1
|
Kozalak G, Koşar A. Bone-on-a-Chip Systems for Hematological Cancers. BIOSENSORS 2025; 15:176. [PMID: 40136973 PMCID: PMC11940066 DOI: 10.3390/bios15030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
Hematological malignancies originating from blood, bone marrow, and lymph nodes include leukemia, lymphoma, and myeloma, which necessitate the use of a distinct chemotherapeutic approach. Drug resistance frequently complicates their treatment, highlighting the need for predictive tools to guide therapeutic decisions. Conventional 2D/3D cell cultures do not fully encompass in vivo criteria, and translating disease models from mice to humans proves challenging. Organ-on-a-chip technology presents an avenue to surmount genetic disparities between species, offering precise design, concurrent manipulation of various cell types, and extrapolation of data to human physiology. The development of bone-on-a-chip (BoC) systems is crucial for accurately representing the in vivo bone microenvironment, predicting drug responses for hematological cancers, mitigating drug resistance, and facilitating personalized therapeutic interventions. BoC systems for modeling hematological cancers and drug research can encompass intricate designs and integrated platforms for analyzing drug response data to simulate disease scenarios. This review provides a comprehensive examination of BoC systems applicable to modeling hematological cancers and visualizing drug responses within the intricate context of bone. It thoroughly discusses the materials pertinent to BoC systems, suitable in vitro techniques, the predictive capabilities of BoC systems in clinical settings, and their potential for commercialization.
Collapse
Affiliation(s)
- Gül Kozalak
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
| | - Ali Koşar
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara 06700, Turkey
| |
Collapse
|
2
|
Tarn MD, Shaw KJ, Foster PB, West JS, Johnston ID, McCluskey DK, Peyman SA, Murray BJ. Microfluidics for the biological analysis of atmospheric ice-nucleating particles: Perspectives and challenges. BIOMICROFLUIDICS 2025; 19:011502. [PMID: 40041008 PMCID: PMC11878220 DOI: 10.1063/5.0236911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 03/06/2025]
Abstract
Atmospheric ice-nucleating particles (INPs) make up a vanishingly small proportion of atmospheric aerosol but are key to triggering the freezing of supercooled liquid water droplets, altering the lifetime and radiative properties of clouds and having a substantial impact on weather and climate. However, INPs are notoriously difficult to model due to a lack of information on their global sources, sinks, concentrations, and activity, necessitating the development of new instrumentation for quantifying and characterizing INPs in a rapid and automated manner. Microfluidic technology has been increasingly adopted by ice nucleation research groups in recent years as a means of performing droplet freezing analysis of INPs, enabling the measurement of hundreds or thousands of droplets per experiment at temperatures down to the homogeneous freezing of water. The potential for microfluidics extends far beyond this, with an entire toolbox of bioanalytical separation and detection techniques developed over 30 years for medical applications. Such methods could easily be adapted to biological and biogenic INP analysis to revolutionize the field, for example, in the identification and quantification of ice-nucleating bacteria and fungi. Combined with miniaturized sampling techniques, we can envisage the development and deployment of microfluidic sample-to-answer platforms for automated, user-friendly sampling and analysis of biological INPs in the field that would enable a greater understanding of their global and seasonal activity. Here, we review the various components that such a platform would incorporate to highlight the feasibility, and the challenges, of such an endeavor, from sampling and droplet freezing assays to separations and bioanalysis.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kirsty J. Shaw
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | | | - Jon S. West
- Protecting Crops and Environment Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Ian D. Johnston
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | - Daniel K. McCluskey
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | | | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
3
|
Ma Y, Sun X, Cai Z, Tu M, Wang Y, Ouyang Q, Yan X, Jing G, Yang G. Transformation gap from research findings to large-scale commercialized products in microfluidic field. Mater Today Bio 2024; 29:101373. [PMID: 39687794 PMCID: PMC11647665 DOI: 10.1016/j.mtbio.2024.101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The field of microfluidics has experienced rapid growth in the last several decades, yet it isn't considered to be a large industry comparable to semiconductor and consumer electronics. In this review, we analyzed the entire process of the transformation from research findings to commercialized products in microfluidics, as well as the significant gap during the whole developing process between microchip fabrication in R&D and large-scale production in the industry. We elaborated in detail on various materials in the microfluidics industry, including silicon, glass, PDMS, and thermoplastics, discussing their characteristics, production processes, and existing products. Despite challenges hindering the large-scale commercialization of microfluidic chips, ongoing advancements and applications are expected to integrate microfluidic technology into everyday life, transforming it into a commercially viable field with substantial potential and promising prospects.
Collapse
Affiliation(s)
- Yuqi Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Xiaoyi Sun
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Ziwei Cai
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Mengjing Tu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, China
| | - Yugang Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Qi Ouyang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Xueqing Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Gaoshan Jing
- Institute of Microelectronics, Chinese Academy of Sciences (CAS), Beijing, 100029, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Patil PD, Gargate N, Dongarsane K, Jagtap H, Phirke AN, Tiwari MS, Nadar SS. Revolutionizing biocatalysis: A review on innovative design and applications of enzyme-immobilized microfluidic devices. Int J Biol Macromol 2024; 281:136193. [PMID: 39362440 DOI: 10.1016/j.ijbiomac.2024.136193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/01/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Integrating microfluidic devices and enzymatic processes in biocatalysis is a rapidly advancing field with promising applications. This review explores various facets, including applications, scalability, techno-commercial implications, and environmental consequences. Enzyme-embedded microfluidic devices offer advantages such as compact dimensions, rapid heat transfer, and minimal reagent consumption, especially in pharmaceutical optically pure compound synthesis. Addressing scalability challenges involves strategies for uniform flow distribution and consistent residence time. Incorporation with downstream processing and biocatalytic reactions makes the overall process environmentally friendly. The review navigates challenges related to reaction kinetics, cofactor recycling, and techno-commercial aspects, highlighting cost-effectiveness, safety enhancements, and reduced energy consumption. The potential for automation and commercial-grade infrastructure is discussed, considering initial investments and long-term savings. The incorporation of machine learning in enzyme-embedded microfluidic devices advocates a blend of experimental and in-silico methods for optimization. This comprehensive review examines the advancements and challenges associated with these devices, focusing on their integration with enzyme immobilization techniques, the optimization of process parameters, and the techno-commercial considerations crucial for their widespread implementation. Furthermore, this review offers novel insights into strategies for overcoming limitations such as design complexities, laminar flow challenges, enzyme loading optimization, catalyst fouling, and multi-enzyme immobilization, highlighting the potential for sustainable and efficient enzymatic processes in various industries.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Niharika Gargate
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Khushi Dongarsane
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Hrishikesh Jagtap
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Ajay N Phirke
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Manishkumar S Tiwari
- Department of Data Science, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
5
|
Brigodiot C, Marsiglia M, Dalmazzone C, Schroën K, Colin A. Studying surfactant mass transport through dynamic interfacial tension measurements: A review of the models, experiments, and the contribution of microfluidics. Adv Colloid Interface Sci 2024; 331:103239. [PMID: 38936181 DOI: 10.1016/j.cis.2024.103239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Surfactant mass transport towards an interface plays a critical role during formation of emulsions, foams and in industrial processes where two immiscible phases coexist. The understanding of these mechanisms as experimentally observed by dynamic interfacial tension measurements, is crucial. In this review, theoretical models describing both equilibrated systems and surfactant kinetics are covered. Experimental results from the literature are analysed based on the nature of surfactants and the tensiometry methods used. The innovative microfluidic techniques that have become available to study both diffusion and adsorption mechanisms during surfactant mass transport are discussed and compared with classical methods. This review focuses on surfactant transport during formation of droplets or bubbles; stabilisation of dispersed systems is not discussed here.
Collapse
Affiliation(s)
- Camille Brigodiot
- IFP Energies nouvelles (IFPEN), 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | - Marie Marsiglia
- IFP Energies nouvelles (IFPEN), 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France.
| | - Christine Dalmazzone
- IFP Energies nouvelles (IFPEN), 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | - Karin Schroën
- Wageningen University and Research (WUR), Wageningen, the Netherlands
| | | |
Collapse
|
6
|
Racaniello GF, Silvestri T, Pistone M, D'Amico V, Arduino I, Denora N, Lopedota AA. Innovative Pharmaceutical Techniques for Paediatric Dosage Forms: A Systematic Review on 3D Printing, Prilling/Vibration and Microfluidic Platform. J Pharm Sci 2024; 113:1726-1748. [PMID: 38582283 DOI: 10.1016/j.xphs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
The production of paediatric pharmaceutical forms represents a unique challenge within the pharmaceutical industry. The primary goal of these formulations is to ensure therapeutic efficacy, safety, and tolerability in paediatric patients, who have specific physiological needs and characteristics. In recent years, there has been a significant increase in attention towards this area, driven by the need to improve drug administration to children and ensure optimal and specific treatments. Technological innovation has played a crucial role in meeting these requirements, opening new frontiers in the design and production of paediatric pharmaceutical forms. In particular, three emerging technologies have garnered considerable interest and attention within the scientific and industrial community: 3D printing, prilling/vibration, and microfluidics. These technologies offer advanced approaches for the design, production, and customization of paediatric pharmaceutical forms, allowing for more precise dosage modulation, improved solubility, and greater drug acceptability. In this review, we delve into these cutting-edge technologies and their impact on the production of paediatric pharmaceutical forms. We analyse their potential, associated challenges, and recent developments, providing a comprehensive overview of the opportunities that these innovative methodologies offer to the pharmaceutical sector. We examine different pharmaceutical forms generated using these techniques, evaluating their advantages and disadvantages.
Collapse
Affiliation(s)
| | - Teresa Silvestri
- Department of Pharmacy, University of Naples Federico II, D. Montesano St. 49, 80131 Naples, Italy
| | - Monica Pistone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Vita D'Amico
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy.
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| |
Collapse
|
7
|
Aldawood FK, Andar A, Desai S. Investigating Laser Ablation Process Parameters for the Fabrication of Customized Microneedle Arrays for Therapeutic Applications. Pharmaceutics 2024; 16:885. [PMID: 39065582 PMCID: PMC11279485 DOI: 10.3390/pharmaceutics16070885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Microneedles are an innovation in the field of medicine that have the potential to revolutionize drug delivery, diagnostics, and cosmetic treatments. This innovation provides a minimally invasive means to deliver drugs, vaccines, and other therapeutic substances into the skin. This research investigates the design and manufacture of customized microneedle arrays using laser ablation. Laser ablation was performed using an ytterbium laser on a polymethyl methacrylate (PMMA) substrate to create a mold for casting polydimethylsiloxane (PDMS) microneedles. An experimental design was conducted to evaluate the effect of process parameters including laser pulse power, pulse width, pulse repetition, interval between pulses, and laser profile on the desired geometry of the microneedles. The analysis of variance (ANOVA) model showed that lasing interval, laser power, and pulse width had the highest influence on the output metrics (diameter and height) of the microneedle. The microneedle dimensions showed an increase with higher pulse width and vice versa with an increase in pulse interval. A response surface model indicated that the laser pulse width and interval (independent variables) significantly affect the response diameter and height (dependent variable). A predictive model was generated to predict the microneedle topology and aspect ratio varying from 0.8 to 1.5 based on the variation in critical input process parameters. This research lays the foundation for the design and fabrication of customized microneedles based on variations in specific input parameters for therapeutic applications in dermal sensors, drug delivery, and vaccine delivery.
Collapse
Affiliation(s)
- Faisal Khaled Aldawood
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia;
| | - Abhay Andar
- Translational Life Science Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA;
| | - Salil Desai
- Center for Excellence in Product Design and Advanced Manufacturing, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
8
|
Nguyen N, Van TV, Nguyen T. The synergy of nucleic acid amplification and miniaturized systems in enhancing liquid biopsy applications. Bioanalysis 2024; 16:499-504. [PMID: 38380670 PMCID: PMC11299790 DOI: 10.4155/bio-2023-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Affiliation(s)
- Ngoc Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam & Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Toi Vo Van
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam & Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | - Trieu Nguyen
- Shared Research Facilities, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
9
|
Wang H, Li X, Shi P, You X, Zhao G. Establishment and evaluation of on-chip intestinal barrier biosystems based on microfluidic techniques. Mater Today Bio 2024; 26:101079. [PMID: 38774450 PMCID: PMC11107260 DOI: 10.1016/j.mtbio.2024.101079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024] Open
Abstract
As a booming engineering technology, the microfluidic chip has been widely applied for replicating the complexity of human intestinal micro-physiological ecosystems in vitro. Biosensors, 3D imaging, and multi-omics have been applied to engineer more sophisticated intestinal barrier-on-chip platforms, allowing the improved monitoring of physiological processes and enhancing chip performance. In this review, we report cutting-edge advances in the microfluidic techniques applied for the establishment and evaluation of intestinal barrier platforms. We discuss different design principles and microfabrication strategies for the establishment of microfluidic gut barrier models in vitro. Further, we comprehensively cover the complex cell types (e.g., epithelium, intestinal organoids, endothelium, microbes, and immune cells) and controllable extracellular microenvironment parameters (e.g., oxygen gradient, peristalsis, bioflow, and gut-organ axis) used to recapitulate the main structural and functional complexity of gut barriers. We also present the current multidisciplinary technologies and indicators used for evaluating the morphological structure and barrier integrity of established gut barrier models in vitro. Finally, we highlight the challenges and future perspectives for accelerating the broader applications of these platforms in disease simulation, drug development, and personalized medicine. Hence, this review provides a comprehensive guide for the development and evaluation of microfluidic-based gut barrier platforms.
Collapse
Affiliation(s)
- Hui Wang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China
| | - Xiangyang Li
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Pengcheng Shi
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiaoyan You
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Guoping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS-Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
10
|
Sun A, Vopařilová P, Liu X, Kou B, Řezníček T, Lednický T, Ni S, Kudr J, Zítka O, Fohlerová Z, Pajer P, Zhang H, Neužil P. An integrated microfluidic platform for nucleic acid testing. MICROSYSTEMS & NANOENGINEERING 2024; 10:66. [PMID: 38784376 PMCID: PMC11111744 DOI: 10.1038/s41378-024-00677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/30/2023] [Accepted: 01/07/2024] [Indexed: 05/25/2024]
Abstract
This study presents a rapid and versatile low-cost sample-to-answer system for SARS-CoV-2 diagnostics. The system integrates the extraction and purification of nucleic acids, followed by amplification via either reverse transcription-quantitative polymerase chain reaction (RT-qPCR) or reverse transcription loop-mediated isothermal amplification (RT-LAMP). By meeting diverse diagnostic and reagent needs, the platform yields testing results that closely align with those of commercial RT-LAMP and RT‒qPCR systems. Notable advantages of our system include its speed and cost-effectiveness. The assay is completed within 28 min, including sample loading (5 min), ribonucleic acid (RNA) extraction (3 min), and RT-LAMP (20 min). The cost of each assay is ≈ $9.5, and this pricing is competitive against that of Food and Drug Administration (FDA)-approved commercial alternatives. Although some RNA loss during on-chip extraction is observed, the platform maintains a potential limit of detection lower than 297 copies. Portability makes the system particularly useful in environments where centralized laboratories are either unavailable or inconveniently located. Another key feature is the platform's versatility, allowing users to choose between RT‒qPCR or RT‒LAMP tests based on specific requirements.
Collapse
Affiliation(s)
- Antao Sun
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace; School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072 P. R. China
| | - Petra Vopařilová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Xiaocheng Liu
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace; School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072 P. R. China
| | - Bingqian Kou
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace; School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072 P. R. China
| | - Tomáš Řezníček
- ITD Tech s.r.o, Osvoboditelů 1005, 735 81 Bohumín, Czech Republic
| | - Tomáš Lednický
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200 Czech Republic
| | - Sheng Ni
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiří Kudr
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Ondřej Zítka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Zdenka Fohlerová
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, Brno, 61600 Czech Republic
| | - Petr Pajer
- Military Health Institute, U Vojenské nemocnice 1200, 16200 Praha 6, Czech Republic
| | - Haoqing Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P. R. China
| | - Pavel Neužil
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace; School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072 P. R. China
| |
Collapse
|
11
|
Nadumane SS, Biswas R, Mazumder N. Integrated microfluidic platforms for heavy metal sensing: a comprehensive review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2810-2823. [PMID: 38656324 DOI: 10.1039/d4ay00293h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Heavy metals are found naturally; however, anthropogenic activities such as mining, inappropriate disposal of industrial waste, and the use of pesticides and fertilizers containing heavy metals can cause their unwanted release into the environment. Conventionally, detection of heavy metals is performed using atomic absorption spectrometry, electrochemical methods and inductively coupled plasma-mass spectrometry; however, they involve expensive and sophisticated instruments and multistep sample preparation that require expertise for accurate results. In contrast, microfluidic devices involve rapid, cost-efficient, simple, and reliable approaches for in-laboratory and real-time monitoring of heavy metals. The use of inexpensive and environment friendly materials for fabrication of microfluidic devices has increased the manufacturing efficiency of the devices. Different types of techniques used in heavy metal detection include colorimetry, absorbance-based, and electrochemical detection. This review provides insight into the detection of toxic heavy metals such as mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As). Importance is given to colorimetry, optical, and electrochemical techniques applied for the detection of heavy metals using microfluidics and their modifications to improve the limit of detection (LOD).
Collapse
Affiliation(s)
- Sharmila Sajankila Nadumane
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104
| | - Rajib Biswas
- Applied Optics and Photonics Laboratory, Department of Physics, Tezpur University, Tezpur, Assam, India -784028
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104
| |
Collapse
|
12
|
Li D, Ming P, Niu S, Yang G, Cheng K. Fabricating Precise and Smooth Microgroove Structures on Zr-Based Metallic Glass Using Jet-ECM. MICROMACHINES 2024; 15:497. [PMID: 38675308 PMCID: PMC11051951 DOI: 10.3390/mi15040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Zr-based metallic glasses (MGs) are promising materials for mold manufacturing due to their unique mechanical and chemical properties. However, the high hardness of metallic glasses and their tendency to crystallize at high temperatures make it challenging to fabricate precise and smooth microscale structures on metallic glasses. This limitation hampers the development of metallic glasses as molds. Jet electrochemical machining (jet-ECM) is a non-contact subtractive manufacturing technology that utilizes a high-speed electrolyte to partially remove material from workpieces, making it highly suitable for processing difficult-to-machine materials. Nevertheless, few studies have explored microgroove structures on Zr-based MGs using sodium nitrate electrolytes by jet-ECM. Therefore, this paper advocates the utilization of the jet-ECM technique to fabricate precise and smooth microgroove structures using a sodium nitrate electrolyte. The electrochemical characteristics were studied in sodium nitrate solution. Then, the effects of the applied voltages and nozzle travel rates on machining performance were investigated. Finally, micro-helical and micro-S structures with high geometric dimensional consistency and low surface roughness were successfully fabricated, with widths and depths measuring 433.7 ± 2.4 µm and 101.4 ± 1.6 µm, respectively. Their surface roughness was determined to be 0.118 ± 0.002 µm. Compared to non-aqueous-based methods for jet-ECM of Zr-based MGs, the depth of the microgrooves was increased from 20 μm to 101 μm. Furthermore, the processed microstructures had no uneven edges in the peripheral areas and no visible flow marks on the bottom.
Collapse
Affiliation(s)
| | - Pingmei Ming
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China; (D.L.); (S.N.)
| | | | | | | |
Collapse
|
13
|
Archana T, Nachammai N, Praveenkumar S. Optimizing Microfluidic Channel Design with High-Performance Materials for Safe Neonatal Drug Delivery. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:294-303. [PMID: 39356100 DOI: 10.2174/0126673878292962240718055526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION Designing the microfluidic channel for neonatal drug delivery requires proper considerations to enhance the efficiency and safety of drug substances when used in neonates. Thus, this research aims to evaluate high-performance materials and optimize the channel design by modeling and simulation using COMSOL multiphysics in order to deliver an optimum flow rate between 0. 3 and 1 mL/hr. METHOD Some of the materials used in the study included PDMS, glass, COC, PMMA, PC, TPE, and hydrogels, and the evaluation criterion involved biocompatibility, mechanical properties, chemical resistance, and ease of fabrication. The simulation was carried out in the COMSOL multiphysics platform and demonstrated the fog fluid behavior in different channel geometries, including laminar flow and turbulence. The study then used systematic changes in design parameters with the aim of establishing the best implementation models that can improve the efficiency and reliability of the drug delivery system. The comparison was based mostly on each material and its appropriateness in microfluidic usage, primarily in neonatal drug delivery. The biocompatibility of the developed materials was verified using the literature analysis and adherence to the ISO 10993 standard, thus providing safety for the use of neonatal devices. Tensile strength was included to check the strength of each material to withstand its operation conditions. Chemical resistance was also tested in order to determine the compatibility of the materials with various drugs, and the possibility of fabrication was also taken into consideration to identify appropriate materials that could be used in the rapid manufacturing of the product. RESULTS The results we obtained show that PDMS, due to its flexibility and simplicity in simulation coupled with more efficient channel designs which have been extracted from COMSOL, present a feasible solution to neonatal drug delivery. CONCLUSION The present comparative study serves as a guide on the choice of materials and design of microfluidic devices to help achieve safer and enhanced drug delivery systems suitable for the delicate reception of fragile neonates.
Collapse
Affiliation(s)
- T Archana
- Department of Electronics and Instrumentation Engineering, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - N Nachammai
- Department of Electronics and Instrumentation Engineering, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - S Praveenkumar
- Department of Electronics and Communication Engineering, Saveetha Engineering College, Saveetha Nagar, Chennai, India
| |
Collapse
|
14
|
Syahruddin MH, Anggraeni R, Ana ID. A microfluidic organ-on-a-chip: into the next decade of bone tissue engineering applied in dentistry. Future Sci OA 2023; 9:FSO902. [PMID: 37753360 PMCID: PMC10518836 DOI: 10.2144/fsoa-2023-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
A comprehensive understanding of the complex physiological and pathological processes associated with alveolar bones, their responses to different therapeutics strategies, and cell interactions with biomaterial becomes necessary in precisely treating patients with severe progressive periodontitis, as a bone-related issue in dentistry. However, existing monolayer cell culture or pre-clinical models have been unable to mimic the complex physiological, pathological and regeneration processes in the bone microenvironment in response to different therapeutic strategies. In this point, 'organ-on-a-chip' (OOAC) technology, specifically 'alveolar-bone-on-a-chip', is expected to resolve the problems by better imitating infection site microenvironment and microphysiology within the oral tissues. The OOAC technology is assessed in this study toward better approaches in disease modeling and better therapeutics strategy for bone tissue engineering applied in dentistry.
Collapse
Affiliation(s)
- Muhammad Hidayat Syahruddin
- Postgraduate Student, Dental Science Doctoral Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Rahmi Anggraeni
- Research Center for Preclinical & Clinical Medicine, National Research & Innovation Agency of the Republic of Indonesia, Cibinong Science Center, Bogor, 16915, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research & Innovation Agency (BRIN) – Universitas Gadjah Mada (UGM), Yogyakarta, 55281, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Research Collaboration Center for Biomedical Scaffolds, National Research & Innovation Agency (BRIN) – Universitas Gadjah Mada (UGM), Yogyakarta, 55281, Indonesia
| |
Collapse
|
15
|
Yin S, Lu R, Liu C, Zhu S, Wan H, Lin Y, Wang Q, Qu X, Li J. Composite Microfluidic Petri Dish-Chip (MPD-Chip) without Protein Coating for 2D Cell Culture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15643-15652. [PMID: 37906157 DOI: 10.1021/acs.langmuir.3c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Hydrophilicity is a requisite attribute for the 2D cell culture substrate's surface, facilitating cell adhesion and spreading. Conventional poly(dimethylsiloxane) (PDMS) microfluidic chips necessitate protein coatings to enhance hydrophilicity; however, this approach is afflicted by issues of transient efficacy, interference with cell analysis, and high costs. This paper presents a protein-free microfluidic chip, termed a "microfluidic Petri dish-chip (MPD-chip)", integrating PDMS as the cover and a tissue culture-treated (TC-treated) Petri dish as the substrate. Microstructures are hot-embossed onto the Petri dish substrate using a silicon mold. This meticulous replication process serves to establish stable flow field dynamics within the chip. A simplified method for irreversible bonding, utilizing plasma activation and silylation, is proposed for affixing the PDMS cover onto the microstructured Petri dish substrate. The prepared composite chip exhibits remarkable tightness, boasting a notable bond strength of 2825 kPa. Furthermore, the composite microfluidic chip demonstrates the capability to withstand flow velocities of at least 200 μL/min, effectively meeting the required injection standards for both cell suspension and culture medium. SH-SY5Y and HeLa cells are cultured dynamically in the MPD-chip and control groups. Outcomes encompassing normalized cell density, cell adhesion area, and cell viability metrics unequivocally highlight the superiority of the MPD-chip in facilitating long-term two-dimensional (2D) cell cultures.
Collapse
Affiliation(s)
- Shuqing Yin
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Ruoyu Lu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Chong Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Shicheng Zhu
- Guangzhou Wondfo Biotech Co., Ltd., Guangzhou 510663, China
| | - Huifang Wan
- Guangzhou Wondfo Biotech Co., Ltd., Guangzhou 510663, China
| | - Yayun Lin
- Guangzhou Wondfo Biotech Co., Ltd., Guangzhou 510663, China
| | - Qiang Wang
- Hebei Sailhero Environmental Protection High-Tech Co., Ltd., Shijiazhuang 050081, China
| | - Xiaohu Qu
- Hebei Sailhero Environmental Protection High-Tech Co., Ltd., Shijiazhuang 050081, China
| | - Jingmin Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
16
|
Amador-Hernandez JU, Guevara-Pantoja PE, Cedillo-Alcantar DF, Caballero-Robledo GA, Garcia-Cordero JL. Millifluidic valves and pumps made of tape and plastic. LAB ON A CHIP 2023; 23:4579-4591. [PMID: 37772361 DOI: 10.1039/d3lc00559c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
There is growing interest in producing micro- and milli-fluidic technologies made of thermoplastic with integrated fluidic control elements that are easy to assemble and suitable for mass production. Here, we developed millifluidic valves and pumps made of acrylic layers bonded with double-sided tape that are simple and fast to assemble. We demonstrate that a layer of pressure-sensitive adhesive (PSA) is flexible enough to be deformed at relatively low pressures. A chemical treatment deposited on specific regions of the PSA prevents it from sticking to the thermoplastic, which enabled us to create three different types of valves in normally open or closed configurations. We characterized different aspects of their performance, their operating pressures, the cut-off pressure values to open or close the valves (for different configurations and sizes), and the flow rate and volume pumped by seven different micropumps. As an application, we implemented a glucose assay with integrated pumps and valves, automatically generating glucose dilutions and reagent mixing. The ability to create polymeric microfluidic control units made with tape paves the way for their mass manufacturing.
Collapse
Affiliation(s)
- Josue U Amador-Hernandez
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Pablo E Guevara-Pantoja
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Diana F Cedillo-Alcantar
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Gabriel A Caballero-Robledo
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Jose L Garcia-Cordero
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland.
| |
Collapse
|
17
|
Akbari Z, Raoufi MA, Mirjalali S, Aghajanloo B. A review on inertial microfluidic fabrication methods. BIOMICROFLUIDICS 2023; 17:051504. [PMID: 37869745 PMCID: PMC10589053 DOI: 10.1063/5.0163970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
In recent decades, there has been significant interest in inertial microfluidics due to its high throughput, ease of fabrication, and no need for external forces. The focusing efficiency of inertial microfluidic systems relies entirely on the geometrical features of microchannels because hydrodynamic forces (inertial lift forces and Dean drag forces) are the main driving forces in inertial microfluidic devices. In the past few years, novel microchannel structures have been propounded to improve particle manipulation efficiency. However, the fabrication of these unconventional structures has remained a serious challenge. Although researchers have pushed forward the frontiers of microfabrication technologies, the fabrication techniques employed for inertial microfluidics have not been discussed comprehensively. This review introduces the microfabrication approaches used for creating inertial microchannels, including photolithography, xurography, laser cutting, micromachining, microwire technique, etching, hot embossing, 3D printing, and injection molding. The advantages and disadvantages of these methods have also been discussed. Then, the techniques are reviewed regarding resolution, structures, cost, and materials. This review provides a thorough insight into the manufacturing methods of inertial microchannels, which could be helpful for future studies to improve the harvesting yield and resolution by choosing a proper fabrication technique.
Collapse
Affiliation(s)
- Zohreh Akbari
- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Sheyda Mirjalali
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Behrouz Aghajanloo
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Pinheiro KMP, Guinati BGS, Moreira NS, Coltro WKT. Low-Cost Microfluidic Systems for Detection of Neglected Tropical Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:117-138. [PMID: 37068747 DOI: 10.1146/annurev-anchem-091522-024759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neglected tropical diseases (NTDs) affect tropical and subtropical countries and are caused by viruses, bacteria, protozoa, and helminths. These kinds of diseases spread quickly due to the tropical climate and limited access to clean water, sanitation, and health care, which make exposed people more vulnerable. NTDs are reported to be difficult and inefficient to diagnose. As mentioned, most NTDs occur in countries that are socially vulnerable, and the lack of resources and access to modern laboratories and equipment intensify the difficulty of diagnosis and treatment, leading to an increase in the mortality rate. Portable and low-cost microfluidic systems have been widely applied for clinical diagnosis, offering a promising alternative that can meet the needs for fast, affordable, and reliable diagnostic tests in developing countries. This review provides a critical overview of microfluidic devices that have been reported in the literature for the detection of the most common NTDs over the past 5 years.
Collapse
Affiliation(s)
| | | | - Nikaele S Moreira
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil;
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil;
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, Brazil
| |
Collapse
|
19
|
Zhang Y, Sun K, Xie Y, Liang K, Zhang J, Fan Y. Reversible bonding of microfluidics: Review and applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:061501. [PMID: 37862510 DOI: 10.1063/5.0142551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/24/2023] [Indexed: 10/22/2023]
Abstract
With the development of microfluidic technology, new materials and fabrication methods have been constantly invented in the field of microfluidics. Bonding is one of the key steps for the fabrication of enclosed-channel microfluidic chips, which have been extensively explored by researchers globally. The main purpose of bonding is to seal/enclose fabricated microchannels for subsequent fluid manipulations. Conventional bonding methods are usually irreversible, and the forced detachment of the substrate and cover plate may lead to structural damage to the chip. Some of the current microfluidic applications require reversible bonding to reuse the chip or retrieve the contents inside the chip. Therefore, it is essential to develop reversible bonding methods to meet the requirements of various applications. This review introduces the most recent developments in reversible bonding methods in microfluidics and their corresponding applications. Finally, the perspective and outlook of reversible bonding technology were discussed in this review.
Collapse
Affiliation(s)
- Y Zhang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - K Sun
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Y Xie
- LK Injection Molding Machine Co., Ltd., Zhongshan, Guangdong, People's Republic of China
| | - K Liang
- LK Injection Molding Machine Co., Ltd., Zhongshan, Guangdong, People's Republic of China
| | - J Zhang
- College of Electronic Science and Control Engineering, Institute of Disaster Prevention, Sanhe, People's Republic of China
| | - Y Fan
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| |
Collapse
|
20
|
Liao X, Zhang Y, Zhang Q, Zhou J, Ding T, Feng J. Advancing point-of-care microbial pathogens detection by material-functionalized microfluidic systems. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
21
|
Off-Stoichiometry Thiol–Ene Polymers: Inclusion of Anchor Groups Using Allylsilanes. Polymers (Basel) 2023; 15:polym15061329. [PMID: 36987110 PMCID: PMC10059650 DOI: 10.3390/polym15061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
The use of polymers in silicon chips is of great importance for the development of microelectronic and biomedical industries. In this study, new silane-containing polymers, called OSTE-AS polymers, were developed based on off-stoichiometry thiol–ene polymers. These polymers can bond to silicon wafers without pretreatment of the surface by an adhesive. Silane groups were included in the polymer using allylsilanes, with the thiol monomer as the target of modification. The polymer composition was optimized to provide the maximum hardness, the maximum tensile strength, and good bonding with the silicon wafers. The Young’s modulus, wettability, dielectric constant, optical transparency, TGA and DSC curves, and the chemical resistance of the optimized OSTE-AS polymer were studied. Thin OSTE-AS polymer layers were obtained on silicon wafers via centrifugation. The possibility of creating microfluidic systems based on OSTE-AS polymers and silicon wafers was demonstrated.
Collapse
|
22
|
Sarkar S, Nieuwenhuis AF, Lemay SG. Integrated Glass Microfluidics with Electrochemical Nanogap Electrodes. Anal Chem 2023; 95:4266-4270. [PMID: 36812004 PMCID: PMC9996602 DOI: 10.1021/acs.analchem.2c04257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We present a framework for the fabrication of chip-based electrochemical nanogap sensors integrated with microfluidics. Instead of polydimethylsiloxane (PDMS), SU-8 aided adhesive bonding of silicon and glass wafers is used to implement parallel flow control. The fabrication process permits wafer-scale production with high throughput and reproducibility. Additionally, the monolithic structures allow simple electrical and fluidic connections, alleviating the need for specialized equipment. We demonstrate the utility of these flow-incorporated nanogap sensors by performing redox cycling measurements under laminar flow conditions.
Collapse
Affiliation(s)
- Sahana Sarkar
- Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ab F Nieuwenhuis
- Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Serge G Lemay
- Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
23
|
Monteduro AG, Rizzato S, Caragnano G, Trapani A, Giannelli G, Maruccio G. Organs-on-chips technologies – A guide from disease models to opportunities for drug development. Biosens Bioelectron 2023; 231:115271. [PMID: 37060819 DOI: 10.1016/j.bios.2023.115271] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 11/24/2022] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Current in-vitro 2D cultures and animal models present severe limitations in recapitulating human physiopathology with striking discrepancies in estimating drug efficacy and side effects when compared to human trials. For these reasons, microphysiological systems, organ-on-chip and multiorgans microdevices attracted considerable attention as novel tools for high-throughput and high-content research to achieve an improved understanding of diseases and to accelerate the drug development process towards more precise and eventually personalized standards. This review takes the form of a guide on this fast-growing field, providing useful introduction to major themes and indications for further readings. We start analyzing Organs-on-chips (OOC) technologies for testing the major drug administration routes: (1) oral/rectal route by intestine-on-a-chip, (2) inhalation by lung-on-a-chip, (3) transdermal by skin-on-a-chip and (4) intravenous through vascularization models, considering how drugs penetrate in the bloodstream and are conveyed to their targets. Then, we focus on OOC models for (other) specific organs and diseases: (1) neurodegenerative diseases with brain models and blood brain barriers, (2) tumor models including their vascularization, organoids/spheroids, engineering and screening of antitumor drugs, (3) liver/kidney on chips and multiorgan models for gastrointestinal diseases and metabolic assessment of drugs and (4) biomechanical systems recapitulating heart, muscles and bones structures and related diseases. Successively, we discuss technologies and materials for organ on chips, analyzing (1) microfluidic tools for organs-on-chips, (2) sensor integration for real-time monitoring, (3) materials and (4) cell lines for organs on chips. (Nano)delivery approaches for therapeutics and their on chip assessment are also described. Finally, we conclude with a critical discussion on current significance/relevance, trends, limitations, challenges and future prospects in terms of revolutionary impact on biomedical research, preclinical models and drug development.
Collapse
Affiliation(s)
- Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Silvia Rizzato
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Giusi Caragnano
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
24
|
Hu X, Gao X, Chen S, Guo J, Zhang Y. DropLab: an automated magnetic digital microfluidic platform for sample-to-answer point-of-care testing-development and application to quantitative immunodiagnostics. MICROSYSTEMS & NANOENGINEERING 2023; 9:10. [PMID: 36644334 PMCID: PMC9833028 DOI: 10.1038/s41378-022-00475-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
In point-of-care testing (POCT), tests are performed near patients and results are given rapidly for timely clinical decisions. Immunodiagnostic assays are one of the most important analyses for detecting and quantifying protein-based biomarkers. However, existing POCT immunodiagnostics mainly rely on the lateral flow assay (LFA), which has limited sensitivity or quantification capability. Although other immunodiagnostic assays, such as enzyme-linked immunosorbent assays (ELISAs), offer more sensitive and quantitative results, they require complex liquid manipulations that are difficult to implement in POCT settings by conventional means. Here, we show the development of DropLab, an automated sample-in-answer-out POCT immunodiagnostic platform based on magnetic digital microfluidic (MDM) technology. DropLab performs microbead-based ELISA in droplets to offer more sensitive and quantitative testing results. The intricate liquid manipulations required for ELISA are accomplished by controlling droplets with magnetic microbeads using MDM technology, which enables us to achieve full automation and easy operations with DropLab. Four ELISAs (the sample in triplicates and a negative control) can be run in parallel on the thermoformed disposable chip, which greatly improves the throughput and accuracy compared to those of other POCT immunodiagnostic devices. DropLab was validated by measuring two protein targets and one antibody target. The testing results showed that the limit of detection (LOD) of DropLab matched that of the conventional ELISA in a microwell plate. DropLab brings MDM one step closer to being a viable medical technology that is ready for real-world POCT applications.
Collapse
Affiliation(s)
- Xuyang Hu
- China-Singapore International Joint Research Institute, Guangzhou, China
- Guangzhou DropLab Scientific Co. Ltd., Guangzhou, China
| | - Xiangyu Gao
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Songlin Chen
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
- DropLab Scientific (Singapore) Pvt. Ltd., Singapore, Singapore
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
25
|
Watkin SAJ, Hashemi A, Thomson DR, Pearce FG, Dobson RCJ, Nock VM. Laminar flow-based microfluidic systems for molecular interaction analysis-Part 1: Chip development, system operation and measurement setup. Methods Enzymol 2023; 682:53-100. [PMID: 36948712 DOI: 10.1016/bs.mie.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The recent advent of laminar flow-based microfluidic systems for molecular interaction analysis has enabled transformative new profiling of proteins in regards to their structure, disordering, complex formation and interactions in general. Based on the diffusive transport of molecules perpendicular to the direction of laminar flow in a microfluidic channel, systems of this type promise continuous-flow, high-throughput screening of complex, multi-molecule interactions, while remaining tolerant to heterogeneous mixtures. Using common microfluidic device processing, the technology provides unique opportunities, as well as device design and experimental challenges, for integrative sample handling approaches that can investigate biomolecular interaction events in complex samples with readily available laboratory equipment. In this first chapter of a two-part series, we introduce system design and experimental setup requirements for a typical laminar flow-based microfluidic system for molecular interaction analysis in the form of what we call the 'LaMInA system' (Laminar flow-based Molecular Interaction Analysis system). We provide microfluidic device development advice on choice of device material, device design, including impact of channel geometry on the signal acquisition, and on design limitations and possible post-fabrication treatments to redress these. Finally. we cover aspects of fluidic actuation, such as selecting, measuring and controlling the flow rate appropriately, and provide a guide to possible fluorescent labels for proteins, as well as options for the fluorescence detection hardware, all in the context of assisting the reader in developing their own laminar flow-based experimental setup for biomolecular interaction analysis.
Collapse
Affiliation(s)
- Serena A J Watkin
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Azadeh Hashemi
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Department of Electrical & Computer Engineering, University of Canterbury, Christchurch, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Dion R Thomson
- Protein Science & Engineering Team, Callaghan Innovation, Christchurch, New Zealand
| | - F Grant Pearce
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.
| | - Volker M Nock
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; Department of Electrical & Computer Engineering, University of Canterbury, Christchurch, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| |
Collapse
|
26
|
Berwanger JD, Lake MA, Ganguly S, Yang J, Welch CJ, Linnes JC, Bruening M. Microporous affinity membranes and their incorporation into microfluidic devices for monitoring of therapeutic antibodies. Talanta 2023; 252:123842. [DOI: 10.1016/j.talanta.2022.123842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
|
27
|
Torun H, Fazla B, Arman S, Ozdalgic B, Yetisen AK, Tasoglu S. Microfluidic contact lenses for ocular diagnostics and drug delivery. NANO SELECT 2022. [DOI: 10.1002/nano.202200202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Hulya Torun
- Graduate School of Sciences and Engineering Koc University Istanbul Turkey
- Koc University Research Center for Translational Medicine Koc University Istanbul Turkey
| | - Bartu Fazla
- Graduate School of Sciences and Engineering Koc University Istanbul Turkey
| | - Samaneh Arman
- Graduate School of Sciences and Engineering Koc University Istanbul Turkey
| | - Berin Ozdalgic
- Koc University Research Center for Translational Medicine Koc University Istanbul Turkey
- Department of Mechanical Engineering, Engineering Faculty Koc University Istanbul Turkey
- Division of Opticianry, The School of Medical Services and Techniques Dogus University Istanbul Turkey
| | - Ali K. Yetisen
- Department of Chemical Engineering Imperial College London London UK
| | - Savas Tasoglu
- Koc University Research Center for Translational Medicine Koc University Istanbul Turkey
- Department of Mechanical Engineering, Engineering Faculty Koc University Istanbul Turkey
- Arcelik Research Center for Creative Industries (KUAR) Koc University Istanbul Turkey
- Institute of Biomedical Engineering Bogazici University Istanbul Turkey
| |
Collapse
|
28
|
Jiang S, Zhang Y, Ma H, Zha X, Peng X, Li J, Lu C. Effects of Cavity Thickness on the Replication of Micro Injection Molded Parts with Microstructure Array. Polymers (Basel) 2022; 14:polym14245471. [PMID: 36559838 PMCID: PMC9786217 DOI: 10.3390/polym14245471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Parts with microstructure arrays have been widely used in biotechnologies and optical technologies, and their performances are affected by replication uniformity. The uniformity of the microstructure is still a challenge in micro-injection molded parts and is greatly affected by the cavity thickness and process parameters. In this study, the replication uniformity of microstructures is experimentally investigated. The relationship between the replication uniformity and cavity thickness was explored through single-factor experiments. Additionally, the impacts of the process parameters on the replication uniformity were also studied through uniform design experiments. A regression equation was established to describe the quantitative relationship between the important parameters and replication uniformity. The results showed that the replication uniformity of microstructures increases by 39.82% between the cavity with the thickness of 0.5 mm and a cavity of 0.7 mm. In addition, holding time is the most significant factor influencing the replication uniformity, followed by mold temperature, melt temperature, and injection speed. It is concluded that the thickness of cavity and the process parameters have significant influence on the replication uniformity. The experimental results provide important data on how to improve the replication uniformity of parts with microstructure arrays.
Collapse
Affiliation(s)
- Shaofei Jiang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuansong Zhang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haowei Ma
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoqiang Zha
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiang Peng
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiquan Li
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou 318014, China
- Correspondence: (J.L.); (C.L.)
| | - Chunfu Lu
- Industrial Design and Research Institute, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (J.L.); (C.L.)
| |
Collapse
|
29
|
Rahimnejad M, Rasouli F, Jahangiri S, Ahmadi S, Rabiee N, Ramezani Farani M, Akhavan O, Asadnia M, Fatahi Y, Hong S, Lee J, Lee J, Hahn SK. Engineered Biomimetic Membranes for Organ-on-a-Chip. ACS Biomater Sci Eng 2022; 8:5038-5059. [PMID: 36347501 DOI: 10.1021/acsbiomaterials.2c00531] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Organ-on-a-chip (OOC) systems are engineered nanobiosystems to mimic the physiochemical environment of a specific organ in the body. Among various components of OOC systems, biomimetic membranes have been regarded as one of the most important key components to develop controllable biomimetic bioanalysis systems. Here, we review the preparation and characterization of biomimetic membranes in comparison with the features of the extracellular matrix. After that, we review and discuss the latest applications of engineered biomimetic membranes to fabricate various organs on a chip, such as liver, kidney, intestine, lung, skin, heart, vasculature and blood vessels, brain, and multiorgans with perspectives for further biomedical applications.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Fariba Rasouli
- Bioceramics and Implants Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14174-66191, Iran
| | - Sepideh Jahangiri
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Sanghoon Hong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Jungho Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
30
|
Hobæk TC, Pranov HJ, Larsen NB. Immobilization of Active Antibodies at Polymer Melt Surfaces during Injection Molding. Polymers (Basel) 2022; 14:polym14204426. [PMID: 36298004 PMCID: PMC9606872 DOI: 10.3390/polym14204426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022] Open
Abstract
We demonstrate the transfer and immobilization of active antibodies from a low surface- energy mold surface to thermoplastic replica surfaces using injection molding, and we investigate the process at molecular scale. The transfer process is highly efficient, as verified by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) of the mold and replica surfaces. AFM analysis reveals partial nanometer-scale embedding of the protein into the polymer matrix as a possible mechanism of permanent immobilization. Replicas with rabbit anti-mouse IgG immobilized as capture antibody at the hot polymer melt surface during injection molding show similar affinity for their antigen (mouse IgG) in sandwich enzyme-linked immunosorbent assay (ELISA) as capture antibodies deposited by passive adsorption onto a bare thermoplastic replica. The transferred antibodies retain their functionality after incubation in serum-containing cell medium for >1 week. A mold coating time of 10 min prior to injection molding is sufficient for producing highly sensitive ELISA assays, thus enabling the short processing cycle times required for mass production of single-use biodevices relying on active immobilized antibodies.
Collapse
Affiliation(s)
- Thor Christian Hobæk
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
| | | | - Niels B. Larsen
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
- Correspondence:
| |
Collapse
|
31
|
Trinh KTL, Thai DA, Lee NY. Bonding Strategies for Thermoplastics Applicable for Bioanalysis and Diagnostics. MICROMACHINES 2022; 13:1503. [PMID: 36144126 PMCID: PMC9501821 DOI: 10.3390/mi13091503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Microfluidics is a multidisciplinary science that includes physics, chemistry, engineering, and biotechnology. Such microscale systems are receiving growing interest in applications such as analysis, diagnostics, and biomedical research. Thermoplastic polymers have emerged as one of the most attractive materials for microfluidic device fabrication owing to advantages such as being optically transparent, biocompatible, cost-effective, and mass producible. However, thermoplastic bonding is a key challenge for sealing microfluidic devices. Given the wide range of bonding methods, the appropriate bonding approach should be carefully selected depending on the thermoplastic material and functional requirements. In this review, we aim to provide a comprehensive overview of thermoplastic fabricating and bonding approaches, presenting their advantages and disadvantages, to assist in finding suitable microfluidic device bonding methods. In addition, we highlight current applications of thermoplastic microfluidics to analyses and diagnostics and introduce future perspectives on thermoplastic bonding strategies.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| | - Duc Anh Thai
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| |
Collapse
|
32
|
Lai X, Yang M, Wu H, Li D. Modular Microfluidics: Current Status and Future Prospects. MICROMACHINES 2022; 13:1363. [PMID: 36014285 PMCID: PMC9414757 DOI: 10.3390/mi13081363] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
This review mainly studies the development status, limitations, and future directions of modular microfluidic systems. Microfluidic technology is an important tool platform for scientific research and plays an important role in various fields. With the continuous development of microfluidic applications, conventional monolithic microfluidic chips show more and more limitations. A modular microfluidic system is a system composed of interconnected, independent modular microfluidic chips, which are easy to use, highly customizable, and on-site deployable. In this paper, the current forms of modular microfluidic systems are classified and studied. The popular fabrication techniques for modular blocks, the major application scenarios of modular microfluidics, and the limitations of modular techniques are also discussed. Lastly, this review provides prospects for the future direction of modular microfluidic technologies.
Collapse
Affiliation(s)
- Xiaochen Lai
- School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mingpeng Yang
- School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hao Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
33
|
Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components. BIOSENSORS 2022; 12:bios12080652. [PMID: 36005047 PMCID: PMC9405740 DOI: 10.3390/bios12080652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Stereolithography based 3D printing of microfluidics for prototyping has gained a lot of attention due to several advantages such as fast production, cost-effectiveness, and versatility over traditional photolithography-based microfabrication techniques. However, existing consumer focused SLA 3D printers struggle to fabricate functional microfluidic devices due to several challenges associated with micron-scale 3D printing. Here, we explore the origins and mechanism of the associated failure modes followed by presenting guidelines to overcome these challenges. The prescribed method works completely with existing consumer class inexpensive SLA printers without any modifications to reliably print PDMS cast microfluidic channels with channel sizes as low as ~75 μm and embedded channels with channel sizes as low ~200 μm. We developed a custom multi-resin formulation by incorporating Polyethylene glycol diacrylate (PEGDA) and Ethylene glycol polyether acrylate (EGPEA) as the monomer units to achieve micron sized printed features with tunable mechanical and optical properties. By incorporating multiple resins with different mechanical properties, we were able to achieve spatial control over the stiffness of the cured resin enabling us to incorporate both flexible and rigid components within a single 3D printed microfluidic chip. We demonstrate the utility of this technique by 3D printing an integrated pressure-actuated pneumatic valve (with flexible cured resin) in an otherwise rigid and clear microfluidic device that can be fabricated in a one-step process from a single CAD file. We also demonstrate the utility of this technique by integrating a fully functional finger-actuated microfluidic pump. The versatility and accessibility of the demonstrated fabrication method have the potential to reduce our reliance on expensive and time-consuming photolithographic techniques for microfluidic chip fabrication and thus drastically lowering our barrier to entry in microfluidics research.
Collapse
|
34
|
Geissler M, Ponton A, Nassif C, Malic L, Turcotte K, Lukic L, Morton KJ, Veres T. Use of Polymer Micropillar Arrays as Templates for Solid-Phase Immunoassays. ACS APPLIED POLYMER MATERIALS 2022; 4:5287-5297. [PMID: 37552739 PMCID: PMC9173674 DOI: 10.1021/acsapm.2c00163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/20/2022] [Indexed: 08/10/2023]
Abstract
We investigate the use of periodic micropillar arrays produced by high-fidelity microfabrication with cyclic olefin polymers for solid-phase immunoassays. These three-dimensional (3D) templates offer higher surface-to-volume ratios than two-dimensional substrates, making it possible to attach more antibodies and so increase the signal obtained by the assay. Micropillar arrays also provide the capacity to induce wicking, which is used to distribute and confine antibodies on the surface with spatial control. Micropillar array substrates are modified by using oxygen plasma treatment, followed by grafting of (3-aminopropyl)triethoxysilane for binding proteins covalently using glutaraldehyde as a cross-linker. The relationship between microstructure and fluorescence signal was investigated through variation of pitch (10-50 μm), pillar diameter (5-40 μm), and pillar height (5-57 μm). Our findings suggest that signal intensity scales proportionally with the 3D surface area available for performing solid-phase immunoassays. A linear relationship between fluorescence intensity and microscale structure can be maintained even when the aspect ratio and pillar density both become very high, opening the possibility of tuning assay response by design such that desired signal intensity is obtained over a wide dynamic range compatible with different assays, analyte concentrations, and readout instruments. We demonstrate the versatility of the approach by performing the most common immunoassay formats-direct, indirect, and sandwich-in a qualitative fashion by using colorimetric and fluorescence-based detection for a number of clinically relevant protein markers, such as tumor necrosis factor alpha, interferon gamma (IFN-γ), and spike protein of severe acute respiratory syndrome coronavirus 2. We also show quantitative detection of IFN-γ in serum using a fluorescence-based sandwich immunoassay and calibrated samples with spike-in concentrations ranging from 50 pg/mL to 5 μg/mL, yielding an estimated limit of detection of ∼1 pg/mL for arrays with high micropillar density (11561 per mm2) and aspect ratio (1:11.35).
Collapse
Affiliation(s)
- Matthias Geissler
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - André Ponton
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Christina Nassif
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Lidija Malic
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Karine Turcotte
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Ljuboje Lukic
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Keith J. Morton
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Teodor Veres
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| |
Collapse
|
35
|
Ebrahimi G, Samadi Pakchin P, Shamloo A, Mota A, de la Guardia M, Omidian H, Omidi Y. Label-free electrochemical microfluidic biosensors: futuristic point-of-care analytical devices for monitoring diseases. Mikrochim Acta 2022; 189:252. [PMID: 35687204 DOI: 10.1007/s00604-022-05316-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
The integration of microfluidics with electrochemical analysis has resulted in the development of single miniaturized detection systems, which allows the precise control of sample volume with multianalyte detection capability in a cost- and time-effective manner. Microfluidic electrochemical sensing devices (MESDs) can potentially serve as precise sensing and monitoring systems for the detection of molecular markers in various detrimental diseases. MESDs offer several advantages, including (i) automated sample preparation and detection, (ii) low sample and reagent requirement, (iii) detection of multianalyte in a single run, (iv) multiplex analysis in a single integrated device, and (v) portability with simplicity in application and disposability. Label-free MESDs can serve an affordable real-time detection with a simple analysis in a short processing time, providing point-of-care diagnosis/detection possibilities in precision medicine, and environmental analysis. In the current review, we elaborate on label-free microfluidic biosensors, provide comprehensive insights into electrochemical detection techniques, and discuss the principles of label-free microfluidic-based sensing approaches.
Collapse
Affiliation(s)
- Ghasem Ebrahimi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Ali Mota
- Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
36
|
Han J, Saravanapavanantham M, Chua MR, Lang JH, Bulović V. A versatile acoustically active surface based on piezoelectric microstructures. MICROSYSTEMS & NANOENGINEERING 2022; 8:55. [PMID: 35646386 PMCID: PMC9135689 DOI: 10.1038/s41378-022-00384-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
We demonstrate a versatile acoustically active surface consisting of an ensemble of piezoelectric microstructures that are capable of radiating and sensing acoustic waves. A freestanding microstructure array embossed in a single step on a flexible piezoelectric sheet of polyvinylidene fluoride (PVDF) leads to high-quality acoustic performance, which can be tuned by the design of the embossed microstructures. The high sensitivity and large bandwidth for sound generation demonstrated by this acoustically active surface outperform previously reported thin-film loudspeakers using PVDF, PVDF copolymers, or voided charged polymers without microstructures. We further explore the directivity of this device and its use on a curved surface. In addition, high-fidelity sound perception is demonstrated by the surface, enabling its microphonic application for voice recording and speaker recognition. The versatility, high-quality acoustic performance, minimal form factor, and scalability of future production of this acoustically active surface can lead to broad industrial and commercial adoption for this technology.
Collapse
Affiliation(s)
- Jinchi Han
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Mayuran Saravanapavanantham
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Matthew R. Chua
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Jeffrey H. Lang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Vladimir Bulović
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| |
Collapse
|
37
|
Xie Y, Dai L, Yang Y. Microfluidic technology and its application in the point-of-care testing field. BIOSENSORS & BIOELECTRONICS: X 2022; 10:100109. [PMID: 35075447 PMCID: PMC8769924 DOI: 10.1016/j.biosx.2022.100109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 05/15/2023]
Abstract
Since the outbreak of the coronavirus disease 2019 (COVID-19), countries around the world have suffered heavy losses of life and property. The global pandemic poses a challenge to the global public health system, and public health organizations around the world are actively looking for ways to quickly and efficiently screen for viruses. Point-of-care testing (POCT), as a fast, portable, and instant detection method, is of great significance in infectious disease detection, disease screening, pre-disease prevention, postoperative treatment, and other fields. Microfluidic technology is a comprehensive technology that involves various interdisciplinary disciplines. It is also known as a lab-on-a-chip (LOC), and can concentrate biological and chemical experiments in traditional laboratories on a chip of several square centimeters with high integration. Therefore, microfluidic devices have become the primary implementation platform of POCT technology. POCT devices based on microfluidic technology combine the advantages of both POCT and microfluids, and are expected to shine in the biomedical field. This review introduces microfluidic technology and its applications in combination with other technologies.
Collapse
Affiliation(s)
- Yaping Xie
- Sansure Biotech Inc., Changsha, 410205, PR China
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Lizhong Dai
- Sansure Biotech Inc., Changsha, 410205, PR China
| | - Yijia Yang
- Sansure Biotech Inc., Changsha, 410205, PR China
| |
Collapse
|
38
|
Giri K, Tsao CW. Recent Advances in Thermoplastic Microfluidic Bonding. MICROMACHINES 2022; 13:486. [PMID: 35334777 PMCID: PMC8949906 DOI: 10.3390/mi13030486] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023]
Abstract
Microfluidics is a multidisciplinary technology with applications in various fields, such as biomedical, energy, chemicals and environment. Thermoplastic is one of the most prominent materials for polymer microfluidics. Properties such as good mechanical rigidity, organic solvent resistivity, acid/base resistivity, and low water absorbance make thermoplastics suitable for various microfluidic applications. However, bonding of thermoplastics has always been challenging because of a wide range of bonding methods and requirements. This review paper summarizes the current bonding processes being practiced for the fabrication of thermoplastic microfluidic devices, and provides a comparison between the different bonding strategies to assist researchers in finding appropriate bonding methods for microfluidic device assembly.
Collapse
Affiliation(s)
| | - Chia-Wen Tsao
- Department of Mechanical Engineering, National Central University, Taoyuan City 320, Taiwan;
| |
Collapse
|
39
|
Elvira KS, Gielen F, Tsai SSH, Nightingale AM. Materials and methods for droplet microfluidic device fabrication. LAB ON A CHIP 2022; 22:859-875. [PMID: 35170611 PMCID: PMC9074766 DOI: 10.1039/d1lc00836f] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/21/2022] [Indexed: 05/19/2023]
Abstract
Since the first reports two decades ago, droplet-based systems have emerged as a compelling tool for microbiological and (bio)chemical science, with droplet flow providing multiple advantages over standard single-phase microfluidics such as removal of Taylor dispersion, enhanced mixing, isolation of droplet contents from surfaces, and the ability to contain and address individual cells or biomolecules. Typically, a droplet microfluidic device is designed to produce droplets with well-defined sizes and compositions that flow through the device without interacting with channel walls. Successful droplet flow is fundamentally dependent on the microfluidic device - not only its geometry but moreover how the channel surfaces interact with the fluids. Here we summarise the materials and fabrication techniques required to make microfluidic devices that deliver controlled uniform droplet flow, looking not just at physical fabrication methods, but moreover how to select and modify surfaces to yield the required surface/fluid interactions. We describe the various materials, surface modification techniques, and channel geometry approaches that can be used, and give examples of the decision process when determining which material or method to use by describing the design process for five different devices with applications ranging from field-deployable chemical analysers to water-in-water droplet creation. Finally we consider how droplet microfluidic device fabrication is changing and will change in the future, and what challenges remain to be addressed in the field.
Collapse
Affiliation(s)
- Katherine S Elvira
- Department of Chemistry, Faculty of Science, University of Victoria, BC, Canada
| | - Fabrice Gielen
- Living Systems Institute, College of Engineering, Physics and Mathematics, University of Exeter, Exeter, EX4 4QD, UK
| | - Scott S H Tsai
- Department of Mechanical and Industrial Engineering, Ryerson University, ON, Canada
- Institute for Biomedical Engineering, Science, and Technology (iBEST)-a partnership between Ryerson University and St. Michael's Hospital, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, ON, Canada
| | - Adrian M Nightingale
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Centre of Excellence for Continuous Digital Chemical Engineering Science, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
40
|
Gradisteanu Pircalabioru G, Iliescu FS, Mihaescu G, Cucu AI, Ionescu ON, Popescu M, Simion M, Burlibasa L, Tica M, Chifiriuc MC, Iliescu C. Advances in the Rapid Diagnostic of Viral Respiratory Tract Infections. Front Cell Infect Microbiol 2022; 12:807253. [PMID: 35252028 PMCID: PMC8895598 DOI: 10.3389/fcimb.2022.807253] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022] Open
Abstract
Viral infections are a significant public health problem, primarily due to their high transmission rate, various pathological manifestations, ranging from mild to severe symptoms and subclinical onset. Laboratory diagnostic tests for infectious diseases, with a short enough turnaround time, are promising tools to improve patient care, antiviral therapeutic decisions, and infection prevention. Numerous microbiological molecular and serological diagnostic testing devices have been developed and authorised as benchtop systems, and only a few as rapid miniaturised, fully automated, portable digital platforms. Their successful implementation in virology relies on their performance and impact on patient management. This review describes the current progress and perspectives in developing micro- and nanotechnology-based solutions for rapidly detecting human viral respiratory infectious diseases. It provides a nonexhaustive overview of currently commercially available and under-study diagnostic testing methods and discusses the sampling and viral genetic trends as preanalytical components influencing the results. We describe the clinical performance of tests, focusing on alternatives such as microfluidics-, biosensors-, Internet-of-Things (IoT)-based devices for rapid and accurate viral loads and immunological responses detection. The conclusions highlight the potential impact of the newly developed devices on laboratory diagnostic and clinical outcomes.
Collapse
Affiliation(s)
| | - Florina Silvia Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
| | | | | | - Octavian Narcis Ionescu
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
- Petroleum-Gas University of Ploiesti, Ploiesti, Romania
| | - Melania Popescu
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
| | - Monica Simion
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
| | | | - Mihaela Tica
- Emergency University Hospital, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Research Institute of the University of Bucharest, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
| | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, Bucharest, Romania
| |
Collapse
|
41
|
Pradeep A, Raveendran J, Babu TGS. Design, fabrication and assembly of lab-on-a-chip and its uses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:121-162. [PMID: 35094773 DOI: 10.1016/bs.pmbts.2021.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lab-on-a-chip diagnostic devices can be used as quick tools to identify the onset of diseases at an early stage. An integrated LoC platform usually consists of a set of microfluidic elements, each of which has dedicated functions like fluid mixing, fluid manipulation, and flow control, sample preparation, detection, and a read-out that can perform the conventional laboratory procedures on a miniaturized chip. The lab-on-a-chip device can be developed on a paper or polymeric platform and is usually fabricated using pattern transfer techniques or additive and subtractive manufacturing processes. Thorough knowledge of the physics involved in microfluidic technology is essential for developing miniaturized components required for a stand-alone Point-of-Care LoC device. This chapter discusses different types of lab-on-a-chip devices, the essential principles governing the design of these systems, and different fabrication techniques. The chapter concludes with some of the prominent applications of lab-on-a-chip devices.
Collapse
Affiliation(s)
- Aarathi Pradeep
- Amrita Biosensor Research Lab, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India; Department of Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Jeethu Raveendran
- Amrita Biosensor Research Lab, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - T G Satheesh Babu
- Amrita Biosensor Research Lab, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India; Department of Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India.
| |
Collapse
|
42
|
Abstract
In this work, Polyethylene terephthalate (PET), one of the most widely consumed polymers, has been used as starting material for the development of non-stick surfaces through a fast, simple and scalable method based on solvent-induced crystallization to generate roughness, followed by a fluorination step. Several solvents were tested, among which dichloromethane was chosen because it gives rise to the formation of a particulate layer with rough topography. This particulate layer was covered by a polymer thin and smooth skin that must be removed to leave the rough layer as surface. The skin has been successfully removed by two strategies based on mechanical and chemical removal, each strategy producing different surface properties. A final treatment with a diluted solution of a fluorinated silane showed that it is possible to obtain PET surfaces with a water contact angle higher than 150° and low water adhesion. The reason behind this behavior is the development of a hierarchical rough profile during the induced polymer crystallization process. These surfaces were characterized by XRD, FTIR and DSC to monitor solvent induced crystallization. Topography was studied by SEM and optical profilometry. Wetting behavior was studied by measuring the contact angles and hysteresis.
Collapse
|
43
|
Shao C, Chi J, Shang L, Fan Q, Ye F. Droplet microfluidics-based biomedical microcarriers. Acta Biomater 2022; 138:21-33. [PMID: 34718181 DOI: 10.1016/j.actbio.2021.10.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022]
Abstract
Droplet microfluidic technology provides a new platform for controllable generation of microdroplets and droplet-derived materials. In particular, because of the ability in high-throughput production and accurate control of the size, structure, and function of these materials, droplet microfluidics presents unique advantages in the preparation of functional microcarriers, i.e., microsized liquid containers or solid particles that serve as substrates of biomolecules or cells. These microcarriers could be extensively applied in the areas of cell culture, tissue engineering, and drug delivery. In this review, we focus on the fabrication of microcarriers from droplet microfluidics, and discuss their applications in the biomedical field. We start with the basic principle of droplet microfluidics, including droplet generation regimes and its control methods. We then introduce the fabrication of biomedical microcarriers based on single, double, and multiple emulsion droplets, and emphasize the various applications of microcarriers in biomedical field, especially in 3D cell culture, drug development and biomedical detection. Finally, we conclude this review by discussing the limitations and challenges of droplet microfluidics in preparing microcarriers. STATEMENT OF SIGNIFICANCE: Because of its precise control and high throughput, droplet microfluidics has been employed to generate functional microcarriers, which have been widely used in the areas of drug development, tissue engineering, and regenerative medicine. This review is significant because it emphasizes recent progress in research on droplet microfluidics in the preparation and application of biomedical microcarriers. In addition, this review suggests research directions for the future development of biomedical microcarriers based on droplet microfluidics by presenting existing shortcomings and challenges.
Collapse
|
44
|
Tajeddin A, Mustafaoglu N. Design and Fabrication of Organ-on-Chips: Promises and Challenges. MICROMACHINES 2021; 12:1443. [PMID: 34945293 PMCID: PMC8707724 DOI: 10.3390/mi12121443] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
The advent of the miniaturization approach has influenced the research trends in almost all disciplines. Bioengineering is one of the fields benefiting from the new possibilities of microfabrication techniques, especially in cell and tissue culture, disease modeling, and drug discovery. The limitations of existing 2D cell culture techniques, the high time and cost requirements, and the considerable failure rates have led to the idea of 3D cell culture environments capable of providing physiologically relevant tissue functions in vitro. Organ-on-chips are microfluidic devices used in this context as a potential alternative to in vivo animal testing to reduce the cost and time required for drug evaluation. This emerging technology contributes significantly to the development of various research areas, including, but not limited to, tissue engineering and drug discovery. However, it also brings many challenges. Further development of the technology requires interdisciplinary studies as some problems are associated with the materials and their manufacturing techniques. Therefore, in this paper, organ-on-chip technologies are presented, focusing on the design and fabrication requirements. Then, state-of-the-art materials and microfabrication techniques are described in detail to show their advantages and also their limitations. A comparison and identification of gaps for current use and further studies are therefore the subject of the final discussion.
Collapse
Affiliation(s)
- Alireza Tajeddin
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34596, Istanbul, Turkey;
| | - Nur Mustafaoglu
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34596, Istanbul, Turkey;
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla 34596, Istanbul, Turkey
| |
Collapse
|
45
|
Sathish S, Shen AQ. Toward the Development of Rapid, Specific, and Sensitive Microfluidic Sensors: A Comprehensive Device Blueprint. JACS AU 2021; 1:1815-1833. [PMID: 34841402 PMCID: PMC8611667 DOI: 10.1021/jacsau.1c00318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 05/04/2023]
Abstract
Recent advances in nano/microfluidics have led to the miniaturization of surface-based chemical and biochemical sensors, with applications ranging from environmental monitoring to disease diagnostics. These systems rely on the detection of analytes flowing in a liquid sample, by exploiting their innate nature to react with specific receptors immobilized on the microchannel walls. The efficiency of these systems is defined by the cumulative effect of analyte detection speed, sensitivity, and specificity. In this perspective, we provide a fresh outlook on the use of important parameters obtained from well-characterized analytical models, by connecting the mass transport and reaction limits with the experimentally attainable limits of analyte detection efficiency. Specifically, we breakdown when and how the operational (e.g., flow rates, channel geometries, mode of detection, etc.) and molecular (e.g., receptor affinity and functionality) variables can be tailored to enhance the analyte detection time, analytical specificity, and sensitivity of the system (i.e., limit of detection). Finally, we present a simple yet cohesive blueprint for the development of high-efficiency surface-based microfluidic sensors for rapid, sensitive, and specific detection of chemical and biochemical analytes, pertinent to a variety of applications.
Collapse
Affiliation(s)
- Shivani Sathish
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate
University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate
University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
46
|
Molloy A, Harrison J, McGrath JS, Owen Z, Smith C, Liu X, Li X, Cox JAG. Microfluidics as a Novel Technique for Tuberculosis: From Diagnostics to Drug Discovery. Microorganisms 2021; 9:microorganisms9112330. [PMID: 34835455 PMCID: PMC8618277 DOI: 10.3390/microorganisms9112330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
Tuberculosis (TB) remains a global healthcare crisis, with an estimated 5.8 million new cases and 1.5 million deaths in 2020. TB is caused by infection with the major human pathogen Mycobacterium tuberculosis, which is difficult to rapidly diagnose and treat. There is an urgent need for new methods of diagnosis, sufficient in vitro models that capably mimic all physiological conditions of the infection, and high-throughput drug screening platforms. Microfluidic-based techniques provide single-cell analysis which reduces experimental time and the cost of reagents, and have been extremely useful for gaining insight into monitoring microorganisms. This review outlines the field of microfluidics and discusses the use of this novel technique so far in M. tuberculosis diagnostics, research methods, and drug discovery platforms. The practices of microfluidics have promising future applications for diagnosing and treating TB.
Collapse
Affiliation(s)
- Antonia Molloy
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
| | - James Harrison
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
| | - John S. McGrath
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Zachary Owen
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Clive Smith
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Xin Liu
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Xin Li
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Jonathan A. G. Cox
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
- Correspondence: ; Tel.: +44-121-204-5011
| |
Collapse
|
47
|
Mader M, Rein C, Konrat E, Meermeyer SL, Lee-Thedieck C, Kotz-Helmer F, Rapp BE. Fused Deposition Modeling of Microfluidic Chips in Transparent Polystyrene. MICROMACHINES 2021; 12:1348. [PMID: 34832759 PMCID: PMC8618114 DOI: 10.3390/mi12111348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
Polystyrene (PS) is one of the most commonly used thermoplastic materials worldwide and plays a ubiquitous role in today's biomedical and life science industry and research. The main advantage of PS lies in its facile processability, its excellent optical and mechanical properties, as well as its biocompatibility. However, PS is only rarely used in microfluidic prototyping, since the structuring of PS is mainly performed using industrial-scale replication processes. So far, microfluidic chips in PS have not been accessible to rapid prototyping via 3D printing. In this work, we present, for the first time, 3D printing of transparent PS using fused deposition modeling (FDM). We present FDM printing of transparent PS microfluidic channels with dimensions as small as 300 µm and a high transparency in the region of interest. Furthermore, we demonstrate the fabrication of functional chips such as Tesla-mixer and mixer cascades. Cell culture experiments showed a high cell viability during seven days of culturing, as well as enabling cell adhesion and proliferation. With the aid of this new PS prototyping method, the development of future biomedical microfluidic chips will be significantly accelerated, as it enables using PS from the early academic prototyping all the way to industrial-scale mass replication.
Collapse
Affiliation(s)
- Markus Mader
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
| | - Christof Rein
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
| | - Eveline Konrat
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
| | - Sophia Lena Meermeyer
- Institute of Cell Biology and Biophysics, Department of Cell Biology, University of Hannover, 30419 Hannover, Germany; (S.L.M.); (C.L.-T.)
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Department of Cell Biology, University of Hannover, 30419 Hannover, Germany; (S.L.M.); (C.L.-T.)
| | - Frederik Kotz-Helmer
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Bastian E. Rapp
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany; (M.M.); (C.R.); (E.K.); (B.E.R.)
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg im Breisgau, Germany
- FIT Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| |
Collapse
|
48
|
Liu Y, Lehnert T, Gijs MAM. Effect of inoculum size and antibiotics on bacterial traveling bands in a thin microchannel defined by optical adhesive. MICROSYSTEMS & NANOENGINEERING 2021; 7:86. [PMID: 34745645 PMCID: PMC8536744 DOI: 10.1038/s41378-021-00309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Phenotypic diversity in bacterial flagella-induced motility leads to complex collective swimming patterns, appearing as traveling bands with transient locally enhanced cell densities. Traveling bands are known to be a bacterial chemotactic response to self-generated nutrient gradients during growth in resource-limited microenvironments. In this work, we studied different parameters of Escherichia coli (E. coli) collective migration, in particular the quantity of bacteria introduced initially in a microfluidic chip (inoculum size) and their exposure to antibiotics (ampicillin, ciprofloxacin, and gentamicin). We developed a hybrid polymer-glass chip with an intermediate optical adhesive layer featuring the microfluidic channel, enabling high-content imaging of the migration dynamics in a single bacterial layer, i.e., bacteria are confined in a quasi-2D space that is fully observable with a high-magnification microscope objective. On-chip bacterial motility and traveling band analysis was performed based on individual bacterial trajectories by means of custom-developed algorithms. Quantifications of swimming speed, tumble bias and effective diffusion properties allowed the assessment of phenotypic heterogeneity, resulting in variations in transient cell density distributions and swimming performance. We found that incubation of isogeneic E. coli with different inoculum sizes eventually generated different swimming phenotype distributions. Interestingly, incubation with antimicrobials promoted bacterial chemotaxis in specific cases, despite growth inhibition. Moreover, E. coli filamentation in the presence of antibiotics was assessed, and the impact on motility was evaluated. We propose that the observation of traveling bands can be explored as an alternative for fast antimicrobial susceptibility testing.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Thomas Lehnert
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Martin A. M. Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
49
|
Fabrication Process for On-Board Geometries Using a Polymer Composite-Based Selective Metallization for Next-Generation Electronics Packaging. Processes (Basel) 2021. [DOI: 10.3390/pr9091634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Advancements in production techniques in PCB manufacturing industries are still required as compared to silicon-ICs fabrications. One of the concerned areas in PCBs fabrication is the use of conventional methodologies for metallization. Most of the manufacturers are still using the traditional Copper (Cu) laminates on the base substrate and patterning the structures using lithography processes. As a result, significant amounts of metallic parts are etched away during any mass production process, causing unnecessary disposables leading to pollution. In this work, a new approach for Cu metallization is demonstrated with considerable step-reducing pattern-transfer mechanism. In the fabrication steps, a seed layer of covalent bonded metallization (CBM) chemistry on top of a dielectric epoxy resin is polymerized using actinic radiation intensity of a 375 nm UV laser source. The proposed method is capable of patterning any desirable geometries using the above-mentioned surface modification followed by metallization. To metallize the patterns, a proprietary electroless bath has been used. The metallic layer grows only on the selective polymer-activated locations and thus is called selective metallization. The highlight of this production technique is its occurrence at a low temperature (20–45 °C). In this paper, FR-4 as a base substrate and polyurethane (PU) as epoxy resin were used to achieve various geometries, useful in electronics packaging. In addition, analysis of the process parameters and some challenges witnessed during the process development are also outlined. As a use case, a planar inductor is fabricated to demonstrate the application of the proposed technique.
Collapse
|
50
|
Lussi J, Mattmann M, Sevim S, Grigis F, De Marco C, Chautems C, Pané S, Puigmartí‐Luis J, Boehler Q, Nelson BJ. A Submillimeter Continuous Variable Stiffness Catheter for Compliance Control. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101290. [PMID: 34272935 PMCID: PMC8456283 DOI: 10.1002/advs.202101290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/10/2021] [Indexed: 05/02/2023]
Abstract
Minimally invasive robotic surgery often requires functional tools that can change their compliance to adapt to the environment and surgical needs. This paper proposes a submillimeter continuous variable stiffness catheter equipped with a phase-change alloy that has a high stiffness variation in its different states, allowing for rapid compliance control. Variable stiffness is achieved through a variable phase boundary in the alloy due to a controlled radial temperature gradient. This catheter can be safely navigated in its soft state and rigidified to the required stiffness during operation to apply a desired force at the tip. The maximal contact force that the catheter applies to tissue can be continuously modified by a factor of 400 (≈20 mN-8 N). The catheter is equipped with a magnet and a micro-gripper to perform a fully robotic ophthalmic minimally invasive surgery on an eye phantom by means of an electromagnetic navigation system.
Collapse
Affiliation(s)
- Jonas Lussi
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Michael Mattmann
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Semih Sevim
- Institute of Chemical and BioengineeringETH ZurichVladimir Prelog Weg 1ZurichCH‐8093Switzerland
| | - Fabian Grigis
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Carmela De Marco
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Christophe Chautems
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Salvador Pané
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Josep Puigmartí‐Luis
- Departament de Ciència dels Materials i Química FísicaInstitut de Química Teòrica i ComputacionalBarcelona08028Spain
- ICREACatalan Institution for Research and Advanced StudiesPg. Lluís Companys 23Barcelona08010Spain
| | - Quentin Boehler
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Bradley J. Nelson
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| |
Collapse
|