1
|
Yuksel B, Sen Z, Unal G. Ketamine differentially affects implicit and explicit memory processes in rats. Psychopharmacology (Berl) 2025; 242:1245-1258. [PMID: 39589435 DOI: 10.1007/s00213-024-06720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024]
Abstract
RATIONALE Ketamine, a non-competitive NMDA receptor antagonist, produces antidepressant effects at subanesthetic doses. The therapeutic effect, however, is often accompanied by cognitive side effects, including memory impairments. Yet, the specific effects of ketamine on different processes of implicit and explicit memory remain to be elucidated. OBJECTIVES We examined the effect of an antidepressant dose of ketamine (10 mg/kg, IP) on the encoding, retrieval, and modulation processes of fear memory and spatial memory in adult Wistar rats. METHODS Ketamine was administered before the fear acquisition, retrieval, or extinction procedures in a Pavlovian fear conditioning task. In another set of experiments, it was administered before the training, probe trial, or reversal training phases of the Morris Water Maze (MWM). RESULTS The antidepressant dose of ketamine partially impaired fear extinction when administered before the acquisition or retrieval. In contrast, it facilitated memory modulation and decreased the escape latency in the first day of reversal training in the MWM when administered before the training or reversal training sessions. Encoding or retrieval performance in either type of memory was not affected. CONCLUSIONS These findings show that ketamine does not impair the acquisition or retrieval processes of cued fear or spatial memory; but exerts differential effects on memory modulation of these implicit and explicit memory paradigms, by disrupting fear extinction and facilitating reversal spatial learning.
Collapse
Affiliation(s)
- Bahar Yuksel
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Istanbul, 34342, Turkey
| | - Zeynep Sen
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Istanbul, 34342, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Istanbul, 34342, Turkey.
| |
Collapse
|
2
|
Takabayashi K, Kajita Y, Mushiake H. Maternal separation after postnatal day 10 induces increase in depression-like behavior with decrease in hippocampal dendritic spines, but no change in anxiety-like behavior in male rats. Behav Brain Res 2025; 490:115617. [PMID: 40389168 DOI: 10.1016/j.bbr.2025.115617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/21/2025]
Abstract
Neurodevelopment has a "sensitive period" during which the brain is highly sensitive to experience. In this study, we used maternal separation (MS) models of male Long-Evans rats to examine whether sensitivity to stress changes after postnatal day (PND) 10, when dendritic spine density begins to increase rapidly in the CA (Cornu Ammonis)1 region of the hippocampus. We assigned littermates to three groups: early maternal separation group (EMS: MS during PND 1-9), late maternal separation group (LMS: MS during PND 10-20), and control group. During adulthood (PND 56-75, which strictly corresponds to young adulthood), LMS showed increased depression-like behaviors and decreased dendritic spine density in the CA1 hippocampal region; however, EMS did not show any such changes. Accordingly, littermates at PND 10-20 have a greater vulnerability to MS than those at PND 1-9. These findings suggest that dendritic spine formation in the hippocampus is an important factor in determining sensitivity to MS.
Collapse
Affiliation(s)
- Kento Takabayashi
- Department of Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yuki Kajita
- Department of Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Hajime Mushiake
- Department of Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
3
|
Guo H, Ali T, Li S. Neural circuits mediating chronic stress: Implications for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111280. [PMID: 39909171 DOI: 10.1016/j.pnpbp.2025.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Major depressive disorder (MDD), also known as depression, is a prevalent mental disorder that leads to severe disease burden worldwide. Over the past two decades, significant progress has been made in understanding the pathogenesis and developing novel treatments for MDD. Among the complicated etiologies of MDD, chronic stress is a major risk factor. Exploring the underlying brain circuit mechanisms of chronic stress regulation has been an area of active research for recent years. A growing body of preclinical and clinical research has revealed that abnormalities in the brain circuits are closely associated with failures in coping with stress in depressed individuals. Nevertheless, neural circuit mechanisms underlying chronic stress processing and the onset of depression remain a major puzzle. Here, we review recent literature focusing on circuit- and cell-type-specific dissection of depression-like behaviors in chronic stress-related animal models of MDD and outline the key questions.
Collapse
Affiliation(s)
- Hongling Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China.
| | - Tahir Ali
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Liu J, Tabisola KM, Morilak DA. A projection from the medial prefrontal cortex to the lateral septum modulates coping behavior on the shock-probe test. Neuropsychopharmacology 2025:10.1038/s41386-025-02074-7. [PMID: 40016365 DOI: 10.1038/s41386-025-02074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Effective coping plays an important role in preventing stress-induced neuropsychiatric conditions. The ventromedial prefrontal cortex (vmPFC) has been associated with active, adaptive coping in humans and rodents. Chronic or severe stress has been shown to induce a maladaptive shift from active to passive coping behavior; however, the neural circuits for effective coping strategies remain unclear. In the current study, we demonstrated that neurons in the infralimbic (IL) subregion of rat vmPFC that project to the lateral septum (LS) were recruited by exposure to the shock probe in the shock-probe defensive burying (SPDB) test. Both chemogenetic inhibition of LS-projecting neurons in the IL and optogenetic inhibition of glutamatergic IL terminals in the LS selectively suppressed active burying responses in the SPDB test in non-stressed rats. In contrast, chemogenetic activation of the IL-LS pathway effectively reversed the shift from active coping to passive immobility in the SPDB test induced by chronic unpredictable stress (CUS). These results indicate that top-down regulation of the LS by a projection from the IL cortex is necessary for an active, adaptive behavioral coping response, and is sufficient to restore active coping that has been compromised by chronic stress. More broadly, these results point to the IL-to-LS circuit as a potential substrate underlying maladaptive shifts from active to passive coping behavior that are often associated with stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kayla M Tabisola
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - David A Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
5
|
Girotti M, Bulin SE, Carreno FR. Effects of chronic stress on cognitive function - From neurobiology to intervention. Neurobiol Stress 2024; 33:100670. [PMID: 39295772 PMCID: PMC11407068 DOI: 10.1016/j.ynstr.2024.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Exposure to chronic stress contributes considerably to the development of cognitive impairments in psychiatric disorders such as depression, generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and addictive behavior. Unfortunately, unlike mood-related symptoms, cognitive impairments are not effectively treated by available therapies, a situation in part resulting from a still incomplete knowledge of the neurobiological substrates that underly cognitive domains and the difficulty in generating interventions that are both efficacious and safe. In this review, we will present an overview of the cognitive domains affected by stress with a specific focus on cognitive flexibility, behavioral inhibition, and working memory. We will then consider the effects of stress on neuronal correlates of cognitive function and the factors which may modulate the interaction of stress and cognition. Finally, we will discuss intervention strategies for treatment of stress-related disorders and gaps in knowledge with emerging new treatments under development. Understanding how cognitive impairment occurs during exposure to chronic stress is crucial to make progress towards the development of new and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Sarah E. Bulin
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Flavia R. Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| |
Collapse
|
6
|
Bulthuis NE, McGowan JC, Ladner LR, LaGamma CT, Lim SC, Shubeck CX, Brachman RA, Sydnor E, Pavlova IP, Seo DO, Drew MR, Denny CA. GluN2B on Adult-Born Granule Cells Modulates (R,S)-Ketamine's Rapid-Acting Effects in Mice. Int J Neuropsychopharmacol 2024; 27:pyae036. [PMID: 39240140 PMCID: PMC11461768 DOI: 10.1093/ijnp/pyae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Standard antidepressant treatments often take weeks to reach efficacy and are ineffective for many patients. (R,S)-ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been shown to be a rapid-acting antidepressant and to decrease depressive symptoms within hours of administration. While previous studies have shown the importance of the GluN2B subunit of the NMDA receptor on interneurons in the medial prefrontal cortex, no study to our knowledge has investigated the influence of GluN2B-expressing adult-born granule cells. METHODS Here, we examined whether (R,S)-ketamine's efficacy depends on adult-born hippocampal neurons using a genetic strategy to selectively ablate the GluN2B subunit of the NMDA receptor from Nestin+ cells in male and female mice, tested across an array of standard behavioral assays. RESULTS We report that in male mice, GluN2B expression on 6-week-old adult-born neurons is necessary for (R,S)-ketamine's effects on behavioral despair in the forced swim test and on hyponeophagia in the novelty suppressed feeding paradigm, as well on fear behavior following contextual fear conditioning. In female mice, GluN2B expression is necessary for effects on hyponeophagia in novelty suppressed feeding. These effects were not replicated when ablating GluN2B from 2-week-old adult-born neurons. We also find that ablating neurogenesis increases fear expression in contextual fear conditioning, which is buffered by (R,S)-ketamine administration. CONCLUSIONS In line with previous studies, these results suggest that 6-week-old adult-born hippocampal neurons expressing GluN2B partially modulate (R,S)-ketamine's rapid-acting effects. Future work targeting these 6-week-old adult-born neurons may prove beneficial for increasing the efficacy of (R,S)-ketamine.
Collapse
Affiliation(s)
- Nicholas E Bulthuis
- Doctoral Program in Neurobiology and Behavior (NB&B), Columbia University, New York, New York, USA
| | - Josephine C McGowan
- Doctoral Program in Neurobiology and Behavior (NB&B), Columbia University, New York, New York, USA
| | - Liliana R Ladner
- Department of Neuroscience, Barnard College, New York, New York, USA
| | - Christina T LaGamma
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
| | - Sean C Lim
- Medical Science Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, New York, USA
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
- Doctoral Program in Neurobiology and Behavior (NB&B), Columbia University, New York, New York, USA
| | | | - Rebecca A Brachman
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
| | - Ezra Sydnor
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
| | - Ina P Pavlova
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
| | - Dong-oh Seo
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | - Michael R Drew
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | - Christine A Denny
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York, USA
| |
Collapse
|
7
|
Kim KJ, Hwang J, Lee KW, Kim J, Han Y, Namgung U. Neuron-Microglia Interaction is Involved in Anti-inflammatory Response by Vagus Nerve Stimulation in the Prefrontal Cortex of Rats Injected with Polyinosinic:Polycytidylic Acid. Mol Neurobiol 2024; 61:7403-7418. [PMID: 38383920 DOI: 10.1007/s12035-024-04054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Injection of polyinosinic:polycytidylic acid (poly(I:C)) into experimental animals induces neuroimmunological responses and thus has been used for the study of neurological disorders such as anxiety, depression, and chronic fatigue. Here, we investigated the effects of vagus nerve stimulation (VNS) on poly(I:C)-induced neuroinflammation and associated behavioral consequences in rats. The microglia in the prefrontal cortex (PFC) displayed the activated form of morphology in poly(I:C)-injected rats and changed to a normal shape after acute VNS (aVNS). Production of phospho-NF-κB, phospho-IκB, IL-1β, and cleaved caspase 3 was elevated by poly(I:C) and downregulated by aVNS. In contrast, phospho-Akt levels were decreased by poly(I:C) and increased by aVNS. Neuronal production of fractalkine (CX3CL1) in the PFC was markedly reduced by poly(I:C), but recovered by aVNS. Fractalkine interaction with its receptor CX3CR1 was highly elevated by VNS. We further demonstrated that the pharmacological blockade of CX3CR1 activity counteracted the production of IL-1β, phospho-Akt, and cleaved form of caspase 3 that was modulated by VNS, suggesting the anti-inflammatory effects of fractalkine-CX3CR1 signaling as a mediator of neuron-microglia interaction. Behavioral assessments of pain and temperature sensations by von Frey and hot/cold plate tests showed significant improvement by chronic VNS (cVNS) and forced swimming and marble burying tests revealed that the depressive-like behaviors caused by poly(I:C) injection were rescued by cVNS. We also found that the recognition memory which was impaired by poly(I:C) administration was improved by cVNS. This study suggests that VNS may play a role in regulating neuroinflammation and somatosensory and cognitive functions in poly(I:C)-injected animals.
Collapse
Affiliation(s)
- Ki-Joong Kim
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Jinyeon Hwang
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Kang-Woo Lee
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Jieun Kim
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Yunha Han
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Uk Namgung
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea.
| |
Collapse
|
8
|
Zahid Z, Sultan ZW, Krause BM, Wenthur CJ, Pearce RA, Banks MI. Divergent Effects of Ketamine and the Serotoninergic Psychedelic 2,5-Dimethoxy-4-Iodoamphetamine on Hippocampal Plasticity and Metaplasticity. PSYCHEDELIC MEDICINE (NEW ROCHELLE, N.Y.) 2024; 2:166-177. [PMID: 39669671 PMCID: PMC11633440 DOI: 10.1089/psymed.2023.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Introduction Serotonergic psychedelics and ketamine produce rapid and long-lasting symptomatic relief in multiple psychiatric disorders. Evidence suggests that despite having distinct molecular targets, both drugs may exert therapeutic benefit via their pro-neuroplastic effects. Following treatment with ketamine or serotonergic psychedelics, patients are reported to be more open to behavioral change, which is leveraged for psychotherapy-assisted reframing of narratives of the self. This period of enhanced behavioral change is postulated to be supported by a post-treatment window of enhanced neural plasticity, but evidence for such 'metaplastic' effects is limited. In this study, we tested for neural plasticity and metaplasticity in murine hippocampus. Methods Brain slices were obtained from C57BL/6J mice 24 hours after treatment (intraperitoneal injection) with saline, ketamine, or the serotonergic psychedelic 2,5-Dimethoxy-4-iodoamphetamine (DOI). Extracellular fiber volleys (FVs) and field excitatory postsynaptic potentials (fEPSPs) were recorded in stratum radiatum of CA1 in response to stimulation of Schaffer collateral fibers before and after induction of short-term and long-term potentiation (STP, LTP). Results Before LTP induction, responses differed across treatment groups (F1,2 = 5.407, p = 0.00665), with fEPSPs enhanced in slices from DOI-treated animals (p = 0.0182), but not ketamine-treated animals (p = 0.9786), compared to saline. There were no treatment effects on LT (F1,2 = 0.6, p = 0.516), but there were on STP (F1,2 =, p = 0.0167), with enhanced STP in DOI-treated (p = 0.0352) but not ketamine-treated (p = 0.9999) animals compared to saline. A presynaptic component to the mechanism for the DOI effects was suggested by (1) significantly enhanced FV amplitudes (F1,2 = 3.17, p = 0.049) in DOI-treated (p = 0.0457) but not ketamine-treated animals compared to saline (p = 0.8677); and (2) enhanced paired pulse ratios (F1,2 = 3.581, p = 0.0339) in slices from DOI-treated (p= 0.0257) but not ketamine-treated animals (p = 0.4845) compared to saline. Conclusions DOI, but not ketamine, induced significant neuroplastic and metaplastic effects at hippocampal CA1 synapses 24 hours after treatment, likely in part via a presynaptic mechanism.
Collapse
Affiliation(s)
- Zarmeen Zahid
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
- School of Pharmacy, University of Wisconsin, Madison, WI, 53705
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Ziyad W. Sultan
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Bryan M. Krause
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Cody J. Wenthur
- School of Pharmacy, University of Wisconsin, Madison, WI, 53705
- Transdisciplinary Center for Research in Psychoactive Substances, University of Wisconsin, Madison, WI, 53705
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Robert A. Pearce
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Matthew I. Banks
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
- Transdisciplinary Center for Research in Psychoactive Substances, University of Wisconsin, Madison, WI, 53705
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| |
Collapse
|
9
|
Khalifian C, Rashkovsky K, Mitchell E, Bismark A, Wagner AC, Knopp KC. A novel framework for ketamine-assisted couple therapy. Front Psychiatry 2024; 15:1376646. [PMID: 39193577 PMCID: PMC11347343 DOI: 10.3389/fpsyt.2024.1376646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/17/2024] [Indexed: 08/29/2024] Open
Abstract
Intimate relationship distress is prevalent and is associated with poorer health, mental health, and mortality outcomes. Evidence-based couple therapies target cognitive, behavioral, and emotional processes that underlie relationship dysfunction. Increasing research and clinical evidence supports the efficacy of ketamine-assisted psychotherapy (KAP) for addressing clinical mental health concerns, including depression, anxiety disorders, posttraumatic stress disorder, and more. The purported mechanisms of KAP are also likely to improve psychosocial and relational functioning for patients and may be useful for supporting change mechanisms in couple therapy. This paper reviews the current evidence for therapeutic ketamine and KAP and outlines how the mechanisms of ketamine therapy may also augment the cognitive, behavioral, and emotional interventions in the most commonly used evidence-based couple therapies. Key mechanisms include increased neuroplasticity, changes in functional connectivity, adaptive dissociation, decreased inhibition, and reduced avoidance. Given the reciprocal interaction between relationship dysfunction and mental health problems, ketamine may also help alleviate relationship distress by directly treating clinical mental health symptoms. We then outline a proposed framework for ketamine-assisted couple therapy, addressing the application of KAP preparation, dosing, and integration to a dyadic intervention framework in a way that can be applied to different couple therapy modalities. This clinical framework for couples' KAP may be useful for clinicians and researchers working to improve the efficacy of couple therapy, particularly when one or both partners has accompanying mental health concerns.
Collapse
Affiliation(s)
- C. Khalifian
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - K. Rashkovsky
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - E. Mitchell
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - A. Bismark
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - A. C. Wagner
- Remedy, Toronto, ON, Canada
- Department of Psychology, Toronto Metropolitan University, Toronto, ON, Canada
| | - K. C. Knopp
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
10
|
Bergosh M, Medvidovic S, Zepeda N, Crown L, Ipe J, Debattista L, Romero L, Amjadi E, Lam T, Hakopian E, Choi W, Wu K, Lo JYT, Lee DJ. Immediate and long-term electrophysiological biomarkers of antidepressant-like behavioral effects after subanesthetic ketamine and medial prefrontal cortex deep brain stimulation treatment. Front Neurosci 2024; 18:1389096. [PMID: 38966758 PMCID: PMC11222339 DOI: 10.3389/fnins.2024.1389096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction Both ketamine (KET) and medial prefrontal cortex (mPFC) deep brain stimulation (DBS) are emerging therapies for treatment-resistant depression, yet our understanding of their electrophysiological mechanisms and biomarkers is incomplete. This study investigates aperiodic and periodic spectral parameters, and the signal complexity measure sample entropy, within mPFC local field potentials (LFP) in a chronic corticosterone (CORT) depression model after ketamine and/or mPFC DBS. Methods Male rats were intraperitoneally administered CORT or vehicle for 21 days. Over the last 7 days, animals receiving CORT were treated with mPFC DBS, KET, both, or neither; then tested across an array of behavioral tasks for 9 days. Results We found that the depression-like behavioral and weight effects of CORT correlated with a decrease in aperiodic-adjusted theta power (5-10 Hz) and an increase in sample entropy during the administration phase, and an increase in theta peak frequency and a decrease in the aperiodic exponent once the depression-like phenotype had been induced. The remission-like behavioral effects of ketamine alone correlated with a post-treatment increase in the offset and exponent, and decrease in sample entropy, both immediately and up to eight days post-treatment. The remission-like behavioral effects of mPFC DBS alone correlated with an immediate decrease in sample entropy, an immediate and sustained increase in low gamma (20-50 Hz) peak width and aperiodic offset, and sustained improvements in cognitive function. Failure to fully induce remission-like behavior in the combinatorial treatment group correlated with a failure to suppress an increase in sample entropy immediately after treatment. Conclusion Our findings therefore support the potential of periodic theta parameters as biomarkers of depression-severity; and periodic low gamma parameters and cognitive measures as biomarkers of mPFC DBS treatment efficacy. They also support sample entropy and the aperiodic spectral parameters as potential cross-modal biomarkers of depression severity and the therapeutic efficacy of mPFC DBS and/or ketamine. Study of these biomarkers is important as objective measures of disease severity and predictive measures of therapeutic efficacy can be used to personalize care and promote the translatability of research across studies, modalities, and species.
Collapse
Affiliation(s)
- Matthew Bergosh
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sasha Medvidovic
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Nancy Zepeda
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lindsey Crown
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jennifer Ipe
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauren Debattista
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Luis Romero
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Eimon Amjadi
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tian Lam
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Erik Hakopian
- Department of Bioengineering, University of California Riverside, Riverside, CA, United States
| | - Wooseong Choi
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kevin Wu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jack Yu Tung Lo
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Darrin Jason Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States
| |
Collapse
|
11
|
Glavonic E, Dragic M, Mitic M, Aleksic M, Lukic I, Ivkovic S, Adzic M. Ketamine's Amelioration of Fear Extinction in Adolescent Male Mice Is Associated with the Activation of the Hippocampal Akt-mTOR-GluA1 Pathway. Pharmaceuticals (Basel) 2024; 17:669. [PMID: 38931336 PMCID: PMC11206546 DOI: 10.3390/ph17060669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Fear-related disorders, including post-traumatic stress disorder (PTSD), and anxiety disorders are pervasive psychiatric conditions marked by persistent fear, stemming from its dysregulated acquisition and extinction. The primary treatment for these disorders, exposure therapy (ET), relies heavily on fear extinction (FE) principles. Adolescence, a vulnerable period for developing psychiatric disorders, is characterized by neurobiological changes in the fear circuitry, leading to impaired FE and increased susceptibility to relapse following ET. Ketamine, known for relieving anxiety and reducing PTSD symptoms, influences fear-related learning processes and synaptic plasticity across the fear circuitry. Our study aimed to investigate the effects of ketamine (10 mg/kg) on FE in adolescent male C57 BL/6 mice at the behavioral and molecular levels. We analyzed the protein and gene expression of synaptic plasticity markers in the hippocampus (HPC) and prefrontal cortex (PFC) and sought to identify neural correlates associated with ketamine's effects on adolescent extinction learning. Ketamine ameliorated FE in the adolescent males, likely affecting the consolidation and/or recall of extinction memory. Ketamine also increased the Akt and mTOR activity and the GluA1 and GluN2A levels in the HPC and upregulated BDNF exon IV mRNA expression in the HPC and PFC of the fear-extinguished mice. Furthermore, ketamine increased the c-Fos expression in specific brain regions, including the ventral HPC (vHPC) and the left infralimbic ventromedial PFC (IL vmPFC). Providing a comprehensive exploration of ketamine's mechanisms in adolescent FE, our study suggests that ketamine's effects on FE in adolescent males are associated with the activation of hippocampal Akt-mTOR-GluA1 signaling, with the vHPC and the left IL vmPFC as the proposed neural correlates.
Collapse
Affiliation(s)
- Emilija Glavonic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (E.G.); (M.D.); (M.M.); (M.A.); (I.L.); (S.I.)
| | - Milorad Dragic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (E.G.); (M.D.); (M.M.); (M.A.); (I.L.); (S.I.)
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11158 Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (E.G.); (M.D.); (M.M.); (M.A.); (I.L.); (S.I.)
| | - Minja Aleksic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (E.G.); (M.D.); (M.M.); (M.A.); (I.L.); (S.I.)
| | - Iva Lukic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (E.G.); (M.D.); (M.M.); (M.A.); (I.L.); (S.I.)
| | - Sanja Ivkovic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (E.G.); (M.D.); (M.M.); (M.A.); (I.L.); (S.I.)
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (E.G.); (M.D.); (M.M.); (M.A.); (I.L.); (S.I.)
| |
Collapse
|
12
|
Vaiana AM, Chen Y, Gelfond J, Johnson-Pais TL, Leach RJ, Ramamurthy C, Thompson IM, Morilak DA. Effects of vortioxetine on hippocampal-related cognitive impairment induced in rats by androgen deprivation as a model of prostate cancer treatment. Transl Psychiatry 2023; 13:307. [PMID: 37788996 PMCID: PMC10547695 DOI: 10.1038/s41398-023-02600-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Advances in prostate cancer treatment have significantly improved survival, but quality of life for survivors remains an under-studied area of research. Androgen deprivation therapy (ADT) is a foundational treatment for advanced prostate cancer and is used as an adjuvant for prolonged periods in many high-risk, localized tumors. More than half of patients treated with ADT experience debilitating cognitive impairments in domains such as spatial learning and working memory. In this study, we investigated the effects of androgen deprivation on hippocampal-mediated cognition in rats. Vortioxetine, a multimodal antidepressant, has been shown to improve cognition in depressed patients. Thus, we also tested the potential efficacy of vortioxetine in restoring impaired cognition after ADT. We further investigated mechanisms that might contribute to these effects, measuring changes in the circuitry and gene expression within the dorsal hippocampus. ADT via surgical castration induced impairments in visuospatial cognition on the novel object location test and attenuated afferent-evoked local field potentials recorded in the CA1 region of the dorsal hippocampus. Chronic dietary administration of vortioxetine effectively reversed these deficits. Castration significantly altered gene expression in the hippocampus, whereas vortioxetine had little effect. Pathway analysis revealed that androgen depletion altered pathways related to synaptic plasticity. These results suggest that the hippocampus may be vulnerable to ADT, contributing to cognitive impairment in prostate cancer patients. Further, vortioxetine may be a candidate to improve cognition in patients who experience cognitive decline after androgen deprivation therapy for prostate cancer and may do so by restoring molecular and circuit-level plasticity-related mechanisms compromised by ADT.
Collapse
Affiliation(s)
- Alexandra M Vaiana
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Jonathan Gelfond
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Teresa L Johnson-Pais
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Robin J Leach
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Chethan Ramamurthy
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Ian M Thompson
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - David A Morilak
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
13
|
Paredes D, Morilak DA. Ventral Hippocampal Input to Infralimbic Cortex Is Necessary for the Therapeutic-Like Effects of Extinction in Stressed Rats. Int J Neuropsychopharmacol 2023; 26:529-536. [PMID: 37480574 PMCID: PMC10464924 DOI: 10.1093/ijnp/pyad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Posttraumatic stress disorder is characterized by deficits in cognitive flexibility related to dysfunction of the medial prefrontal cortex (mPFC). Exposure therapy can effectively reverse these deficits. Fear extinction in rodents bears similarity to exposure therapy. Extinction reverses chronic stress-induced deficits in cognitive flexibility on the attentional set-shifting test (AST), an mPFC-mediated process. This therapeutic effect requires activity of pyramidal neurons and brain derived neurotrophic factor (BDNF) signaling in infralimbic cortex (IL). However, the circuit mechanisms governing BDNF-mediated plasticity initiated by extinction in IL are unknown. The ventral hippocampus (vHipp) plays a role in regulating IL activity during extinction, and plasticity in vHipp is necessary for extinction memory consolidation. Therefore, we investigated the role of vHipp input to IL in the effects of extinction in reversing stress-induced cognitive deficits. METHODS vHipp input to IL was silenced using a Gi-Designer Receptors Exclusively Activated by Designer Drugs (DREADD) via local infusion of clozapine-N-oxide (CNO) into IL before extinction. A day later, rats were tested on AST. In a separate experiment, we tested whether vHipp input to the IL induces BDNF signaling to exert therapeutic effects. We activated the vHipp using a Gq-DREADD, and injected an anti-BDNF neutralizing antibody into IL. Rats were tested on the AST 24 hours later. RESULTS Silencing the vHipp input to IL prevented the beneficial effects of extinction in reversing stress-induced cognitive deficits. Activating vHipp input to IL in the absence of extinction was sufficient to reverse stress-induced deficits in set-shifting. The beneficial effects were blocked by local infusion of a neutralizing anti-BDNF antibody into IL. CONCLUSIONS vHipp-driven BDNF signaling in IL is critical for extinction to counteract the deleterious cognitive effects of chronic stress.
Collapse
Affiliation(s)
- Denisse Paredes
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David A Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX
| |
Collapse
|
14
|
Bigio B, Sagi Y, Barnhill O, Dobbin J, El Shahawy O, de Angelis P, Nasca C. Epigenetic embedding of childhood adversity: mitochondrial metabolism and neurobiology of stress-related CNS diseases. Front Mol Neurosci 2023; 16:1183184. [PMID: 37564785 PMCID: PMC10411541 DOI: 10.3389/fnmol.2023.1183184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/21/2023] [Indexed: 08/12/2023] Open
Abstract
This invited article ad memoriam of Bruce McEwen discusses emerging epigenetic mechanisms underlying the long and winding road from adverse childhood experiences to adult physiology and brain functions. The conceptual framework that we pursue suggest multidimensional biological pathways for the rapid regulation of neuroplasticity that utilize rapid non-genomic mechanisms of epigenetic programming of gene expression and modulation of metabolic function via mitochondrial metabolism. The current article also highlights how applying computational tools can foster the translation of basic neuroscience discoveries for the development of novel treatment models for mental illnesses, such as depression to slow the clinical manifestation of Alzheimer's disease. Citing an expression that many of us heard from Bruce, while "It is not possible to roll back the clock," deeper understanding of the biological pathways and mechanisms through which stress produces a lifelong vulnerability to altered mitochondrial metabolism can provide a path for compensatory neuroplasticity. The newest findings emerging from this mechanistic framework are among the latest topics we had the good fortune to discuss with Bruce the day before his sudden illness when walking to a restaurant in a surprisingly warm evening that preluded the snowstorm on December 18th, 2019. With this article, we wish to celebrate Bruce's untouched love for Neuroscience.
Collapse
Affiliation(s)
- Benedetta Bigio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| | - Yotam Sagi
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Olivia Barnhill
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| | - Josh Dobbin
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| | - Omar El Shahawy
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States
| | - Paolo de Angelis
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| | - Carla Nasca
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
15
|
Islas-Preciado D, López-Rubalcava C, Estrada-Camarena E, de Gortari P, Castro-García M. Effect of chronic unpredictable stress in female Wistar-Kyoto rats subjected to progesterone withdrawal: Relevance for Premenstrual Dysphoric Disorder neurobiology. Psychoneuroendocrinology 2023; 155:106331. [PMID: 37437420 DOI: 10.1016/j.psyneuen.2023.106331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Premenstrual Dysphoric Disorder (PMDD) is related to an abrupt drop in progesterone and impairments in the HPA axis that cause anxiety. Suffering persons report higher daily-life stress and anxiety proneness that may contribute to developing PMDD, considered a chronic stress-related disorder. Here, we explored the effect of chronic unpredictable stress (CUS) in rats subjected to progesterone withdrawal (PW) and evaluated gene expression of HPA axis activation in the stress-vulnerable Wistar-Kyoto (WKY) rat strain that is prone to anxiety. Ovariectomized WKY rats were randomly assigned to CUS or Standard-housed conditions (SHC) for 30 days. To induce PW, animals received 2 mg/kg of progesterone on day 25th for 5 days; 24 h later, they were tested using the anxiety-like burying behavior test (BBT). After behavioral completion, rats were euthanized, and brains were extracted to measure Crh (PVN) and Nr3c1 (hippocampus) mRNA. Blood corticosterone and vasopressin levels were determined. Results showed that PW exacerbated anxiety-like behaviors through passive coping in CUS-WKY. PW decreased Crh-PVN mRNA and the Nr3c1-hippocampal mRNA expression in SHC. CUS decreased Crh-PVN mRNA compared to SHC, and no further changes were observed by PW or BBT exposure. CUS reduced Nr3c1-hippocampal gene expression compared to SHC animals, and lower Nr3c1 mRNA was detected due to BBT. The PW increased corticosterone in SHC and CUS rats; however, CUS blunted corticosterone when combined with PW+BBT and similarly occurred in vasopressin concentrations. Chronic stress blunts the response of components of the HPA axis regulation when PW and BBT (systemic and psychogenic stressors, respectively) are presented. This response may facilitate less adaptive behaviors through passive coping in stress-vulnerable subjects in a preclinical model of premenstrual anxiety.
Collapse
Affiliation(s)
- D Islas-Preciado
- Lab. de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - C López-Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados IPN (Cinvestav-IPN), Mexico
| | - E Estrada-Camarena
- Lab. de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico.
| | - P de Gortari
- Lab. de Neurofisiología Molecular, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - M Castro-García
- Lab de Etología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| |
Collapse
|
16
|
Elwyn R, Mitchell J, Kohn MR, Driver C, Hay P, Lagopoulos J, Hermens DF. Novel ketamine and zinc treatment for anorexia nervosa and the potential beneficial interactions with the gut microbiome. Neurosci Biobehav Rev 2023; 148:105122. [PMID: 36907256 DOI: 10.1016/j.neubiorev.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Anorexia nervosa (AN) is a severe illness with diverse aetiological and maintaining contributors including neurobiological, metabolic, psychological, and social determining factors. In addition to nutritional recovery, multiple psychological and pharmacological therapies and brain-based stimulations have been explored; however, existing treatments have limited efficacy. This paper outlines a neurobiological model of glutamatergic and γ-aminobutyric acid (GABA)-ergic dysfunction, exacerbated by chronic gut microbiome dysbiosis and zinc depletion at a brain and gut level. The gut microbiome is established early in development, and early exposure to stress and adversity contribute to gut microbial disturbance in AN, early dysregulation to glutamatergic and GABAergic networks, interoceptive impairment, and inhibited caloric harvest from food (e.g., zinc malabsorption, competition for zinc ions between gut bacteria and host). Zinc is a key part of glutamatergic and GABAergic networks, and also affects leptin and gut microbial function; systems dysregulated in AN. Low doses of ketamine in conjunction with zinc, could provide an efficacious combination to act on NMDA receptors and normalise glutamatergic, GABAergic and gut function in AN.
Collapse
Affiliation(s)
- Rosiel Elwyn
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia.
| | - Jules Mitchell
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Michael R Kohn
- AYA Medicine Westmead Hospital, CRASH (Centre for Research into Adolescent's Health) Western Sydney Local Health District, Sydney University, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Christina Driver
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Phillipa Hay
- Translational Health Research Institute (THRI) School of Medicine, Western Sydney University, Campbelltown, NSW, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
17
|
Acevedo J, Mugarura NE, Welter AL, Johnson EM, Siegel JA. The Effects of Acute and Repeated Administration of Ketamine on Memory, Behavior, and Plasma Corticosterone Levels in Female Mice. Neuroscience 2023; 512:99-109. [PMID: 36496189 DOI: 10.1016/j.neuroscience.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Ketamine is an anesthetic drug that has recently been approved for the treatment of treatment-resistant depression. Females are diagnosed with Major Depressive Disorder at higher rates than males, yet most of the pre-clinical research on ketamine has been conducted in male subjects. Additionally, the literature on the acute and long-term behavioral and cognitive effects of ketamine shows conflicting results. It is important to examine the acute and long-term cognitive and behavioral effects of ketamine exposure at lower sub-anesthetic doses, as the recreational use of the drug at higher doses is associated with cognitive and memory impairments. The current study examined the effects of acute and repeated ketamine exposure on anxiety-like behavior, novel object recognition memory, depression-like behavior, and plasma corticosterone levels in 20 adult female C57BL/6J mice. Mice were exposed acutely or repeatedly for 10 consecutive days to saline or 15 mg/kg ketamine and behavior was measured in the open field test, novel object recognition test, and the Porsolt forced swim test. Plasma corticosterone levels were measured following behavioral testing. Acute ketamine exposure decreased locomotor activity and increased anxiety-like behavior in the open field test compared to controls, while repeated ketamine exposure impaired memory in the novel object recognition test. There were no effects of acute or repeated ketamine exposure on depression-like behavior in the Porsolt forced swim test or on plasma corticosterone levels. These findings suggest that a subanesthetic dose of ketamine alters behavior and cognition in female mice and the effects are dependent on the duration of exposure.
Collapse
Affiliation(s)
- Jonathan Acevedo
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W Carson St, Torrance, CA 90502, USA.
| | - Naomi E Mugarura
- Neuroscience Program, University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105, USA.
| | - Alex L Welter
- Neuroscience Program, University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105, USA.
| | - Emily M Johnson
- Neuroscience Program, University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105, USA.
| | - Jessica A Siegel
- Department of Biochemistry and Biophysics, The College of Science, Oregon State University, 1500 SW Jefferson Way, Corvallis, OR 97331, USA.
| |
Collapse
|
18
|
Johnson SB, Lingg RT, Skog TD, Hinz DC, Romig-Martin SA, Viau V, Narayanan NS, Radley JJ. Activity in a prefrontal-periaqueductal gray circuit overcomes behavioral and endocrine features of the passive coping stress response. Proc Natl Acad Sci U S A 2022; 119:e2210783119. [PMID: 36306326 PMCID: PMC9636920 DOI: 10.1073/pnas.2210783119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
The question of how the brain links behavioral and biological features of defensive responses has remained elusive. The importance of this problem is underscored by the observation that behavioral passivity in stress coping is associated with elevations in glucocorticoid hormones, and each may carry risks for susceptibility to a host of stress-related diseases. Past work implicates the medial prefrontal cortex (mPFC) in the top-down regulation of stress-related behaviors; however, it is unknown whether such changes have the capacity to buffer against the longer-lasting biological consequences associated with aversive experiences. Using the shock probe defensive burying test in rats to naturalistically measure behavioral and endocrine features of coping, we observed that the active behavioral component of stress coping is associated with increases in activity along a circuit involving the caudal mPFC and midbrain dorsolateral periaqueductal gray (PAG). Optogenetic manipulations of the caudal mPFC-to-dorsolateral PAG pathway bidirectionally modulated active (escape and defensive burying) behaviors, distinct from a rostral mPFC-ventrolateral PAG circuit that instead limited passive (immobility) behavior. Strikingly, under conditions that biased rats toward a passive coping response set, including exaggerated stress hormonal output and increased immobility, excitation of the caudal mPFC-dorsolateral PAG projection significantly attenuated each of these features. These results lend insight into how the brain coordinates response features to overcome passive coping and may be of importance for understanding how activated neural systems promote stress resilience.
Collapse
Affiliation(s)
- Shane B. Johnson
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
| | - Ryan T. Lingg
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Timothy D. Skog
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
| | - Dalton C. Hinz
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Sara A. Romig-Martin
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Victor Viau
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Nandakumar S. Narayanan
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
- Department of Neurology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242
| | - Jason J. Radley
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| |
Collapse
|
19
|
Girotti M, Carreno FR, Morilak DA. Role of Orbitofrontal Cortex and Differential Effects of Acute and Chronic Stress on Motor Impulsivity Measured With 1-Choice Serial Reaction Time Test in Male Rats. Int J Neuropsychopharmacol 2022; 25:1026-1036. [PMID: 36087292 PMCID: PMC9743967 DOI: 10.1093/ijnp/pyac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/08/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Deficits in motor impulsivity, that is, the inability to inhibit a prepotent response, are frequently observed in psychiatric conditions. Several studies suggest that stress often correlates with higher impulsivity. Among the brain areas affected by stress, the orbitofrontal cortex (OFC) is notable because of its role in impulse control. OFC subregions with unique afferent and efferent circuitry play distinct roles in impulse control, yet it is not clear what OFC subregions are engaged during motor impulsivity tasks. METHODS In this study we used a rodent test of motor impulsivity, the 1-choice serial reaction time test, to explore activation of OFC subregions either during a well-learned motor impulsivity task or in a challenge task with a longer wait time that increases premature responding. We also examined the effects of acute inescapable stress, chronic intermittent cold stress and chronic unpredictable stress on motor impulsivity. RESULTS Fos expression increased in the lateral OFC and agranular insular cortex during performance in both the mastered and challenge conditions. In the ventral OFC, Fos expression increased only during challenge, and within the medial OFC, Fos was not induced in either condition. Inescapable stress produced a transient effect on premature responses in the mastered task, whereas chronic intermittent cold stress and chronic unpredictable stress altered premature responses in both conditions in ways specific to each stressor. CONCLUSIONS These results suggest that different OFC subregions have different roles in motor impulse control, and the effects of stress vary depending on the nature and duration of the stressor.
Collapse
Affiliation(s)
- Milena Girotti
- Correspondence: Milena Girotti, PhD, Department of Pharmacology, Mail Code 7764, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA ()
| | - Flavia R Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David A Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
20
|
Paredes D, Knippenberg AR, Bulin SE, Keppler LJ, Morilak DA. Adjunct treatment with ketamine enhances the therapeutic effects of extinction learning after chronic unpredictable stress. Neurobiol Stress 2022; 19:100468. [PMID: 35865972 PMCID: PMC9293662 DOI: 10.1016/j.ynstr.2022.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/09/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating illness characterized by dysfunction in the medial prefrontal cortex (mPFC). Although both pharmacological and cognitive behavioral interventions have shown some promise at alleviating symptoms, high attrition and persistence of treatment-resistant symptoms pose significant challenges that remain unresolved. Specifically, prolonged exposure therapy, a gold standard intervention to treat PTSD, has high dropout rates resulting in many patients receiving less than a fully effective course of treatment. Administering pharmacological treatments together with behavioral psychotherapies like prolonged exposure may offer an important avenue for enhancing therapeutic efficacy sooner, thus reducing the duration of treatment and mitigating the impact of attrition. In this study, using extinction learning as a rat model of exposure therapy, we hypothesized that administering ketamine as an adjunct treatment together with extinction will enhance the efficacy of extinction in reversing stress-induced deficits in set shifting, a measure of cognitive flexibility. Results showed that combining a sub-effective dose of ketamine with a shortened, sub-effective extinction protocol fully reversed stress-induced cognitive set-shifting deficits in both male and female rats. These effects may be due to shared molecular mechanisms between extinction and ketamine, such as increased neuronal plasticity in common circuitry (e.g., hippocampus-mPFC), or increased BDNF signaling. This work suggests that fast-acting drugs, such as ketamine, can be effectively used in combination with behavioral interventions to reduce treatment duration and potentially mitigate the impact of attrition. Future work is needed to delineate other pharmacotherapies that may complement the effects of extinction via shared or independent mechanisms.
Collapse
Affiliation(s)
- Denisse Paredes
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Anna R. Knippenberg
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Sarah E. Bulin
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Lydia J. Keppler
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - David A. Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Corresponding author. Department of Pharmacology, Mail Code 7764 University of Texas Health Science Center, San Antonio 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| |
Collapse
|
21
|
Lewis V, Rodrigue B, Arsenault E, Zhang M, Taghavi-Abkuh FF, Silva WCC, Myers M, Matta-Camacho E, Aguilar-Valles A. Translational control by ketamine and its implications for comorbid cognitive deficits in depressive disorders. J Neurochem 2022. [PMID: 35680556 DOI: 10.1111/jnc.15652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
Ketamine has shown antidepressant effects in patients with major depressive disorder (MDD) resistant to first-line treatments and approved for use in this patient population. Ketamine induces several forms of synaptic plasticity, which are proposed to underlie its antidepressant effects. However, the molecular mechanism of action directly responsible for ketamine's antidepressant effects remains under active investigation. It was recently demonstrated that the effectors of the mammalian target of rapamycin complex 1 (mTORC1) signalling pathway, namely, eukaryotic initiation factor 4E (eIF4E) binding proteins 1 and 2 (4E-BP1 and 4E-BP2), are central in mediating ketamine-induced synaptic plasticity and behavioural antidepressant-like effect. 4E-BPs are a family of messenger ribonucleic acid (mRNA) translation repressors inactivated by mTORC1. We observed that their expression in inhibitory interneurons mediates ketamine's effects in the forced swim and novelty suppressed feeding tests and the long-lasting inhibition of GABAergic neurotransmission in the hippocampus. In addition, another effector pathway that regulates translation elongation downstream of mTORC1, the eukaryotic elongation factor 2 kinase (eEF2K), has been implicated in ketamine's behavioural effects. We will discuss how ketamine's rapid antidepressant effect depends on the activation of neuronal mRNA translation through 4E-BP1/2 and eEF2K. Furthermore, given that these pathways also regulate cognitive functions, we will discuss the evidence of ketamine's effect on cognitive function in MDD. Overall, the data accrued from pre-clinical research have implicated the mRNA translation pathways in treating mood symptoms of MDD. However, it is yet unclear whether the pro-cognitive potential of subanesthetic ketamine in rodents also engages these pathways and whether such an effect is consistently observed in the treatment-resistant MDD population.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Brandon Rodrigue
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Emily Arsenault
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Molly Zhang
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Mysa Myers
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Edna Matta-Camacho
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
22
|
Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder. Transl Psychiatry 2021; 11:574. [PMID: 34750350 PMCID: PMC8575795 DOI: 10.1038/s41398-021-01706-y] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Psilocybin has shown promise for the treatment of mood disorders, which are often accompanied by cognitive dysfunction including cognitive rigidity. Recent studies have proposed neuropsychoplastogenic effects as mechanisms underlying the enduring therapeutic effects of psilocybin. In an open-label study of 24 patients with major depressive disorder, we tested the enduring effects of psilocybin therapy on cognitive flexibility (perseverative errors on a set-shifting task), neural flexibility (dynamics of functional connectivity or dFC via functional magnetic resonance imaging), and neurometabolite concentrations (via magnetic resonance spectroscopy) in brain regions supporting cognitive flexibility and implicated in acute psilocybin effects (e.g., the anterior cingulate cortex, or ACC). Psilocybin therapy increased cognitive flexibility for at least 4 weeks post-treatment, though these improvements were not correlated with the previously reported antidepressant effects. One week after psilocybin therapy, glutamate and N-acetylaspartate concentrations were decreased in the ACC, and dFC was increased between the ACC and the posterior cingulate cortex (PCC). Surprisingly, greater increases in dFC between the ACC and PCC were associated with less improvement in cognitive flexibility after psilocybin therapy. Connectome-based predictive modeling demonstrated that baseline dFC emanating from the ACC predicted improvements in cognitive flexibility. In these models, greater baseline dFC was associated with better baseline cognitive flexibility but less improvement in cognitive flexibility. These findings suggest a nuanced relationship between cognitive and neural flexibility. Whereas some enduring increases in neural dynamics may allow for shifting out of a maladaptively rigid state, larger persisting increases in neural dynamics may be of less benefit to psilocybin therapy.
Collapse
|
23
|
Wilkinson ST, Rhee TG, Joormann J, Webler R, Ortiz Lopez M, Kitay B, Fasula M, Elder C, Fenton L, Sanacora G. Cognitive Behavioral Therapy to Sustain the Antidepressant Effects of Ketamine in Treatment-Resistant Depression: A Randomized Clinical Trial. PSYCHOTHERAPY AND PSYCHOSOMATICS 2021; 90:318-327. [PMID: 34186531 DOI: 10.1159/000517074] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Ketamine has emerged as a rapid-acting antidepressant. While ongoing treatment can prevent relapse, concerns exist regarding long-term exposure. OBJECTIVE We conducted a randomized trial to examine the feasibility and efficacy of cognitive behavioral therapy (CBT) following intravenous ketamine in treatment-resistant depression (TRD). METHODS Subjects with TRD were recruited and treated with 6 intravenous infusions of ketamine over 3 weeks. Subjects who experienced a clinical response (≥50% improvement in depression severity) were then randomized to receiving CBT or treatment as usual (TAU) for an additional 14 weeks, using a sequential treatment model. RESULTS Of the 42 patients who signed consent, 28 patients achieved a response and were randomized to CBT or TAU. When measured using the Montgomery-Asberg Depression Rating Scale (primary outcome measure), the effect size at the end of the study was moderate (Cohen d = 0.65; 95% CI -0.55 to 1.82), though the group-by-time interaction effect was not significant. There was a significant group-by-time interaction as measured by the Quick Inventory of Depressive Symptomatology (F = 4.58; p = 0.033), favoring a greater sustained improvement in the CBT group. This corresponded to a moderate-to-large effect size of the Cohen d = 0.71 (95% CI -0.30 to 1.70) at the end of the study (14 weeks following the last ketamine infusion). In a subset of patients (N = 20) who underwent cognitive testing using the emotional N-back assessments before and after ketamine, ketamine responders showed improvement in the accuracy of emotional N-back (t[8] = 2.33; p < 0.05) whereas nonresponders did not (t[10] <1; p ns). CONCLUSIONS This proof-of-concept study provides preliminary data indicating that CBT may sustain the antidepressant effects of ketamine in TRD. Further study and optimization of this treatment approach in well-powered clinical trials is recommended.
Collapse
Affiliation(s)
- Samuel T Wilkinson
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.,Interventional Psychiatric Service, Yale School of Medicine, New Haven, Connecticut, USA
| | - Taeho Greg Rhee
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Ryan Webler
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mayra Ortiz Lopez
- Department of Nursing, Southern Connecticut State University, New Haven, Connecticut, USA
| | - Brandon Kitay
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Atlanta, Georgia, USA
| | - Madonna Fasula
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christina Elder
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lisa Fenton
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.,Interventional Psychiatric Service, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Chen BK, Luna VM, Shannon ME, Hunsberger HC, Mastrodonato A, Stackmann M, McGowan JC, Rubinstenn G, Denny CA. Fluoroethylnormemantine, a Novel NMDA Receptor Antagonist, for the Prevention and Treatment of Stress-Induced Maladaptive Behavior. Biol Psychiatry 2021; 90:458-472. [PMID: 34274107 PMCID: PMC9590626 DOI: 10.1016/j.biopsych.2021.04.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Major depressive disorder is a common, recurrent illness. Recent studies have implicated the NMDA receptor in the pathophysiology of major depressive disorder. (R,S)-ketamine, an NMDA receptor antagonist, is an effective antidepressant but has numerous side effects. Here, we characterized a novel NMDA receptor antagonist, fluoroethylnormemantine (FENM), to determine its effectiveness as a prophylactic and/or antidepressant against stress-induced maladaptive behavior. METHODS Saline, memantine (10 mg/kg), (R,S)-ketamine (30 mg/kg), or FENM (10, 20, or 30 mg/kg) was administered before or after contextual fear conditioning in 129S6/SvEv mice. Drug efficacy was assayed using various behavioral tests. Protein expression in the hippocampus was quantified with immunohistochemistry or Western blotting. In vitro radioligand binding was used to assay drug binding affinity. Patch clamp electrophysiology was used to determine the effect of drug administration on glutamatergic activity in ventral hippocampal cornu ammonis 3 (vCA3) 1 week after injection. RESULTS Given after stress, FENM decreased behavioral despair and reduced perseverative behavior. When administered after re-exposure, FENM facilitated extinction learning. As a prophylactic, FENM attenuated learned fear and decreased stress-induced behavioral despair. FENM was behaviorally effective in both male and female mice. (R,S)-ketamine, but not FENM, increased expression of c-fos in vCA3. Both (R,S)-ketamine and FENM attenuated large-amplitude AMPA receptor-mediated bursts in vCA3, indicating a common neurobiological mechanism for further study. CONCLUSIONS Our results indicate that FENM is a novel drug that is efficacious when administered at various times before or after stress. Future work will further characterize FENM's mechanism of action with the goal of clinical development.
Collapse
Affiliation(s)
- Briana K Chen
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, New York
| | - Victor M Luna
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | | | - Holly C Hunsberger
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Alessia Mastrodonato
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Michelle Stackmann
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, New York
| | - Josephine C McGowan
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, New York
| | | | - Christine A Denny
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
25
|
Papp M, Gruca P, Lason M, Litwa E, Solecki W, Willner P. Insufficiency of ventral hippocampus to medial prefrontal cortex transmission explains antidepressant non-response. J Psychopharmacol 2021; 35:1253-1264. [PMID: 34617804 PMCID: PMC8521380 DOI: 10.1177/02698811211048281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND There is extensive evidence that antidepressant drugs restore normal brain function by repairing damage to ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC). While the damage is more extensive in hippocampus, the evidence of treatments, such as deep brain stimulation, suggests that functional changes in prefrontal cortex may be more critical. We hypothesized that antidepressant non-response may result from an insufficiency of transmission from vHPC to mPFC. METHOD Antidepressant non-responsive Wistar Kyoto (WKY) rats were subjected to chronic mild stress (CMS), then treated with chronic daily administration of the antidepressant drug venlafaxine (VEN) and/or repeated weekly optogenetic stimulation (OGS) of afferents to mPFC originating from vHPC or dorsal HPC (dHPC). RESULTS As in many previous studies, CMS decreased sucrose intake, open-arm entries on the elevated plus maze (EPM), and novel object recognition (NOR). Neither VEN nor vHPC-mPFC OGS alone was effective in reversing the effects of CMS, but the combination of chronic VEN and repeated OGS restored normal behaviour on all three measures. dHPC-mPFC OGS restored normal behaviour in the EPM and NOR test irrespective of concomitant VEN treatment, and had no effect on sucrose intake. CONCLUSIONS The synergism between VEN and vHPC-mPFC OGS supports the hypothesis that the antidepressant non-responsiveness of WKY rats results from a failure of antidepressant treatment fully to restore transmission in the vHPC-mPFC pathway.
Collapse
Affiliation(s)
- Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland,Mariusz Papp, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, Krakow 31-343, Poland.
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
26
|
Fraga DB, Camargo A, Olescowicz G, Azevedo Padilha D, Mina F, Budni J, Brocardo PS, Rodrigues ALS. A single administration of ascorbic acid rapidly reverses depressive-like behavior and hippocampal synaptic dysfunction induced by corticosterone in mice. Chem Biol Interact 2021; 342:109476. [PMID: 33872575 DOI: 10.1016/j.cbi.2021.109476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022]
Abstract
Ketamine is the prototype for glutamate-based fast-acting antidepressants. The establishment of ketamine-like drugs is still a challenge and ascorbic acid has emerged as a candidate. This study investigated the ascorbic acid's ability to induce a fast antidepressant-like response and to improve hippocampal synaptic markers in mice subjected to chronic corticosterone (CORT) administration. CORT was administered for 21 days, followed by a single administration of ascorbic acid (1 mg ∕Kg, p.o.), ketamine (1 mg ∕Kg, i.p.) or fluoxetine (10 mg ∕Kg, p.o.) in mice. Depressive-like behavior, hippocampal synaptic proteins immunocontent, dendrite spines density in the dentate gyrus (DG) were analyzed 24 h following treatments. The administration of ascorbic acid or ketamine, but not fluoxetine, counteracted CORT-induced depressive-like behavior in the tail suspension test (TST). CORT administration reduced PSD-95, GluA1, and synapsin (synaptic markers) immunocontent, and these alterations were reversed by ascorbic acid or ketamine, but only ketamine reversed the CORT-induced reduction on GluA1 immunocontent. In the ventral and dorsal DG, CORT decreased filopodia-, thin- and stubby-shaped spines, while ascorbic acid and ketamine abolished this alteration only in filopodia spines. Ascorbic acid and ketamine increased mushroom-shaped spines density in ventral and dorsal DG. Therefore, the results show that a single administration of ascorbic acid, in a way similar to ketamine, rapidly elicits an antidepressant-like response and reverses hippocampal synaptic deficits caused by CORT, an effect associated with increased levels of synaptic proteins and dendritic remodeling.
Collapse
Affiliation(s)
- Daiane B Fraga
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Gislaine Olescowicz
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Dayane Azevedo Padilha
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Francielle Mina
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Josiane Budni
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Patricia S Brocardo
- Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
27
|
Melanson B, Lapointe T, Leri F. Impact of impaired glucose metabolism on responses to a psychophysical stressor: modulation by ketamine. Psychopharmacology (Berl) 2021; 238:1005-1015. [PMID: 33404733 DOI: 10.1007/s00213-020-05748-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
RATIONALE There is evidence that hypoglycemia, a metabolic stressor, can negatively impact mood and motivation, and can interact with other stressors to potentiate their effects on behavior and physiology. OBJECTIVES/METHODS The current study in male Sprague-Dawley rats explored the interaction between impaired glucose metabolism induced by 0, 200, or 300 mg/kg 2-deoxy-D-glucose (2-DG) and a psychophysical stressor induced by forced swimming stress (FSS; 6 sessions, 10 min/session). The endpoints of interest were blood glucose levels, progressive behavioral immobility, and saccharin preference (2-bottle choice test). Furthermore, it was investigated whether pre-treatment with 0, 10, or 20 mg/kg ketamine could modify the interaction between 2-DG and FSS on these endpoints. RESULTS It was found that 2-DG increased blood glucose levels equally in all experimental groups, accelerated the immobile response to FSS, and suppressed saccharin preference 1 week following termination of stress exposure. As well, pre-treatment with ketamine blocked the effects of combined 2-DG and FSS on immobility and saccharin preference without affecting blood glucose levels and produced an anti-immobility effect that was observed during a drug-free test swim 1 week following administration. CONCLUSIONS Overall, these findings demonstrate that impaired glucose metabolism can potentiate the effects of a psychophysical stressor, and that this interaction can be modulated pharmacologically by ketamine.
Collapse
Affiliation(s)
- Brett Melanson
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Thomas Lapointe
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Francesco Leri
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
28
|
Höflich A, Kraus C, Pfeiffer RM, Seiger R, Rujescu D, Zarate CA, Kasper S, Winkler D, Lanzenberger R. Translating the immediate effects of S-Ketamine using hippocampal subfield analysis in healthy subjects-results of a randomized controlled trial. Transl Psychiatry 2021; 11:200. [PMID: 33795646 PMCID: PMC8016970 DOI: 10.1038/s41398-021-01318-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
Antidepressant doses of ketamine rapidly facilitate synaptic plasticity and modify neuronal function within prefrontal and hippocampal circuits. However, most studies have demonstrated these effects in animal models and translational studies in humans are scarce. A recent animal study showed that ketamine restored dendritic spines in the hippocampal CA1 region within 1 h of administration. To translate these results to humans, this randomized, double-blind, placebo-controlled, crossover magnetic resonance imaging (MRI) study assessed ketamine's rapid neuroplastic effects on hippocampal subfield measurements in healthy volunteers. S-Ketamine vs. placebo data were analyzed, and data were also grouped by brain-derived neurotrophic factor (BDNF) genotype. Linear mixed models showed that overall hippocampal subfield volumes were significantly larger (p = 0.009) post ketamine than post placebo (LS means difference=0.008, standard error=0.003). Post-hoc tests did not attribute effects to specific subfields (all p > 0.05). Trend-wise volumetric increases were observed within the left hippocampal CA1 region (p = 0.076), and trend-wise volumetric reductions were obtained in the right hippocampal-amygdaloid transition region (HATA) (p = 0.067). Neither genotype nor a genotype-drug interaction significantly affected the results (all p > 0.7). The study provides evidence that ketamine has short-term effects on hippocampal subfield volumes in humans. The results translate previous findings from animal models of depression showing that ketamine has pro-neuroplastic effects on hippocampal structures and underscore the importance of the hippocampus as a key region in ketamine's mechanism of action.
Collapse
Affiliation(s)
- Anna Höflich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ruth M Pfeiffer
- Biostatistics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rene Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
29
|
Vecchia DD, Kanazawa LKS, Wendler E, Hocayen PDAS, Vital MABF, Takahashi RN, Da Cunha C, Miyoshi E, Andreatini R. Ketamine reversed short-term memory impairment and depressive-like behavior in animal model of Parkinson's disease. Brain Res Bull 2021; 168:63-73. [PMID: 33359641 DOI: 10.1016/j.brainresbull.2020.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
The most common features of Parkinson's disease (PD) are motor impairments, but many patients also present depression and memory impairment. Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, has been shown to be effective in patients with treatment-resistant major depression. Thus, the present study evaluated the action of ketamine on memory impairment and depressive-like behavior in an animal model of PD. Male Wistar rats received a bilateral infusion of 6 μg/side 6-hydroxydopamine (6-OHDA) into the substantia nigra pars compacta (SNc). Short-term memory was evaluated by the social recognition test, and depressive-like behaviors were evaluated by the sucrose preference and forced swimming tests (FST). Drug treatments included vehicle (i.p., once a week); ketamine (5, 10 and 15 mg/kg, i.p., once a week); and imipramine (20 mg/kg, i.p., daily). The treatments were administered 21 days after the SNc lesion and lasted for 28 days. The SNc lesion impaired short-term social memory, and all ketamine doses reversed the memory impairment and anhedonia (reduction of sucrose preference) induced by 6-OHDA. In the FST, 6-OHDA increased immobility, and all doses of ketamine and imipramine reversed this effect. The anti-immobility effect of ketamine was associated with an increase in swimming but not in climbing, suggesting a serotonergic effect. Ketamine and imipramine did not reverse the 6-OHDA-induced reduction in tyrosine hydroxylase immunohistochemistry in the SNc. In conclusion, ketamine reversed depressive-like behaviors and short-term memory impairment in rats with SNc bilateral lesions, indicating a promising profile for its use in PD patients.
Collapse
Affiliation(s)
- Débora Dalla Vecchia
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil; Uniandrade, Centro Universitário Campos de Andrade, Santa Quiteria, 80310-310, Curitiba, PR, Brazil
| | - Luiz Kae Sales Kanazawa
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil
| | - Etiéli Wendler
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil; Uniandrade, Centro Universitário Campos de Andrade, Santa Quiteria, 80310-310, Curitiba, PR, Brazil
| | - Palloma de Almeida Soares Hocayen
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil
| | - Maria Aparecida Barbato Frazão Vital
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil
| | - Reinaldo Naoto Takahashi
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Trindade, 88049-900, Florianópolis, SC, Brazil
| | - Claudio Da Cunha
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil
| | - Edmar Miyoshi
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Avenida General Carlos Cavalcanti 4748, 84030-900, Ponta Grossa, PR, Brazil
| | - Roberto Andreatini
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
30
|
Na KS, Kim YK. Increased use of ketamine for the treatment of depression: Benefits and concerns. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110060. [PMID: 32777326 DOI: 10.1016/j.pnpbp.2020.110060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/20/2020] [Accepted: 08/03/2020] [Indexed: 01/19/2023]
Abstract
Ketamine was initially used as an anesthetic which could induce cognitive impairment and psychomimetic effects. In initial randomized controlled trials (RCTs) that mostly included a small sample size and were investigator-initiated, ketamine reportedly exerted antidepressant effects 1 to 2 h after a single intravenous infusion in patients with major depressive episodes, particularly treatment-resistant depression (TRD). Interest in ketamine was reported in systematic reviews and meta-analyses, however, many were primarily focused on the rapid onset of ketamine effects without equal attention to its safety and tolerability. Furthermore, several meta-analyses were based on many duplicated RCTs. The initial trends emphasized the clinical utility of ketamine as an antidepressant. The development of esketamine nasal spray by a pharmaceutical company led to an RCT with a large sample size and segmented therapeutic strategy, which provided results applicable to patients with TRD in the real-world clinical environment. However, possible effects of ketamine on cognitive function have not yet been investigated in RCTs. In numerous studies, chronic, recreational use of ketamine reportedly substantially impaired cognitive function in most domains. Although results of several human and animal studies indicated the therapeutic use of ketamine for treatment of depression did not induce cognitive impairment, this issue should be further investigated. Based on the current knowledge about ketamine, future antidepressants are expected to be glutamatergic drugs without ketamine-like adverse events (e.g., psychomimetic symptoms and cognitive impairment), but having only ketamine-like therapeutic properties (e.g., rapid antidepressants effects without time lag).
Collapse
Affiliation(s)
- Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Mechanisms associated with the antidepressant-like effects of L-655,708. Neuropsychopharmacology 2020; 45:2289-2298. [PMID: 32688367 PMCID: PMC7785005 DOI: 10.1038/s41386-020-0772-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023]
Abstract
Previous research has demonstrated that selective modulation of hippocampal transmission by systemic administration of an α5-GABAA receptor negative allosteric modulator, L-655,708, reproduces the sustained antidepressant-like (AD-like) effect of R,S-ketamine in the absence of any psychotomimetic or abuse-related effects. Pharmacological, electrophysiological (whole-cell patch clamp), and behavioral approaches were used to examine the mechanisms by which L-655,708 produces plasticity within the hippocampus that accounts for its sustained AD-like effect in rats. Inhibitors of either transcription or translation prevented the sustained AD-like effect of L-655,708. Unlike R,S-ketamine, L-655,708 did not cause an increase in the phosphorylation of the receptor for BDNF, TrkB, in the ventral hippocampus (vHipp) 30 or 60 min after its administration nor did administration of the TrkB inhibitor, K252a, directly into the vHipp, block the sustained AD-like effect of L-655,708. Similar to previous results with R,S-ketamine, administration of L-655,709 increased levels of GluA1 in the mPFC and, blockade of such receptors by direct administration of NBQX into the mPFC blocked the sustained AD-like effect of L-655,708. Patch-clamp recordings of ventral CA1 pyramidal cells 24 h after a single systemic administration of L-655,708 revealed a significant increase in input resistance, which resulted in an approximately two-fold increase in action potential frequency. These experiments indicate that the sustained AD-like effects of L-655,708 require protein synthesis and plasticity of GluA1 glutamate receptors in the mPFC. The drug also caused changes in GABAA receptor gating properties in the vHipp with resultant changes in ventral CA1 that indirectly increases neuronal excitability. Such effects likely contribute to its sustained AD-like activity.
Collapse
|
32
|
Crisanti C, Enrico P, Fiorentini A, Delvecchio G, Brambilla P. Neurocognitive impact of ketamine treatment in major depressive disorder: A review on human and animal studies. J Affect Disord 2020; 276:1109-1118. [PMID: 32777649 DOI: 10.1016/j.jad.2020.07.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/29/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Most recent evidence support a rapid and sustained antidepressant effect of subanesthetic dose of intravenous ketamine in patients with major depressive disorder (MDD). However, clinical and animal studies investigating the effects of intravenous ketamine on specific functional domains disrupted by depression reported conflicting results. Therefore, the aim of this review is to provide an overview of the recent findings exploring the cognitive effects of ketamine in depression. METHODS After a bibliographic search on PubMed, Medline and PsycInfo, we retrieved 11 original studies meeting our research criteria, 7 in humans with MDD or Treatment Resistant Disorder and 4 using rats models for depression. RESULTS Overall the results showed that a) ketamine reduced activation and normalized connectivity measures of several brain regions related to depressive behaviors and reversed deficits in cognitive flexibility and coping response strategy in rats with depressive features, and b) ketamine leads to a no significant impairment on neurocognitive functions in most of the studies, with only three studies observing improvements in speed of processing, verbal learning, sustained attention and response control, verbal and working memory. LIMITATIONS The methodological heterogeneity, in terms of neuropsychological tests used and cognitive domain explored, of the studies included. CONCLUSIONS Most of the studies included showed no significant cognitive impairments in MDD patients after ketamine treatment. Furthermore, the results of the fMRI studies considered suggest that ketamine may have a normalizing effect on brain functions during attentional and emotional processing in MDD patients. However, further studies are needed to confirm these preliminary evidences.
Collapse
Affiliation(s)
- Camilla Crisanti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Enrico
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessio Fiorentini
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
33
|
Anorexia nervosa, zinc deficiency and the glutamate system: The ketamine option. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109921. [PMID: 32169564 DOI: 10.1016/j.pnpbp.2020.109921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022]
Abstract
Anorexia nervosa (AN) is a severe, biological brain disorder with significant medical risks and a tenacious development over time. Unfortunately, few treatments show efficacy in people with AN although numerous therapies including pharmacological have been explored. Zinc deficiency has been implicated in AN and zinc is important in a large range of processes in the brain. In particular, it is an allosteric modulator of NMDA receptors - the maintenance of zinc levels within a normal, narrow range is essential for glutamatergic functioning. Chronic zinc deficiency increases neuronal stores of calcium and reduces direct modulation of NMDA receptors which collectively lead to overactivation and upregulation of NMDA receptors. This may facilitate pathologically high levels of glutamate, calcium influx and subsequent excitotoxicity, which can disrupt synaptogenesis and synaptic plasticity. While studies of zinc supplementation in AN have shown some promise, the efficacy of this treatment is limited. This may be due to AN illness chronicity and the significant changes already made, as well as a reduced potency of zinc to inhibit NMDA receptors in a pathological state. Thus, we propose that the safe (at low doses) yet more potent NMDA receptor antagonist, ketamine, may act to normalise a perturbed glutamatergic system and increase synaptogenesis in the short term. This 'kickstart' via ketamine could then allow zinc supplementation and other forms of treatment to enhance recovery in AN.
Collapse
|
34
|
Yu T, Li Y, Hu Q, Wang F, Yuan S, Li C, Li J, Cui J, Shen H. Ketamine contributes to the alteration of Ca 2+ transient evoked by behavioral tests in the prelimbic area of mPFC: A study on chronic CORT-induced depressive mice. Neurosci Lett 2020; 735:135220. [PMID: 32615246 DOI: 10.1016/j.neulet.2020.135220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/15/2020] [Accepted: 06/27/2020] [Indexed: 02/08/2023]
Abstract
Recent studies have showed that ketamine is a rapid and efficient antidepressant, but the mechanism of its antidepressant effect is not fully clear. It is still lack of the research investigating the relation between depressive-like behaviors and neuronal activities in specific brain area after administration of ketamine in vivo. Medial prefrontal cortex (mPFC) involved in the pathogenesis of depression. As a result of effective assessments after behavioral test, most studies lack of direct evidence of the relation between efficacy and the activity of specific brain area. Therefore, we used fiber photometry to explore the alteration of Ca2+ transient in the prelimbic (PrL) area of mPFC during behavioral tests in freely moving mice. Our results showed that the chronic corticosterone (CORT) protocol induced depressive-like behaviors. Administration of ketamine reversed these effects. The activation of Ca2+ transients was associated with some behaviors during behavioral tests. Struggling, rearing and exploring evoked strong Ca2+ transients, but moving and grooming did not. The Ca2+ transients amplitude reductions of struggling, rearing and exploring induced by CORT were reversed by ketamine. The results indicated that ketamine ameliorated depressive-like behaviors via mediating neural activation in PrL.
Collapse
Affiliation(s)
- Tianyu Yu
- Tianjing Medical University Second Clinical College, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Li
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Qi Hu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Feifei Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Shiyang Yuan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Cui Li
- Department of Anethesia, Tianjin Hospital of ITCWN Nankai Hospital, Tianjin, China
| | - Juping Li
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Jialin Cui
- Tianjin Medical University School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui Shen
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China; Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
35
|
Aleksandrova LR, Wang YT, Phillips AG. Ketamine and its metabolite, (2R,6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression. Mol Brain 2020; 13:92. [PMID: 32546197 PMCID: PMC7296711 DOI: 10.1186/s13041-020-00627-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence implicates dysregulation of hippocampal synaptic plasticity in the pathophysiology of depression. However, the effects of ketamine on synaptic plasticity and their contribution to its mechanism of action as an antidepressant, are still unclear. We investigated ketamine's effects on in vivo dorsal hippocampal (dHPC) synaptic plasticity and their role in mediating aspects of antidepressant activity in the Wistar-Kyoto (WKY) model of depression. dHPC long-term potentiation (LTP) was significantly impaired in WKY rats compared to Wistar controls. Importantly, a single low dose (5 mg/kg, ip) of ketamine or its metabolite, (2R,6R)-HNK, rescued the LTP deficit in WKY rats at 3.5 h but not 30 min following injection, with residual effects at 24 h, indicating a delayed, sustained facilitatory effect on dHPC synaptic plasticity. Consistent with the observed dHPC LTP deficit, WKY rats exhibited impaired hippocampal-dependent long-term spatial memory as measured by the novel object location recognition test (NOLRT), which was effectively restored by pre-treatment with both ketamine or (2R,6R)-HNK. In contrast, in WKYs, which display abnormal stress coping, ketamine, but not (2R,6R)-HNK, had rapid and sustained effects in the forced swim test (FST), a commonly used preclinical screen for antidepressant-like activity. The differential effects of (2R,6R)-HNK observed here reveal a dissociation between drug effects on FST immobility and dHPC synaptic plasticity. Therefore, in the WKY rat model, restoring dHPC LTP was not correlated with ketamine's effects in FST, but importantly, may have contributed to the reversal of hippocampal-dependent cognitive deficits, which are critical features of clinical depression. Our findings support the theory that ketamine may reverse the stress-induced loss of connectivity in key neural circuits by engaging synaptic plasticity processes to "reset the system".
Collapse
Affiliation(s)
- Lily R Aleksandrova
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Yu Tian Wang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Anthony G Phillips
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
36
|
Kokane SS, Armant RJ, Bolaños-Guzmán CA, Perrotti LI. Overlap in the neural circuitry and molecular mechanisms underlying ketamine abuse and its use as an antidepressant. Behav Brain Res 2020; 384:112548. [PMID: 32061748 PMCID: PMC7469509 DOI: 10.1016/j.bbr.2020.112548] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/18/2020] [Accepted: 02/07/2020] [Indexed: 02/09/2023]
Abstract
Ketamine, a dissociative anesthetic and psychedelic compound, has revolutionized the field of psychopharmacology by showing robust, and rapid-acting antidepressant activity in patients suffering from major depressive disorder (MDD), suicidal tendencies, and treatment-resistant depression (TRD). Ketamine's efficacy, however, is transient, and patients must return to the clinic for repeated treatment as they experience relapse. This is cause for concern because ketamine is known for its abuse liability, and repeated exposure to drugs of abuse often leads to drug abuse/dependence. Though the mechanism(s) underlying its antidepressant activity is an area of current intense research, both clinical and preclinical evidence shows that ketamine's effects are mediated, at least in part, by molecular adaptations resulting in long-lasting synaptic changes in mesolimbic brain regions known to regulate natural and drug reward. This review outlines our limited knowledge of ketamine's neurobiological and biochemical underpinnings mediating its antidepressant effects and correlates them to its abuse potential. Depression and addiction share overlapping neural circuitry and molecular mechanisms, and though speculative, repeated use of ketamine for the treatment of depression could lead to the development of substance use disorder/addiction, and thus should be tempered with caution. There is much that remains to be known about the long-term effects of ketamine, and our lack of understanding of neurobiological mechanisms underlying its antidepressant effects is a clear limiting factor that needs to be addressed systematically before using repeated ketamine in the treatment of depressed patients.
Collapse
Affiliation(s)
- Saurabh S Kokane
- Department of Psychology, The University of Texas at Arlington, United States
| | - Ross J Armant
- Department of Psychology, The University of Texas at Arlington, United States
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX 77840, United States
| | - Linda I Perrotti
- Department of Psychology, The University of Texas at Arlington, United States.
| |
Collapse
|
37
|
Price RB, Duman R. Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model. Mol Psychiatry 2020; 25:530-543. [PMID: 31801966 PMCID: PMC7047599 DOI: 10.1038/s41380-019-0615-x] [Citation(s) in RCA: 391] [Impact Index Per Article: 78.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
Chronic stress and depressive-like behaviors in basic neuroscience research have been associated with impairments of neuroplasticity, such as neuronal atrophy and synaptic loss in the medial prefrontal cortex (mPFC) and hippocampus. The current review presents a novel integrative model of neuroplasticity as a multi-domain neurobiological, cognitive, and psychological construct relevant in depression and other related disorders of negative affect (e.g., anxiety). We delineate a working conceptual model in which synaptic plasticity deficits described in animal models are integrated and conceptually linked with human patient findings from cognitive science and clinical psychology. We review relevant reports including neuroimaging findings (e.g., decreased functional connectivity in prefrontal-limbic circuits), cognitive deficits (e.g., executive function and memory impairments), affective information processing patterns (e.g., rigid, negative biases in attention, memory, interpretations, and self-associations), and patient-reported symptoms (perseverative, inflexible thought patterns; inflexible and maladaptive behaviors). Finally, we incorporate discussion of integrative research methods capable of building additional direct empirical support, including using rapid-acting treatments (e.g., ketamine) as a means to test this integrative model by attempting to simultaneously reverse these deficits across levels of analysis.
Collapse
Affiliation(s)
- Rebecca B. Price
- Departments of Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald Duman
- Department of Psychiatry, Yale University, New Haven, CT
| |
Collapse
|
38
|
Carreno FR, Lodge DJ, Frazer A. Ketamine: Leading us into the future for development of antidepressants. Behav Brain Res 2020; 383:112532. [PMID: 32023492 DOI: 10.1016/j.bbr.2020.112532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022]
Abstract
Numerous randomized double-blind clinical trials have consistently shown that that a single intravenous administration of a subanesthetic dose of ketamine to treatment-resistant depressed patients significantly improved depressive symptomatology rapidly, within two hours, with the effect lasting up to seven days. Despite its very promising effects, ketamine has long been associated with potential for abuse as it can cause psychotropic side effects, such as hallucinations, false beliefs, and severe impairments in judgment and other cognitive processes. Consequently, within the last two decades preclinical research has been carried out aimed at understanding its mechanisms of action and the brain circuits involved in ketamine's antidepressant effects, both of which are discussed in this review. Furthermore, with the hippocampus being a key target for ketamine's beneficial antidepressant effects, we and others have begun to examine behavioral and neurochemical effects of drugs that act selectively on the hippocampus due to the preferential location of their receptor targets. Such drugs are negative allosteric modulators (NAMs) and positive allosteric modulator (PAM) of the α5-GABAA receptor. Such compounds are discussed within the framework of how lessons learned with ketamine point to novel classes of drugs, targeting the GABAergic system, that can recapitulate the antidepressant effects of ketamine without its adverse effects.
Collapse
Affiliation(s)
- Flavia R Carreno
- Department of Pharmacology & Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, United States.
| | - Daniel J Lodge
- Department of Pharmacology & Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, United States; South Texas Veterans Health Care System, Audie L. Murphy Division, United States
| | - Alan Frazer
- Department of Pharmacology & Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, United States; South Texas Veterans Health Care System, Audie L. Murphy Division, United States
| |
Collapse
|
39
|
Wang M, Xiong Z, Su B, Wang L, Li Z, Yang Y, Fang J, Li Z. Repeated ketamine injections in synergy with antidepressants for treating refractory depression: A case showing 6-month improvement. J Clin Pharm Ther 2020; 45:199-203. [PMID: 31468568 DOI: 10.1111/jcpt.13041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 02/05/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Some patients with refractory depression who fail to respond to rapid injection of standard-dose ketamine are injected with high doses, but the safety and efficacy of this practice are unclear. CASE DESCRIPTION A 57-year-old woman with refractory depression whose symptoms did not improve after 20-seconds intravenous injection of 0.5 mg/kg ketamine went into remission following eight, 1-minute intravenous injections of 1 mg/kg ketamine delivered over a 4-week period. By 6-month follow-up, no significant adverse events had occurred and cognitive function had improved. WHAT IS NEW AND CONCLUSION High-dose intravenous injections of ketamine may stably improve depressive symptoms and cognitive function in patients with refractory depression who do not respond to rapid intravenous injection of standard-dose ketamine. The high-dose treatment appears to be associated with only mild side effects.
Collapse
Affiliation(s)
- Min Wang
- Mental Health Center and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhenzhen Xiong
- School of Nursing, Chengdu Medical College, Chengdu, Sichuan, China
| | - Bin Su
- The Second Department of Clinical Psychology, Karamay Municipal People's Hospital, Karamay, China
| | - Lan Wang
- The Second Department of Clinical Psychology, Karamay Municipal People's Hospital, Karamay, China
| | - Zhixiong Li
- The Third Department of Clinical Psychology, Karamay Municipal People's Hospital, Karamay, China
| | - Yali Yang
- The Second Department of Clinical Psychology, Karamay Municipal People's Hospital, Karamay, China
| | - Jing Fang
- The Second Department of Clinical Psychology, Karamay Municipal People's Hospital, Karamay, China
| | - Zhe Li
- Mental Health Center and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- The Mental Rehabilitation Center, Karamay Municipal People's Hospital, Karamay, China
| |
Collapse
|
40
|
Polis AJ, Fitzgerald PJ, Hale PJ, Watson BO. Rodent ketamine depression-related research: Finding patterns in a literature of variability. Behav Brain Res 2019; 376:112153. [PMID: 31419519 PMCID: PMC6783386 DOI: 10.1016/j.bbr.2019.112153] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/23/2022]
Abstract
Discovering that the anesthetic drug ketamine has rapidly acting antidepressant effects in many individuals with major depression is one of the most important findings in clinical psychopharmacology in recent decades. The initial report of these effects in human subjects was based on a foundation of rodent preclinical studies carried out in the 1990s, and subsequent investigation has included both further studies in individuals with depression, as well as reverse translational experiments in animal models, especially rodents. While there is general agreement in the rodent literature that ketamine has rapidly-acting, and generally sustained, antidepressant-like properties, there are also points of contention across studies, including the precise mechanism of action of this drug. In this review, we briefly summarize prominent yet variable findings regarding the mechanism of action. We also discuss a combination of similarities and variances in the rodent literature in the antidepressant-like effects of ketamine as a function of dose, species and strain, test, stressor, and presumably sex of the experimenter. We then present previously unpublished mouse strain comparison data suggesting that subanesthetic ketamine does not have robust antidepressant-like properties in unstressed animals, and may actually promote depression-like behavior, in contrast to widely reported findings. We conclude that the data best support the notion of ketamine action principally via NMDA receptor antagonism, transiently boosting glutamatergic (and possibly other) signaling in diverse brain circuits. We also suggest that future studies should address in greater detail the extent to which antidepressant-like properties of this drug are stress-sensitive, in an effort to better model major depression present in humans.
Collapse
Affiliation(s)
- Andrew J Polis
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Paul J Fitzgerald
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Pho J Hale
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Brendon O Watson
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America.
| |
Collapse
|
41
|
Sharp AM, Lertphinyowong S, Yee SS, Paredes D, Gelfond J, Johnson-Pais TL, Leach RJ, Liss M, Risinger AL, Sullivan AC, Thompson IM, Morilak DA. Vortioxetine reverses medial prefrontal cortex-mediated cognitive deficits in male rats induced by castration as a model of androgen deprivation therapy for prostate cancer. Psychopharmacology (Berl) 2019; 236:3183-3195. [PMID: 31139875 PMCID: PMC6832770 DOI: 10.1007/s00213-019-05274-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/10/2019] [Indexed: 01/10/2023]
Abstract
RATIONALE Androgen deprivation therapy (ADT) is an effective treatment for prostate cancer, but induces profound cognitive impairment. Little research has addressed mechanisms underlying these deficits or potential treatments. This is an unmet need to improve quality of life for prostate cancer survivors. OBJECTIVES We investigated mechanisms of cognitive impairment after ADT in rats and potential utility of the multimodal serotonin-targeting drug, vortioxetine, to improve the impairment, as vortioxetine has specific efficacy against cognitive impairment in depression. METHODS Male Sprague-Dawley rats were surgically castrated. Vortioxetine (28 mg/kg/day) was administered in the diet. The attentional set-shifting test was used to assess medial prefrontal cortex (mPFC) executive function. Afferent-evoked field potentials were recorded in the mPFC of anesthetized rats after stimulating the ventral hippocampus (vHipp) or medial dorsal thalamus (MDT). Gene expression changes were assessed by microarray. Effects of vortioxetine on growth of prostate cancer cells were assessed in vitro. RESULTS ADT impaired cognitive set shifting and attenuated responses evoked in the mPFC by the vHipp afferent, but not the MDT. Both the cognitive impairment and attenuated vHipp-evoked responses were reversed by chronic vortioxetine treatment. Preliminary investigation of gene expression in the mPFC indicates that factors involved in neuronal plasticity and synaptic transmission were down-regulated by castration and up-regulated by vortioxetine in castrated animals. Vortioxetine neither altered the growth of prostate cancer cells in vitro nor interfered with the antiproliferative effects of the androgen antagonist, enzalutamide. CONCLUSIONS These results suggest that vortioxetine may be useful in mitigating cognitive impairment associated with ADT for prostate cancer.
Collapse
Affiliation(s)
- Alexandra M Sharp
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Suphada Lertphinyowong
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Samantha S Yee
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Denisse Paredes
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Jonathan Gelfond
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Teresa L Johnson-Pais
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Robin J Leach
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Michael Liss
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care Service, San Antonio, TX, 78229, USA
| | - April L Risinger
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Anna C Sullivan
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Neurology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Ian M Thompson
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- CHRISTUS Santa Rosa Hospital, San Antonio, TX, 78229, USA
| | - David A Morilak
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care Service, San Antonio, TX, 78229, USA.
| |
Collapse
|
42
|
Aleksandrova LR, Wang YT, Phillips AG. Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response. Neurosci Biobehav Rev 2019; 105:1-23. [DOI: 10.1016/j.neubiorev.2019.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
|
43
|
Pham TH, Gardier AM. Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pharmacol Ther 2019; 199:58-90. [DOI: 10.1016/j.pharmthera.2019.02.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/25/2019] [Indexed: 12/13/2022]
|
44
|
Gass N, Becker R, Reinwald J, Cosa-Linan A, Sack M, Weber-Fahr W, Vollmayr B, Sartorius A. Differences between ketamine's short-term and long-term effects on brain circuitry in depression. Transl Psychiatry 2019; 9:172. [PMID: 31253763 PMCID: PMC6599014 DOI: 10.1038/s41398-019-0506-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/13/2019] [Accepted: 03/23/2019] [Indexed: 12/13/2022] Open
Abstract
Ketamine acts as a rapid clinical antidepressant at 25 min after injection with effects sustained for 7 days. As dissociative effects emerging acutely after injection are not entirely discernible from therapeutic action, we aimed to dissect the differences between short-term and long-term response to ketamine to elucidate potential imaging biomarkers of ketamine's antidepressant effect. We used a genetical model of depression, in which we bred depressed negative cognitive state (NC) and non-depressed positive cognitive state (PC) rat strains. Four parallel rat groups underwent stress-escape testing and a week later received either S-ketamine (12 NC, 13 PC) or saline (12 NC, 12 PC). We acquired resting-state functional magnetic resonance imaging time series before injection and at 30 min and 48 h after injection. Graph analysis was used to calculate brain network properties. We identified ketamine's distinct action over time in a qualitative manner. The rapid response entailed robust and strain-independent topological modifications in cognitive, sensory, emotion, and reward-related circuitry, including regions that exhibited correlation of connectivity metrics with depressive behavior, and which could explain ketamine's dissociative and antidepressant properties. At 48 h ketamine had mainly strain-specific action normalizing habenula, midline thalamus, and hippocampal connectivity measures in depressed rats. As these nodes mediate cognitive flexibility impaired in depression, action within this circuitry presumably reflects ketamine's procognitive effects induced only in depressed patients. This finding is especially valid, as our model represents cognitive aspects of depression. These empirically defined circuits explain ketamine's distinct action over time and might serve as translational imaging correlates of antidepressant response in preclinical testing.
Collapse
Affiliation(s)
- Natalia Gass
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Robert Becker
- 0000 0001 2190 4373grid.7700.0Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jonathan Reinwald
- 0000 0001 2190 4373grid.7700.0Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany ,0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alejandro Cosa-Linan
- 0000 0001 2190 4373grid.7700.0Research Group In Silico Pharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus Sack
- 0000 0001 2190 4373grid.7700.0Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Weber-Fahr
- 0000 0001 2190 4373grid.7700.0Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Barbara Vollmayr
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany ,0000 0001 2190 4373grid.7700.0Research Group Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander Sartorius
- 0000 0001 2190 4373grid.7700.0Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany ,0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
45
|
Lee EH, Han PL. Reciprocal interactions across and within multiple levels of monoamine and cortico-limbic systems in stress-induced depression: A systematic review. Neurosci Biobehav Rev 2019; 101:13-31. [PMID: 30917923 DOI: 10.1016/j.neubiorev.2019.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
The monoamine hypothesis of depression, namely that the reduction in synaptic serotonin and dopamine levels causes depression, has prevailed in past decades. However, clinical and preclinical studies have identified various cortical and subcortical regions whose altered neural activities also regulate depressive-like behaviors, independently from the monoamine system. Our systematic review indicates that neural activities of specific brain regions and associated neural circuitries are adaptively altered after chronic stress in a specific direction, such that the neural activity in the infralimbic cortex, lateral habenula and amygdala is upregulated, whereas the neural activity in the prelimbic cortex, hippocampus and monoamine systems is downregulated. The altered neural activity dynamics between monoamine systems and cortico-limbic systems are reciprocally interwoven at multiple levels. Furthermore, depressive-like behaviors can be experimentally reversed by counteracting the altered neural activity of a specific neural circuitry at multiple brain regions, suggesting the importance of the reciprocally interwoven neural networks in regulating depressive-like behaviors. These results promise for reshaping altered neural activity dynamics as a therapeutic strategy for treating depression.
Collapse
Affiliation(s)
- Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Republic of Korea; Department of Chemistry and Nano Science, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Paredes D, Morilak DA. A Rodent Model of Exposure Therapy: The Use of Fear Extinction as a Therapeutic Intervention for PTSD. Front Behav Neurosci 2019; 13:46. [PMID: 30914932 PMCID: PMC6421316 DOI: 10.3389/fnbeh.2019.00046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/21/2019] [Indexed: 12/28/2022] Open
Abstract
The symptoms of post-traumatic stress disorder (PTSD) include cognitive impairment related to medial prefrontal cortical dysfunction. Indeed, a deficit of cognitive flexibility, i.e., an inability to modify previously learned thoughts and behaviors based on changes in the environment, may underlie many of the other symptoms of PTSD, such as changes in mood, hyper-arousal, intrusive thoughts, exaggerated and over-generalized fear, and avoidance behavior. Cognitive-behavioral therapies target the cognitive dysfunction observed in PTSD patients, training them to recalibrate stress-related perceptions, interpretations and responses. Preclinically, the extinction of conditioned fear bears resemblance to one form of cognitive therapy, exposure therapy, whereby an individual learns, through repeated exposure to a fear-provoking stimulus in a safe environment, that the stimulus no longer signals imminent threat, and their fear response is suppressed. In this review article, we highlight recent findings from our lab using fear extinction as a preclinical model of exposure therapy in rodents exposed to chronic unpredictable stress (CUS). We specifically focus on the therapeutic effects of extinction on stress-compromised set-shifting as a measure of cognitive flexibility, and active vs. passive coping behavior as a measure of avoidance. Finally, we discuss mechanisms involving activity and plasticity in the medial prefrontal cortex (mPFC) necessary for the therapeutic effects of extinction on cognitive flexibility and active coping.
Collapse
Affiliation(s)
- Denisse Paredes
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, San Antonio, TX, United States
| | - David A Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, San Antonio, TX, United States.,South Texas Veterans Health Care System (STVHCS), San Antonio, TX, United States
| |
Collapse
|
47
|
Chronic treatment with galantamine rescues reversal learning in an attentional set-shifting test after experimental brain trauma. Exp Neurol 2019; 315:32-41. [PMID: 30711647 DOI: 10.1016/j.expneurol.2019.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/12/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
Abstract
Approximately 10 million new cases of traumatic brain injury (TBI) are reported each year worldwide with many of these injuries resulting in higher order cognitive impairments. Galantamine (GAL), an acetylcholine esterase inhibitor (AChEI) and positive allosteric modulator of nicotinic acetylcholine receptors (nAChRs), has been reported to ameliorate cognitive deficits after clinical TBI. Previously, we demonstrated that controlled cortical impact (CCI) injury to rats resulted in significant executive function impairments as measured by the attentional set-shifting test (AST), a complex cognitive task analogous to the Wisconsin Card Sorting Test (WCST). We hypothesized that chronic administration of GAL would normalize performance on the AST post-TBI. Isoflurane-anesthetized adult male rats were subjected to moderate CCI (2.8 mm tissue deformation at 4 m/s) or sham injury. Rats were then randomized into one of three treatment groups (i.e., 1 mg/kg GAL, 2 mg/kg GAL, or 1 mL/kg saline vehicle; VEH) or their respective sham controls. GAL or VEH was administered intraperitoneally daily commencing 24 hours post-surgery and until AST testing at 4 weeks post-injury. The AST data revealed significant impairments in the first reversal stage after TBI, seen as increased trials to reach criterion and elevated total errors (p < 0.05). These behavioral flexibility deficits were equally normalized by the administration of both doses of GAL (p < 0.05). Additionally, the higher dose of GAL (2 mg/kg) also significantly reduced cortical lesion volume compared to TBI + VEH controls (p < 0.05). In summary, daily GAL administration provides an efficacious treatment for cognitive deficits and histological recovery after experimental brain trauma. Clinically, these findings are promising considering robust results were attained using a pharmacotherapy already used in the clinic to treat mild dementia.
Collapse
|
48
|
Hare BD, Shinohara R, Liu RJ, Pothula S, DiLeone RJ, Duman RS. Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects. Nat Commun 2019; 10:223. [PMID: 30644390 PMCID: PMC6333924 DOI: 10.1038/s41467-018-08168-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
Impaired function in the medial prefrontal cortex (mPFC) contributes to depression, and the therapeutic response produced by novel rapid-acting antidepressants such as ketamine are mediated by mPFC activity. The mPFC contains multiple types of pyramidal cells, but it is unclear whether a particular subtype mediates the rapid antidepressant actions of ketamine. Here we tested two major subtypes, Drd1 and Drd2 dopamine receptor expressing pyramidal neurons and found that activating Drd1 expressing pyramidal cells in the mPFC produces rapid and long-lasting antidepressant and anxiolytic responses. In contrast, photostimulation of Drd2 expressing pyramidal cells was ineffective across anxiety-like and depression-like measures. Disruption of Drd1 activity also blocked the rapid antidepressant effects of ketamine. Finally, we demonstrate that stimulation of mPFC Drd1 terminals in the BLA recapitulates the antidepressant effects of somatic stimulation. These findings aid in understanding the cellular target neurons in the mPFC and the downstream circuitry involved in rapid antidepressant responses.
Collapse
Affiliation(s)
- Brendan D Hare
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Ryota Shinohara
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Rong Jian Liu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Santosh Pothula
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Ralph J DiLeone
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA.
| |
Collapse
|
49
|
Ventral CA3 Activation Mediates Prophylactic Ketamine Efficacy Against Stress-Induced Depressive-like Behavior. Biol Psychiatry 2018; 84:846-856. [PMID: 29615190 PMCID: PMC6107435 DOI: 10.1016/j.biopsych.2018.02.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/29/2018] [Accepted: 02/13/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND We previously reported that a single injection of ketamine prior to stress protects against the onset of depressive-like behavior and attenuates learned fear. However, the molecular pathways and brain circuits underlying ketamine-induced stress resilience are still largely unknown. METHODS Here, we tested whether prophylactic ketamine administration altered neural activity in the prefrontal cortex and/or hippocampus. Mice were injected with saline or ketamine (30 mg/kg) 1 week before social defeat. Following behavioral tests assessing depressive-like behavior, mice were sacrificed and brains were processed to quantify ΔFosB expression. In a second set of experiments, mice were stereotaxically injected with viral vectors into ventral CA3 (vCA3) in order to silence or overexpress ΔFosB prior to prophylactic ketamine administration. In a third set of experiments, ArcCreERT2 mice, a line that allows for the indelible labeling of neural ensembles activated by a single experience, were used to quantify memory traces representing a contextual fear conditioning experience following prophylactic ketamine administration. RESULTS Prophylactic ketamine administration increased ΔFosB expression in the ventral dentate gyrus and vCA3 of social defeat mice but not of control mice. Transcriptional silencing of ΔFosB activity in vCA3 inhibited prophylactic ketamine efficacy, while overexpression of ΔFosB mimicked and occluded ketamine's prophylactic effects. In ArcCreERT2 mice, ketamine administration altered memory traces representing the contextual fear conditioning experience in vCA3 but not in the ventral dentate gyrus. CONCLUSIONS Our data indicate that prophylactic ketamine may be protective against a stressor by altering neural activity, specifically the neural ensembles representing an individual stressor in vCA3.
Collapse
|
50
|
Girotti M, Adler SM, Bulin SE, Fucich EA, Paredes D, Morilak DA. Prefrontal cortex executive processes affected by stress in health and disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:161-179. [PMID: 28690203 PMCID: PMC5756532 DOI: 10.1016/j.pnpbp.2017.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 11/23/2022]
Abstract
Prefrontal cortical executive functions comprise a number of cognitive capabilities necessary for goal directed behavior and adaptation to a changing environment. Executive dysfunction that leads to maladaptive behavior and is a symptom of psychiatric pathology can be instigated or exacerbated by stress. In this review we survey research addressing the impact of stress on executive function, with specific focus on working memory, attention, response inhibition, and cognitive flexibility. We then consider the neurochemical pathways underlying these cognitive capabilities and, where known, how stress alters them. Finally, we review work exploring potential pharmacological and non-pharmacological approaches that can ameliorate deficits in executive function. Both preclinical and clinical literature indicates that chronic stress negatively affects executive function. Although some of the circuitry and neurochemical processes underlying executive function have been characterized, a great deal is still unknown regarding how stress affects these processes. Additional work focusing on this question is needed in order to make progress on developing interventions that ameliorate executive dysfunction.
Collapse
Affiliation(s)
- Milena Girotti
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA.
| | - Samantha M Adler
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Sarah E Bulin
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Elizabeth A Fucich
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Denisse Paredes
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - David A Morilak
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| |
Collapse
|