1
|
Yagati AK, Chavan SG, Baek C, Lee D, Lee MH, Min J. RGO-PANI composite Au microelectrodes for sensitive ECIS analysis of human gastric (MKN-1) cancer cells. Bioelectrochemistry 2023; 150:108347. [PMID: 36549174 DOI: 10.1016/j.bioelechem.2022.108347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/19/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Microelectrode-based cell chip studies for cellular responses often require improved adhesion and growth conditions for efficient cellular diagnosis and high throughput screening in drug discovery. Cell-chip studies are often performed on gold electrodes due to their biocompatibility, and stability, but the electrode-electrolyte interfacial capacitance is the main drawback to the overall sensitivity of the detection system. Thus, here, we developed reduced graphene oxide-polyaniline-modified gold microelectrodes for real-time impedance-based monitoring of human gastric adenocarcinoma cancer (MKN-1) cells. The impedance characterization on modified electrodes showed 28-fold enhanced conductivity than the bare electrodes, and the spectra were modeled with proper equivalent circuits to extrapolate the values of circuit elements. The impedance of both time-and frequency-dependent measurements of cell-covered modified electrodes with equivalent model circuits was analyzed to achieve cellular behavior, such as adhesion, spreading, proliferation, and influence of anti-cancer agents. The normalized impedance at 41.5 kHz (|Z|norm 41 kHz) was selected to monitor the cell growth analysis, which was found linear with the proliferation of adherent cells along with the influence of the anticancer drug agent on the MKN-1 cells. The synergistic effects and biocompatible nature of PANI-RGO modifications improved the overall sensitivity for the cell-growth studies of MKN-1 cells.
Collapse
Affiliation(s)
- Ajay Kumar Yagati
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Changyoon Baek
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Donghyun Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
2
|
Zhang Y, Wei M, Zhang F, Guo J. High-accuracy gastric cancer cell viability evaluation based on multi-impedance spectrum characteristics. Heliyon 2023; 9:e14966. [PMID: 37095913 PMCID: PMC10121400 DOI: 10.1016/j.heliyon.2023.e14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The increasing attention to precision medicine is widely paid to greatly rise the cure rate of cancer. Improving the stability and accuracy of cancer cell viability evaluation is one of the keys for precision medicine, as excess dosage of anti-cancer drugs not only kills the cancer cells, but also does harm to normal cells. Electrochemical impedance sensing (EIS) method is well known as a label-free, non-invasive approach for real-time, online monitoring of cell viability. However, the existing EIS methods using single-frequency impedances cannot reflect the comprehensive information of cellular impedance spectroscopy (CIS), ultimately leading to a poor stability and low accuracy of cancer cell viability evaluation. In this paper, we proposed a multi-frequency approach for improving the stability and accuracy of cancer cell viability evaluation based on multi-physical properties of CIS, including cell adhesion state and cell membrane capacitance. The results show that the mean relative error of multi-frequency method is reduced by 50% compared with single-frequency method, while the maximum relative error of the former is 7∼fold smaller than that of the latter. The accuracy of cancer cell viability evaluation is up to 99.6%.
Collapse
|
3
|
Anushree U, Shetty S, Kumar R, Bharati S. Adjunctive Diagnostic Methods for Skin Cancer Detection: A Review of Electrical Impedance-Based Techniques. Bioelectromagnetics 2022; 43:193-210. [PMID: 35181899 DOI: 10.1002/bem.22396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/06/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
Skin cancer is among the fastest-growing cancers with an excellent prognosis, if detected early. However, the current method of diagnosis by visual inspection has several disadvantages such as overlapping tumor characteristics, subjectivity, low sensitivity, and specificity. Hence, several adjunctive diagnostic techniques such as thermal imaging, optical imaging, ultrasonography, tape stripping methods, and electrical impedance imaging are employed along with visual inspection to improve the diagnosis. Electrical impedance-based skin cancer detection depends upon the variations in electrical impedance characteristics of the transformed cells. The information provided by this technique is fundamentally different from other adjunctive techniques and thus has good prospects. Depending on the stage, type, and location of skin cancer, various impedance-based devices have been developed. These devices when used as an adjunct to visual methods have increased the sensitivity and specificity of skin cancer detection up to 100% and 87%, respectively, thus demonstrating their potential to minimize unnecessary biopsies. In this review, the authors track the advancements and progress made in this technique for the detection of skin cancer, focusing mainly on the advantages and limitations in the clinical setting. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- U Anushree
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sachin Shetty
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
4
|
Paivana G, Barmpakos D, Mavrikou S, Kallergis A, Tsakiridis O, Kaltsas G, Kintzios S. Evaluation of Cancer Cell Lines by Four-Point Probe Technique, by Impedance Measurements in Various Frequencies. BIOSENSORS 2021; 11:345. [PMID: 34562935 PMCID: PMC8466278 DOI: 10.3390/bios11090345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Cell-based biosensors appear to be an attractive tool for the rapid, simple, and cheap monitoring of chemotherapy effects at a very early stage. In this study, electrochemical measurements using a four-point probe method were evaluated for suspensions of four cancer cell lines of different tissue origins: SK-N-SH, HeLa, MCF-7 and MDA-MB-231, all for two different population densities: 50 K and 100 K cells/500 μL. The anticancer agent doxorubicin was applied for each cell type in order to investigate whether the proposed technique was able to determine specific differences in cell responses before and after drug treatment. The proposed methodology can offer valuable insight into the frequency-dependent bioelectrical responses of various cellular systems using a low frequency range and without necessitating lengthy cell culture treatment. The further development of this biosensor assembly with the integration of specially designed cell/electronic interfaces can lead to novel diagnostic biosensors and therapeutic bioelectronics.
Collapse
Affiliation(s)
- Georgia Paivana
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.P.); (S.K.)
| | - Dimitris Barmpakos
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Sophie Mavrikou
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.P.); (S.K.)
| | - Alexandros Kallergis
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Odysseus Tsakiridis
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Grigoris Kaltsas
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.P.); (S.K.)
| |
Collapse
|
5
|
Wei M, Zhang R, Zhang F, Yang N, Zhang Y, Li G. How to Choose a Proper Theoretical Analysis Model Based on Cell Adhesion and Nonadhesion Impedance Measurement. ACS Sens 2021; 6:673-687. [PMID: 33724797 DOI: 10.1021/acssensors.0c02710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The accurate equivalent circuit model contributes to the better fitting of required cell characteristics, such as cell impedance, cell adhesion area, and cell-electrode distance. However, so many theoretical models on specific modules make it difficult for new researchers to understand the whole model of electrode system physically. Besides, the accurate theoretical model and the simplified calculations obviously contradict each other; therefore, it is confusing for many researchers to choose the proper theoretical model to calculate the specific parameters required. In this review, we first discuss the problems and suggestions of electrode system design for cell adhesion-based measurement in terms of parasitic capacitance, detection range of cell number, electric field distribution, and interelectrode distance. The design of electrode system for cell nonadhesion measurement was analyzed in terms of microchannel size and electrode position. Then, we discuss the advantages and disadvantages of various equivalent circuit models according to different requirements of researchers, and simultaneously provide a corresponding theoretical model for researchers. Various factors influencing electric impedance spectroscopy (EIS) such as the parasitic capacitance between microelectrodes, the changes of cell adhesion area and cell-electrode distance, the electrode geometry, and the surface conductivity of electrode were quantitatively analyzed to contribute to better understanding of the equivalent models. Finally, we gave advice to optimize the theoretical models further and perspectives on building uniform principles of theoretical model optimization in the future.
Collapse
Affiliation(s)
- Mingji Wei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Rongbiao Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ning Yang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yecheng Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guoxiao Li
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
6
|
Crowell LL, Yakisich JS, Aufderheide B, Adams TNG. Electrical Impedance Spectroscopy for Monitoring Chemoresistance of Cancer Cells. MICROMACHINES 2020; 11:E832. [PMID: 32878225 PMCID: PMC7570252 DOI: 10.3390/mi11090832] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022]
Abstract
Electrical impedance spectroscopy (EIS) is an electrokinetic method that allows for the characterization of intrinsic dielectric properties of cells. EIS has emerged in the last decade as a promising method for the characterization of cancerous cells, providing information on inductance, capacitance, and impedance of cells. The individual cell behavior can be quantified using its characteristic phase angle, amplitude, and frequency measurements obtained by fitting the input frequency-dependent cellular response to a resistor-capacitor circuit model. These electrical properties will provide important information about unique biomarkers related to the behavior of these cancerous cells, especially monitoring their chemoresistivity and sensitivity to chemotherapeutics. There are currently few methods to assess drug resistant cancer cells, and therefore it is difficult to identify and eliminate drug-resistant cancer cells found in static and metastatic tumors. Establishing techniques for the real-time monitoring of changes in cancer cell phenotypes is, therefore, important for understanding cancer cell dynamics and their plastic properties. EIS can be used to monitor these changes. In this review, we will cover the theory behind EIS, other impedance techniques, and how EIS can be used to monitor cell behavior and phenotype changes within cancerous cells.
Collapse
Affiliation(s)
- Lexi L. Crowell
- Department of Chemical and Biomolecular Engineering, University of California-Irvine, Irvine, CA 92697, USA;
- Sue & Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Juan S. Yakisich
- Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, USA;
| | - Brian Aufderheide
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA;
| | - Tayloria N. G. Adams
- Department of Chemical and Biomolecular Engineering, University of California-Irvine, Irvine, CA 92697, USA;
- Sue & Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Wu ZY, Chen JY, Zhu X, Fu FH, Lan RL, Liu MM, Lian X, Ye CL, Zhong GX, Lin JH, Liu AL. Sensitive electrochemical cytosensor for highly specific detection of osteosarcoma 143B cells based on graphene-3D gold nanocomposites. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.07.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Adcock AF, Agbai CO, Yang L. Application of electric cell-substrate impedance sensing toward personalized anti-cancer therapeutic selection. J Anal Sci Technol 2018. [DOI: 10.1186/s40543-018-0149-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
9
|
Nguyen NV, Yeh JH, Jen CP. A Handheld Electronics Module for Dielectrophoretic Impedance Measurement of Cancerous Cells in the Microchip. BIOCHIP JOURNAL 2018. [DOI: 10.1007/s13206-018-2302-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Parekh A, Das D, Das S, Dhara S, Biswas K, Mandal M, Das S. Bioimpedimetric analysis in conjunction with growth dynamics to differentiate aggressiveness of cancer cells. Sci Rep 2018; 8:783. [PMID: 29335481 PMCID: PMC5768811 DOI: 10.1038/s41598-017-18965-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022] Open
Abstract
Determination of cancer aggressiveness is mainly assessed in tissues by looking at the grade of cancer. There is a lack of specific method to determine aggressiveness of cancer cells in vitro. In our present work, we have proposed a bio-impedance based non-invasive method to differentiate aggressive property of two breast cancer cell lines. Real-time impedance analysis of MCF-7 (less aggressive) and MDA-MB-231 cells (more aggressive) demonstrated unique growth pattern. Detailed slope-analysis of impedance curves at different growth phases showed that MDA-MB-231 had higher proliferation rate and intrinsic resistance to cell death, when allowed to grow in nutrient and space limiting conditions. This intrinsic nature of death resistance of MDA-MB-231 was due to modulation and elongation of filopodia, which was also observed during scanning electron microscopy. Results were also similar when validated by cell cycle analysis. Additionally, wavelet based analysis was used to demonstrate that MCF-7 had lesser micromotion based cellular activity, when compared with MDA-MB-231. Combined together, we hypothesize that analysis of growth rate, death resistance and cellular energy, through bioimpedance based analysis can be used to determine and compare aggressiveness of multiple cancer cell lines. This further opens avenues for extrapolation of present work to human tumor tissue samples.
Collapse
Affiliation(s)
- Aditya Parekh
- School of Medical Science and Technology, IIT Kharagpur, West Bengal, India
| | - Debanjan Das
- Department of Electronics and Communications Engineering, DSPM IIIT, Naya Raipur, India
| | - Subhayan Das
- School of Medical Science and Technology, IIT Kharagpur, West Bengal, India
| | - Santanu Dhara
- School of Medical Science and Technology, IIT Kharagpur, West Bengal, India
| | - Karabi Biswas
- Department of Electrical Engineering, IIT Kharagpur, West Bengal, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, IIT Kharagpur, West Bengal, India.
| | - Soumen Das
- School of Medical Science and Technology, IIT Kharagpur, West Bengal, India.
| |
Collapse
|
11
|
Wang HC, Nguyen NV, Lin RY, Jen CP. Characterizing Esophageal Cancerous Cells at Different Stages Using the Dielectrophoretic Impedance Measurement Method in a Microchip. SENSORS 2017; 17:s17051053. [PMID: 28481265 PMCID: PMC5469658 DOI: 10.3390/s17051053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 12/31/2022]
Abstract
Analysis of cancerous cells allows us to provide useful information for the early diagnosis of cancer and to monitor treatment progress. An approach based on electrical principles has recently become an attractive technique. This study presents a microdevice that utilizes a dielectrophoretic impedance measurement method for the identification of cancerous cells. The proposed biochip consists of circle-on-line microelectrodes that are patterned using a standard microfabrication processes. A sample of various cell concentrations was introduced in an open-top microchamber. The target cells were collectively concentrated between the microelectrodes using dielectrophoresis manipulation, and their electrical impedance properties were also measured. Different stages of human esophageal squamous cell carcinoma lines could be distinguished. This result is consistent with findings using hyperspectral imaging technology. Moreover, it was observed that the distinguishing characteristics change in response to the progression of cancer cell invasiveness by Raman spectroscopy. The device enables highly efficient cell collection and provides rapid, sensitive, and label-free electrical measurements of cancerous cells.
Collapse
Affiliation(s)
- Hsiang-Chen Wang
- Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chia-Yi 621, Taiwan.
| | - Ngoc-Viet Nguyen
- Department of Mechanical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan.
| | - Rui-Yi Lin
- Department of Mechanical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan.
| | - Chun-Ping Jen
- Department of Mechanical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan.
| |
Collapse
|
12
|
Pandya HJ, Dhingra K, Prabhakar D, Chandrasekar V, Natarajan SK, Vasan AS, Kulkarni A, Shafiee H. A microfluidic platform for drug screening in a 3D cancer microenvironment. Biosens Bioelectron 2017; 94:632-642. [PMID: 28371753 DOI: 10.1016/j.bios.2017.03.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/14/2017] [Accepted: 03/24/2017] [Indexed: 11/16/2022]
Abstract
Development of resistance to chemotherapy treatments is a major challenge in the battle against cancer. Although a vast repertoire of chemotherapeutics is currently available for treating cancer, a technique for rapidly identifying the right drug based on the chemo-resistivity of the cancer cells is not available and it currently takes weeks to months to evaluate the response of cancer patients to a drug. A sensitive, low-cost diagnostic assay capable of rapidly evaluating the effect of a series of drugs on cancer cells can significantly change the paradigm in cancer treatment management. Integration of microfluidics and electrical sensing modality in a 3D tumour microenvironment may provide a powerful platform to tackle this issue. Here, we report a 3D microfluidic platform that could be potentially used for a real-time deterministic analysis of the success rate of a chemotherapeutic drug in less than 12h. The platform (66mm×50mm; L×W) is integrated with the microsensors (interdigitated gold electrodes with width and spacing 10µm) that can measure the change in the electrical response of cancer cells seeded in a 3D extra cellular matrix when a chemotherapeutic drug is flown next to the matrix. B16-F10 mouse melanoma, 4T1 mouse breast cancer, and DU 145 human prostate cancer cells were used as clinical models. The change in impedance magnitude on flowing chemotherapeutics drugs measured at 12h for drug-susceptible and drug tolerant breast cancer cells compared to control were 50,552±144 Ω and 28,786±233 Ω, respectively, while that of drug-susceptible melanoma cells were 40,197±222 Ω and 4069±79 Ω, respectively. In case of prostate cancer the impedance change between susceptible and resistant cells were 8971±1515 Ω and 3281±429 Ω, respectively, which demonstrated that the microfluidic platform was capable of delineating drug susceptible cells, drug tolerant, and drug resistant cells in less than 12h.
Collapse
Affiliation(s)
- Hardik J Pandya
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Karan Dhingra
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Devbalaji Prabhakar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Vineethkrishna Chandrasekar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Siva Kumar Natarajan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Anish S Vasan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Ashish Kulkarni
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA.
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Adekanmbi EO, Srivastava SK. Dielectrophoretic applications for disease diagnostics using lab-on-a-chip platforms. LAB ON A CHIP 2016; 16:2148-67. [PMID: 27191245 DOI: 10.1039/c6lc00355a] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Dielectrophoresis is a powerful technique used to distinguish distinct cellular identities in heterogeneous cell populations and to monitor changes in the cell state without the need for biochemical tags, including live and dead cells. Recent studies in the past decade have indicated that dielectrophoresis can be used to discriminate the disease state of cells by exploring the differences in the dielectric polarizabilities of the cells. Factors controlling the dielectric polarizability are dependent on the conductivity and permittivity of the cell and the suspending medium, the cell morphology, the internal structure, and the electric double layer effects associated with the charges on the cell surface. Diseased cells, such as those associated with malaria, cancer, dengue, anthrax and human African trypanosomiasis, could be spatially trapped by positive dielectrophoresis or spatially separated from other healthy cells by negative dielectrophoretic forces. The aim of this review was to provide a better and deeper understanding on how dielectrophoresis can be utilized to manipulate diseased cells. This review compiles and compares the significant findings obtained by researchers in manipulating abnormal or unhealthy cells.
Collapse
Affiliation(s)
- Ezekiel O Adekanmbi
- Department of Chemical and Material Engineering, University of Idaho, Moscow, 83844-1021, Idaho, USA.
| | | |
Collapse
|
14
|
Srinivasaraghavan V, Strobl J, Agah M. Microelectrode bioimpedance analysis distinguishes basal and claudin-low subtypes of triple negative breast cancer cells. Biomed Microdevices 2016. [PMID: 26216474 DOI: 10.1007/s10544-015-9977-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Triple negative breast cancer (TNBC) is highly aggressive and has a poor prognosis when compared to other molecular subtypes. In particular, the claudin-low subtype of TNBC exhibits tumor-initiating/cancer stem cell like properties. Here, we seek to find new biomarkers to discriminate different forms of TNBC by characterizing their bioimpedance. A customized bioimpedance sensor with four identical branched microelectrodes with branch widths adjusted to accommodate spreading of individual cells was fabricated on silicon and pyrex/glass substrates. Cell analyses were performed on the silicon devices which showed somewhat improved inter-electrode and intra-device reliability. We performed detailed analysis of the bioimpedance spectra of four TNBC cell lines, comparing the peak magnitude, peak frequency and peak phase angle between claudin-low TNBC subtype represented by MDA-MB-231 and Hs578T with that of two basal cells types, the TNBC MDA-MB-468, and an immortalized non-malignant basal breast cell line, MCF-10A. The claudin-low TNBC cell lines showed significantly higher peak frequencies and peak phase angles than the properties might be useful in distinguishing the clinically significant claudin-low subtype of TNBC.
Collapse
Affiliation(s)
- Vaishnavi Srinivasaraghavan
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, 302, Whittemore Hall, Blacksburg, VA, 24061, USA,
| | | | | |
Collapse
|
15
|
Das D, Shiladitya K, Biswas K, Dutta PK, Parekh A, Mandal M, Das S. Wavelet-based multiscale analysis of bioimpedance data measured by electric cell-substrate impedance sensing for classification of cancerous and normal cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062702. [PMID: 26764722 DOI: 10.1103/physreve.92.062702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Indexed: 06/05/2023]
Abstract
The paper presents a study to differentiate normal and cancerous cells using label-free bioimpedance signal measured by electric cell-substrate impedance sensing. The real-time-measured bioimpedance data of human breast cancer cells and human epithelial normal cells employs fluctuations of impedance value due to cellular micromotions resulting from dynamic structural rearrangement of membrane protrusions under nonagitated condition. Here, a wavelet-based multiscale quantitative analysis technique has been applied to analyze the fluctuations in bioimpedance. The study demonstrates a method to classify cancerous and normal cells from the signature of their impedance fluctuations. The fluctuations associated with cellular micromotion are quantified in terms of cellular energy, cellular power dissipation, and cellular moments. The cellular energy and power dissipation are found higher for cancerous cells associated with higher micromotions in cancer cells. The initial study suggests that proposed wavelet-based quantitative technique promises to be an effective method to analyze real-time bioimpedance signal for distinguishing cancer and normal cells.
Collapse
Affiliation(s)
- Debanjan Das
- Department of Electrical Engineering, IIT Kharagpur, India
| | | | - Karabi Biswas
- Department of Electrical Engineering, IIT Kharagpur, India
| | | | - Aditya Parekh
- School of Medical Science and Technology, IIT Kharagpur, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, IIT Kharagpur, India
| | - Soumen Das
- School of Medical Science and Technology, IIT Kharagpur, India
| |
Collapse
|
16
|
Wu C, Rehman FU, Li J, Ye J, Zhang Y, Su M, Jiang H, Wang X. Real-Time Evaluation of Live Cancer Cells by an in Situ Surface Plasmon Resonance and Electrochemical Study. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24848-24854. [PMID: 26492438 DOI: 10.1021/acsami.5b08066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This work presents a new strategy of the combination of surface plasmon resonance (SPR) and electrochemical study for real-time evaluation of live cancer cells treated with daunorubicin (DNR) at the interface of the SPR chip and living cancer cells. The observations demonstrate that the SPR signal changes could be closely related to the morphology and mass changes of adsorbed cancer cells and the variation of the refractive index of the medium solution. The results of light microscopy images and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide studies also illustrate the release or desorption of HepG2 cancer cells, which were due to their apoptosis after treatment with DNR. It is evident that the extracellular concentration of DNR residue can be readily determined through electrochemical measurements. The decreases in the magnitudes of SPR signals were linearly related to cell survival rates, and the combination of SPR with electrochemical study could be utilized to evaluate the potential therapeutic efficiency of bioactive agents to cells. Thus, this label-free, real-time SPR-electrochemical detection technique has great promise in bioanalysis or monitoring of relevant treatment processes in clinical applications.
Collapse
Affiliation(s)
- Changyu Wu
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Fawad Ur Rehman
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Jingyuan Li
- Laboratory Animal Center, Nantong University , Nantong 226001, China
| | - Jing Ye
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Yuanyuan Zhang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Meina Su
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University , Nanjing 210096, China
| |
Collapse
|
17
|
Jones PV, Huey S, Davis P, McLemore R, McLaren A, Hayes MA. Biophysical separation of Staphylococcus epidermidis strains based on antibiotic resistance. Analyst 2015; 140:5152-61. [PMID: 26086047 PMCID: PMC4541286 DOI: 10.1039/c5an00906e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/06/2015] [Indexed: 11/21/2022]
Abstract
Electrophoretic and dielectrophoretic approaches to separations can provide unique capabilities. In the past, capillary and microchip-based approaches to electrophoresis have demonstrated extremely high-resolution separations. More recently, dielectrophoretic systems have shown excellent results for the separation of bioparticles. Here we demonstrate resolution of a difficult pair of targets: gentamicin resistant and susceptible strains of Staphylococcus epidermidis. This separation has significant potential implications for healthcare. This establishes a foundation for biophysical separations as a direct diagnostic tool, potentially improving nearly every figure of merit for diagnostics and antibiotic stewardship. The separations are performed on a modified gradient insulator-based dielectrophoresis (g-iDEP) system and demonstrate that the presence of antibiotic resistance enzymes (or secondary effects) produces a sufficient degree of electrophysical difference to allow separation. The differentiating factor is the ratio of electrophoretic to dielectrophoretic mobilities. This factor is 4.6 ± 0.6 × 10(9) V m(-2) for the resistant strain, versus 9.2 ± 0.4 × 10(9) V m(-2) for the susceptible strain. Using g-iDEP separation, this difference produces clear and easily discerned differentiation of the two strains.
Collapse
Affiliation(s)
- Paul V. Jones
- Arizona State University , Department of Chemistry and Biochemistry , Tempe , AZ 85287 , USA . ; Fax: +(480) 965-2747 ; Tel: +(480) 965-2566
| | - Shannon Huey
- Arizona State University , Department of Chemistry and Biochemistry , Tempe , AZ 85287 , USA . ; Fax: +(480) 965-2747 ; Tel: +(480) 965-2566
| | - Paige Davis
- Arizona State University , Department of Chemistry and Biochemistry , Tempe , AZ 85287 , USA . ; Fax: +(480) 965-2747 ; Tel: +(480) 965-2566
| | - Ryan McLemore
- Arizona State University , Department of Chemistry and Biochemistry , Tempe , AZ 85287 , USA . ; Fax: +(480) 965-2747 ; Tel: +(480) 965-2566
| | - Alex McLaren
- Arizona State University , Department of Chemistry and Biochemistry , Tempe , AZ 85287 , USA . ; Fax: +(480) 965-2747 ; Tel: +(480) 965-2566
| | - Mark A. Hayes
- Arizona State University , Department of Chemistry and Biochemistry , Tempe , AZ 85287 , USA . ; Fax: +(480) 965-2747 ; Tel: +(480) 965-2566
| |
Collapse
|
18
|
Zhang X, Li F, Nordin AN, Tarbell J, Voiculescu I. Toxicity studies using mammalian cells and impedance spectroscopy method. SENSING AND BIO-SENSING RESEARCH 2015. [DOI: 10.1016/j.sbsr.2015.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
19
|
Salamanzadeh A, Davalos RV. Electrokinetics and Rare-Cell Detection. MICROFLUIDICS IN DETECTION SCIENCE 2014. [DOI: 10.1039/9781849737609-00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lab-on-a-chip devices perform functions which are not feasible or difficult to achieve with macroscale devices. Importantly, isolating and enriching rare cells is key in health and environmental applications, such as detecting circulating tumor cells from body fluid biopsies, or pathogens from water. Within a microdevice, the dominant mechanical force on a suspended particle is the drag force as it flows through the fluid. Electrokinetic forces such as dielectrophoresis - the motion of a particle due to its polarization in the presence of a non-uniform electric field - may also be applied to manipulate particles. For instance, separation of particles can be achieved using a combination of drag and dielectrophoretic forces to precisely manipulate a particle. Understanding the interaction of electrokinetic forces, particles, and fluid flow is critical for engineering novel microsystems used for cell sorting. Determining this interaction is even more complicated when dealing with bioparticles, especially cells, due to their intrinsic complex biological properties which influence their electrical and mechanical behaviors. In order to design novel and more practical microdevices for medical, biological, and chemical applications, it is essential to have a comprehensive understanding of the mechanics of particle-fluid interaction and the dynamics of particle movement. This chapter will describe the role of electrokinetic techniques in rare cell detection and the behavior of electrokinetic microsystems.
Collapse
|
20
|
Murdoch C, Brown BH, Hearnden V, Speight PM, D'Apice K, Hegarty AM, Tidy JA, Healey TJ, Highfield PE, Thornhill MH. Use of electrical impedance spectroscopy to detect malignant and potentially malignant oral lesions. Int J Nanomedicine 2014; 9:4521-32. [PMID: 25285005 PMCID: PMC4181751 DOI: 10.2147/ijn.s64087] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The electrical properties of tissues depend on their architecture and cellular composition. We have previously shown that changes in electrical impedance can be used to differentiate between different degrees of cervical dysplasia and cancer of the cervix. In this proof-of-concept study, we aimed to determine whether electrical impedance spectroscopy (EIS) could distinguish between normal oral mucosa; benign, potentially malignant lesions (PML); and oral cancer. EIS data were collected from oral cancer (n=10), PML (n=27), and benign (n=10) lesions. EIS from lesions was compared with the EIS reading from the normal mucosa on the contralateral side of the mouth or with reference spectra from mucosal sites of control subjects (n=51). Healthy controls displayed significant differences in the EIS obtained from different oral sites. In addition, there were significant differences in the EIS of cancer and high-risk PML versus low-risk PML and controls. There was no significant difference between benign lesions and normal controls. Study subjects also deemed the EIS procedure considerably less painful and more convenient than the scalpel biopsy procedure. EIS shows promise at distinguishing among malignant, PML, and normal oral mucosa and has the potential to be developed into a clinical diagnostic tool.
Collapse
Affiliation(s)
- Craig Murdoch
- Unit of Oral and Maxillofacial Medicine and Surgery, University of Sheffield School of Clinical Dentistry, Sheffield, United Kingdom
| | - Brian H Brown
- University of Sheffield Medical School, Beech Hill Road, Sheffield, United Kingdom
| | - Vanessa Hearnden
- Unit of Oral and Maxillofacial Medicine and Surgery, University of Sheffield School of Clinical Dentistry, Sheffield, United Kingdom
| | - Paul M Speight
- Unit of Oral and Maxillofacial Pathology, University of Sheffield School of Clinical Dentistry, Sheffield, United Kingdom
| | - Katy D'Apice
- Unit of Oral and Maxillofacial Medicine and Surgery, University of Sheffield School of Clinical Dentistry, Sheffield, United Kingdom ; Unit of Oral Medicine, Charles Clifford Dental Hospital, Sheffield Teaching Hospitals National Health Service Foundation Trust, Sheffield, United Kingdom
| | - Anne M Hegarty
- Unit of Oral Medicine, Charles Clifford Dental Hospital, Sheffield Teaching Hospitals National Health Service Foundation Trust, Sheffield, United Kingdom
| | - John A Tidy
- Department of Gynaecological Oncology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - T Jamie Healey
- Department of Medical Physics, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Peter E Highfield
- Zilico Ltd., The MedTECH Centre, Rutherford House, Manchester Science Park, Manchester, United Kingdom
| | - Martin H Thornhill
- Unit of Oral and Maxillofacial Medicine and Surgery, University of Sheffield School of Clinical Dentistry, Sheffield, United Kingdom ; Unit of Oral Medicine, Charles Clifford Dental Hospital, Sheffield Teaching Hospitals National Health Service Foundation Trust, Sheffield, United Kingdom
| |
Collapse
|
21
|
Abdolahad M, Shashaani H, Janmaleki M, Mohajerzadeh S. Silicon nanograss based impedance biosensor for label free detection of rare metastatic cells among primary cancerous colon cells, suitable for more accurate cancer staging. Biosens Bioelectron 2014; 59:151-9. [DOI: 10.1016/j.bios.2014.02.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 12/29/2022]
|
22
|
Zhu Z, Frey O, Franke F, Haandbæk N, Hierlemann A. Real-time monitoring of immobilized single yeast cells through multifrequency electrical impedance spectroscopy. Anal Bioanal Chem 2014; 406:7015-25. [PMID: 25012351 DOI: 10.1007/s00216-014-7955-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 11/24/2022]
Abstract
We present a microfluidic device, which enables single cells to be reliably trapped and cultivated while simultaneously being monitored by means of multifrequency electrical impedance spectroscopy (EIS) in the frequency range of 10 kHz-10 MHz. Polystyrene beads were employed to characterize the EIS performance inside the microfluidic device. The results demonstrate that EIS yields a low coefficient of variation in measuring the diameters of captured beads (~0.13%). Budding yeast, Saccharomyces cerevisiae, was afterwards used as model organism. Single yeast cells were immobilized and measured by means of EIS. The bud growth was monitored through EIS at a temporal resolution of 1 min. The size increment of the bud, which is difficult to determine optically within a short time period, can be clearly detected through EIS signals. The impedance measurements also reflect the changes in position or motion of single yeast cells in the trap. By analyzing the multifrequency EIS data, cell motion could be qualitatively discerned from bud growth. The results demonstrate that single-cell EIS can be used to monitor cell growth, while also detecting potential cell motion in real-time and label-free approach, and that EIS constitutes a sensitive tool for dynamic single-cell analysis.
Collapse
Affiliation(s)
- Zhen Zhu
- Bio Engineering Laboratory (BEL), Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland,
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Das D, Kamil FA, Biswas K, Das S. Evaluation of single cell electrical parameters from bioimpedance of a cell suspension. RSC Adv 2014. [DOI: 10.1039/c4ra00400k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study introduces a simple and detailed analysis technique to extract the electrical properties of a single cell from impedance spectroscopy data from a group of cells in suspension, leading to a more reliable and cost effective diagnosis process for disease detection.
Collapse
Affiliation(s)
- Debanjan Das
- Electrical Engineering Department
- Indian Institute of Technology
- , India
| | | | - Karabi Biswas
- Electrical Engineering Department
- Indian Institute of Technology
- , India
| | - Soumen Das
- Electrical Engineering Department
- Indian Institute of Technology
- , India
| |
Collapse
|
25
|
The cytotoxic effect of magainin II on the MDA-MB-231 and M14K tumour cell lines. BIOMED RESEARCH INTERNATIONAL 2013; 2013:831709. [PMID: 24222919 PMCID: PMC3809593 DOI: 10.1155/2013/831709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 08/02/2013] [Accepted: 08/30/2013] [Indexed: 11/18/2022]
Abstract
Many studies have highlighted the tumoricidal properties of some natural peptides known to have antimicrobial virtues. Also, the increasingly higher resistance to conventional antibiotics has become a global public health issue, and the need for new antibiotics has stimulated interest in finding and synthesizing new antimicrobial peptides, which may also be used as chemotherapeutic agents. Relying on the literature, the purpose of our in vitro research was to assess the tumoricidal potential of magainin II on a series of tumour cell lines, namely, MDA-MB-231 (breast adenocarcinoma) and M14K (human mesothelioma). The experimental results of our study revealed that the cytotoxic effects of magainin II depend on its concentration. Its efficiency is significant at 120 μM concentrations, and, although it is much lower, it persists even at 60 μM concentrations. The effects were insignificant at 30 μM concentrations. In our experimental research, the tumoricidal effect of magainin II was not significantly dependent on the type of tumour cell line used.
Collapse
|
26
|
Meehan B, Dombrovsky A, Lau K, Lai T, Magnus N, Montermini L, Rak J. Impact of host ageing on the metastatic phenotype. Mech Ageing Dev 2013; 134:118-29. [PMID: 23403123 DOI: 10.1016/j.mad.2013.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/24/2012] [Accepted: 02/01/2013] [Indexed: 10/27/2022]
Abstract
Ageing impacts multiple host mechanisms involved in cancer progression. Here we show that poorly metastatic Lewis lung carcinoma (LLC) cells form less bulky metastatic deposits in aged mice (>52 weeks) relative to their young (4-6 weeks) counterparts. Serial selection of LLC cells for increased metastatic capability in either young or old mice led in both cases to exaggerated growth of pulmonary nodules after only 5 cycles of in vivo passage. The respective metastatic cellular variants established in young (Y-series) or old (O-series) mice differed in cell morphology and constitutive activity of growth factor receptors, especially phospho-PDGFRa and phospho-EPHA7. These cell lines also exhibited marked differences in their time dependent profiles of cellular impedance (CI), which reflects their physical properties, such as cell shape, adhesion and interactions with substrata. In confluent monolayer culture Y-series cell lines generated high and increasing CI values, while these values remained low and constant in the O-series of cell lines. These observations suggest that the selective pressure of the metastatic microenvironment in young versus old hosts is sufficiently different to results in the enrichment of distinct, age-related metastatic phenotypes of cancer cells. Thus, age could inform therapeutic approaches to metastatic cancers.
Collapse
Affiliation(s)
- Brian Meehan
- Montreal Children's Hospital, RI MUHC, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Mondal D, Roychaudhuri C, Das L, Chatterjee J. Microtrap electrode devices for single cell trapping and impedance measurement. Biomed Microdevices 2013; 14:955-64. [PMID: 22767244 DOI: 10.1007/s10544-012-9674-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This paper reports the design and fabrication of electrode microtraps for single cell trapping and impedance measurement. In this work, the microtrap electrodes of parallel and elliptical geometry have been fabricated by electroplating of gold electrodes of optimum thickness. This has enabled the formation of electrode traps without requiring any precision alignment between separate insulating traps like PDMS and the bottom gold electrodes. Further the improved uniformity of the electric field between the trapping electrodes as observed from COVENTORWARE simulation significantly reduces the effect of cell position inside the microwell on the electrical measurement unlike previous reports. This makes it possible to directly extract the equivalent cell parameters from the electrical measurement without introducing any correction factor corresponding to cell position. We have performed impedance spectroscopy with both the microwell electrode structures with single HeLa cell at two different positions of trapping. It has been observed that there is almost no change in the extracted values of cell resistance and capacitance for different positions within parallel electrodes and there is only 0.7 % and 0.85 % change in cell resistance and capacitance for the two positions within elliptical electrodes. Thus these microwell electrode structures can be used as an improved and a more convenient platform for single cell electrical characterization.
Collapse
Affiliation(s)
- D Mondal
- School of Materials Science and Engineering, Bengal Engineering and Science University Shibpur, Howrah 711103, India
| | | | | | | |
Collapse
|
28
|
Salmanzadeh A, Sano MB, Gallo-Villanueva RC, Roberts PC, Schmelz EM, Davalos RV. Investigating dielectric properties of different stages of syngeneic murine ovarian cancer cells. BIOMICROFLUIDICS 2013; 7:11809. [PMID: 24403991 PMCID: PMC3568086 DOI: 10.1063/1.4788921] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/08/2013] [Indexed: 05/10/2023]
Abstract
In this study, the electrical properties of four different stages of mouse ovarian surface epithelial (MOSE) cells were investigated using contactless dielectrophoresis (cDEP). This study expands the work from our previous report describing for the first time the crossover frequency and cell specific membrane capacitance of different stages of cancer cells that are derived from the same cell line. The specific membrane capacitance increased as the stage of malignancy advanced from 15.39 ± 1.54 mF m(-2) for a non-malignant benign stage to 26.42 ± 1.22 mF m(-2) for the most aggressive stage. These differences could be the result of morphological variations due to changes in the cytoskeleton structure, specifically the decrease of the level of actin filaments in the cytoskeleton structure of the transformed MOSE cells. Studying the electrical properties of MOSE cells provides important information as a first step to develop cancer-treatment techniques which could partially reverse the cytoskeleton disorganization of malignant cells to a morphology more similar to that of benign cells.
Collapse
Affiliation(s)
- Alireza Salmanzadeh
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, USA ; Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Michael B Sano
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, USA
| | - Roberto C Gallo-Villanueva
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, USA
| | - Paul C Roberts
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Eva M Schmelz
- Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Rafael V Davalos
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, USA ; Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
29
|
Srinivasaraghavan V, Strobl J, Agah M. Bioimpedance rise in response to histone deacetylase inhibitor is a marker of mammary cancer cells within a mixed culture of normal breast cells. LAB ON A CHIP 2012; 12:5168-5179. [PMID: 23108380 DOI: 10.1039/c2lc40778g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Detection of a few cancer cells within a complex cellular mixture is a key challenge presented by clinical human biopsy samples. We have designed and tested a microfabricated bioimpedance device that can detect a few human MDA-MB-231 breast cancer cells in a mixed cell culture model of a breast tissue sample. The normal tissue components were modelled using non-cancerous MCF10A human breast epithelial cells and normal human HS68 fibroblasts. The sensor is a silicon chip 0.5 cm in diameter that contains one counter electrode and four 40 μm-wide multi-branched sensing electrodes. The cells' bioimpedances were characterized in pure monocultures and in mixed cell cultures following a brief cultivation on the sensor. After cell seeding, a stable bioimpedance signal was achieved indicative of cell attachment. A cancer-selective bioimpedance signal was elicited by addition of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor with selective actions on the cytoskeleton in breast cancer cells. SAHA elicited a 50% rise in peak bioimpedance in MDA-MB-231 breast cancer cells by 15 h. In mixed cultures of MDA-MB-231, MCF10A, and HS68 cells, the contribution of cancer cells present in the mixture dominated impedance response to SAHA. A single adherent cancer cell on any one of four electrodes in a background of ∼100 normal cells resulted in ≥5% increase in bioimpedance. The estimated sensitivity of this device is therefore one cancer cell among a background of 400 normal cells or the equivalent of 25 cancer cells in a biopsy sample of 10 000 cells.
Collapse
Affiliation(s)
- Vaishnavi Srinivasaraghavan
- VT MEMS Lab, The Bradley Department of Electrical and Computer Engineering, Virginia Tech. Blacksburg, Virginia 24061, United States.
| | | | | |
Collapse
|
30
|
Hu C, Yang DP, Wang Z, Huang P, Wang X, Chen D, Cui D, Yang M, Jia N. Bio-mimetically synthesized Ag@BSA microspheres as a novel electrochemical biosensing interface for sensitive detection of tumor cells. Biosens Bioelectron 2012; 41:656-62. [PMID: 23069357 DOI: 10.1016/j.bios.2012.09.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 02/05/2023]
Abstract
The use of a novel cytosensor, comprised of bio-mimetically synthesized Ag@BSA composite microspheres, for the detection of KB cells (a model system) is described. The Ag@BSA composite microspheres were immobilized on Au electrodes via Au-thiol bonds. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) images revealed that the Ag@BSA were well-dispersed microspheres with an average diameter of 500 nm, including the monolayer of BSA. The immobilization of Ag@BSA composite microspheres onto Au electrodes is thought to increase the electrode surface area and accelerate the electron transfer rate while providing a highly stable matrix for the convenient conjugation of target molecules (such as folic acid) and the prolonged incubation of cells. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies showed that the fabricated cytosensor was able to detect KB cells ranging from 6.0×10(1) to 1.2×10(8) cells mL(-1) with a lower detection limit of 20 cells mL(-1). Due to its facile synthesis, high stability and reproducibility and cytocompatibility, the novel cytosensor described here could find multifarious uses in applications, such as cancer diagnosis, drug screening and cell adhesion studies.
Collapse
Affiliation(s)
- Chenyi Hu
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200240, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
High-throughput quantitative analysis with cell growth kinetic curves for low copy number mutant cells. Anal Bioanal Chem 2012; 404:2033-41. [DOI: 10.1007/s00216-012-6328-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/27/2012] [Accepted: 08/02/2012] [Indexed: 10/27/2022]
|
32
|
Chen J, Li J, Sun Y. Microfluidic approaches for cancer cell detection, characterization, and separation. LAB ON A CHIP 2012; 12:1753-67. [PMID: 22437479 DOI: 10.1039/c2lc21273k] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This article reviews the recent developments in microfluidic technologies for in vitro cancer diagnosis. We summarize the working principles and experimental results of key microfluidic platforms for cancer cell detection, characterization, and separation based on cell-affinity micro-chromatography, magnetic activated micro-sorting, and cellular biophysics (e.g., cell size and mechanical and electrical properties). We examine the advantages and limitations of each technique and discuss future research opportunities for improving device throughput and purity, and for enabling on-chip analysis of captured cancer cells.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | | | | |
Collapse
|
33
|
Mulhall HJ, Labeed FH, Kazmi B, Costea DE, Hughes MP, Lewis MP. Cancer, pre-cancer and normal oral cells distinguished by dielectrophoresis. Anal Bioanal Chem 2011; 401:2455-63. [DOI: 10.1007/s00216-011-5337-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 08/12/2011] [Accepted: 08/14/2011] [Indexed: 11/28/2022]
|