1
|
Anastasiadou C, Papapetrou A, Galyfos G, Vekrellis K, Katafygiotis P, Lazaris A, Geroulakos G, Megalopoulos A, Liapis C, Kostomitsopoulos N, Kakisis J. Effect of Cilostazol and Aspirin During Hyperacute Stroke Phase in Rats: An Experimental Research Study. Neurol Int 2025; 17:69. [PMID: 40423225 DOI: 10.3390/neurolint17050069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/14/2025] [Accepted: 04/24/2025] [Indexed: 05/28/2025] Open
Abstract
OBJECTIVE The contralateral hippocampus, a critical region for cognitive function, is often overlooked in everyday clinical practice and stroke research. This study aimed to evaluate the effect of specific antiplatelet agents on the hippocampus (ipsilateral and contralateral) during the hyperacute phase of stroke. MATERIALS AND METHODS Twelve-week-old rats were randomly assigned to four groups, each containing six rats: a cilostazol group, an aspirin group, an aspirin plus cilostazol group, and a control group. Each substance was administered for four weeks. Permanent brain ischemia was induced over 2 h using intraluminal middle cerebral artery occlusion. A neurologic examination was conducted, followed by euthanasia and histological examination of the CA1 hippocampal region. The hematoxylin and eosin stain was used to assess the total number of intact neuronal cell bodies and pyknotic nuclei, an indicator of early irreversible neuronal injury. RESULTS In the ipsilateral hippocampus, monotherapy with either aspirin or cilostazol significantly reduced pyknotic nuclei compared with the control group (p = 0.0016 and p = 0.0165, respectively). However, combination therapy showed no significant difference from the controls (p = 0.2375). In the contralateral hippocampus, cilostazol monotherapy demonstrated significantly reduced pyknotic nuclei (p = 0.0098), whereas aspirin monotherapy and combination therapy did not (p = 0.1009 and p = 0.9999, respectively). A cumulative analysis of both hemispheres revealed that monotherapy with aspirin or cilostazol markedly reduced injury markers (p = 0.0002 and p = 0.0001, respectively), whereas combined therapy revealed no significant benefit (p = 0.1984). A neurological assessment indicated that the most severe deficits were in the combination therapy group. CONCLUSIONS To the best of our knowledge, this is the first study to compare acute histopathological changes in the affected and unaffected hippocampus after a stroke in a rat model. Dual antiplatelet therapy resulted in worse outcomes (histopathological and neurological) than monotherapy.
Collapse
Affiliation(s)
- Christiana Anastasiadou
- Department of Vascular Surgery, "George Papanikolaou" General Hospital of Thessaloniki, 570 10 Exochi, Greece
| | - Anastasios Papapetrou
- Department of Vascular Surgery, "KAT" General Hospital of Athens, 145 61 Kifisia, Greece
| | - George Galyfos
- Vascular Unit, First Department of Propedeutic Surgery, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Kostas Vekrellis
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| | | | - Andreas Lazaris
- Department of Vascular Surgery, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - George Geroulakos
- Department of Vascular Surgery, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Angelos Megalopoulos
- Department of Vascular Surgery, "George Papanikolaou" General Hospital of Thessaloniki, 570 10 Exochi, Greece
| | - Christos Liapis
- Department of Vascular Surgery, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| | - John Kakisis
- Department of Vascular Surgery, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| |
Collapse
|
2
|
Shintani T, Yanai S, Kanasaki A, Iida T, Endo S. Long-term d-allose administration ameliorates age-related cognitive impairment and loss of bone strength in male mice. Exp Gerontol 2024; 196:112555. [PMID: 39179160 DOI: 10.1016/j.exger.2024.112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Age-related physical and cognitive decline may be ameliorated by consuming functional foods. d-Allose, reported to have multiple health benefits, may temper aging phenotypes, particularly brain function. We investigated whether d-allose supplementation improves cognitive function. A standard battery of behavioral tests was administered to 18-month-old male mice after consuming diet containing 3 % d-allose for 6 months. Following a wire-hanging test, an open-field test, Morris water maze, fear-conditioning, and an analgesia test were sequentially performed. Bone density and strength were assessed afterwards. Possible mechanism(s) under-lying memory changes in hippocampus were also examined with a DNA microarray. d-Allose failed to influence muscle strength, locomotor activity and anxiety, fear memory, or pain sensitivity. However, d-allose improved hippocampus-dependent spatial learning and memory, and it may contribute to increase bone strength. d-Allose also changed the expression of some genes in hippocampus involved in cognitive functions. Long-term d-allose supplementation appears to modestly change aging phenotypes and improve spatial memory.
Collapse
Affiliation(s)
- Tomoya Shintani
- Research and Development, Matsutani Chemical Industry Co., Ltd., 5-3 Kita-Itami, Itami City, Hyogo 664-8508, Japan
| | - Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; Animal Facility, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Akane Kanasaki
- Research and Development, Matsutani Chemical Industry Co., Ltd., 5-3 Kita-Itami, Itami City, Hyogo 664-8508, Japan.
| | - Tetsuo Iida
- Research and Development, Matsutani Chemical Industry Co., Ltd., 5-3 Kita-Itami, Itami City, Hyogo 664-8508, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
3
|
Sadeghi MA, Hemmati S, Yousefi-Manesh H, Foroutani L, Nassireslami E, Yousefi Zoshk M, Hosseini Y, Abbasian K, Dehpour AR, Chamanara M. Cilostazol pretreatment prevents PTSD-related anxiety behavior through reduction of hippocampal neuroinflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:133-144. [PMID: 37382600 DOI: 10.1007/s00210-023-02578-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
Current pharmacological treatments against post-traumatic stress disorder (PTSD) lack adequate efficacy. As a result, intense research has focused on identifying other molecular pathways mediating the pathogenesis of this condition. One such pathway is neuroinflammation, which has demonstrated a role in PTSD pathogenesis by causing synaptic dysfunction, neuronal death, and functional impairment in the hippocampus. Phosphodiesterase (PDE) inhibitors (PDEIs) have emerged as promising therapeutic agents against neuroinflammation in other neurological conditions. Furthermore, PDEIs have shown some promise in animal models of PTSD. However, the current model of PTSD pathogenesis, which is based on dysregulated fear learning, implies that PDE inhibition in neurons should enhance the acquisition of fear memory from the traumatic event. As a result, we hypothesized that PDEIs may improve PTSD symptoms through inhibiting neuroinflammation rather than long-term potentiation-related mechanisms. To this end, we tested the therapeutic efficacy of cilostazol, a selective inhibitor of PDE3, on PTSD-related anxiety symptoms in the underwater trauma model of PTSD. PDE3 is expressed much more richly in microglia and astrocytes compared to neurons in the murine brain. Furthermore, we used hippocampal indolamine 2,3-dioxygenase 1 (IDO) expression and interleukin 1 beta (IL-1β) concentration as indicators of neuroinflammation. We observed that cilostazol pretreatment prevented the development of anxiety symptoms and the increase in hippocampal IDO and IL-1β following PTSD induction. As a result, PDE3 inhibition ameliorated the neuroinflammatory processes involved in the development of PTSD symptoms. Therefore, cilostazol and other PDEIs may be promising candidates for further investigation as pharmacological therapies against PTSD.
Collapse
Affiliation(s)
- Mohammad Amin Sadeghi
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Sara Hemmati
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Yousefi-Manesh
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Laleh Foroutani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi Zoshk
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, AJA University of Medical Sciences, Tehran, Iran
| | - Yasaman Hosseini
- Cognitive Neuroscience Center, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Kourosh Abbasian
- Management and Health Economics Department, AJA University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Sadeghi MA, Nassireslami E, Yousefi Zoshk M, Hosseini Y, Abbasian K, Chamanara M. Phosphodiesterase inhibitors in psychiatric disorders. Psychopharmacology (Berl) 2023; 240:1201-1219. [PMID: 37060470 DOI: 10.1007/s00213-023-06361-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023]
Abstract
RATIONALE Challenges in drug development for psychiatric disorders have left much room for the introduction of novel treatments with better therapeutic efficacies and indices. As a result, intense research has focused on identifying new targets for developing such pharmacotherapies. One of these targets may be the phosphodiesterase (PDE) class of enzymes, which play important roles in intracellular signaling. Due to their critical roles in cellular pathways, these enzymes affect diverse neurobiological functions from learning and memory formation to neuroinflammation. OBJECTIVES In this paper, we reviewed studies on the use of PDE inhibitors (PDEIs) in preclinical models and clinical trials of psychiatric disorders including depression, anxiety, schizophrenia, post-traumatic stress disorder (PTSD), bipolar disorder (BP), sexual dysfunction, and feeding disorders. RESULTS PDEIs are able to improve symptoms of psychiatric disorders in preclinical models through activating the cAMP-PKA-CREB and cGMP-PKG pathways, attenuating neuroinflammation and oxidative stress, and stimulating neural plasticity. The most promising therapeutic candidates to emerge from these preclinical studies are PDE2 and PDE4 inhibitors for depression and anxiety and PDE1 and PDE10 inhibitors for schizophrenia. Furthermore, PDE3 and 4 inhibitors have shown promising results in clinical trials in patients with depression and schizophrenia. CONCLUSIONS Larger and better designed clinical studies of PDEIs in schizophrenia, depression, and anxiety are warranted to facilitate their translation into the clinic. Regarding the other conditions discussed in this review (most notably PTSD and BP), better characterization of the effects of PDEIs in preclinical models is required before clinical studies.
Collapse
Affiliation(s)
- Mohammad Amin Sadeghi
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi Zoshk
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, AJA University of Medical Sciences, Tehran, Iran
| | - Yasaman Hosseini
- Cognitive Neuroscience Center, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Kourosh Abbasian
- Management and Health Economics Department, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Yanai S, Tago T, Toyohara J, Arasaki T, Endo S. Reversal of spatial memory impairment by phosphodiesterase 3 inhibitor cilostazol is associated with reduced neuroinflammation and increased cerebral glucose uptake in aged male mice. Front Pharmacol 2022; 13:1031637. [PMID: 36618932 PMCID: PMC9810637 DOI: 10.3389/fphar.2022.1031637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
The nucleotide second messenger 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP) mediate fundamental functions of the brain, including learning and memory. Phosphodiesterase 3 (PDE3) can hydrolyze both cAMP and cGMP and appears to be involved in the regulation of their contents in cells. We previously demonstrated that long-term administration of cilostazol, a PDE3 inhibitor, maintained good memory performance in aging mice. Here, we report on studies aimed at determining whether cilostazol also reverses already-impaired memory in aged male mice. One month of oral 1.5% cilostazol administration in 22-month-old mice reversed age-related declines in hippocampus-dependent memory tasks, including the object recognition and the Morris water maze. Furthermore, cilostazol reduced neuroinflammation, as evidenced by immunohistochemical staining, and increased glucose uptake in the brain, as evidence by positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG). These results suggest that already-expressed memory impairment in aged male mice that depend on cyclic nucleotide signaling can be reversed by inhibition of PDE3. The reversal of age-related memory impairments may occur in the central nervous system, either through cilostazol-enhanced recall or strengthening of weak memories that otherwise may be resistant to recall.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tomoko Arasaki
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan,*Correspondence: Shogo Endo,
| |
Collapse
|
6
|
Gomaa AA, Farghaly HS, Ahmed AM, El-Mokhtar MA, Hemida FK. Advancing combination treatment with cilostazol and caffeine for Alzheimer's disease in high fat-high fructose-STZ induced model of amnesia. Eur J Pharmacol 2022; 921:174873. [DOI: 10.1016/j.ejphar.2022.174873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
|
7
|
Luhach K, Kulkarni GT, Singh VP, Sharma B. Cilostazol attenuated prenatal valproic acid-induced behavioural and biochemical deficits in a rat model of autism spectrum disorder. J Pharm Pharmacol 2021; 73:1460-1469. [PMID: 34459916 DOI: 10.1093/jpp/rgab115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 07/30/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Autism spectrum disorder (ASD) is categorized as a neurodevelopmental disorder, presenting with a variety of aetiological and phenotypical features. Inhibiting the enzyme phosphodiesterase-3 (PDE3) with cilostazol is known to produce beneficial effects in several brain disorders. The pharmacological outcome of cilostazol administration was investigated in prenatal valproic acid (VPA)-induced ASD deficits in albino Wistar rats. METHODS Cilostazol was administered in two doses (30/60 mg/kg) to male rats born of females administered with VPA on gestational day 12. Behavioural assays on locomotion (open field), social interaction, repetitive behaviour (y-maze) and anxiety (elevated plus maze) were performed in all groups. Further, biochemical assessments of markers associated with neuronal function (BDNF, pCREB), inflammation (TNF-α, IL-6, IL-10) and oxidative stress were carried out in frontal cortex, hippocampus, striatum and cerebellum. KEY FINDINGS The cilostazol regimen, attenuated prenatal VPA exposure associated hyperlocomotion, social interaction deficits, repetitive behavior, and anxiety. Further, biochemical markers such as BDNF, pCREB, IL-10 and GSH were found to be significantly increased contrary to markers such as TNF-α, IL-6 and TBARS in the assessed brain regions. CONCLUSIONS Cilostazol rectified core behavioural traits while producing significant changes to biochemistry in the brain, suggesting benefits of cilostazol administration in experimental models of ASD.
Collapse
Affiliation(s)
- Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Giriraj T Kulkarni
- Department of Pharmaceutics, Gokaraju Rangaraju College of Pharmacy, Hyderabad, India
| | - Vijay P Singh
- CSIR-Institute of Genomics & Integrative Biology, Academy of Scientific and Innovative Research, New Delhi, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
- CNS and CVS Pharmacology, Conscience Research, New Delhi, India
| |
Collapse
|
8
|
Yanai S, Endo S. Functional Aging in Male C57BL/6J Mice Across the Life-Span: A Systematic Behavioral Analysis of Motor, Emotional, and Memory Function to Define an Aging Phenotype. Front Aging Neurosci 2021; 13:697621. [PMID: 34408644 PMCID: PMC8365336 DOI: 10.3389/fnagi.2021.697621] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
Aging is characterized generally by progressive and overall physiological decline of functions and is observed in all animals. A long line of evidence has established the laboratory mouse as the prime model of human aging. However, relatively little is known about the detailed behavioral and functional changes that occur across their lifespan, and how this maps onto the phenotype of human aging. To better understand age-related changes across the life-span, we characterized functional aging in male C57BL/6J mice of five different ages (3, 6, 12, 18, and 22 months of age) using a multi-domain behavioral test battery. Spatial memory and physical activities, including locomotor activity, gait velocity, and grip strength progressively declined with increasing age, although at different rates; anxiety-like behaviors increased with aging. Estimated age-related patterns showed that these functional alterations across ages are non-linear, and the patterns are unique for each behavioral trait. Physical function progressively declines, starting as early as 6 months of age in mice, while cognitive function begins to decline later, with considerable impairment present at 22 months of age. Importantly, functional aging of male C57BL/6J mouse starts at younger relative ages compared to when it starts in humans. Our study suggests that human-equivalent ages of mouse might be better determined on the basis of its functional capabilities.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
9
|
Jankowska A, Wesołowska A, Pawłowski M, Chłoń-Rzepa G. Multifunctional Ligands Targeting Phosphodiesterase as the Future Strategy for the Symptomatic and Disease-Modifying Treatment of Alzheimer’s Disease. Curr Med Chem 2020; 27:5351-5373. [DOI: 10.2174/0929867326666190620095623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Alzheimer’s Disease (AD) is a chronic neurodegenerative disorder characterized by cognitive
impairments such as memory loss, decline in language skills, and disorientation that affects
over 46 million people worldwide. Patients with AD also suffer from behavioral and psychological
symptoms of dementia that deteriorate their quality of life and lead to premature death. Currently
available drugs provide modest symptomatic relief but do not reduce pathological hallmarks (senile
plaques and neurofibrillary tangles) and neuroinflammation, both of which are integral parts of dementia.
A large body of evidence indicates that impaired signaling pathways of cyclic-3′,5′-
Adenosine Monophosphate (cAMP) and cyclic-3′,5′-guanosine Monophosphate (cGMP) may contribute
to the development and progression of AD. In addition, Phosphodiesterase (PDE) inhibitors,
commonly known as cAMP and/or cGMP modulators, were found to be involved in the phosphorylation
of tau; aggregation of amyloid beta; neuroinflammation; and regulation of cognition, mood,
and emotion processing. The purpose of this review was to update the most recent reports on the
development of novel multifunctional ligands targeting PDE as potential drugs for both symptomatic
and disease-modifying therapy of AD. This review collected the chemical structures of representative
multifunctional ligands, results of experimental in vitro and in vivo pharmacological studies,
and current opinions regarding the potential utility of these compounds for the comprehensive
therapy of AD. Finally, the multiparameter predictions of drugability of the representative compounds
were calculated and discussed.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
10
|
Ribaudo G, Ongaro A, Zagotto G, Memo M, Gianoncelli A. Therapeutic Potential of Phosphodiesterase Inhibitors against Neurodegeneration: The Perspective of the Medicinal Chemist. ACS Chem Neurosci 2020; 11:1726-1739. [PMID: 32401481 PMCID: PMC8007108 DOI: 10.1021/acschemneuro.0c00244] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
![]()
Increasing human
life expectancy prompts the development of novel
remedies for cognitive decline: 44 million people worldwide are affected
by dementia, and this number is predicted to triple by 2050. Acetylcholinesterase
and N-methyl-d-aspartate receptors represent
the targets of currently available drugs for Alzheimer’s disease,
which are characterized by limited efficacy. Thus, the search for
therapeutic agents with alternative or combined mechanisms of action
is wide open. Since variations in 3′,5′-cyclic adenosine
monophosphate, 3′,5′-cyclic guanosine monophosphate,
and/or nitric oxide levels interfere with downstream pathways involved
in memory processes, evidence supporting the potential of phosphodiesterase
(PDE) inhibitors in contrasting neurodegeneration should be
critically considered. For the preparation of this Review, more than
140 scientific papers were retrieved by searching PubMed and Scopus
databases. A systematic approach was adopted when overviewing the
different PDE isoforms, taking into account details on brain localization,
downstream molecular mechanisms, and inhibitors currently under study,
according to available in vitro and in vivo data. In the context of drug repurposing, a section focusing on
PDE5 was introduced. Original computational studies were performed
to rationalize the emerging evidence that suggests the role of PDE5
inhibitors as multi-target agents against neurodegeneration.
Moreover, since such compounds must cross the blood–brain barrier
and reach inhibitory concentrations in the central nervous system
to exert their therapeutic activity, physicochemical parameters
were analyzed and discussed. Taken together, literature and computational
data suggest that some PDE5 inhibitors, such as tadalafil, represent
promising candidates.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
11
|
Kim SK, Ko YH, Lee SY, Jang CG. Memory-enhancing effects of 7,3′,4′-trihydroxyisoflavone by regulation of cholinergic function and BDNF signaling pathway in mice. Food Chem Toxicol 2020; 137:111160. [DOI: 10.1016/j.fct.2020.111160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
|
12
|
Nabavi SM, Talarek S, Listos J, Nabavi SF, Devi KP, Roberto de Oliveira M, Tewari D, Argüelles S, Mehrzadi S, Hosseinzadeh A, D'onofrio G, Orhan IE, Sureda A, Xu S, Momtaz S, Farzaei MH. Phosphodiesterase inhibitors say NO to Alzheimer's disease. Food Chem Toxicol 2019; 134:110822. [PMID: 31536753 DOI: 10.1016/j.fct.2019.110822] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/18/2022]
Abstract
Phosphodiesterases (PDEs) consisted of 11 subtypes (PDE1 to PDE11) and over 40 isoforms that regulate levels of cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP), the second messengers in cell functions. PDE inhibitors (PDEIs) have been attractive therapeutic targets due to their involvement in diverse medical conditions, e.g. cardiovascular diseases, autoimmune diseases, Alzheimer's disease (AD), etc. Among them; AD with a complex pathology is a progressive neurodegenerative disorder which affect mostly senile people in the world and only symptomatic treatment particularly using cholinesterase inhibitors in clinic is available at the moment for AD. Consequently, novel treatment strategies towards AD are still searched extensively. Since PDEs are broadly expressed in the brain, PDEIs are considered to modulate neurodegenerative conditions through regulating cAMP and cGMP in the brain. In this sense, several synthetic or natural molecules inhibiting various PDE subtypes such as rolipram and roflumilast (PDE4 inhibitors), vinpocetine (PDE1 inhibitor), cilostazol and milrinone (PDE3 inhibitors), sildenafil and tadalafil (PDE5 inhibitors), etc have been reported showing encouraging results for the treatment of AD. In this review, PDE superfamily will be scrutinized from the view point of structural features, isoforms, functions and pharmacology particularly attributed to PDEs as target for AD therapy.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St, 20-093, Lublin, Poland.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| | - Marcos Roberto de Oliveira
- Departamento de Química (DQ), Instituto de Ciências Exatas e da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Grazia D'onofrio
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", Viale Cappuccini 1, 71013, San Giovanni Rotondo, FG, Italy.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, 14623, USA.
| | - Saeedeh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
13
|
PDE3 Inhibitors Repurposed as Treatments for Age-Related Cognitive Impairment. Mol Neurobiol 2018; 56:4306-4316. [PMID: 30311144 DOI: 10.1007/s12035-018-1374-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022]
Abstract
As the population of older individuals grows worldwide, researchers have increasingly focused their attention on identifying key molecular targets of age-related cognitive impairments, with the aim of developing possible therapeutic interventions. Two such molecules are the intracellular cyclic nucleotides, cAMP and cGMP. These second messengers mediate fundamental aspects of brain function relevant to memory, learning, and cognitive function. Consequently, phosphodiesterases (PDEs), which hydrolyze cAMP and cGMP, are promising targets for the development of cognition-enhancing drugs. Inhibitors that target PDEs work by elevating intracellular cAMP. In this review, we provide an overview of different PDE inhibitors, and then we focus on pharmacological and physiological effects of PDE3 inhibitors in the CNS and peripheral tissues. Finally, we discuss findings from experimental and preliminary clinical studies and the potential beneficial effects of the PDE3 inhibitor cilostazol on age-related cognitive impairments. In the innovation pipeline of pharmaceutical development, the antiplatelet agent cilostazol has come into the spotlight as a novel treatment for mild cognitive impairment. Overall, the repurposing of cilostazol may represent a potentially promising way to treat mild cognitive impairment, Alzheimer's disease, and vascular dementia. In this review, we present a brief summary of cAMP signaling and different PDE inhibitors, followed by a discussion of the pharmacological and physiological role of PDE3 inhibitors. In this context, we discuss the repurposing of a PDE3 inhibitor, cilostazol, as a potential treatment for age-related cognitive impairment based on recent research.
Collapse
|
14
|
Yanai S, Ito H, Endo S. Long-term cilostazol administration prevents age-related decline of hippocampus-dependent memory in mice. Neuropharmacology 2017; 129:57-68. [PMID: 29122629 DOI: 10.1016/j.neuropharm.2017.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/30/2017] [Accepted: 11/04/2017] [Indexed: 12/17/2022]
Abstract
Phosphodiesterases (PDEs) are enzymes that hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and/or 3', 5'-cyclic guanosine monophosphate (cGMP). The regulation of intracellular signaling pathways mediated by cyclic nucleotides is imperative to synaptic plasticity and memory in animals. Because PDEs play an important role in this regulation, PDE inhibitors are considered as candidate compounds for treating cognitive and memory disorders. In the present study, we tested whether cilostazol, a selective PDE3 inhibitor, prevents the cognitive deterioration that occurs during the course of normal aging in mice. Ten months of cilostazol administration (1.5%) in 13-month-old mice improved spatial memory when tested at 23 months of age. First, it prevented the decline in the ability of these aged mice to recognize a change in an object's location in the object recognition task. Second, spatial memory of these cilostazol-treated aged mice in the Morris water maze was comparable to that of untreated middle-aged mice (13 months old). Cilostazol administration had no effect on the emotional states and physical ability of aged mice. Thus, long-term cilostazol administration prevented hippocampus-dependent memory decline in aged mice, allowing them to achieve a level of cognitive performance similar to middle-aged mice and without negative behavioral side effects. Considering its well-established safety in other medical contexts, cilostazol may be a potential therapeutic candidate drug for staving off cognitive decline in the aging human population.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Hideki Ito
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, 771-0192, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan.
| |
Collapse
|
15
|
Knott EP, Assi M, Rao SNR, Ghosh M, Pearse DD. Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair. Int J Mol Sci 2017; 18:E696. [PMID: 28338622 PMCID: PMC5412282 DOI: 10.3390/ijms18040696] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic.
Collapse
Affiliation(s)
- Eric P Knott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Mazen Assi
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Sudheendra N R Rao
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Department of Neurological Surgery, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Department of Neurological Surgery, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Neuroscience Program, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- Bruce Wayne Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA.
| |
Collapse
|
16
|
Yanai S, Toyohara J, Ishiwata K, Ito H, Endo S. Long-term cilostazol administration ameliorates memory decline in senescence-accelerated mouse prone 8 (SAMP8) through a dual effect on cAMP and blood-brain barrier. Neuropharmacology 2016; 116:247-259. [PMID: 27979612 DOI: 10.1016/j.neuropharm.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/18/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022]
Abstract
Phosphodiesterases (PDEs), which hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP), play an important role in synaptic plasticity that underlies memory. Recently, several PDE inhibitors were assessed for their possible therapeutic efficacy in treating cognitive disorders. Here, we examined how cilostazol, a selective PDE3 inhibitor, affects brain functions in senescence-accelerated mouse prone 8 (SAMP8), an animal model of age-related cognitive impairment. Long-term administration of cilostazol restored the impaired context-dependent conditioned fear memory of SAMP8 to match that in normal aging control substrain SAMR1. Cilostazol also increased the number of cells containing phosphorylated cAMP-responsive element binding protein (CREB), a downstream component of the cAMP pathway. Finally, cilostazol improves blood-brain barrier (BBB) integrity, demonstrated by reduced extravasation of 2-deoxy-2-18F-fluoro-d-glucose and Evans Blue dye in the brains of SAMP8. This improvement in BBB integrity was associated with an increased amount of zona occludens protein 1 (ZO-1) and occludin proteins, components of tight junctions integral to the BBB. The results suggest that long-term administration of cilostazol exerts its beneficial effects on age-related cognitive impairment through a dual mechanism: by enhancing the cAMP system in the brain and by maintaining or improving BBB integrity.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan; Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Fukushima 963-8052, Japan; Department of Biofunctional Imaging, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideki Ito
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima 771-0192, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan.
| |
Collapse
|
17
|
Toyohara J, Sakata M, Hatano K, Yanai S, Endo S, Ishibashi K, Wagatsuma K, Ishii K, Ishiwata K. Preclinical and first-in-man studies of [(11)C]CB184 for imaging the 18-kDa translocator protein by positron emission tomography. Ann Nucl Med 2016; 30:534-543. [PMID: 27329083 DOI: 10.1007/s12149-016-1094-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/30/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVE We performed preclinical and first-in-man clinical positron emission tomography (PET) studies in human brain using N,N-di-n-propyl-2-[2-(4-[(11)C]methoxyphenyl)-6,8-dichloroimidazol[1,2-a]pyridine-3-yl]acetamide ([(11)C]CB184) to image the 18-kDa translocator protein (TSPO), which is overexpressed in activated microglia in neuroinflammatory conditions. METHODS In vitro selectivity of CB184 was characterized. The radiation absorbed dose by [(11)C]CB184 in humans was calculated from murine distribution data. Acute toxicity of CB184 hydrochloride in rats at a dose of 5.81 mg/kg body weight, which is >10,000-fold higher than the clinical equivalent dose of [(11)C]CB184, was evaluated. Acute toxicity of [(11)C]CB184 injection of a 400-fold dose to administer a postulated dose of 740 MBq [(11)C]CB184 was also evaluated after the decay-out of (11)C. The mutagenicity of CB184 was studied with a reverse mutation test (Ames test). The pharmacological effect of CB184 injection in mice was studied with an open field test. The first PET imaging of TSPO with [(11)C]CB184 in a normal human volunteer was performed. RESULTS A suitable preparation method for [(11)C]CB184 injection was established. CB184 showed low activity in a 28-standard receptor binding profile. The radiation absorbed dose by [(11)C]CB184 in humans was sufficiently low for clinical use, and no acute toxicity of CB184 or [(11)C]CB184 injection was found. No mutagenicity or apparent effect on locomotor activity or anxiety status was observed for CB184. We safely performed brain imaging with PET following administration of [(11)C]CB184 in a normal human volunteer. A 90-min dynamic scan showed rapid initial uptake of radioactivity in the brain followed by prompt clearance. [(11)C]CB184 was homogeneously distributed in the gray matter. The total distribution volume of [(11)C]CB184 was highest in the thalamus followed by the cerebellar cortex and elsewhere. Although regional differences were small, the observed [(11)C]CB184 binding pattern was consistent with the TSPO distribution in normal human brain. Peripherally, [(11)C]CB184 was metabolized in humans: 30 % of the radioactivity in plasma was detected as the unchanged form after 60 min. CONCLUSIONS [(11)C]CB184 is suitable for imaging TSPO in human brain and provides an acceptable radiation dose. Pharmacological safety was noted at the dose required for PET imaging.
Collapse
Affiliation(s)
- Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kentaro Hatano
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shuichi Yanai
- Research Team for Aging Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shogo Endo
- Research Team for Aging Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kei Wagatsuma
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
- Institute of Cyclotron and Drug Discovery Research, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
18
|
Gamil NM, Maklad YA, Ahmed MA, Nofal S, Ahmed AA. Modulatory effect of cilostazol on tramadol-induced behavioral and neurochemical alterations in rats challenged across the forced swim despair test. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2016. [DOI: 10.1016/j.bjbas.2016.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
19
|
Yanai S, Endo S. Data on the optimization of behavioral tasks for senescence-accelerated mouse prone 8 (SAMP8). Data Brief 2016; 8:262-6. [PMID: 27331099 PMCID: PMC4906132 DOI: 10.1016/j.dib.2016.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 01/30/2023] Open
Abstract
This data article contains the supporting information for the research article entitled "Early onset of behavioral alterations in senescence-accelerated mouse prone 8 (SAMP8)" [1]. Senescence-accelerated mouse prone 8 (SAMP8), which originally developed from AKR/J mice, shows learning and memory impairments at the age of 8-12 months. However, little information is still available on phenotypical characteristics of younger SAMP8. To fully understand the phenotype of younger SAMP8, we optimized two behavioral tasks for SAMP8. In the object recognition task, 4-month-old SAMP8 made significantly more contacts with the familiar objects compared to age-matched SAMR1, however, distance traveled for both strains of mice were comparable. In the fear conditioning task, conventionally-used CS-US combination failed to induce robust conditioned fear in both strains of mice.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Japan
| |
Collapse
|
20
|
Early onset of behavioral alterations in senescence-accelerated mouse prone 8 (SAMP8). Behav Brain Res 2016; 308:187-95. [PMID: 27093926 DOI: 10.1016/j.bbr.2016.04.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022]
Abstract
Senescence-accelerated mouse (SAM) is inbred lines of mice originally developed from AKR/J mice. Among the six SAM prone (SAMP) substrains, 8- to 12-month-old SAMP8 have long been used as a model of age-related cognitive impairments. However, little is still known for younger SAMP8 mice. Here, we examined the phenotypical characteristics of 4-month-old SAMP8 using a battery of behavioral tests. Four-month-old SAMP8 mice failed to recognize spatially displaced object in an object recognition task and performed poorly in the probe test of the Morris water maze task compared to SAMR1, suggesting that SAMP8 have impaired spatial memory. In addition, young SAMP8 exhibited enhanced anxiety-like behavior in an open field test and showed depression-like behavior in the forced-swim test. Their circadian rhythm was also disrupted. These abnormal behaviors of young SAMP8 are similar to behavioral alterations also observed in aged mice. In summary, age-related behavioral alterations occur in SAMP8 as young as 4 months old.
Collapse
|
21
|
Saito S, Ihara M. New therapeutic approaches for Alzheimer's disease and cerebral amyloid angiopathy. Front Aging Neurosci 2014; 6:290. [PMID: 25368578 PMCID: PMC4202741 DOI: 10.3389/fnagi.2014.00290] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/01/2014] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence has shown a strong relationship between Alzheimer’s disease (AD), cerebral amyloid angiopathy (CAA), and cerebrovascular disease. Cognitive impairment in AD patients can result from cortical microinfarcts associated with CAA, as well as the synaptic and neuronal disturbances caused by cerebral accumulations of β-amyloid (Aβ) and tau proteins. The pathophysiology of AD may lead to a toxic chain of events consisting of Aβ overproduction, impaired Aβ clearance, and brain ischemia. Insufficient removal of Aβ leads to development of CAA and plays a crucial role in sporadic AD cases, implicating promotion of Aβ clearance as an important therapeutic strategy. Aβ is mainly eliminated by three mechanisms: (1) enzymatic/glial degradation, (2) transcytotic delivery, and (3) perivascular drainage (3-“d” mechanisms). Enzymatic degradation may be facilitated by activation of Aβ-degrading enzymes such as neprilysin, angiotensin-converting enzyme, and insulin-degrading enzyme. Transcytotic delivery can be promoted by inhibition of the receptor for advanced glycation end products (RAGE), which mediates transcytotic influx of circulating Aβ into brain. Successful use of the RAGE inhibitor TTP488 in Phase II testing has led to a Phase III clinical trial for AD patients. The perivascular drainage system seems to be driven by motive force generated by cerebral arterial pulsations, suggesting that vasoactive drugs can facilitate Aβ clearance. One of the drugs promoting this system is cilostazol, a selective inhibitor of type 3 phosphodiesterase. The clearance of fluorescent soluble Aβ tracers was significantly enhanced in cilostazol-treated CAA model mice. Given that the balance between Aβ synthesis and clearance determines brain Aβ accumulation, and that Aβ is cleared by several pathways stated above, multi-drugs combination therapy could provide a mainstream cure for sporadic AD.
Collapse
Affiliation(s)
- Satoshi Saito
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center , Suita , Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center , Suita , Japan
| |
Collapse
|