A.M.); (S.U.)
| | | | | | - Peter Jenner
- Institute of Pharmaceutical Science, Kings College London, London SE1 9NH, UK
| |
Collapse
|
12
|
Li W, Hu B, Liu H, Luan J, Chen L, Wang S, Fan L, Wang J. In silico investigation of the selectivity mechanism of A 1AR and A 2AAR antagonism. NEW J CHEM 2022. [DOI: 10.1039/d2nj03536g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adenosine A1 receptor (A1AR) and adenosine A2A receptor (A2AAR) are AR isoforms that share high homology but play many different roles in terms of regulating arteriolar pressure and urine flow as well as relieving neurodegenerative disorders.
Collapse
Affiliation(s)
- Weixia Li
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Haihan Liu
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jiasi Luan
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Lu Chen
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shizun Wang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Liye Fan
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
13
|
Fan Y, Han J, Zhao L, Wu C, Wu P, Huang Z, Hao X, Ji Y, Chen D, Zhu M. Experimental Models of Cognitive Impairment for Use in Parkinson's Disease Research: The Distance Between Reality and Ideal. Front Aging Neurosci 2021; 13:745438. [PMID: 34912207 PMCID: PMC8667076 DOI: 10.3389/fnagi.2021.745438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Cognitive impairment is one of the key non-motor symptoms of PD, affecting both mortality and quality of life. However, there are few experimental studies on the pathology and treatments of PD with mild cognitive impairment (PD-MCI) and PD dementia (PDD) due to the lack of representative models. To identify new strategies for developing representative models, we systematically summarized previous studies on PD-MCI and PDD and compared differences between existing models and diseases. Our initial search identified 5432 articles, of which 738 were duplicates. A total of 227 articles met our inclusion criteria and were included in the analysis. Models fell into three categories based on model design: neurotoxin-induced, transgenic, and combined. Although the neurotoxin-induced experimental model was the most common type that was used during every time period, transgenic and combined experimental models have gained significant recent attention. Unfortunately, there remains a big gap between ideal and actual experimental models. While each model has its own disadvantages, there have been tremendous advances in the development of PD models of cognitive impairment, and almost every model can verify a hypothesis about PD-MCI or PDD. Finally, our proposed strategies for developing novel models are as follows: a set of plans that integrate symptoms, biochemistry, neuroimaging, and other objective indicators to judge and identify that the novel model plays a key role in new strategies for developing representative models; novel models should simulate different clinical features of PD-MCI or PDD; inducible α-Syn overexpression and SH-SY5Y-A53T cellular models are good candidate models of PD-MCI or PDD.
Collapse
Affiliation(s)
- Yaohua Fan
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jiajun Han
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijun Zhao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chunxiao Wu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peipei Wu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zifeng Huang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaoqian Hao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - YiChun Ji
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dongfeng Chen
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Meiling Zhu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Ahmad J, Haider N, Khan MA, Md S, Alhakamy NA, Ghoneim MM, Alshehri S, Sarim Imam S, Ahmad MZ, Mishra A. Novel therapeutic interventions for combating Parkinson's disease and prospects of Nose-to-Brain drug delivery. Biochem Pharmacol 2021; 195:114849. [PMID: 34808125 DOI: 10.1016/j.bcp.2021.114849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disorder prevalent mainly in geriatric population. While, L-DOPA remains one of the major choices for the therapeutic management of PD, various motor and non-motor manifestations complicate the management of PD. In the last two decades, exhaustive research has been carried out to explore novel therapeutic approaches for mitigating motor and non-motor symptoms of PD. These approaches majorly include receptor-based, anti-inflammatory, stem-cell and nucleic acid based. The major limitations of existing therapeutic interventions (of commonly oral route) are low efficacy due to low brain bioavailability and associated side effects. Nanotechnology has been exploited and has gained wide attention in the recent years as an approach for enhancement of bioavailability of various small molecule drugs in the brain. To address the challenges associated with PD therapy, nose-to-brain delivery utilizing nanomedicine-based approaches has been found to be encouraging in published evidence. Therefore, the present work summarises the major challenges and limitations with antiparkinsonian drugs, novel therapeutic interventions, and scope of nanomedicine-based nose-to-brain delivery in addressing the current challenges of antiparkinsonian therapy. The manuscript tries to sensitize the researchers for designing brain-targeted nanomedicine loaded with natural/synthetic scaffolds, biosimilars, and nucleic acids that can bypass the first-pass effect for the effective management of PD.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia.
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia.
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia.
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia.
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup Assam-781101, India.
| |
Collapse
|
15
|
Shang P, Baker M, Banks S, Hong SI, Choi DS. Emerging Nondopaminergic Medications for Parkinson's Disease: Focusing on A2A Receptor Antagonists and GLP1 Receptor Agonists. J Mov Disord 2021; 14:193-203. [PMID: 34399565 PMCID: PMC8490190 DOI: 10.14802/jmd.21035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disease characterized by classic motor features associated with the loss of dopaminergic neurons and appearance of Lewy bodies in the substantia nigra. Due to the complexity of PD, a definitive diagnosis in the early stages and effective management of symptoms in later stages are difficult to achieve in clinical practice. Previous research has shown that colocalization of A2A receptors (A2AR) and dopamine D2 receptors (D2R) may induce an antagonistic interaction between adenosine and dopamine. Clinical trials have found that the A2AR antagonist istradefylline decreases dyskinesia in PD and could be used as an adjuvant to levodopa treatment. Meanwhile, the incretin hormone glucagon-like peptide 1 (GLP1) mainly facilitates glucose homeostasis and insulin signaling. Preclinical experiments and clinical trials of GLP1 receptor (GLP1R) agonists show that they may be effective in alleviating neuroinflammation and sustaining cellular functions in the central nervous system of patients with PD. In this review, we summarize up-to-date findings on the usefulness of A2AR antagonists and GLP1R agonists in PD management. We explain the molecular mechanisms of these medications and their interactions with other neurotransmitter receptors. Furthermore, we discuss the efficacy and limitations of A2AR antagonists and GLP1R agonists in clinical practice.
Collapse
Affiliation(s)
- Pei Shang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Matthew Baker
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Samantha Banks
- Department of Neurology, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Sa-Ik Hong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, College of Medicine, Rochester, MN, USA
- Department of Neuroscience Program, Mayo Clinic, College of Medicine, Rochester, MN, USA
| |
Collapse
|
16
|
Zarrinmayeh H, Territo PR. Purinergic Receptors of the Central Nervous System: Biology, PET Ligands, and Their Applications. Mol Imaging 2021; 19:1536012120927609. [PMID: 32539522 PMCID: PMC7297484 DOI: 10.1177/1536012120927609] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purinergic receptors play important roles in central nervous system (CNS). These receptors are involved in cellular neuroinflammatory responses that regulate functions of neurons, microglial and astrocytes. Based on their endogenous ligands, purinergic receptors are classified into P1 or adenosine, P2X and P2Y receptors. During brain injury or under pathological conditions, rapid diffusion of extracellular adenosine triphosphate (ATP) or uridine triphosphate (UTP) from the damaged cells, promote microglial activation that result in the changes in expression of several of these receptors in the brain. Imaging of the purinergic receptors with selective Positron Emission Tomography (PET) radioligands has advanced our understanding of the functional roles of some of these receptors in healthy and diseased brains. In this review, we have accumulated a list of currently available PET radioligands of the purinergic receptors that are used to elucidate the receptor functions and participations in CNS disorders. We have also reviewed receptors lacking radiotracer, laying the foundation for future discoveries of novel PET radioligands to reveal these receptors roles in CNS disorders.
Collapse
Affiliation(s)
- Hamideh Zarrinmayeh
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
17
|
Marucci G, Ben DD, Lambertucci C, Navia AM, Spinaci A, Volpini R, Buccioni M. Combined Therapy of A 1AR Agonists and A 2AAR Antagonists in Neuroinflammation. Molecules 2021; 26:1188. [PMID: 33672225 PMCID: PMC7926490 DOI: 10.3390/molecules26041188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's, Parkinson's, and multiple sclerosis are neurodegenerative diseases related by neuronal degeneration and death in specific areas of the central nervous system. These pathologies are associated with neuroinflammation, which is involved in disease progression, and halting this process represents a potential therapeutic strategy. Evidence suggests that microglia function is regulated by A1 and A2A adenosine receptors (AR), which are considered as neuroprotective and neurodegenerative receptors, respectively. The manuscript's aim is to elucidate the role of these receptors in neuroinflammation modulation through potent and selective A1AR agonists (N6-cyclopentyl-2'- or 3'-deoxyadenosine substituted or unsubstituted in 2 position) and A2AAR antagonists (9-ethyl-adenine substituted in 8 and/or in 2 position), synthesized in house, using N13 microglial cells. In addition, the combined therapy of A1AR agonists and A2AAR antagonists to modulate neuroinflammation was evaluated. Results showed that A1AR agonists were able, to varying degrees, to prevent the inflammatory effect induced by cytokine cocktail (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and interferon (IFN)-γ), while A2AAR antagonists showed a good ability to counteract neuroinflammation. Moreover, the effect achieved by combining the two most effective compounds (1 and 6) in doses previously found to be non-effective was greater than the treatment effect of each of the two compounds used separately at maximal dose.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michela Buccioni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy; (G.M.); (D.D.B.); (C.L.); (A.M.N.); (A.S.); (R.V.)
| |
Collapse
|
18
|
Contributions of animal models of cognitive disorders to neuropsychopharmacology. Therapie 2021; 76:87-99. [PMID: 33589315 DOI: 10.1016/j.therap.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022]
Abstract
Cognitive disorders and symptoms are key features of many mental and neurological diseases, with a large spectrum of impaired domains. Because of their possible evolution and detrimental functioning impact, they are a major pharmacological target for both symptomatic and disease-modifier drugs, while few cognitive enhancers have been marketed with an insufficient efficiency. It explains the need to model these cognitive disorders beyond the modelization of mental or neurological diseases themselves. According to the experimental strategy used to induce cognitive impairment, three categories of models have been identified: neurotransmission-driven models; pathophysiology-driven models; environment-driven models. These three categories of models reflect different levels of integration of endogenous and exogenous mechanisms underlying cognitive disorders in humans. Their comprehensive knowledge and illustration of their pharmacological modulation could help to propose a renewing strategy of drug development in central nervous system (CNS) field at a time when the academic and industrial invest seems to be declining despite the medical and social burden of brain diseases.
Collapse
|
19
|
Hámor PU, Gobin CM, Schwendt M. The role of glutamate mGlu5 and adenosine A2a receptor interactions in regulating working memory performance and persistent cocaine seeking in rats. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109979. [PMID: 32470496 DOI: 10.1016/j.pnpbp.2020.109979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023]
Abstract
Cocaine use disorder (CUD) is associated with neurobehavioral deficits that are resistant to current treatments. While craving and high rates of relapse are prominent features of CUD, persistent cognitive impairments are common and linked to poorer treatment outcomes. Here we sought to develop an animal model to study post-cocaine changes in drug seeking and working memory, and to evaluate 'therapeutic' effects of combined glutamate mGlu5 and adenosine A2a receptor blockade. As mGlu5 antagonists reduce drug seeking, and A2a blockade ameliorates working memory impairment, we hypothesized that mGlu5 + A2a antagonist cocktail would reduce both cocaine relapse and post-cocaine working memory deficits. Adult male Sprague-Dawley rats were first trained and tested in an operant delayed match-to-sample (DMS) task to establish the working memory baseline, followed by 6 days of limited and 12 days of extended access cocaine self-administration. Chronic cocaine reduced working memory performance (abstinence day 30-40) and produced robust time-dependent cocaine seeking at 45-, but not 120-days of abstinence. Systemic administration of A2a antagonist KW-6002 (0.125 and 1 mg/kg) failed to rescue post-cocaine working memory deficit. It also failed to reverse working memory impairment produced by mGlu5 NAM MTEP (1 mg/kg). Finally, KW-6002 prevented the ability of MTEP to reduce cocaine seeking and increased locomotor behavior. Thus, despite mGlu5 and A2a being exclusively co-localized in the striatum and showing behavioral synergism towards reducing cocaine effects in some studies, our findings advocate against the use of mGlu5 + A2a antagonist cocktail as it may further compromise cognitive deficits and augment drug craving in CUD.
Collapse
Affiliation(s)
- Peter U Hámor
- Department of Psychology, University of Florida, FL, USA; Center for Addiction Education and Research, University of Florida, FL, USA
| | - Christina M Gobin
- Center for Addiction Education and Research, University of Florida, FL, USA; Department of Pharmacodynamics, University of Florida, FL, USA
| | - Marek Schwendt
- Department of Psychology, University of Florida, FL, USA; Center for Addiction Education and Research, University of Florida, FL, USA.
| |
Collapse
|
20
|
Mori A. How do adenosine A 2A receptors regulate motor function? Parkinsonism Relat Disord 2020; 80 Suppl 1:S13-S20. [PMID: 33349575 DOI: 10.1016/j.parkreldis.2020.09.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/17/2023]
Abstract
Adenosine A2A receptor antagonism is a new therapeutic strategy in the symptomatic treatment of Parkinson's disease (PD). This review addresses how adenosine A2A receptors are involved with the control of motor function via the basal ganglia-thalamocortical circuit, and considers the anatomical localization and physiological function of the receptor, along with its ultrastructural localization in critical areas/neurons of the circuit. Based on this understanding of the functional significance of the adenosine A2A receptor in the basal ganglia, the mode of action of A2A receptor antagonists is explored in terms of the dynamic functioning of the basal ganglia and the activity of the internal circuits of the striatum in PD. Finally, the pathophysiological differences between the normal and PD states are examined to emphasize the importance of the adenosine A2A receptor.
Collapse
|
21
|
Jenner P, Mori A, Kanda T. Can adenosine A2A receptor antagonists be used to treat cognitive impairment, depression or excessive sleepiness in Parkinson's disease? Parkinsonism Relat Disord 2020; 80 Suppl 1:S28-S36. [DOI: 10.1016/j.parkreldis.2020.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/15/2020] [Indexed: 01/29/2023]
|
22
|
The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev 2020; 113:373-407. [PMID: 32298711 DOI: 10.1016/j.neubiorev.2020.04.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Rats and mice have been demonstrated to show episodic-like memory, a prototype of episodic memory, as defined by an integrated memory of the experience of an object or event, in a particular place and time. Such memory can be assessed via the use of spontaneous object exploration paradigms, variably designed to measure memory for object, place, temporal order and object-location inter-relationships. We review the methodological properties of these tests, the neurobiology about time and discuss the evidence for the involvement of the medial prefrontal cortex (mPFC), entorhinal cortex (EC) and hippocampus, with respect to their anatomy, neurotransmitter systems and functional circuits. The systematic analysis suggests that a specific circuit between the mPFC, lateral EC and hippocampus encodes the information for event, place and time of occurrence into the complex episodic-like memory, as a top-down regulation from the mPFC onto the hippocampus. This circuit can be distinguished from the neuronal component memory systems for processing the individual information of object, time and place.
Collapse
|
23
|
Costa G, Serra M, Marongiu J, Morelli M, Simola N. Influence of dopamine transmission in the medial prefrontal cortex and dorsal striatum on the emission of 50-kHz ultrasonic vocalizations in rats treated with amphetamine: Effects on drug-stimulated and conditioned calls. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109797. [PMID: 31669508 DOI: 10.1016/j.pnpbp.2019.109797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/16/2023]
Abstract
Rat ultrasonic vocalizations (USVs) of 50 kHz are increasingly being evaluated as a behavioral marker of the affective properties of drugs. Studies in amphetamine-treated rats have shown that activation of dopamine transmission in the nucleus accumbens (NAc) initiates the emission of 50-kHz USVs, but little is known on how dopamine transmission in other brain regions modulates the effects of drugs on calling behavior. To clarify this issue, we evaluated 50-kHz USV emissions in rats subjected to dopaminergic denervation of either the medial prefrontal cortex (mPFC) or the dorsal striatum (DS) and treated with amphetamine. Rats received amphetamine (1 mg/kg, i.p. × 5) on alternate days in a test cage; 7 days later, they were re-exposed to the test cage, to measure calling behavior that may reflect drug conditioning, and then challenged with amphetamine (1 mg/kg, i.p.). The numbers of total and categorized 50-kHz USVs emitted were evaluated, along with immunofluorescence for Zif-268 in the NAc. Dopamine-denervated and sham-operated rats displayed comparable patterns of calling behavior during amphetamine treatment and after amphetamine challenge. Conversely, rats that were dopamine-denervated in the mPFC, but not DS, emitted low numbers of 50-kHz USVs on test cage re-exposure. Finally, dopamine-denervated rats displayed a less marked increase in Zif-268-positive neurons in the NAc shell after amphetamine challenge, compared with sham-operated rats. These results may be relevant to identify the neuronal circuits that modulate 50-kHz USV emissions in rats treated with amphetamine, as well as the interplay between calling behavior and affective properties of drugs.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy; CNR, National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy.
| |
Collapse
|
24
|
Xu H, Wang Y, Wang H, Zheng Z, Meng Z, Xue M, Xu Z. Investigation of Photostability of Istradefylline Aqueous Solution. ChemistrySelect 2020. [DOI: 10.1002/slct.201904148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haojie Xu
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
- Shandong Xinhua Pharmaceutical Co., Ltd. No.1 Lutai avenue 255086, ZiBo Shandong China
| | - Yiyun Wang
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
- Shandong Xinhua Pharmaceutical Co., Ltd. No.1 Lutai avenue 255086, ZiBo Shandong China
| | - Hongyi Wang
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
- Shandong Xinhua Pharmaceutical Co., Ltd. No.1 Lutai avenue 255086, ZiBo Shandong China
| | - Zhonghui Zheng
- Shandong Xinhua Pharmaceutical Co., Ltd. No.1 Lutai avenue 255086, ZiBo Shandong China
| | - Zihui Meng
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Min Xue
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| | - Zhibin Xu
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 China
| |
Collapse
|
25
|
Barilar JO, Knezovic A, Perhoc AB, Homolak J, Riederer P, Salkovic-Petrisic M. Shared cerebral metabolic pathology in non-transgenic animal models of Alzheimer's and Parkinson's disease. J Neural Transm (Vienna) 2020; 127:231-250. [PMID: 32030485 PMCID: PMC7035309 DOI: 10.1007/s00702-020-02152-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are the most common chronic neurodegenerative disorders, characterized by motoric dysfunction or cognitive decline in the early stage, respectively, but often by both symptoms in the advanced stage. Among underlying molecular pathologies that PD and AD patients have in common, more attention is recently paid to the central metabolic dysfunction presented as insulin resistant brain state (IRBS) and altered cerebral glucose metabolism, both also explored in animal models of these diseases. This review aims to compare IRBS and alterations in cerebral glucose metabolism in representative non-transgenic animal PD and AD models. The comparison is based on the selectivity of the neurotoxins which cause experimental PD and AD, towards the cellular membrane and intracellular molecular targets as well as towards the selective neurons/non-neuronal cells, and the particular brain regions. Mitochondrial damage and co-expression of insulin receptors, glucose transporter-2 and dopamine transporter on the membrane of particular neurons as well as astrocytes seem to be the key points which are further discussed in a context of alterations in insulin signalling in the brain and its interaction with dopaminergic transmission, particularly regarding the time frame of the experimental AD/PD pathology appearance and the correlation with cognitive and motor symptoms. Such a perspective provides evidence on IRBS being a common underlying metabolic pathology and a contributor to neurodegenerative processes in representative non-transgenic animal PD and AD models, instead of being a direct cause of a particular neurodegenerative disorder.
Collapse
Affiliation(s)
- Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Peter Riederer
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Füchsleinstrasse 15, 97080, Würzburg, Germany
- Department and Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia.
- Institute of Fundamental Clinical and Translational Neuroscience, Research Centre of Excellence, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, 10 000, Zagreb, Croatia.
| |
Collapse
|
26
|
Iijima M, Orimo S, Terashi H, Suzuki M, Hayashi A, Shimura H, Mitoma H, Kitagawa K, Okuma Y. Efficacy of istradefylline for gait disorders with freezing of gait in Parkinson's disease: A single-arm, open-label, prospective, multicenter study. Expert Opin Pharmacother 2019; 20:1405-1411. [PMID: 31039621 DOI: 10.1080/14656566.2019.1614167] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Gait disorders are common in Parkinson's disease patients who respond poorly to dopaminergic treatment. Blockade of adenosine A2A receptors is expected to improve gait disorders. Istradefylline is a first-in-class selective adenosine A2A receptor antagonist with benefits for motor complications associated with Parkinson's disease. Research design and methods: This multicenter, open-label, single-group, prospective interventional study evaluated changes in total gait-related scores of the Part II/III Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and Freezing of Gait Questionnaire (FOG-Q) in 31 Parkinson's disease patients treated with istradefylline. Gait analysis by portable gait rhythmogram was performed. Results: MDS-UPDRS Part III gait-related total scores significantly decreased at Weeks 4-12 from baseline with significant improvements in gait, freezing of gait, and postural stability. Significant decreases in MDS-UPDRS Part II total scores and individual item scores at Week 12 indicated improved daily living activities. At Week 12, there were significant improvements in FOG-Q, new FOG-Q, and overall movement per 48 h measured by portable gait rhythmogram. Adverse events occurred in 7/31 patients. Conclusions: Istradefylline improved gait disorders in Parkinson's disease patients complicated with freezing of gait, improving their quality of life. No unexpected adverse drug reactions were identified. Trial registration: UMIN-CTR (UMIN000020288).
Collapse
Affiliation(s)
- Mutsumi Iijima
- a Department of Neurology , Tokyo Women's Medical University , Tokyo , Japan
| | - Satoshi Orimo
- b Department of Neurology , Kanto Central Hospital , Tokyo , Japan
| | - Hiroo Terashi
- c Department of Neurology , Tokyo Medical University , Tokyo , Japan
| | - Masahiko Suzuki
- d Department of Neurology , Katsushika Medical Center, The Jikei University School of Medicine , Tokyo , Japan
| | - Akito Hayashi
- e Department of Rehabilitation , Juntendo University Urayasu Hospital , Urayasu , Japan
| | - Hideki Shimura
- f Department of Neurology , Juntendo University Urayasu Hospital , Urayasu , Japan
| | - Hiroshi Mitoma
- g Department of Medical Education , Tokyo Medical University , Tokyo , Japan
| | - Kazuo Kitagawa
- a Department of Neurology , Tokyo Women's Medical University , Tokyo , Japan
| | - Yasuyuki Okuma
- h Department of Neurology , Juntendo University Shizuoka Hospital , Izunokuni , Japan
| |
Collapse
|
27
|
Nagayama H, Kano O, Murakami H, Ono K, Hamada M, Toda T, Sengoku R, Shimo Y, Hattori N. Effect of istradefylline on mood disorders in Parkinson's disease. J Neurol Sci 2019; 396:78-83. [DOI: 10.1016/j.jns.2018.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/11/2018] [Accepted: 11/04/2018] [Indexed: 01/21/2023]
|
28
|
Costa G, Serra M, Pintori N, Casu MA, Zanda MT, Murtas D, De Luca MA, Simola N, Fattore L. The novel psychoactive substance methoxetamine induces persistent behavioral abnormalities and neurotoxicity in rats. Neuropharmacology 2019; 144:219-232. [DOI: 10.1016/j.neuropharm.2018.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 10/28/2022]
|
29
|
Leffa DT, Pandolfo P, Gonçalves N, Machado NJ, de Souza CM, Real JI, Silva AC, Silva HB, Köfalvi A, Cunha RA, Ferreira SG. Adenosine A 2A Receptors in the Rat Prelimbic Medial Prefrontal Cortex Control Delay-Based Cost-Benefit Decision Making. Front Mol Neurosci 2018; 11:475. [PMID: 30618621 PMCID: PMC6306464 DOI: 10.3389/fnmol.2018.00475] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022] Open
Abstract
Adenosine A2A receptors (A2ARs) were recently described to control synaptic plasticity and network activity in the prefrontal cortex (PFC). We now probed the role of these PFC A2AR by evaluating the behavioral performance (locomotor activity, anxiety-related behavior, cost-benefit decision making and working memory) of rats upon downregulation of A2AR selectively in the prelimbic medial PFC (PLmPFC) via viral small hairpin RNA targeting the A2AR (shA2AR). The most evident alteration observed in shA2AR-treated rats, when compared to sh-control (shCTRL)-treated rats, was a decrease in the choice of the large reward upon an imposed delay of 15 s assessed in a T-maze-based cost-benefit decision-making paradigm, suggestive of impulsive decision making. Spontaneous locomotion in the open field was not altered, suggesting no changes in exploratory behavior. Furthermore, rats treated with shA2AR in the PLmPFC also displayed a tendency for higher anxiety levels in the elevated plus maze (less entries in the open arms), but not in the open field test (time spent in the center was not affected). Finally, working memory performance was not significantly altered, as revealed by the spontaneous alternation in the Y-maze test and the latency to reach the platform in the repeated trial Morris water maze. These findings constitute the first direct demonstration of a role of PFC A2AR in the control of behavior in physiological conditions, showing their major contribution for the control of delay-based cost-benefit decisions.
Collapse
Affiliation(s)
- Douglas T Leffa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pablo Pandolfo
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Neurobiology, Fluminense Federal University, Niterói, Brazil
| | - Nélio Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Nuno J Machado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carolina M de Souza
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Post-Graduate Program in Medical Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Joana I Real
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - António C Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Attila Köfalvi
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Samira G Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
30
|
Mouro FM, Rombo DM, Dias RB, Ribeiro JA, Sebastião AM. Adenosine A 2A receptors facilitate synaptic NMDA currents in CA1 pyramidal neurons. Br J Pharmacol 2018; 175:4386-4397. [PMID: 30220081 PMCID: PMC6240125 DOI: 10.1111/bph.14497] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/18/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE NMDA receptors play a key role in both synaptic plasticity and neurodegeneration. Adenosine is an endogenous neuromodulator and through membrane receptors of the A2A subtype can influence both synaptic plasticity and neuronal death. The present work was designed to evaluate the influence of adenosine A2A receptors upon NMDA receptor activity in CA1 hippocampal neurons. We discriminated between modulation of synaptic versus extrasynaptic receptors, since extrasynaptic NMDA receptors are mostly associated with neurodegeneration while synaptic NMDA receptors are linked to plasticity phenomena. EXPERIMENTAL APPROACH Whole-cell patch-clamp recordings were obtained to evaluate NMDA receptor actions on CA1 pyramidal neurons of young adult (5-10 weeks) male Wistar rat hippocampus. KEY RESULTS Activation of A2A receptors with CGS 21680 (30 nM) consistently facilitated chemically-evoked NMDA receptor-currents (NMDA-PSCs) and afferent-evoked NMDA-currents (NMDA-EPSCs), an action prevented by an A2A receptor antagonist (SCH58261, 100 nM) and a PKA inhibitor, H-89 (1 μM). These actions did not reflect facilitation in glutamate release since there was no change in NMDA-EPSCs paired pulse ratio. A2A receptor actions were lost in the presence of an open-channel NMDA receptor blocker, MK-801 (10 μM), but persisted in the presence of memantine, at a concentration (10 μM) known to preferentially block extrasynaptic NMDA receptors. CONCLUSION AND IMPLICATIONS These results show that A2A receptors exert a positive postsynaptic modulatory effect over synaptic, but not extrasynaptic, NMDA receptors in CA1 neurons and, therefore, under non-pathological conditions may contribute to shift the dual role of NMDA receptors towards enhancement of synaptic plasticity.
Collapse
Affiliation(s)
- Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Diogo M Rombo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Raquel B Dias
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
31
|
Takahashi M, Fujita M, Asai N, Saki M, Mori A. Safety and effectiveness of istradefylline in patients with Parkinson’s disease: interim analysis of a post-marketing surveillance study in Japan. Expert Opin Pharmacother 2018; 19:1635-1642. [DOI: 10.1080/14656566.2018.1518433] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Makio Takahashi
- Department of Neurology, Osaka Red Cross Hospital, Osaka, Japan
| | - Masaki Fujita
- Pharmacovigilance Department, Kyowa Hakko Kirin Co., Ltd., Tokyo, Japan
| | - Naoko Asai
- Pharmacovigilance Department, Kyowa Hakko Kirin Co., Ltd., Tokyo, Japan
| | - Mayumi Saki
- Medical Affairs Department, Kyowa Hakko Kirin Co., Ltd., Tokyo, Japan
| | - Akihisa Mori
- Medical Affairs Department, Kyowa Hakko Kirin Co., Ltd., Tokyo, Japan
| |
Collapse
|
32
|
Bagatini MD, dos Santos AA, Cardoso AM, Mânica A, Reschke CR, Carvalho FB. The Impact of Purinergic System Enzymes on Noncommunicable, Neurological, and Degenerative Diseases. J Immunol Res 2018; 2018:4892473. [PMID: 30159340 PMCID: PMC6109496 DOI: 10.1155/2018/4892473] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/03/2018] [Accepted: 07/22/2018] [Indexed: 12/11/2022] Open
Abstract
Evidences show that purinergic signaling is involved in processes associated with health and disease, including noncommunicable, neurological, and degenerative diseases. These diseases strike from children to elderly and are generally characterized by progressive deterioration of cells, eventually leading to tissue or organ degeneration. These pathological conditions can be associated with disturbance in the signaling mediated by nucleotides and nucleosides of adenine, in expression or activity of extracellular ectonucleotidases and in activation of P2X and P2Y receptors. Among the best known of these diseases are atherosclerosis, hypertension, cancer, epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). The currently available treatments present limited effectiveness and are mostly palliative. This review aims to present the role of purinergic signaling highlighting the ectonucleotidases E-NTPDase, E-NPP, E-5'-nucleotidase, and adenosine deaminase in noncommunicable, neurological, and degenerative diseases associated with the cardiovascular and central nervous systems and cancer. In conclusion, changes in the activity of ectonucleotidases were verified in all reviewed diseases. Although the role of ectonucleotidases still remains to be further investigated, evidences reviewed here can contribute to a better understanding of the molecular mechanisms of highly complex diseases, which majorly impact on patients' quality of life.
Collapse
Affiliation(s)
- Margarete Dulce Bagatini
- Coordenação Acadêmica, Universidade Federal da Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Andréia Machado Cardoso
- Coordenação Acadêmica, Universidade Federal da Fronteira Sul, Campus Chapecó, Chapecó, SC, Brazil
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aline Mânica
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristina Ruedell Reschke
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Fabiano Barbosa Carvalho
- Programa de Pós-graduação em Ciências Biológicas-Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
33
|
Real JI, Simões AP, Cunha RA, Ferreira SG, Rial D. Adenosine A 2A receptors modulate the dopamine D 2 receptor-mediated inhibition of synaptic transmission in the mouse prefrontal cortex. Eur J Neurosci 2018; 47:1127-1134. [PMID: 29570875 DOI: 10.1111/ejn.13912] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 01/20/2023]
Abstract
Prefrontal cortex (PFC) circuits are modulated by dopamine acting on D1 - and D2 -like receptors, which are pharmacologically exploited to manage neuropsychiatric conditions. Adenosine A2A receptors (A2A R) also control PFC-related responses and A2A R antagonists are potential anti-psychotic drugs. As tight antagonistic A2A R-D2 R and synergistic A2A R-D1 R interactions occur in other brain regions, we now investigated the crosstalk between A2A R and D1 /D2 R controlling synaptic transmission between layers II/III and V in mouse PFC coronal slices. Dopamine decreased synaptic transmission, a presynaptic effect based on the parallel increase in paired-pulse responses. Dopamine inhibition was prevented by the D2 R-like antagonist sulpiride but not by the D1 R antagonist SCH23390 and was mimicked by the D2 R agonist sumanirole, but not by the agonists of either D4 R (A-412997) or D3 R (PD128907). Dopamine inhibition was prevented by the A2A R antagonist, SCH58261, and attenuated in A2A R knockout mice. Accordingly, triple-labelling immunocytochemistry experiments revealed the co-localization of A2A R and D2 R immunoreactivity in glutamatergic (vGluT1-positive) nerve terminals of the PFC. This reported positive A2A R-D2 R interaction controlling PFC synaptic transmission provides a mechanistic justification for the anti-psychotic potential of A2A R antagonists.
Collapse
Affiliation(s)
- Joana I Real
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Polo I, Rua Larga, 3004-504, Coimbra, Portugal
| | - Ana Patrícia Simões
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Polo I, Rua Larga, 3004-504, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Polo I, Rua Larga, 3004-504, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Samira G Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Polo I, Rua Larga, 3004-504, Coimbra, Portugal
| | - Daniel Rial
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Polo I, Rua Larga, 3004-504, Coimbra, Portugal
| |
Collapse
|
34
|
Kerkhofs A, Canas PM, Timmerman AJ, Heistek TS, Real JI, Xavier C, Cunha RA, Mansvelder HD, Ferreira SG. Adenosine A 2A Receptors Control Glutamatergic Synaptic Plasticity in Fast Spiking Interneurons of the Prefrontal Cortex. Front Pharmacol 2018; 9:133. [PMID: 29615897 PMCID: PMC5869254 DOI: 10.3389/fphar.2018.00133] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
Adenosine A2A receptors (A2AR) are activated upon increased synaptic activity to assist in the implementation of long-term plastic changes at synapses. While it is reported that A2AR are involved in the control of prefrontal cortex (PFC)-dependent behavior such as working memory, reversal learning and effort-based decision making, it is not known whether A2AR control glutamatergic synapse plasticity within the medial PFC (mPFC). To elucidate that, we tested whether A2AR blockade affects long-term plasticity (LTP) of excitatory post-synaptic potentials in pyramidal neurons and fast spiking (FS) interneurons in layer 5 of the mPFC and of population spikes. Our results show that A2AR are enriched at mPFC synapses, where their blockade reversed the direction of plasticity at excitatory synapses onto layer 5 FS interneurons from LTP to long-term depression, while their blockade had no effect on the induction of LTP at excitatory synapses onto layer 5 pyramidal neurons. At the network level, extracellularly induced LTP of population spikes was reduced by A2AR blockade. The interneuron-specificity of A2AR in controlling glutamatergic synapse LTP may ensure that during periods of high synaptic activity, a proper excitation/inhibition balance is maintained within the mPFC.
Collapse
Affiliation(s)
- Amber Kerkhofs
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paula M Canas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - A J Timmerman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Tim S Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Joana I Real
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carolina Xavier
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Samira G Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
35
|
Li Z, Chen X, Wang T, Gao Y, Li F, Chen L, Xue J, He Y, Li Y, Guo W, Zheng W, Zhang L, Ye F, Ren X, Feng Y, Chan P, Chen JF. The Corticostriatal Adenosine A 2A Receptor Controls Maintenance and Retrieval of Spatial Working Memory. Biol Psychiatry 2018; 83:530-541. [PMID: 28941549 DOI: 10.1016/j.biopsych.2017.07.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Working memory (WM) taps into multiple executive processes including encoding, maintenance, and retrieval of information, but the molecular and circuit modulation of these WM processes remains undefined due to the lack of methods to control G protein-coupled receptor signaling with temporal resolution of seconds. METHODS By coupling optogenetic control of the adenosine A2A receptor (A2AR) signaling, the Cre-loxP-mediated focal A2AR knockdown with a delayed non-match-to-place (DNMTP) task, we investigated the effect of optogenetic activation and focal knockdown of A2ARs in the dorsomedial striatum (n = 8 to 14 per group) and medial prefrontal cortex (n = 16 to 22 per group) on distinct executive processes of spatial WM. We also evaluated the therapeutic effect of the A2AR antagonist KW6002 on delayed match-to-sample/place tasks in 6 normal and 6 MPTP-treated cynomolgus monkeys. RESULTS Optogenetic activation of striatopallidal A2ARs in the dorsomedial striatum selectively at the delay and choice (not sample) phases impaired DNMTP performance. Optogenetic activation of A2ARs in the medial prefrontal cortex selectively at the delay (not sample or choice) phase improved DNMTP performance. The corticostriatal A2AR control of spatial WM was specific for a novel but not well-trained DNMTP task. Focal dorsomedial striatum A2AR knockdown or KW6002 improved DNMTP performance in mice. Last, KW6002 improved spatial WM in delayed match-to-sample and delayed match-to-place tasks of normal and dopamine-depleted cynomolgus monkeys. CONCLUSIONS The A2ARs in striatopallidal and medial prefrontal cortex neurons exert distinctive control of WM maintenance and retrieval to achieve cognitive stability and flexibility. The procognitive effect of KW6002 in nonhuman primates provides the preclinical data to translate A2AR antagonists for improving cognitive impairments in Parkinson's disease.
Collapse
Affiliation(s)
- Zhihui Li
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Xingjun Chen
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Tao Wang
- Wincon TheraCells Biotechnologies, Nanning, China
| | - Ying Gao
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Fei Li
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Long Chen
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Jin Xue
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Yan He
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Yan Li
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Wei Guo
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Wu Zheng
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Liping Zhang
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Fenfen Ye
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Xiangpeng Ren
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Yue Feng
- Wincon TheraCells Biotechnologies, Nanning, China; Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Piu Chan
- Wincon TheraCells Biotechnologies, Nanning, China; Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jiang-Fan Chen
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China; Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts.
| |
Collapse
|
36
|
Chen PZ, He WJ, Zhu ZR, E GJ, Xu G, Chen DW, Gao YQ. Adenosine A 2A receptor involves in neuroinflammation-mediated cognitive decline through activating microglia under acute hypobaric hypoxia. Behav Brain Res 2018; 347:99-107. [PMID: 29501623 DOI: 10.1016/j.bbr.2018.02.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 01/05/2023]
Abstract
Hypobaric hypoxia (HH) at high altitudes leads to a wide range of cognitive impairments which can handicap human normal activities and performances. However, the underlying mechanism is still unclear. Adenosine A2A receptors (A2ARs) of the brain are pivotal to synaptic plasticity and cognition. Besides, insult-induced up-regulation of A2AR regulates neuroinflammation and therefore induces brain damages in various neuropathological processes. The present study was designed to determine whether A2AR-mediate neuroinflammation involves in cognitive impairments under acute HH. A2AR knock-out and wild-type male mice were exposed to a simulated altitude of 8000 m for 7 consecutive days in a hypobaric chamber and simultaneously received behavioral tests including Morris water maze test and open filed test. A2AR expression, the activation of microglia and the production of TNF-α were evaluated in the hippocampus by immunohistochemistry and ELISA, respectively. Behavioral tests showed that acute HH exposure caused the dysfunction of spatial memory and mood, while genetic inactivation of A2AR attenuated the impairment of spatial memory but not that of mood. Double-labeled immunofluorescence showed that A2ARs were mainly expressed on microglia and up-regulated in the hippocampus of acute HH model mice. Acute HH also induced the accumulation of microglia and increased production of TNF-α in the hippocampus, which could be markedly inhibited by A2AR inactivation. These findings indicate that microglia-mediated neuroinflammation triggered by A2AR activation involves in acute HH-induced spatial memory impairment and that A2AR could be a new target for the pharmacotherapy of cognitive dysfunction at high altitudes.
Collapse
Affiliation(s)
- Peng-Zhi Chen
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of Education, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Wen-Juan He
- Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
| | - Zhi-Ru Zhu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Guo-Ji E
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of Education, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Gang Xu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of Education, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - De-Wei Chen
- Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
| | - Yu-Qi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of Education, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China.
| |
Collapse
|
37
|
Impact of Coffee and Cacao Purine Metabolites on Neuroplasticity and Neurodegenerative Disease. Neurochem Res 2018; 44:214-227. [PMID: 29417473 DOI: 10.1007/s11064-018-2492-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022]
Abstract
Increasing evidence suggests that regular consumption of coffee, tea and dark chocolate (cacao) can promote brain health and may reduce the risk of age-related neurodegenerative disorders. However, the complex array of phytochemicals in coffee and cacao beans and tea leaves has hindered a clear understanding of the component(s) that affect neuronal plasticity and resilience. One class of phytochemicals present in relatively high amounts in coffee, tea and cacao are methylxanthines. Among such methylxanthines, caffeine has been the most widely studied and has clear effects on neuronal network activity, promotes sustained cognitive performance and can protect neurons against dysfunction and death in animal models of stroke, Alzheimer's disease and Parkinson's disease. Caffeine's mechanism of action relies on antagonism of various subclasses of adenosine receptors. Downstream xanthine metabolites, such as theobromine and theophylline, may also contribute to the beneficial effects of coffee, tea and cacao on brain health.
Collapse
|
38
|
Suzuki K, Miyamoto M, Miyamoto T, Uchiyama T, Watanabe Y, Suzuki S, Kadowaki T, Fujita H, Matsubara T, Sakuramoto H, Hirata K. Istradefylline improves daytime sleepiness in patients with Parkinson's disease: An open-label, 3-month study. J Neurol Sci 2017; 380:230-233. [PMID: 28870576 DOI: 10.1016/j.jns.2017.07.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/27/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Istradefylline, a selective adenosine A2A receptor antagonist, has been reported to improve daily "off time" and motor symptoms in patients with Parkinson's disease (PD). However, the effect of istradefylline on sleep problems has not been thoroughly investigated. METHODS We evaluated the effect of istradefylline on daytime sleepiness, sleep disturbances, and motor symptoms in 22 PD patients who were affected by the wearing off phenomenon in an open-label, 3-month study. Participants received 20-40mg/day istradefylline once daily (morning) over a 3-month period. The Epworth Sleepiness Scale (ESS), PD sleep scale (PDSS)-2 and PD Questionnaire (PDQ-8) were administered at baseline, 2weeks, 1month, 2months and 3months. At baseline and 3months, patients were evaluated on the Movement Disorder Society Revision of the Unified PD Rating Scale (MDS-UPDRS) parts III and IV. RESULTS Twenty-one patients (95.5%) completed the study. At 3months, MDS-UPDRS part III (-5.3, p=0.0002) and part IV (-2.5, p=0.001) scores improved and off time decreased significantly (-50.1min, p=0.0004). PDQ-8 scores were unchanged at 3months. ESS scores decreased significantly at 2months and 3months (-2.4 and -3.3, respectively, p<0.0001), but the total PDSS-2 scores did not change. CONCLUSION Istradefylline improved daytime sleepiness in PD patients, possibly through its effect on enhancing alertness. In addition, the lack of significant changes in the total PDSS-2 scores over the study period suggests istradefylline had no negative impact on sleep.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan.
| | - Masayuki Miyamoto
- Department of Clinical Medicine for Nursing, Dokkyo Medical University, School of Nursing, Tochigi, Japan
| | - Tomoyuki Miyamoto
- Department of Neurology, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Tomoyuki Uchiyama
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan; Neuro-urology and Continence Center, Dokkyo Medical University Hospital, Tochigi, Japan
| | - Yuka Watanabe
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan; Department of Neurology, Dokkyo Medical University, Nikko Medical Center, Tochigi, Japan
| | - Shiho Suzuki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Taro Kadowaki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Hiroaki Fujita
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Takeo Matsubara
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | | | - Koichi Hirata
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
39
|
Falsini M, Squarcialupi L, Catarzi D, Varano F, Betti M, Dal Ben D, Marucci G, Buccioni M, Volpini R, De Vita T, Cavalli A, Colotta V. The 1,2,4-Triazolo[4,3-a]pyrazin-3-one as a Versatile Scaffold for the Design of Potent Adenosine Human Receptor Antagonists. Structural Investigations to Target the A2A Receptor Subtype. J Med Chem 2017; 60:5772-5790. [DOI: 10.1021/acs.jmedchem.7b00457] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Matteo Falsini
- Dipartimento
di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino,
Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Squarcialupi
- Dipartimento
di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino,
Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Daniela Catarzi
- Dipartimento
di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino,
Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Flavia Varano
- Dipartimento
di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino,
Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Marco Betti
- Dipartimento
di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino,
Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Diego Dal Ben
- Scuola
di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Gabriella Marucci
- Scuola
di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Michela Buccioni
- Scuola
di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Rosaria Volpini
- Scuola
di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Teresa De Vita
- CompuNet, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Andrea Cavalli
- CompuNet, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Farmacia e Biotecnologia, Università degli Studi di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Vittoria Colotta
- Dipartimento
di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino,
Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
40
|
Adenosine A1 and A2A Receptors in the Brain: Current Research and Their Role in Neurodegeneration. Molecules 2017; 22:molecules22040676. [PMID: 28441750 PMCID: PMC6154612 DOI: 10.3390/molecules22040676] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022] Open
Abstract
The inhibitory adenosine A1 receptor (A1R) and excitatory A2A receptor (A2AR) are predominantly expressed in the brain. Whereas the A2AR has been implicated in normal aging and enhancing neurotoxicity in multiple neurodegenerative diseases, the inhibitory A1R has traditionally been ascribed to have a neuroprotective function in various brain insults. This review provides a summary of the emerging role of prolonged A1R signaling and its potential cross-talk with A2AR in the cellular basis for increased neurotoxicity in neurodegenerative disorders. This A1R signaling enhances A2AR-mediated neurodegeneration, and provides a platform for future development of neuroprotective agents in stroke, Parkinson’s disease and epilepsy.
Collapse
|
41
|
Lu J, Cui J, Li X, Wang X, Zhou Y, Yang W, Chen M, Zhao J, Pei G. An Anti-Parkinson's Disease Drug via Targeting Adenosine A2A Receptor Enhances Amyloid-β Generation and γ-Secretase Activity. PLoS One 2016; 11:e0166415. [PMID: 27835671 PMCID: PMC5106031 DOI: 10.1371/journal.pone.0166415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/30/2016] [Indexed: 11/23/2022] Open
Abstract
γ-secretase mediates the intramembranous proteolysis of amyloid precursor protein (APP) and determines the generation of Aβ which is associated with Alzheimer’s disease (AD). Here we identified that an anti-Parkinson’s disease drug, Istradefylline, could enhance Aβ generation in various cell lines and primary neuronal cells of APP/PS1 mouse. Moreover, the increased generation of Aβ42 was detected in the cortex of APP/PS1 mouse after chronic treatment with Istradefylline. Istradefylline promoted the activity of γ-secretase which could lead to increased Aβ production. These effects of Istradefylline were reduced by the knockdown of A2AR but independent of A2AR-mediated G protein- or β-arrestin-dependent signal pathway. We further observed that A2AR colocalized with γ-secretase in endosomes and physically interacted with the catalytic subunit presenilin-1 (PS1). Interestingly, Istradefylline attenuated the interaction in time- and dosage-dependent manners. Moreover the knockdown of A2AR which in theory would release PS1 potentiated both Aβ generation and γ-secretase activity. Thus, our study implies that the association of A2AR could modulate γ-secretase activity. Istradefylline enhance Aβ generation and γ-secretase activity possibly via modulating the interaction between A2AR and γ-secretase, which may bring some undesired effects in the central nervous system (CNS).
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jin Cui
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Xiaohang Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Xin Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yue Zhou
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenjuan Yang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Ming Chen
- Chemical Biology Core Facility, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jian Zhao
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
- * E-mail:
| |
Collapse
|
42
|
Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 2016; 139:1019-1055. [PMID: 27365148 DOI: 10.1111/jnc.13724] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The adenosine modulation system mostly operates through inhibitory A1 (A1 R) and facilitatory A2A receptors (A2A R) in the brain. The activity-dependent release of adenosine acts as a brake of excitatory transmission through A1 R, which are enriched in glutamatergic terminals. Adenosine sharpens salience of information encoding in neuronal circuits: high-frequency stimulation triggers ATP release in the 'activated' synapse, which is locally converted by ecto-nucleotidases into adenosine to selectively activate A2A R; A2A R switch off A1 R and CB1 receptors, bolster glutamate release and NMDA receptors to assist increasing synaptic plasticity in the 'activated' synapse; the parallel engagement of the astrocytic syncytium releases adenosine further inhibiting neighboring synapses, thus sharpening the encoded plastic change. Brain insults trigger a large outflow of adenosine and ATP, as a danger signal. A1 R are a hurdle for damage initiation, but they desensitize upon prolonged activation. However, if the insult is near-threshold and/or of short-duration, A1 R trigger preconditioning, which may limit the spread of damage. Brain insults also up-regulate A2A R, probably to bolster adaptive changes, but this heightens brain damage since A2A R blockade affords neuroprotection in models of epilepsy, depression, Alzheimer's, or Parkinson's disease. This initially involves a control of synaptotoxicity by neuronal A2A R, whereas astrocytic and microglia A2A R might control the spread of damage. The A2A R signaling mechanisms are largely unknown since A2A R are pleiotropic, coupling to different G proteins and non-canonical pathways to control the viability of glutamatergic synapses, neuroinflammation, mitochondria function, and cytoskeleton dynamics. Thus, simultaneously bolstering A1 R preconditioning and preventing excessive A2A R function might afford maximal neuroprotection. The main physiological role of the adenosine modulation system is to sharp the salience of information encoding through a combined action of adenosine A2A receptors (A2A R) in the synapse undergoing an alteration of synaptic efficiency with an increased inhibitory action of A1 R in all surrounding synapses. Brain insults trigger an up-regulation of A2A R in an attempt to bolster adaptive plasticity together with adenosine release and A1 R desensitization; this favors synaptotocity (increased A2A R) and decreases the hurdle to undergo degeneration (decreased A1 R). Maximal neuroprotection is expected to result from a combined A2A R blockade and increased A1 R activation. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
43
|
Ko WKD, Camus SM, Li Q, Yang J, McGuire S, Pioli EY, Bezard E. An evaluation of istradefylline treatment on Parkinsonian motor and cognitive deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaque models. Neuropharmacology 2016; 110:48-58. [PMID: 27424102 DOI: 10.1016/j.neuropharm.2016.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 01/27/2023]
Abstract
Istradefylline (KW-6002), an adenosine A2A receptor antagonist, is used adjunct with optimal doses of L-3,4-dihydroxyphenylalanine (l-DOPA) to extend on-time in Parkinson's disease (PD) patients experiencing motor fluctuations. Clinical application of istradefylline for the management of other l-DOPA-induced complications, both motor and non-motor related (i.e. dyskinesia and cognitive impairments), remains to be determined. In this study, acute effects of istradefylline (60-100 mg/kg) alone, or with optimal and sub-optimal doses of l-DOPA, were evaluated in two monkey models of PD (i) the gold-standard 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaque model of parkinsonian and dyskinetic motor symptoms and (ii) the chronic low dose (CLD) MPTP-treated macaque model of cognitive (working memory and attentional) deficits. Behavioural analyses in l-DOPA-primed MPTP-treated macaques showed that istradefylline alone specifically alleviated postural deficits. When combined with an optimal l-DOPA treatment dose, istradefylline increased on-time, enhanced therapeutic effects on bradykinesia and locomotion, but exacerbated dyskinesia. Istradefylline treatment at specific doses with sub-optimal l-DOPA specifically alleviated bradykinesia. Cognitive assessments in CLD MPTP-treated macaques showed that the attentional and working memory deficits caused by l-DOPA were lowered after istradefylline administration. Taken together, these data support a broader clinical use of istradefylline as an adjunct treatment in PD, where specific treatment combinations can be utilised to manage various l-DOPA-induced complications, which importantly, maintain a desired anti-parkinsonian response.
Collapse
Affiliation(s)
- Wai Kin D Ko
- Motac Neuroscience Ltd, Manchester, United Kingdom.
| | | | - Qin Li
- Motac Neuroscience Ltd, Manchester, United Kingdom
| | | | | | - Elsa Y Pioli
- Motac Neuroscience Ltd, Manchester, United Kingdom
| | - Erwan Bezard
- Motac Neuroscience Ltd, Manchester, United Kingdom; Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
44
|
Hu Q, Ren X, Liu Y, Li Z, Zhang L, Chen X, He C, Chen JF. Aberrant adenosine A2A receptor signaling contributes to neurodegeneration and cognitive impairments in a mouse model of synucleinopathy. Exp Neurol 2016; 283:213-23. [PMID: 27342081 DOI: 10.1016/j.expneurol.2016.05.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 02/08/2023]
Abstract
Synucleinopathy is characterized by abnormal accumulation of misfolded α-synuclein (α-Syn)-positive cytoplasmic inclusions and by neurodegeneration and cognitive impairments, but the pathogenesis mechanism of synucleinopathy remains to be defined. Using a transmission model of synucleinopathy by intracerebral injection of preformed A53T α-Syn fibrils, we investigated whether aberrant adenosine A2A receptor (A2AR) signaling contributed to pathogenesis of synucleinopathy. We demonstrated that intra-hippocampal injection of preformed mutant α-Syn fibrils triggered a striking and selective induction of A2AR expression which was closely co-localized with pSer129 α-Syn-rich inclusions in neurons and glial cells of hippocampus. Importantly, by abolishing aberrant A2AR signaling triggered by mutant α-Syn, genetic deletion of A2ARs blunted a cascade of pathological events leading to synucleinopathy, including pSer129 α-Syn-rich and p62-positive aggregates, NF-κB activation and astrogliosis, apoptotic neuronal cell death and working memory deficits without affecting motor activity. These findings define α-Syn-triggered aberrant A2AR signaling as a critical pathogenesis mechanism of synucleinopathy with dual controls of cognition and neurodegeneration by modulating α-Syn aggregates. Thus, aberrant A2AR signaling represents a useful biomarker as well as a therapeutic target of synucleinopathy.
Collapse
Affiliation(s)
- Qidi Hu
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangpeng Ren
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China.
| | - Ya Liu
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihui Li
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Liping Zhang
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xingjun Chen
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaoxiang He
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China; Department of Neurology, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
45
|
Matheus FC, Rial D, Real JI, Lemos C, Ben J, Guaita GO, Pita IR, Sequeira AC, Pereira FC, Walz R, Takahashi RN, Bertoglio LJ, Da Cunha C, Cunha RA, Prediger RD. Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats. Behav Brain Res 2015; 301:43-54. [PMID: 26707254 DOI: 10.1016/j.bbr.2015.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/05/2015] [Accepted: 12/11/2015] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is characterized by motor dysfunction associated with dopaminergic degeneration in the dorsolateral striatum (DLS). However, motor symptoms in PD are often preceded by short-term memory deficits, which have been argued to involve deregulation of medial prefrontal cortex (mPFC). We now used a 6-hydroxydopamine (6-OHDA) rat PD model to explore if alterations of synaptic plasticity in DLS and mPFC underlie short-term memory impairments in PD prodrome. The bilateral injection of 6-OHDA (20μg/hemisphere) in the DLS caused a marked loss of dopaminergic neurons in the substantia nigra (>80%) and decreased monoamine levels in the striatum and PFC, accompanied by motor deficits evaluated after 21 days in the open field and accelerated rotarod. A lower dose of 6-OHDA (10μg/hemisphere) only induced a partial degeneration (about 60%) of dopaminergic neurons in the substantia nigra with no gross motor impairments, thus mimicking an early premotor stage of PD. Notably, 6-OHDA (10μg)-lesioned rats displayed decreased monoamine levels in the PFC as well as short-term memory deficits evaluated in the novel object discrimination and in the modified Y-maze tasks; this was accompanied by a selective decrease in the amplitude of long-term potentiation in the mPFC, but not in DLS, without changes of synaptic transmission in either brain regions. These results indicate that the short-term memory dysfunction predating the motor alterations in the 6-OHDA model of PD is associated with selective changes of information processing in PFC circuits, typified by persistent changes of synaptic plasticity.
Collapse
Affiliation(s)
- Filipe C Matheus
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88049-900, SC, Brazil
| | - Daniel Rial
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88049-900, SC, Brazil; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Joana I Real
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Cristina Lemos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Juliana Ben
- Centro de Neurociências Aplicadas (CeNAp), Hospital Universitário (HU), Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Gisele O Guaita
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil
| | - Inês R Pita
- Faculty of Medicine, University of Coimbra, 3005-504 Coimbra, Portugal; Departamento de Farmacologia e Terapêuticas Experimentais/IBILI, Universidade de Coimbra, Portugal
| | - Ana C Sequeira
- Faculty of Medicine, University of Coimbra, 3005-504 Coimbra, Portugal; Departamento de Farmacologia e Terapêuticas Experimentais/IBILI, Universidade de Coimbra, Portugal
| | - Frederico C Pereira
- Faculty of Medicine, University of Coimbra, 3005-504 Coimbra, Portugal; Departamento de Farmacologia e Terapêuticas Experimentais/IBILI, Universidade de Coimbra, Portugal
| | - Roger Walz
- Centro de Neurociências Aplicadas (CeNAp), Hospital Universitário (HU), Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Reinaldo N Takahashi
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88049-900, SC, Brazil
| | - Leandro J Bertoglio
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88049-900, SC, Brazil
| | - Cláudio Da Cunha
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3005-504 Coimbra, Portugal
| | - Rui D Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88049-900, SC, Brazil; Centro de Neurociências Aplicadas (CeNAp), Hospital Universitário (HU), Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
46
|
Li P, Rial D, Canas PM, Yoo JH, Li W, Zhou X, Wang Y, van Westen GJ, Payen MP, Augusto E, Gonçalves N, Tomé AR, Li Z, Wu Z, Hou X, Zhou Y, IJzerman AP, Boyden ES, Cunha RA, Qu J, Chen JF. Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory. Mol Psychiatry 2015; 20:1339-49. [PMID: 25687775 PMCID: PMC4539301 DOI: 10.1038/mp.2014.182] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 10/28/2014] [Accepted: 11/12/2014] [Indexed: 11/26/2022]
Abstract
Human and animal studies have converged to suggest that caffeine consumption prevents memory deficits in aging and Alzheimer's disease through the antagonism of adenosine A2A receptors (A2ARs). To test if A2AR activation in the hippocampus is actually sufficient to impair memory function and to begin elucidating the intracellular pathways operated by A2AR, we have developed a chimeric rhodopsin-A2AR protein (optoA2AR), which retains the extracellular and transmembrane domains of rhodopsin (conferring light responsiveness and eliminating adenosine-binding pockets) fused to the intracellular loop of A2AR to confer specific A2AR signaling. The specificity of the optoA2AR signaling was confirmed by light-induced selective enhancement of cAMP and phospho-mitogen-activated protein kinase (p-MAPK) (but not cGMP) levels in human embryonic kidney 293 (HEK293) cells, which was abolished by a point mutation at the C terminal of A2AR. Supporting its physiological relevance, optoA2AR activation and the A2AR agonist CGS21680 produced similar activation of cAMP and p-MAPK signaling in HEK293 cells, of p-MAPK in the nucleus accumbens and of c-Fos/phosphorylated-CREB (p-CREB) in the hippocampus, and similarly enhanced long-term potentiation in the hippocampus. Remarkably, optoA2AR activation triggered a preferential p-CREB signaling in the hippocampus and impaired spatial memory performance, while optoA2AR activation in the nucleus accumbens triggered MAPK signaling and modulated locomotor activity. This shows that the recruitment of intracellular A2AR signaling in the hippocampus is sufficient to trigger memory dysfunction. Furthermore, the demonstration that the biased A2AR signaling and functions depend on intracellular A2AR loops prompts the possibility of targeting the intracellular A2AR-interacting partners to selectively control different neuropsychiatric behaviors.
Collapse
Affiliation(s)
- Ping Li
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA 02118
- Molecular Biology Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Daniel Rial
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Paula M. Canas
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ji-Hoon Yoo
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA 02118
| | - Wei Li
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA 02118
- Molecular Biology Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College Wenzhou, Zhejiang, China
| | - Yumei Wang
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA 02118
| | | | - Marie-Pierre Payen
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA 02118
| | - Elisabete Augusto
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA 02118
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Nélio Gonçalves
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Angelo R. Tomé
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Zhihui Li
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College Wenzhou, Zhejiang, China
| | - Zhongnan Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College Wenzhou, Zhejiang, China
| | - Xianhua Hou
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA 02118
| | - Yuanguo Zhou
- Molecular Biology Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ad P. IJzerman
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Edward S. Boyden
- MIT Media Lab, MIT McGovern Institute, Departments of Biological Engineering and Brain and Cognitive Sciences, MIT, Cambridge, MA 02139
| | - Rodrigo A. Cunha
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Portugal
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College Wenzhou, Zhejiang, China
| | - Jiang-Fan Chen
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
47
|
Stefani A, Olivola E, Liguori C, Hainsworth AH, Saviozzi V, Angileri G, D'Angelo V, Galati S, Pierantozzi M. Catecholamine-Based Treatment in AD Patients: Expectations and Delusions. Front Aging Neurosci 2015; 7:67. [PMID: 25999852 PMCID: PMC4418272 DOI: 10.3389/fnagi.2015.00067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022] Open
Abstract
In Alzheimer disease, the gap between excellence of diagnostics and efficacy of therapy is wide. Despite sophisticated imaging and biochemical markers, the efficacy of available therapeutic options is limited. Here we examine the possibility that assessment of endogenous catecholamine levels in cerebrospinal fluid (CSF) may fuel new therapeutic strategies. In reviewing the available literature, we consider the effects of levodopa, monoamine oxidase inhibitors, and noradrenaline (NE) modulators, showing disparate results. We present a preliminary assessment of CSF concentrations of dopamine (DA) and NE, determined by HPLC, in a small dementia cohort of either Alzheimer’s disease (AD) or frontotemporal dementia patients, compared to control subjects. Our data reveal detectable levels of DA, NE in CSF, though we found no significant alterations in the dementia population as a whole. AD patients exhibit a small impairment of the DA axis and a larger increase of NE concentration, likely to represent a compensatory mechanism. While waiting for preventive strategies, a pragmatic approach to AD may re-evaluate catecholamine modulation, possibly stratified to dementia subtypes, as part of the therapeutic armamentarium.
Collapse
Affiliation(s)
- Alessandro Stefani
- Department of System Medicine, Università di Roma Tor Vergata , Rome , Italy ; IRCCS Fondazione Santa Lucia , Rome , Italy
| | - Enrica Olivola
- Department of System Medicine, Università di Roma Tor Vergata , Rome , Italy
| | | | | | - Valentina Saviozzi
- Department of System Medicine, Università di Roma Tor Vergata , Rome , Italy
| | - Giacoma Angileri
- Department of System Medicine, Università di Roma Tor Vergata , Rome , Italy
| | - Vincenza D'Angelo
- Department of System Medicine, Università di Roma Tor Vergata , Rome , Italy
| | | | | |
Collapse
|
48
|
Li W, Silva HB, Real J, Wang YM, Rial D, Li P, Payen MP, Zhou Y, Muller CE, Tomé AR, Cunha RA, Chen JF. Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington's disease models. Neurobiol Dis 2015; 79:70-80. [PMID: 25892655 DOI: 10.1016/j.nbd.2015.03.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/18/2015] [Accepted: 03/31/2015] [Indexed: 01/23/2023] Open
Abstract
Cognitive impairments in Huntington's disease (HD) are attributed to a dysfunction of the cortico-striatal pathway and significantly affect the quality of life of the patients, but this has not been a therapeutic focus in HD to date. We postulated that adenosine A(2A) receptors (A(2A)R), located at pre- and post-synaptic elements of the cortico-striatal pathways, modulate striatal neurotransmission and synaptic plasticity and cognitive behaviors. To critically evaluate the ability of A(2A)R inactivation to prevent cognitive deficits in early HD, we cross-bred A(2A)R knockout (KO) mice with two R6/2 transgenic lines of HD (CAG120 and CAG240) to generate two double transgenic R6/2-CAG120-A(2A)R KO and R6/2-CAG240-A(2A)R KO mice and their corresponding wild-type (WT) littermates. Genetic inactivation of A(2A)R prevented working memory deficits induced by R6/2-CAG120 at post-natal week 6 and by R6/2-CAG240 at post-natal month 2 and post-natal month 3, without modifying motor deficits. Similarly the A2(A)R antagonist KW6002 selectively reverted working memory deficits in R6/2-CAG240 mice at post-natal month 3. The search for possible mechanisms indicated that the genetic inactivation of A(2A)R did not affect ubiquitin-positive neuronal inclusions, astrogliosis or Thr-75 phosphorylation of DARPP-32 in the striatum. Importantly, A(2A)R blockade preferentially controlled long-term depression at cortico-striatal synapses in R6/2-CAG240 at post-natal week 6. The reported reversal of working memory deficits in R6/2 mice by the genetic and pharmacological inactivation of A(2A)R provides a proof-of-principle for A(2A)R as novel targets to reverse cognitive deficits in HD, likely by controlling LTD deregulation.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Joana Real
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Yu-Mei Wang
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Daniel Rial
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ping Li
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Marie-Pierce Payen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yuanguo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Christa E Muller
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Portugal
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
49
|
Zhang P, Bannon NM, Ilin V, Volgushev M, Chistiakova M. Adenosine effects on inhibitory synaptic transmission and excitation-inhibition balance in the rat neocortex. J Physiol 2015; 593:825-41. [PMID: 25565160 DOI: 10.1113/jphysiol.2014.279901] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/28/2014] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Adenosine might be the most widespread neuromodulator in the brain, but its effects on inhibitory transmission in the neocortex are not understood. Here we report that adenosine suppresses inhibitory transmission to layer 2/3 pyramidal neurons via activation of presynaptic A1 receptors. We present evidence for functional A2A receptors, which have a weak modulatory effect on the A1-mediated suppression, at about 50% of inhibitory synapses at pyramidal neurons. Adenosine suppresses excitatory and inhibitory transmission to a different extent, and can change the excitation-inhibition balance at a set of synapses bidirectionally, but on average the balance was maintained during application of adenosine. These results suggest that changes of adenosine concentration may lead to differential modulation of excitatory-inhibitory balance in pyramidal neurons, and thus redistribution of local spotlights of activity in neocortical circuits, while preserving the balanced state of the whole network. ABSTRACT Adenosine might be the most widespread neuromodulator in the brain: as a metabolite of ATP it is present in every neuron and glial cell. However, how adenosine affects operation of neurons and networks in the neocortex is poorly understood, mostly because modulation of inhibitory transmission by adenosine has been so little studied. To clarify adenosine's role at inhibitory synapses, and in excitation-inhibition balance in pyramidal neurons, we recorded pharmacologically isolated inhibitory responses, compound excitatory-inhibitory responses and spontaneous events in layer 2/3 pyramidal neurons in slices from rat visual cortex. We show that adenosine (1-150 μm) suppresses inhibitory transmission to these neurons in a concentration-dependent and reversible manner. The suppression was mediated by presynaptic A1 receptors (A1Rs) because it was blocked by a selective A1 antagonist, DPCPX, and associated with changes of release indices: paired-pulse ratio, inverse coefficient of variation and frequency of miniature events. At some synapses (12 out of 24) we found evidence for A2ARs: their blockade led to a small but significant increase of the magnitude of adenosine-mediated suppression. This effect of A2AR blockade was not observed when A1Rs were blocked, suggesting that A2ARs do not have their own effect on transmission, but can modulate the A1R-mediated suppression. At both excitatory and inhibitory synapses, the magnitude of A1R-mediated suppression and A2AR-A1R interaction expressed high variability, suggesting high heterogeneity of synapses in the sensitivity to adenosine. Adenosine could change the balance between excitation and inhibition at a set of inputs to a neuron bidirectionally, towards excitation or towards inhibition. On average, however, these bidirectional changes cancelled each other, and the overall balance of excitation and inhibition was maintained during application of adenosine. These results suggest that changes of adenosine concentration may lead to differential modulation of excitatory-inhibitory balance in pyramidal neurons, and thus redistribution of local spotlights of activity in neocortical circuits, while preserving the balanced state of the whole network.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Psychology, University of Connecticut, Storrs, CT, 06269, USA
| | | | | | | | | |
Collapse
|
50
|
The Story of Istradefylline—The First Approved A2A Antagonist for the Treatment of Parkinson’s Disease. CURRENT TOPICS IN NEUROTOXICITY 2015. [DOI: 10.1007/978-3-319-20273-0_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|