1
|
Piechocka J, Matwiej N, Gaweł M, Matyjaszczyk M, Głowacki R, Chwatko G. Application of the HPLC-ELSD technique for the determination of major metabolites of ibuprofen and creatinine in human urine. Sci Rep 2023; 13:20268. [PMID: 37985716 PMCID: PMC10662266 DOI: 10.1038/s41598-023-47594-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023] Open
Abstract
The report presents robust and high throughput methods, based on liquid chromatography coupled with evaporative light scattering detection (HPLC-ELSD), for the simultaneous determination of major metabolites of ibuprofen (IBU), namely 2-hydroxyibuprofen and carboxyibuprofen (method A) as well as creatinine (Crn) (method B) in human urine. The assays primarily involve straightforward sample purification. For both methods, the chromatographic separation of the analytes is achieved within 8 min at room temperature on Poroshell 120 SB-C18 (75 × 4.6 mm, 2.7 µm) column using gradient elution. The eluents consisted of 0.1% formic acid in water and acetonitrile (method A) or water and methanol (method B) delivered at a flow rate of 1 or 0.5 mL/min, respectively. In relation to metabolites of IBU, the assay linearity was observed within 0.06-0.5 g/L in urine, while the Crn assay linearity was demonstrated within 0.5-30 mmol/L in urine. The limit of quantification for IBU metabolites was determined to be 0.06 g/L, and 0.5 mmol/L for Crn. These methods were successfully applied to urine samples delivered by ten apparently healthy donors showing that the HPLC-ELSD assays are suitable for human urine screening.
Collapse
Affiliation(s)
- Justyna Piechocka
- Faculty of Chemistry, Department of Environmental Chemistry, University of Lodz, Pomorska 163/165, 90-236, Lodz, Poland.
| | - Natalia Matwiej
- Faculty of Chemistry, Department of Environmental Chemistry, University of Lodz, Pomorska 163/165, 90-236, Lodz, Poland
| | - Marta Gaweł
- Faculty of Chemistry, Department of Environmental Chemistry, University of Lodz, Pomorska 163/165, 90-236, Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Michał Matyjaszczyk
- Department of Family Medicine, Polish Mother's Memorial Hospital Research Institute, Rzgowska 281/289, 93-338, Lodz, Poland
- Department of Family Medicine, Medical University of Lodz, Narutowicza 60, 90-131, Lodz, Poland
| | - Rafał Głowacki
- Faculty of Chemistry, Department of Environmental Chemistry, University of Lodz, Pomorska 163/165, 90-236, Lodz, Poland
| | - Grażyna Chwatko
- Faculty of Chemistry, Department of Environmental Chemistry, University of Lodz, Pomorska 163/165, 90-236, Lodz, Poland.
| |
Collapse
|
2
|
Dib AA, Assaf JC, Debs E, Khatib SE, Louka N, Khoury AE. A comparative review on methods of detection and quantification of mycotoxins in solid food and feed: a focus on cereals and nuts. Mycotoxin Res 2023; 39:319-345. [PMID: 37523055 DOI: 10.1007/s12550-023-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Many emerging factors and circumstances urge the need to develop and optimize the detection and quantification techniques of mycotoxins in solid food and feed. The diversity of mycotoxins, which have different properties and affinities, makes the standardization of the analytical procedures and the adoption of a single protocol that covers the attributes of all mycotoxins a tedious or even an impossible mission. Several modifications and improvements have been undergone in order to optimize the performance of these methods including the extraction solvents, the extraction methods, the clean-up procedures, and the analytical techniques. The techniques range from the rapid screening methods, which lack sensitivity and specificity such as TLC, to a spectrum of more advanced protocols, namely, ELISA, HPLC, and GC-MS and LC-MS/MS. This review aims at assessing the current studies related to these analytical techniques of mycotoxins in solid food and feed. It discusses and evaluates, through a critical approach, various sample treatment techniques, and provides an in-depth examination of different mycotoxin detection methods. Furthermore, it includes a comparison of their actual accuracy and a thorough analysis of the observed benefits and drawbacks.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, Lebanon
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon
| | - Sami El Khatib
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Nicolas Louka
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
| | - André El Khoury
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon.
| |
Collapse
|
3
|
Yu HY, Park SE, Chun HS, Rho JR, Ahn S. Phospholipid composition analysis of krill oil through HPLC with ELSD: Development, validation, and comparison with 31P NMR spectroscopy. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Houriet J, Arnold YE, Pellissier L, Kalia YN, Wolfender JL. Using Porcine Jejunum Ex Vivo to Study Absorption and Biotransformation of Natural Products in Plant Extracts: Pueraria lobata as a Case Study. Metabolites 2021; 11:metabo11080541. [PMID: 34436482 PMCID: PMC8398828 DOI: 10.3390/metabo11080541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Herbal preparations (HPs) used in folk medicine are complex mixtures of natural products (NPs). Their efficacy in vivo after ingestion depends on the uptake of the active ingredient, and, in some cases, their metabolites, in the gastrointestinal tract. Thus, correlating bioactivities measured in vitro and efficacy in vivo is a challenge. An extract of Pueraria lobata rich in different types of isoflavones was used to evaluate the capacity of viable porcine small intestine ex vivo to elucidate the absorption of HP constituents, and, in some cases, their metabolites. The identification and transport of permeants across the jejunum was monitored by liquid chromatography-mass spectrometry (LC-MS), combining targeted and untargeted metabolite profiling approaches. It was observed that the C-glycoside isoflavones were stable and crossed the intestinal membrane, while various O-glycoside isoflavones were metabolized into their corresponding aglycones, which were then absorbed. These results are consistent with human data, highlighting the potential of using this approach. A thorough investigation of the impact of absorption and biotransformation was obtained without in vivo studies. The combination of qualitative untargeted and quantitative targeted LC-MS methods effectively monitored a large number of NPs and their metabolites, which is essential for research on HPs.
Collapse
Affiliation(s)
- Joëlle Houriet
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Yvonne E. Arnold
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Léonie Pellissier
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland; (J.H.); (Y.E.A.); (L.P.); (Y.N.K.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
5
|
Houriet J, Allard PM, Queiroz EF, Marcourt L, Gaudry A, Vallin L, Li S, Lin Y, Wang R, Kuchta K, Wolfender JL. A Mass Spectrometry Based Metabolite Profiling Workflow for Selecting Abundant Specific Markers and Their Structurally Related Multi-Component Signatures in Traditional Chinese Medicine Multi-Herb Formulae. Front Pharmacol 2020; 11:578346. [PMID: 33362543 PMCID: PMC7756971 DOI: 10.3389/fphar.2020.578346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
In Traditional Chinese Medicine (TCM), herbal preparations often consist of a mixture of herbs. Their quality control is challenging because every single herb contains hundreds of components (secondary metabolites). A typical 10 herb TCM formula was selected to develop an innovative strategy for its comprehensive chemical characterization and to study the specific contribution of each herb to the formula in an exploratory manner. Metabolite profiling of the TCM formula and the extract of each single herb were acquired with liquid chromatography coupled to high-resolution mass spectrometry for qualitative analyses, and to evaporative light scattering detection (ELSD) for semi-quantitative evaluation. The acquired data were organized as a feature-based molecular network (FBMN) which provided a comprehensive view of all types of secondary metabolites and their occurrence in the formula and all single herbs. These features were annotated by combining MS/MS-based in silico spectral match, manual evaluation of the structural consistency in the FBMN clusters, and taxonomy information. ELSD detection was used as a filter to select the most abundant features. At least one marker per herb was highlighted based on its specificity and abundance. A single large-scale fractionation from the enriched formula enabled the isolation and formal identification of most of them. The obtained markers allowed an improved annotation of associated features by manually propagating this information through the FBMN. These data were incorporated in the high-resolution metabolite profiling of the formula, which highlighted specific series of related components to each individual herb markers. These series of components, named multi-component signatures, may serve to improve the traceability of each herb in the formula. Altogether, the strategy provided highly informative compositional data of the TCM formula and detailed visualizations of the contribution of each herb by FBMN, filtered feature maps, and reconstituted chromatogram traces of all components linked to each specific marker. This comprehensive MS-based analytical workflow allowed a generic and unbiased selection of specific and abundant markers and the identification of multiple related sub-markers. This exploratory approach could serve as a starting point to develop more simple and targeted quality control methods with adapted marker specificity selection criteria to given TCM formula.
Collapse
Affiliation(s)
- Joëlle Houriet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Arnaud Gaudry
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Lennie Vallin
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | | | - Yu Lin
- Kunisawa Clinic, Gotsu-shi, Japan
| | - Ruwei Wang
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, China
| | - Kenny Kuchta
- Forschungsstelle für Fernöstliche Medizin, Department of Vegetation Analysis and Phytodiversity, Albrecht von Haller Institute of Plant Sciences, Georg August University, Göttingen, Germany
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Crha T, Pazourek J. Rapid HPLC Method for Determination of Isomaltulose in the Presence of Glucose, Sucrose, and Maltodextrins in Dietary Supplements. Foods 2020; 9:foods9091164. [PMID: 32846904 PMCID: PMC7555359 DOI: 10.3390/foods9091164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
This paper presents a rapid HPLC method for the separation of isomaltulose (also known as Palatinose) from other common edible carbohydrates such as sucrose, glucose, and maltodextrins, which are commonly present in food and dietary supplements. This method was applied to determine isomaltulose in selected food supplements for special diets and athletic performance. Due to the selectivity of the separation system, this method can also be used for rapid profiling analysis of mono-, di-, and oligosaccharides in food.
Collapse
|
7
|
Oberlies NH, Knowles SL, Amrine CSM, Kao D, Kertesz V, Raja HA. Droplet probe: coupling chromatography to the in situ evaluation of the chemistry of nature. Nat Prod Rep 2019; 36:944-959. [PMID: 31112181 PMCID: PMC6640111 DOI: 10.1039/c9np00019d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to 2019The chemistry of nature can be beautiful, inspiring, beneficial and poisonous, depending on perspective. Since the isolation of the first secondary metabolites roughly two centuries ago, much of the chemical research on natural products has been both reductionist and static. Typically, compounds were isolated and characterized from the extract of an entire organism from a single time point. While there could be subtexts to that approach, the general premise has been to determine the chemistry with very little in the way of tools to differentiate spatial and/or temporal changes in secondary metabolite profiles. However, the past decade has seen exponential advances in our ability to observe, measure, and visualize the chemistry of nature in situ. Many of those techniques have been reviewed in this journal, and most are tapping into the power of mass spectrometry to analyze a plethora of sample types. In nearly all of the other techniques used to study chemistry in situ, the element of chromatography has been eliminated, instead using various ionization sources to coax ions of the secondary metabolites directly into the mass spectrometer as a mixture. Much of that science has been driven by the great advances in ambient ionization techniques used with a suite of mass spectrometry platforms, including the alphabet soup from DESI to LAESI to MALDI. This review discusses the one in situ analysis technique that incorporates chromatography, being the droplet-liquid microjunction-surface sampling probe, which is more easily termed "droplet probe". In addition to comparing and contrasting the droplet probe with other techniques, we provide perspective on why scientists, particularly those steeped in natural products chemistry training, may want to include chromatography in in situ analyses. Moreover, we provide justification for droplet sampling, especially for samples with delicate and/or non-uniform topographies. Furthermore, while the droplet probe has been used the most in the analysis of fungal cultures, we digest a variety of other applications, ranging from cyanobacteria, to plant parts, and even delicate documents, such as herbarium specimens.
Collapse
Affiliation(s)
- Nicholas H Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Sonja L Knowles
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Chiraz Soumia M Amrine
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Diana Kao
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Vilmos Kertesz
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Huzefa A Raja
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| |
Collapse
|
8
|
Development and validation of a novel UPLC-ELSD method for the assessment of lipid composition of nanomedicine formulation. Int J Pharm 2019; 566:11-23. [PMID: 31112794 DOI: 10.1016/j.ijpharm.2019.05.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/12/2023]
Abstract
Lipid nanocarriers incorporating glycerides, polyethylene glycol (PEG)-stearates and phospholipids have attracted great attention for in vivo diagnostic, in vivo imaging, activated or non-activated targeted drug delivery. For quality control purposes, the development of appropriate methods for the quantification of their lipid components is needed. In the present study, we developed an analytical method for lipid quantification in formulated nanoparticles. PEG-stearates and glycerides were analyzed in a single run by RP-UPLC-ELSD using a two-step gradient elution program, while the analysis of phospholipids was accomplished by HILIC-UPLC-ELSD after isolation using an SPE silica column. Using both isolated compounds and commercial lipid standards, calibration curves were produced using second-order polynomials to attain the quantitative evaluation of each lipid excipient. Relative standard deviation of all analytes was between 0.9% and 5.3% for intra-day precision and recovery ranged from 83.5% to 112.2%. The presented method was successfully implemented to study the manufacturing process and stability of the formulated lipid excipients during long-term storage and accelerated conditions. The formulation lipid yield was determined and found equal to 82.5%.
Collapse
|
9
|
Chung R, Hein JE. Automated solubility and crystallization analysis of non-UV active compounds: integration of evaporative light scattering detection (ELSD) and robotic sampling. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00057g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integration of high-performance liquid chromatography-evaporative light scattering detection with robotic sampling allows for the acquisition of reliable and data-rich solubility and crystallization profiles of minimally- or non-UV active compounds in an automated manner.
Collapse
Affiliation(s)
- Ryan Chung
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Jason E. Hein
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
10
|
Pazourek J. Determination of glucosamine and monitoring of its mutarotation by hydrophilic interaction liquid chromatography with evaporative light scattering detector. Biomed Chromatogr 2018; 32:e4368. [PMID: 30120782 DOI: 10.1002/bmc.4368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 08/05/2018] [Accepted: 08/10/2018] [Indexed: 01/19/2023]
Abstract
Saccharides and their derivatives are typical polar analytes without a suitable UV-chromophore that are nowadays analyzed by HPLC (high-performance liquid chromatography) under HILIC (hydrophilic interaction liquid chromatography) mode. Usually an evaporative light scattering detector (ELSD) is utilized which, however, gives a nonlinear response. A procedure to overcome the problem of mutarotating (time-varying) analytes recorded with such a nonlinear response detector is described. The procedure was applied for determination of glucosamine in two commercially available pharmaceutical formulations containing the common inorganic ions that the detector gives a response to. Under optimized conditions, both the anomers of glucosamine were separated and could be determined separately. Owing to the short retention time of the analyte (a run time <4 min) and relatively slow kinetics of the anomeric conversion (equilibration time 2.5 h), mutarotation could be monitored and corresponding rate constants calculated.
Collapse
Affiliation(s)
- Jiří Pazourek
- Department of Chemical Drugs, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
11
|
Ohira SI, Kaneda K, Matsuzaki T, Mori S, Mori M, Toda K. Universal HPLC Detector for Hydrophilic Organic Compounds by Means of Total Organic Carbon Detection. Anal Chem 2018; 90:6461-6467. [PMID: 29733193 DOI: 10.1021/acs.analchem.7b04849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most quantifications are achieved by comparison of the signals obtained with the sample to those from a standard. Thus, the purity and stability of the standard are key in chemical analysis. Furthermore, if an analyte standard cannot be obtained, quantification cannot be achieved, even if the chemical structures are identified by a qualification method (e.g., high-resolution mass spectrometry). Herein, we describe a universal and analyte standard-free detector for aqueous-eluent-based high-performance liquid chromatography. This universal carbon detector (UCD) was developed based on total organic carbon detection. Separated analytes were oxidized in-line and converted to carbon dioxide (CO2). Generated CO2 was transferred into the gas phase and collected into ultrapure water, which was followed by conductivity detection. The system can be applied as a HPLC detector that does not use an organic solvent as an eluent. The system can be calibrated with a primary standard of sodium bicarbonate for organic compounds. The universality and quantification were evaluated with organic compounds, including organic acids, sugars, and amino acids. Furthermore, the system was successfully applied to evaluation of the purity of formaldehyde in formalin solution, and determination of sugars in juices. The results show the universal carbon detector has good universality and can quantify many kinds of organic compounds with a single standard such as sodium bicarbonate.
Collapse
Affiliation(s)
- Shin-Ichi Ohira
- Department of Chemistry , Kumamoto University , 2-39-1 Kurokami , Kumamoto , 860-8555 , Japan
| | - Kyosuke Kaneda
- Department of Chemistry , Kumamoto University , 2-39-1 Kurokami , Kumamoto , 860-8555 , Japan
| | - Toru Matsuzaki
- Department of Chemistry , Kumamoto University , 2-39-1 Kurokami , Kumamoto , 860-8555 , Japan
| | - Shuta Mori
- Department of Chemistry , Kumamoto University , 2-39-1 Kurokami , Kumamoto , 860-8555 , Japan
| | - Masanobu Mori
- Faculty of Science and Technology , Kochi University , 2-5-1 Akebono-cho , Kochi , 780-8520 , Japan
| | - Kei Toda
- Department of Chemistry , Kumamoto University , 2-39-1 Kurokami , Kumamoto , 860-8555 , Japan
| |
Collapse
|
12
|
Cao L, Zhang H, Zhang H, Yang L, Wu M, Zhou P, Huang Q. Determination of Propionylbrassinolide and Its Impurities by High-Performance Liquid Chromatography with Evaporative Light Scattering Detection. Molecules 2018; 23:molecules23030531. [PMID: 29495470 PMCID: PMC6017011 DOI: 10.3390/molecules23030531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 11/16/2022] Open
Abstract
The discovery of brassinolide in 1979, a milestone in brassinosteroids research, has sparked great interest of brassinolide analogs (BLs) in agricultural applications. Among these BLs, propionylbrassinolide has captured considerable attention because it shows plant growth regulating activity with an excellent durability. Two impurities of propionylbrassinolide were isolated and purified by semi-preparative high-performance liquid chromatography (HPLC), and the chemical structures were confirmed. For simultaneous separation and determination of propionylbrassinolide and impurities, an efficient analytical method based on HPLC with evaporative light scattering detector (HPLC-ELSD) was developed. The optimized analysis was performed on a C18 reversed phase column (250 mm × 4.60 mm, 5 μm) with isocratic elution of acetonitrile and water (90:10, v/v) as the mobile phase. The drift tube temperature of the ELSD system was set to 50 °C and the auxiliary gas pressure was 150 kPa. The regression equations demonstrated a good linear relationship (R² = 0.9989-0.9999) within the test ranges. The limits of detection (LODs) and quantification (LOQs) for propionylbrassinolide, impurity 1 and 2 were 1.3, 1.2, 1,3 and 4.3, 4.0, 4.2 mg/L, respectively. The fully validated HPLC-ELSD method was readily applied to quantify the active ingredient and impurities in propionylbrassinolide technical concentrate. Moreover, the optimized separation conditions with ELSD have been successfully transferred to mass spectrometry (MS) detector for LC-MS determination.
Collapse
Affiliation(s)
- Lidong Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Hong Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Hongjun Zhang
- Institute for the Control of Agrochemicals, Ministry of Agriculture, No. 22 Maizidian Street, Beijing 110000, China.
| | - Li Yang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Miaomiao Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Puguo Zhou
- Institute for the Control of Agrochemicals, Ministry of Agriculture, No. 22 Maizidian Street, Beijing 110000, China.
| | - Qiliang Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
13
|
Boborodea A, O’Donohue S. New evaporative light scattering detector for high temperature gel permeation chromatography. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2017. [DOI: 10.1080/1023666x.2017.1358835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Adrian Boborodea
- Certech ASBL, Rue Jules Bordet, Zone industrielle C, Seneffe, Belgium
| | - Stephen O’Donohue
- Agilent Technologies LDA UK Ltd, Stokeswood Road, Craven Arms, Shropshire, UK
| |
Collapse
|
14
|
Radix Bupleuri: A Review of Traditional Uses, Botany, Phytochemistry, Pharmacology, and Toxicology. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7597596. [PMID: 28593176 PMCID: PMC5448051 DOI: 10.1155/2017/7597596] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/20/2017] [Indexed: 12/13/2022]
Abstract
Radix Bupleuri (Chaihu) has been used as a traditional medicine for more than 2000 years in China, Japan, Korea, and other Asian countries. Phytochemical studies demonstrated that this plant contains essential oils, triterpenoid saponins, polyacetylenes, flavonoids, lignans, fatty acids, and sterols. Crude extracts and pure compounds isolated from Radix Bupleuri exhibited various biological activities, such as anti-inflammatory, anticancer, antipyretic, antimicrobial, antiviral, hepatoprotective, neuroprotective, and immunomodulatory effects. However, Radix Bupleuri could also lead to hepatotoxicity, particularly in high doses and with long-term use. Pharmacokinetic studies have demonstrated that the major bioactive compounds (saikosaponins a, b2, c, and d) were absorbed rapidly in rats after oral administration of the extract of Radix Bupleuri. This review aims to comprehensively summarize the traditional uses, botany, phytochemistry, pharmacology, toxicology, and pharmacokinetics of Radix Bupleuri reported to date with an emphasis on its biological properties and mechanisms of action.
Collapse
|
15
|
Parmar R, Ghanta A, Haware RV, Johnson PR, Stagner WC. Statistical Optimization of Evaporative Light Scattering Detection for Molten Sucrose Octaacetate and Comparison With Ultraviolet Diode Array Detection Validation Parameters Using Tandem HPLC Ultraviolet Diode Array Detection/Evaporative Light Scattering Detection-Specific Stability-Indicating Method. J Pharm Sci 2016; 105:3603-3610. [PMID: 27793345 DOI: 10.1016/j.xphs.2016.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 10/20/2022]
Abstract
A sucrose octaacetate (SOA) gradient HPLC evaporative light scattering detection (ELSD) and low-wavelength UV-diode array detection (UV-DAD)-specific stability-indicating method development and validation comparison is reported. A central composite response surface design and multicriteria optimization was used to maximize molten SOA area-under-the-curve response and signal-to-noise ratio. The ELSD data were also analyzed using multivariate principal component analysis, analysis of variance, and standard least squares effects modeling. The method suitability and validation parameters of both methods were compared. To the authors' knowledge, this is the first report that validates an ELSD method using a molten analyte. SOA exhibited a low molar absorptivity of 439 absorption units/cm/M in water at 210 nm requiring low-wavelength UV-DAD detection. The low-wavelength UV-DAD method provided substantially better intraday and interday precision, intraday and interday goodness-of-fit, detection limit, and quantitation limit than ELSD. ELSD exhibited a 60-fold greater area-under-the-curve response, better resolution, and 58% more theoretical plates. On balance, the UV-DAD method was chosen for SOA chemical kinetic studies. This study illustrates that ELSD may not always be the best alternative to gradient HPLC low-wavelength UV detection.
Collapse
Affiliation(s)
- Rudrangi Parmar
- Department of Pharmaceutical Sciences, Campbell University College of Pharmacy & Health Sciences, Buies Creek, North Carolina 27506; Patheon, Analytical Development, Greenville, North Carolina 27834
| | - Ajay Ghanta
- Department of Pharmaceutical Sciences, Campbell University College of Pharmacy & Health Sciences, Buies Creek, North Carolina 27506; Sancilio and Company, Formulation Development, Riviera Beach, Florida 33404
| | - Rahul V Haware
- Department of Pharmaceutical Sciences, Campbell University College of Pharmacy & Health Sciences, Buies Creek, North Carolina 27506
| | - Paul R Johnson
- Department of Pharmaceutical Sciences, Campbell University College of Pharmacy & Health Sciences, Buies Creek, North Carolina 27506; Department of Pharmaceutical Sciences, Pharmaceutical Education & Research Center, Campbell University College of Pharmacy & Health Sciences, Buies Creek, North Carolina 27506
| | - William C Stagner
- Department of Pharmaceutical Sciences, Campbell University College of Pharmacy & Health Sciences, Buies Creek, North Carolina 27506; Department of Pharmaceutical Sciences, Pharmaceutical Education & Research Center, Campbell University College of Pharmacy & Health Sciences, Buies Creek, North Carolina 27506.
| |
Collapse
|
16
|
LC with Evaporative Light-Scattering Detection for Quantitative Analysis of Organic Acids in Juices. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0628-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Zhou W, Kan W, Wang Y, Liu Y, Wang Y, Yan C. Development of Evaporative Light Scattering Detector for Capillary Electrochromatography and Capillary Liquid Chromatography. Anal Chem 2015; 87:9329-35. [DOI: 10.1021/acs.analchem.5b02024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenli Zhou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Wenbin Kan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yuhong Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yuanyuan Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yan Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Chao Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
18
|
Cao L, Yang J, Li X, Wang D, Huang Q. Determination of Brassinolide Analogs by High-Performance Liquid Chromatography with Evaporative Light Scattering Detection. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.954123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Scott AF, Thurbide KB. Comparative Response Characterization of a Universal Acoustic Flame Detector for Chromatography. Chromatographia 2014. [DOI: 10.1007/s10337-014-2692-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
|
21
|
A chemometric approach to elucidate the parameter impact in the hyphenation of evaporative light scattering detector to supercritical fluid chromatography. J Chromatogr A 2014; 1333:124-33. [DOI: 10.1016/j.chroma.2014.01.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 01/10/2023]
|
22
|
Dvořáčková E, Snóblová M, Hrdlička P. Carbohydrate analysis: from sample preparation to HPLC on different stationary phases coupled with evaporative light-scattering detection. J Sep Sci 2014; 37:323-37. [PMID: 24339213 DOI: 10.1002/jssc.201301089] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 11/06/2022]
Abstract
After 20 years of development, evaporative light-scattering detection (ELSD) has become the mainstream choice for the detection of various classes of natural products. ELSD continues to grow in popularity as a "quasi-universal" technique because of the specificity of the detection method, which is based on the scattering of laser light from nonvolatile analyte particles. It represents an attractive alternative compared to other types of detection, such as refractive index detection and/or ultraviolet detection. This review presents issues concerned with the separation of carbohydrates in plant materials by HPLC and ELSD, as well as the advantages and limitations relating to the ELSD method. Additionally, an overview of possible ELSD applications in the analysis of carbohydrates in natural products is presented.
Collapse
Affiliation(s)
- Eva Dvořáčková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic
| | | | | |
Collapse
|
23
|
Application of the evaporative light scattering detector to analytical problems in polymer science. J Chromatogr A 2013; 1310:1-14. [DOI: 10.1016/j.chroma.2013.08.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/06/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022]
|
24
|
Comparison of two evaporative universal detectors for the determination of sugars in food samples by liquid chromatography. Microchem J 2013. [DOI: 10.1016/j.microc.2013.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Bouri M, Salghi R, Zougagh M, Ríos A. Capillary electrophoresis coupled to evaporative light scattering detection for direct determination of underivatized amino acids: Application to tea samples using carboxyled single-walled carbon nanotubes for sample preparation. Electrophoresis 2013; 34:2623-31. [DOI: 10.1002/elps.201300145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 11/06/2022]
Affiliation(s)
| | - Rachid Salghi
- Ecole nationale de sciences appliquées; Agadir; Morocco
| | | | | |
Collapse
|
26
|
Wu H, Guo J, Chen S, Liu X, Zhou Y, Zhang X, Xu X. Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography–mass spectrometry. J Pharm Biomed Anal 2013; 72:267-91. [DOI: 10.1016/j.jpba.2012.09.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/30/2012] [Accepted: 09/02/2012] [Indexed: 12/14/2022]
|
27
|
Sardella R, Gioiello A, Ianni F, Venturoni F, Natalini B. HPLC/ELSD analysis of amidated bile acids: An effective and rapid way to assist continuous flow chemistry processes. Talanta 2012; 100:364-71. [DOI: 10.1016/j.talanta.2012.07.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 01/31/2023]
|
28
|
Jones J, Manning S, Montoya M, Keller K, Poenie M. Extraction of Algal Lipids and Their Analysis by HPLC and Mass Spectrometry. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-012-2044-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Shin HD, Suh JH, Kim JH, Lee HY, Eom HY, Kim UY, Yang DH, Han SB, Youm JR. Determination of Betaine in Fructus Lycii Using Hydrophilic Interaction Liquid Chromatography with Evaporative Light Scattering Detection. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.2.553] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Restuccia D, Spizzirri UG, Puoci F, Cirillo G, Vinci G, Picci N. Determination of Phospholipids in Food Samples. FOOD REVIEWS INTERNATIONAL 2012. [DOI: 10.1080/87559129.2011.563398] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Lee J, Yang DH, Suh JH, Kim U, Eom HY, Kim J, Lee MY, Kim J, Han SB. Species discrimination of Radix Bupleuri through the simultaneous determination of ten saikosaponins by high performance liquid chromatography with evaporative light scattering detection and electrospray ionization mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3887-95. [PMID: 22105022 DOI: 10.1016/j.jchromb.2011.10.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/27/2011] [Accepted: 10/29/2011] [Indexed: 11/29/2022]
Abstract
A simple, rapid and robust high performance liquid chromatography-evaporative light scattering detection (HPLC-ELSD) method was established for the species discrimination and quality evaluation of Radix Bupleuri through the simultaneous determination of ten saikosaponins, namely saikosaponin-a, -b(1), -b(2), -b(3), -b(4), -c, -d, -g, -h, and -i. These compounds were chromatographed on an Ascentis(®) Express C18 column with a gradient elution of acetonitrile and water containing 0.1% acetic acid at a flow rate of 1.0 mL/min. Saikosaponins were monitored by ELSD, which was operated at a 50°C drift tube temperature and 3.0 bar nebulizer gas (N(2)) pressure. The developed method was validated with respect to linearity, intra- and inter-day accuracy and precision, limit of quantification (LOQ), recovery, robustness and stability, thereby showing good precision and accuracy, with intra- and inter-assay coefficients of variation less than 15% at all concentrations. Furthermore, a high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) method was developed to certify the existence of ten saikosaponins, as well as to confirm the reliability of ELSD. The extraction conditions of saikosaponins from Radix Bupleuri were also optimized by investigating the effect of extraction methods (sonication, reflux and maceration) and various solvents on the extraction efficiencies for saikosaponins. Sonication with 70% methanol for 40 min was found to be simple and effective for extraction of major saikosaponins. This analytical method was applied to determine saikosaponin profiles in 20 real samples consisting of four Bupleurum species, namely B. falcatum, B. chinense, B. sibiricum and the poisonous B. longiradiatum. It was found that three major saikosaponin-a, -c and -d were the major constituents in B. falcatum, B. chinense, and B. longiradiatum, while one major saikosaponin (saikosaponin-c) was not identified from B. sibiricum. In addition, no saikosaponin-b(3) was detected in B. longiradiatum samples, indicating that the toxic B. longiradiatum may be tentatively distinguished from officially listed Bupleurum species (B. falcatum and B. chinense) based on their saikosaponin profiles. Overall the simultaneous determination of ten saikosaponins in Radix Bupleuri was shown to be a promising tool to adopt for the discrimination and quality control of closely related Bupleurum species.
Collapse
Affiliation(s)
- Jaehyun Lee
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Restuccia D, Spizzirri UG, Puoci F, Cirillo G, Curcio M, Parisi OI, Iemma F, Picci N. A new method for the determination of biogenic amines in cheese by LC with evaporative light scattering detector. Talanta 2011; 85:363-9. [PMID: 21645711 DOI: 10.1016/j.talanta.2011.03.080] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/15/2011] [Accepted: 03/28/2011] [Indexed: 11/28/2022]
Abstract
This paper presents a new LC method with evaporative light scattering detection (ELSD), for the separation and determination of the biogenic amines (histamine, spermidine, spermine, tyramine, putrescine and β-phenylethylamine) which are commonly present in cheese, as their presence and relative amounts give useful information about freshness, level of maturing, quality of storage and cheese authentication. The LC-ELSD method is validated by comparison of the results with those obtained through LC-UV determination, based on a pre-column dansyl chloride derivatisation step. The obtained data demonstrate that both methods can be interchangeably used for biogenic amines determination in cheese. The new LC-ELSD method shows good precision and permits to achieve, for standard solutions, limit of detection (LOD) values ranging from 1.4 to 3.6 mg L(-1) and limit of quantitation (LOQ) values ranging from 3.6 to 9.3 mg L(-1). The whole methodology, comprehensive of the homogenization-extraction process and LC-ELSD analysis, has been applied in the analysis of a typical Calabria (Southern Italy) POD cheese, known as Caciocavallo Silano. The most aboundant amine found was histamine, followed, in decreasing order, by tyramine, spermine, putrescine, β-phenylethylamine and spermidine, for a total amount of 127 mg kg(-1). This value does not represent a possible risk for consumer health, according to the toxicity levels reported in literature and regarded as acceptable.
Collapse
Affiliation(s)
- Donatella Restuccia
- Dipartimento di Scienze Farmaceutiche, Università della Calabria, Edificio Polifunzionale, Arcavacata di Rende (CS) 87036, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Comparison of the response of four aerosol detectors used with ultra high pressure liquid chromatography. J Chromatogr A 2011; 1218:1646-55. [DOI: 10.1016/j.chroma.2011.01.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 11/18/2022]
|
34
|
Karatapanis AE, Fiamegos YC, Sakkas VA, Stalikas CD. Effect of chromatographic parameters and detector settings on the response of HILIC–evaporative light-scattering detection system using experimental design approach and multicriteria optimization methodology. Talanta 2011; 83:1126-33. [DOI: 10.1016/j.talanta.2010.06.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 06/14/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
|
35
|
Gołębiowski M, Boguś MI, Paszkiewicz M, Stepnowski P. Cuticular lipids of insects as potential biofungicides: methods of lipid composition analysis. Anal Bioanal Chem 2010; 399:3177-91. [PMID: 21153591 DOI: 10.1007/s00216-010-4439-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/08/2010] [Accepted: 11/12/2010] [Indexed: 01/26/2023]
Abstract
The main function of cuticular lipids in insects is the restriction of water transpiration through the surface. Lipids are involved in various types of chemical communication between species and reduce the penetration of insecticides, chemicals, and toxins and they also provide protection from attack by microorganisms, parasitic insects, and predators. Hydrocarbons, which include straight-chain saturated, unsaturated, and methyl-branched hydrocarbons, predominate in the cuticular lipids of most insect species; fatty acids, alcohols, esters, ketones, aldehydes, as well as trace amounts of epoxides, ethers, oxoaldehydes, diols, and triacylglycerols have also been identified. Analyses of cuticular lipids are chemically relatively straightforward, and methods for their extraction should be simple. Classically, extraction has relied mainly on application of apolar solvents to the entire insect body. Recently, several alternative methods have been employed to overcome some of the shortcomings of solvent extraction. These include the use of solid-phase microextraction (SPME) fibers to extract hydrocarbons from the headspace of heated samples, SPME to sample live individuals, and a less expensive method (utilized for social wasps), which consists of the collection of cuticular lipids by means of small pieces of cotton rubbed on the body of the insect. Both classical and recently developed extraction methods are reviewed in this work. The separation and analysis of the insect cuticular lipids were performed by column chromatography, thin-layer chromatography (TLC), high performance liquid chromatography with a laser light scattering detector (HPLC-LLSD), gas chromatography (GC), and GC-mass spectrometry (MS). The strategy of lipid analysis with the use of chromatographic techniques was as follows: extraction of analytes from biological material, lipid class separation by TLC, column chromatography, HPLC-LLSD, derivatization, and final determination by GC, GC-MS, matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) MS, and liquid chromatography-mass spectrometry (LC-MS).
Collapse
Affiliation(s)
- Marek Gołębiowski
- Faculty of Chemistry, University of Gdańsk, ul. Sobieskiego 18/19, 80-952 Gdańsk, Poland.
| | | | | | | |
Collapse
|
36
|
Hutchinson JP, Li J, Farrell W, Groeber E, Szucs R, Dicinoski G, Haddad PR. Universal response model for a corona charged aerosol detector. J Chromatogr A 2010; 1217:7418-27. [DOI: 10.1016/j.chroma.2010.09.056] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/26/2010] [Accepted: 09/22/2010] [Indexed: 11/16/2022]
|
37
|
Kristensen JL, Püschl A, Jensen M, Risgaard R, Christoffersen CT, Bang-Andersen B, Balle T. Exploring the Neuroleptic Substituent in Octoclothepin: Potential Ligands for Positron Emission Tomography with Subnanomolar Affinity for α1-Adrenoceptors. J Med Chem 2010; 53:7021-34. [DOI: 10.1021/jm100652h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jesper L. Kristensen
- Department of Medicinal Chemistry, The Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | - Martin Jensen
- Department of Medicinal Chemistry, The Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Medicinal Chemistry Research
| | - Rune Risgaard
- Department of Medicinal Chemistry, The Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Medicinal Chemistry Research
| | | | | | - Thomas Balle
- Department of Medicinal Chemistry, The Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
38
|
Mengesha AE, Bummer PM. Simple chromatographic method for simultaneous analyses of phosphatidylcholine, lysophosphatidylcholine, and free fatty acids. AAPS PharmSciTech 2010; 11:1084-91. [PMID: 20585908 DOI: 10.1208/s12249-010-9470-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 06/07/2010] [Indexed: 11/30/2022] Open
Abstract
This study describes a simple chromatographic method for the simultaneous analyses of phosphatidylcholine (PC) and its hydrolytic degradation products: lysophosphatidylcholine (LPC) and free fatty acids (FFA). Quantitative determination of PC, LPC, and FFA is essential in order to assure safety and to accurately assess the shelf life of phospholipid-containing products. A single-run normal-phase high-performance liquid chromatography (HPLC) with evaporative light scattering detector has been developed. The method utilizes an Allsphere silica analytical column and a gradient elution with mobile phases consisting of chloroform: chloroform-methanol (70:30%, v/v) and chloroform-methanol-water-ammonia (45:45:9.5:0.5%, v/v/v/v). The method adequately resolves PC, LPC, and FFA within a run time of 25 min. The quantitative analysis of PC and LPC has been achieved with external standard method. The free fatty acids were analyzed as a group using linoleic acid as representative standard. Linear calibration curves were obtained for PC (1.64-16.3 μg, r(2) = 0.9991) and LPC (0.6-5.0 μg, r(2) = 0.9966), while a logarithmic calibration curve was obtained for linoleic acid (1.1-5.8 μg, r(2) = 0.9967). The detection and quantification limits of LPC and FFA were 0.04 and 0.1 μg, respectively. As a means of validating the applicability of the assay to pharmaceutical products, PC liposome was subjected to alkaline hydrolytic degradation. Quantitative HPLC analysis showed that 97% of the total mass balance for PC could be accounted for in liposome formulation. The overall results show that the HPLC method could be a useful tool for chromatographic analysis, stability studies, and formulation characterization of phospholipid-based pharmaceuticals.
Collapse
|
39
|
Li X, Monsuur F, Denoulet B, Dobrak A, Vandezande P, Vankelecom IFJ. Evaporative light scattering detector: toward a general molecular weight cutoff characterization of nanofiltration membranes. Anal Chem 2010; 81:1801-9. [PMID: 19196029 DOI: 10.1021/ac802061t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An evaporative light scattering detector (ELSD) coupled with HPLC was used for the first time to characterize membranes. Polydispersed PEG-200, 600, and 1000 were selected as probe molecules to study the dependence of membrane retention on molecular weight via a gradient eluted HPLC separation coupled to ELSD detection. The results show that HPLC/ELSD is a really general and powerful technique to study the nanofiltration (NF) process since it does not require any special properties for the solutes (chromospheres or fluorophores) and possesses the required sensitivity. Especially in solvent resistant NF (SRNF), where a wide range of organic solvents is used, the ELSD detector was not affected by the interaction between solvent and solutes, which is a critical issue compared to other more common detectors.
Collapse
Affiliation(s)
- Xianfeng Li
- Centre for Surface Chemistry and Catalysis, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, Box 2461, 3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
40
|
Márquez-Sillero I, Aguilera-Herrador E, Cárdenas S, Valcárcel M. Determination of parabens in cosmetic products using multi-walled carbon nanotubes as solid phase extraction sorbent and corona-charged aerosol detection system. J Chromatogr A 2010; 1217:1-6. [DOI: 10.1016/j.chroma.2009.11.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/29/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
|
41
|
Natalini B, Sardella R, Gioiello A, Carbone G, Dawgul M, Pellicciari R. Side-chain modified bile acids: chromatographic separation of 23-methyl epimers. J Sep Sci 2009; 32:2022-33. [DOI: 10.1002/jssc.200900080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Issaq HJ, Chan KC, Blonder J, Ye X, Veenstra TD. Separation, detection and quantitation of peptides by liquid chromatography and capillary electrochromatography. J Chromatogr A 2009; 1216:1825-37. [DOI: 10.1016/j.chroma.2008.12.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 12/10/2008] [Accepted: 12/17/2008] [Indexed: 02/09/2023]
|
43
|
Zacharis CK, Tzanavaras PD. Determination of bisphosphonate active pharmaceutical ingredients in pharmaceuticals and biological material: a review of analytical methods. J Pharm Biomed Anal 2008; 48:483-96. [PMID: 18599247 DOI: 10.1016/j.jpba.2008.05.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/20/2008] [Accepted: 05/22/2008] [Indexed: 10/22/2022]
Abstract
Bisphosphonates is a class of chemical compounds finding extensive medical applications against bone disorders including osteoporosis, Pagets' disease, etc. Non-N-containing members include etidronate, clodronate and tiludronate, while N-containing bisphosphonates include active pharmaceutical compounds such as pamidronate, neridronate, olpadronate, alendronate, ibandronate, risedronate and zoledronate. The present study covers 20 years of analytical research on this group of compounds, focusing on bioanalytical and pharmaceutical QC applications. A wide range of analytical techniques is presented and critically discussed including among others liquid and gas phase separations, electrophoretic, electroanalytical, automated and enzymatic approaches.
Collapse
Affiliation(s)
- Constantinos K Zacharis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotelian University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | | |
Collapse
|
44
|
Guillarme D, Rudaz S, Schelling C, Dreux M, Veuthey JL. Micro liquid chromatography coupled with evaporative light scattering detector at ambient and high temperature: Optimization of the nebulization cell geometry. J Chromatogr A 2008; 1192:103-12. [DOI: 10.1016/j.chroma.2008.03.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/07/2008] [Accepted: 03/12/2008] [Indexed: 11/27/2022]
|