1
|
Ruppert MG, Routley BS, McCourt LR, Yong YK, Fleming AJ. Modulated-Illumination Intermittent-Contact Tip-Enhanced Raman Spectroscopy. NANO LETTERS 2025; 25:5656-5662. [PMID: 40078055 DOI: 10.1021/acs.nanolett.4c06397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
This article presents a proof-of-concept for a new imaging method that combines tip-enhanced Raman spectroscopy with intermittent-contact atomic force microscopy to provide simultaneous nanometer-scale mechanical imaging with chemical contrast. The foremost difference from a standard tip-enhanced Raman microscope is the Raman illumination, which is modulated by the cantilever drive signal so that illumination is only active when the tip is close to the surface. This approach significantly reduces contact forces and thermal damage due to constant illumination while simultaneously reducing background Raman signals. Near-field optical and dynamic cantilever simulations highlight the effect of the imaging parameters on the tip-sample force and the evanescent field enhancement. The experimental images obtained with this new imaging method demonstrate a lateral resolution sufficient to identify single-walled carbon nanotube bundles with a full width at half-maximum of 20 nm.
Collapse
Affiliation(s)
- Michael G Ruppert
- University of Technology Sydney, Centre for Audio, Acoustics and Vibration, Ultimo, NSW 2007, Australia
| | - Ben S Routley
- The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Luke R McCourt
- The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yuen K Yong
- The University of Newcastle, Callaghan, NSW 2308, Australia
| | | |
Collapse
|
2
|
Kusch P, Arcos Pareja JA, Tsarapkin A, Deinhart V, Harbauer K, Hoeflich K, Reich S. Double Tips for In-Plane Polarized Near-Field Microscopy and Spectroscopy. NANO LETTERS 2024; 24:12406-12412. [PMID: 39254859 PMCID: PMC11468238 DOI: 10.1021/acs.nanolett.4c02826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Near-field optical microscopy and spectroscopy provide high-resolution imaging below the diffraction limit, crucial in physics, chemistry, and biology for studying molecules, nanoparticles, and viruses. These techniques use a sharp metallic tip of an atomic force microscope (AFM) to enhance incoming and scattered light by excited near-fields at the tip apex, leading to high sensitivity and a spatial resolution of a few nanometers. However, this restricts the near-field orientation to out-of-plane polarization, limiting optical polarization choices. We introduce double tips that offer in-plane polarization for enhanced imaging and spectroscopy. These double tips provide superior enhancement over single tips, although with a slightly lower spatial resolution (∼30 nm). They enable advanced studies of nanotubes, graphene defects, and transition metal dichalcogenides, benefiting from polarization control. The double tips allow varied polarization in tip-enhanced Raman scattering and selective excitation of transverse-electric and -magnetic polaritons, expanding the range of nanoscale samples that can be studied.
Collapse
Affiliation(s)
- Patryk Kusch
- Freie
Universität Berlin, Fachbereich Physik, Berlin, Berlin 14195, Germany
| | | | - Aleksei Tsarapkin
- Ferdinand-Braun-Institut, Leibniz-Institut
fuer Hoechstfrequenztechnik (FBH), Berlin, Berlin 12489 Germany
| | - Victor Deinhart
- Ferdinand-Braun-Institut, Leibniz-Institut
fuer Hoechstfrequenztechnik (FBH), Berlin, Berlin 12489 Germany
| | - Karsten Harbauer
- Institute
for Solar Fuels, Helmholtz-Zentrum Berlin
fuer Materialien und Energie GmbH, Berlin, Berlin 14109 Germany
| | - Katja Hoeflich
- Ferdinand-Braun-Institut, Leibniz-Institut
fuer Hoechstfrequenztechnik (FBH), Berlin, Berlin 12489 Germany
| | - Stephanie Reich
- Freie
Universität Berlin, Fachbereich Physik, Berlin, Berlin 14195, Germany
| |
Collapse
|
3
|
Dong L, Li L, Chen H, Cao Y, Lei H. Mechanochemistry: Fundamental Principles and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403949. [PMID: 39206931 DOI: 10.1002/advs.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Mechanochemistry is an emerging research field at the interface of physics, mechanics, materials science, and chemistry. Complementary to traditional activation methods in chemistry, such as heat, electricity, and light, mechanochemistry focuses on the activation of chemical reactions by directly or indirectly applying mechanical forces. It has evolved as a powerful tool for controlling chemical reactions in solid state systems, sensing and responding to stresses in polymer materials, regulating interfacial adhesions, and stimulating biological processes. By combining theoretical approaches, simulations and experimental techniques, researchers have gained intricate insights into the mechanisms underlying mechanochemistry. In this review, the physical chemistry principles underpinning mechanochemistry are elucidated and a comprehensive overview of recent significant achievements in the discovery of mechanically responsive chemical processes is provided, with a particular emphasis on their applications in materials science. Additionally, The perspectives and insights into potential future directions for this exciting research field are offered.
Collapse
Affiliation(s)
- Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Huiyan Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Institute of Advanced Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
4
|
Czaja M, Chachaj-Brekiesz A, Skirlińska-Nosek K, Szajna K, Sofińska K, Lupa D, Kobierski J, Wnętrzak A, Szymoński M, Lipiec E. Fabrication of plasmonic probes for reproducible nanospectroscopic investigation of lipid monolayers - The electrochemical etching with DC-pulsed voltage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124323. [PMID: 38692104 DOI: 10.1016/j.saa.2024.124323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is a label-free analytical technique that characterizes molecular systems, potentially even with a nanometric resolution. In principle, the metallic plasmonic probe is illuminated with a laser beam generating the localized surface plasmons, which induce a strong local electric field enhancement in close proximity to the probe. Such field enhancement improves the Raman scattering cross-section from the sample volume localized near the probe apex. TERS provides a high spatial resolution and a great sensitivity, however, it is rather rarely used due to technical limitations causing unstable enhancement and the relative lack of data reproducibility. Despite many scientific efforts for the fabrication of effective TER probes providing robust TER enhancement still requires further investigations. In this work, we explore new possibilities based on preparation of scanning tunnelling microscopy (STM) plasmonic probes, since by nature of the tunnelling effect, they potentially could offer a very high spatial resolution in STM guided TERS experiments. Here we compare two methods of STM-TERS probe preparation for effective spectra acquisition. Our results strongly indicate that an application of square pulse voltage upon the etching procedure significantly improves the quality of the TER data over those obtained with a constant voltage one. To demonstrate the efficiency of our probes we present the results of hyperspectral TER mapping of the 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) monolayer deposited on an ultra-pure and atomically flat gold substrate.
Collapse
Affiliation(s)
- Michał Czaja
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Kraków 30-387, Poland
| | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Katarzyna Skirlińska-Nosek
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Kraków 30-387, Poland
| | - Konrad Szajna
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland
| | - Kamila Sofińska
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland
| | - Dawid Lupa
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland
| | - Jan Kobierski
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biophysics, Medyczna 9, Kraków 30-688, Poland
| | - Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Marek Szymoński
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland
| | - Ewelina Lipiec
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland.
| |
Collapse
|
5
|
Brotons-Alcázar I, Terreblanche JS, Giménez-Santamarina S, Gutiérrez-Finol GM, Ryder KS, Forment-Aliaga A, Coronado E. Atomic Force Microscopy beyond Topography: Chemical Sensing of 2D Material Surfaces through Adhesion Measurements. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19711-19719. [PMID: 38567570 DOI: 10.1021/acsami.3c19254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Developing new functionalities of two-dimensional materials (2Dms) can be achieved by their chemical modification with a broad spectrum of molecules. This functionalization is commonly studied by using spectroscopies such as Raman, IR, or XPS, but the detection limit is a common problem. In addition, these methods lack detailed spatial resolution and cannot provide information about the homogeneity of the coating. Atomic force microscopy (AFM), on the other hand, allows the study of 2Dms on the nanoscale with excellent lateral resolution. AFM has been extensively used for topographic analysis; however, it is also a powerful tool for evaluating other properties far beyond topography such as mechanical ones. Therefore, herein, we show how AFM adhesion mapping of transition metal chalcogenide 2Dms (i.e., MnPS3 and MoS2) permits a close inspection of the surface chemical properties. Moreover, the analysis of adhesion as relative values allows a simple and robust strategy to distinguish between bare and functionalized layers and significantly improves the reproducibility between measurements. Remarkably, it is also confirmed by statistical analysis that adhesion values do not depend on the thickness of the layers, proving that they are related only to the most superficial part of the materials. In addition, we have implemented an unsupervised classification method using k-means clustering, an artificial intelligence-based algorithm, to automatically classify samples based on adhesion values. These results demonstrate the potential of simple adhesion AFM measurements to inspect the chemical nature of 2Dms and may have implications for the broad scientific community working in the field.
Collapse
Affiliation(s)
- Isaac Brotons-Alcázar
- Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán Martínez, 2, 46980 Paterna, Spain
| | - Jason S Terreblanche
- Center for Sustainable Materials Processing, School of Chemistry, University of Leicester, University Road, LE1 7RH Leicester, U.K
| | - Silvia Giménez-Santamarina
- Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán Martínez, 2, 46980 Paterna, Spain
| | - Gerliz M Gutiérrez-Finol
- Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán Martínez, 2, 46980 Paterna, Spain
| | - Karl S Ryder
- Center for Sustainable Materials Processing, School of Chemistry, University of Leicester, University Road, LE1 7RH Leicester, U.K
| | - Alicia Forment-Aliaga
- Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán Martínez, 2, 46980 Paterna, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán Martínez, 2, 46980 Paterna, Spain
| |
Collapse
|
6
|
Hardy M, Goldberg Oppenheimer P. 'When is a hotspot a good nanospot' - review of analytical and hotspot-dominated surface enhanced Raman spectroscopy nanoplatforms. NANOSCALE 2024; 16:3293-3323. [PMID: 38273798 PMCID: PMC10868661 DOI: 10.1039/d3nr05332f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
Substrate development in surface-enhanced Raman spectroscopy (SERS) continues to attract research interest. In order to determine performance metrics, researchers in foundational SERS studies use a variety of experimental means to characterize the nature of substrates. However, often this process would appear to be performed indiscriminately without consideration for the physical scale of the enhancement phenomena. Herein, we differentiate between SERS substrates whose primary enhancing structures are on the hundreds of nanometer scale (analytical SERS nanosubstrates) and those whose main mechanism derives from nanometric-sized gaps (hot-spot dominated SERS substrates), assessing the utility of various characterization methods for each substrate class. In this context, characterization approaches in white-light spectroscopy, electron beam methods, and scanning probe spectroscopies are reviewed. Tip-enhanced Raman spectroscopy, wavelength-scanned SERS studies, and the impact of surface hydrophobicity are also discussed. Conclusions are thus drawn on the applicability of each characterization technique regarding amenability for SERS experiments that have features at different length scales. For instance, while white light spectroscopy can provide an indication of the plasmon resonances associated with 10 s-100 s nm-scale structures, it may not reveal information about finer surface texturing on the true nm-scale, critical for SERS' sensitivity, and in need of investigation via scanning probe techniques.
Collapse
Affiliation(s)
- Mike Hardy
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, B15 2TT, UK.
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, UK.
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, B15 2TT, UK.
- Healthcare Technologies Institute, Institute of Translational Medicine, Birmingham B15 2TH, UK
| |
Collapse
|
7
|
Sasso A, Capaccio A, Rusciano G. Exploring Reliable and Efficient Plasmonic Nanopatterning for Surface- and Tip-Enhanced Raman Spectroscopies. Int J Mol Sci 2023; 24:16164. [PMID: 38003354 PMCID: PMC10671507 DOI: 10.3390/ijms242216164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Surface-enhanced Raman scattering (SERS) is of growing interest for a wide range of applications, especially for biomedical analysis, thanks to its sensitivity, specificity, and multiplexing capabilities. A crucial role for successful applications of SERS is played by the development of reproducible, efficient, and facile procedures for the fabrication of metal nanostructures (SERS substrates). Even more challenging is to extend the fabrication techniques of plasmonic nano-textures to atomic force microscope (AFM) probes to carry out tip-enhanced Raman spectroscopy (TERS) experiments, in which spatial resolution below the diffraction limit is added to the peculiarities of SERS. In this short review, we describe recent studies performed by our group during the last ten years in which novel nanofabrication techniques have been successfully applied to SERS and TERS experiments for studying bio-systems and molecular species of environmental interest.
Collapse
Affiliation(s)
- Antonio Sasso
- Department of Physics “E. Pancini”, University of Naples “Federico II”, 80126 Naples, Italy; (A.C.); (G.R.)
| | - Angela Capaccio
- Department of Physics “E. Pancini”, University of Naples “Federico II”, 80126 Naples, Italy; (A.C.); (G.R.)
- Institute of Food Sciences, URT-CNR Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy
| | - Giulia Rusciano
- Department of Physics “E. Pancini”, University of Naples “Federico II”, 80126 Naples, Italy; (A.C.); (G.R.)
| |
Collapse
|
8
|
Nadas RB, Gadelha AC, Barbosa TC, Rabelo C, de Lourenço E Vasconcelos T, Monken V, Portes AVR, Watanabe K, Taniguchi T, Ramirez JC, Campos LC, Saito R, Cançado LG, Jorio A. Spatially Coherent Tip-Enhanced Raman Spectroscopy Measurements of Electron-Phonon Interaction in a Graphene Device. NANO LETTERS 2023; 23:8827-8832. [PMID: 37432971 DOI: 10.1021/acs.nanolett.3c00851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Coherence length (Lc) of the Raman scattering process in graphene as a function of Fermi energy is obtained with spatially coherent tip-enhanced Raman spectroscopy. Lc decreases when the Fermi energy is moved into the neutrality point, consistent with the concept of the Kohn anomaly within a ballistic transport regime. Since the Raman scattering involves electrons and phonons, the observed results can be rationalized either as due to unusually large variation of the longitudinal optical phonon group velocity vg, reaching twice the value for the longitudinal acoustic phonon, or due to changes in the electron energy uncertainty, both properties being important for optical and transport phenomena that might not be observable by any other technique.
Collapse
Affiliation(s)
- Rafael Battistella Nadas
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
| | - Andreij C Gadelha
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
| | - Tiago C Barbosa
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
- Centro de Tecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
| | | | | | - Vitor Monken
- FabNS, Belo Horizonte, Minas Gerais 31310-260, Brazil
- Programa de Pós-Graduação em Inovação Tecnológica e Propriedade Intelectual, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
| | - Ary V R Portes
- Departamento de Engenharia Eletrônica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
| | - Kenji Watanabe
- NIMS, 1-2-1 Sengen, Tsukuba-city, Ibaraki 305-0047, Japan
| | | | - Jhonattan C Ramirez
- Departamento de Engenharia Eletrônica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
| | - Leonardo C Campos
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
- Centro de Tecnologia em Nanomateriais e Grafeno, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
| | - Riichiro Saito
- Department of Physics, Tohoku University, Sendai, 980-8578, Japan
| | - Luiz Gustavo Cançado
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
| | - Ado Jorio
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
- Programa de Pós-Graduação em Inovação Tecnológica e Propriedade Intelectual, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil
| |
Collapse
|
9
|
Hu X, Jiang H, Lu LX, Zhao SX, Li Y, Zhen L, Xu CY. Revisiting the Hetero-Interface of Electrolyte/2D Materials in an Electric Double Layer Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301798. [PMID: 37357158 DOI: 10.1002/smll.202301798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Electric double layer (EDL) devices based on 2D materials have made great achievements for versatile electronic and opto-electronic applications; however, the ion dynamics and electric field distribution of the EDL at the electrolyte/2D material interface and their influence on the physical properties of 2D materials have not been clearly clarified. In this work, by using Kelvin probe force microscope and steady/transient optical techniques, the character of the EDL and its influence on the optical properties of monolayer transition metal dichalcogenides (TMDs) are probed. The potential drop, unscreened EDL potential distribution, and accumulated carriers at the electrolyte/TMD interface are revealed, which can be explained by nonlinear Thomas-Fermi theory. By monitoring the potential distribution along the channel, the evolution of the electric field-induced lateral junction in the TMD EDL transistor is accessed, giving rise to the better exploration of EDL device physics. More importantly, EDL gate-dependent carrier recombination and exciton-exciton annihilation in monolayer TMDs on lithium-ion solid state electrolyte (Li2 Al2 SiP2 TiO13 ) are evaluated for the first time, benefiting from the understanding of the interaction between ions, carriers, and excitons. The work will deepen the understanding of the EDL for the exploitation of functional device applications.
Collapse
Affiliation(s)
- Xin Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Hao Jiang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Liang-Xing Lu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shou-Xin Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Yang Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Liang Zhen
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Cheng-Yan Xu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
10
|
Taneva SG, Todinova S, Andreeva T. Morphometric and Nanomechanical Screening of Peripheral Blood Cells with Atomic Force Microscopy for Label-Free Assessment of Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:14296. [PMID: 37762599 PMCID: PMC10531602 DOI: 10.3390/ijms241814296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders (NDDs) are complex, multifactorial disorders with significant social and economic impact in today's society. NDDs are predicted to become the second-most common cause of death in the next few decades due to an increase in life expectancy but also to a lack of early diagnosis and mainly symptomatic treatment. Despite recent advances in diagnostic and therapeutic methods, there are yet no reliable biomarkers identifying the complex pathways contributing to these pathologies. The development of new approaches for early diagnosis and new therapies, together with the identification of non-invasive and more cost-effective diagnostic biomarkers, is one of the main trends in NDD biomedical research. Here we summarize data on peripheral biomarkers, biofluids (cerebrospinal fluid and blood plasma), and peripheral blood cells (platelets (PLTs) and red blood cells (RBCs)), reported so far for the three most common NDDs-Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PLTs and RBCs, beyond their primary physiological functions, are increasingly recognized as valuable sources of biomarkers for NDDs. Special attention is given to the morphological and nanomechanical signatures of PLTs and RBCs as biophysical markers for the three pathologies. Modifications of the surface nanostructure and morphometric and nanomechanical signatures of PLTs and RBCs from patients with AD, PD, and ALS have been revealed by atomic force microscopy (AFM). AFM is currently experiencing rapid and widespread adoption in biomedicine and clinical medicine, in particular for early diagnostics of various medical conditions. AFM is a unique instrument without an analog, allowing the generation of three-dimensional cell images with extremely high spatial resolution at near-atomic scale, which are complemented by insights into the mechanical properties of cells and subcellular structures. Data demonstrate that AFM can distinguish between the three pathologies and the normal, healthy state. The specific PLT and RBC signatures can serve as biomarkers in combination with the currently used diagnostic tools. We highlight the strong correlation of the morphological and nanomechanical signatures between RBCs and PLTs in PD, ALS, and AD.
Collapse
Affiliation(s)
- Stefka G. Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
- Faculty of Life Sciences, Reutlingen University, Alteburgstraße 150, D-72762 Reutlingen, Germany
| |
Collapse
|
11
|
Peis L, He G, Jost D, Rager G, Hackl R. Polarized tip-enhanced Raman spectroscopy at liquid He temperature in ultrahigh vacuum using an off-axis parabolic mirror. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:063701. [PMID: 37862477 DOI: 10.1063/5.0139667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/13/2023] [Indexed: 10/22/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) combines inelastic light scattering well below the diffraction limit down to the nanometer range and scanning probe microscopy and, possibly, spectroscopy. In this way, topographic and spectroscopic as well as single- and two-particle information may simultaneously be collected. While single molecules can now be studied successfully, bulk solids are still not meaningfully accessible. It is the purpose of the work presented here to outline approaches toward this objective. We describe a home-built, liquid helium cooled, ultrahigh vacuum TERS. The setup is based on a scanning tunneling microscope and, as an innovation, an off-axis parabolic mirror having a high numerical aperture of ∼0.85 and a large working distance. The system is equipped with a fast load-lock chamber, a chamber for the in situ preparation of tips, substrates, and samples, and a TERS chamber. Base pressure and temperature in the TERS chamber were ∼3 × 10-11 mbar and 15 K, respectively. Polarization dependent tip-enhanced Raman spectra of the vibration modes of carbon nanotubes were successfully acquired at cryogenic temperature. The new features described here including very low pressure and temperature and the external access to the light polarizations, thus the selection rules, may pave the way toward the investigation of bulk and surface materials.
Collapse
Affiliation(s)
- L Peis
- Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
- School of Natural Sciences, Technische Universität München, 85748 Garching, Germany
- IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - G He
- Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
| | - D Jost
- Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
- School of Natural Sciences, Technische Universität München, 85748 Garching, Germany
| | - G Rager
- Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
- School of Natural Sciences, Technische Universität München, 85748 Garching, Germany
| | - R Hackl
- Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
- School of Natural Sciences, Technische Universität München, 85748 Garching, Germany
- IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| |
Collapse
|
12
|
Mrđenović D, Tang ZX, Pandey Y, Su W, Zhang Y, Kumar N, Zenobi R. Regioselective Tip-Enhanced Raman Spectroscopy of Lipid Membranes with Sub-Nanometer Axial Resolution. NANO LETTERS 2023; 23:3939-3946. [PMID: 37096805 DOI: 10.1021/acs.nanolett.3c00689] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Noninvasive and label-free analysis of cell membranes at the nanoscale is essential to comprehend vital cellular processes. However, conventional analytical tools generally fail to meet this challenge due to the lack of required sensitivity and/or spatial resolution. Herein, we demonstrate that tip-enhanced Raman spectroscopy (TERS) is a powerful nanoanalytical tool to analyze dipalmitoylphosphatidylcholine (DPPC) bilayers and human cell membranes with submolecular resolution in the vertical direction. Unlike the far-field Raman measurements, TERS spectra of the DPPC bilayers reproducibly exhibited a uniquely shaped C-H band. These unique spectral features were also reproducibly observed in the TERS spectrum of human pancreatic cancer cells. Spectral deconvolution and DFT simulations confirmed that the TERS signal primarily originated from vibrations of the CH3 groups in the choline headgroup of the lipids. The reproducible TERS results obtained in this study unequivocally demonstrate the ultrahigh sensitivity of TERS for nanoanalysis of lipid membranes under ambient conditions.
Collapse
Affiliation(s)
- Dušan Mrđenović
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Zi-Xi Tang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, 230026 Hefei, Anhui, People's Republic of China
| | - Yashashwa Pandey
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, People's Republic of China
| | - Yao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, 230026 Hefei, Anhui, People's Republic of China
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| |
Collapse
|
13
|
Liu Q, Fu Y, Qin Z, Wang Y, Zhang S, Ran M. Progress in the applications of atomic force microscope (AFM) for mineralogical research. Micron 2023; 170:103460. [PMID: 37099977 DOI: 10.1016/j.micron.2023.103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Mineral surface properties and mineral-aqueous interfacial reactions are essential factors affecting the geochemical cycle, related environmental impacts, and bioavailability of chemical elements. Compared to macroscopic analytical instruments, an atomic force microscope (AFM) provides necessary and vital information for analyzing mineral structure, especially the mineral-aqueous interfaces, and has excellent application prospects in mineralogical research. This paper presents recent advances in the study of properties of minerals such as surface roughness, crystal structure and adhesion by atomic force microscopy, as well as the progress of application and main contributions in mineral-aqueous interfaces analysis, such as mineral dissolution, redox and adsorption processes. It describes the principles, range of applications, strengths and weaknesses of using AFM in combination with IR and Raman spectroscopy instruments to characterization of minerals. Finally, according to the limitations of the AFM structure and function, this research proposes some ideas and suggestions for developing and designing AFM techniques.
Collapse
Affiliation(s)
- Qin Liu
- School of Geography & Environmental Science, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Yuhong Fu
- School of Geography & Environmental Science, Guizhou Normal University, Guiyang, Guizhou 550025, China.
| | - Zonghua Qin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China
| | - Yun Wang
- School of Geography & Environmental Science, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Shanshan Zhang
- School of Geography & Environmental Science, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Meimei Ran
- School of Geography & Environmental Science, Guizhou Normal University, Guiyang, Guizhou 550025, China
| |
Collapse
|
14
|
Mrđenović D, Cai ZF, Pandey Y, Bartolomeo GL, Zenobi R, Kumar N. Nanoscale chemical analysis of 2D molecular materials using tip-enhanced Raman spectroscopy. NANOSCALE 2023; 15:963-974. [PMID: 36541047 PMCID: PMC9851175 DOI: 10.1039/d2nr05127c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/01/2022] [Indexed: 05/10/2023]
Abstract
Two-dimensional (2D) molecular materials have attracted immense attention due to their unique properties, promising a wide range of exciting applications. To understand the structure-property relationship of these low-dimensional materials, sensitive analytical tools capable of providing structural and chemical characterisation at the nanoscale are required. However, most conventional analytical techniques fail to meet this challenge, especially in a label-free and non-destructive manner under ambient conditions. In the last two decades, tip-enhanced Raman spectroscopy (TERS) has emerged as a powerful analytical technique for nanoscale chemical characterisation by combining the high spatial resolution of scanning probe microscopy and the chemical sensitivity and specificity of surface-enhanced Raman spectroscopy. In this review article, we provide an overview of the application of TERS for nanoscale chemical analysis of 2D molecular materials, including 2D polymers, biomimetic lipid membranes, biological cell membranes, and 2D reactive systems. The progress in the structural and chemical characterisation of these 2D materials is demonstrated with key examples from our as well as other laboratories. We highlight the unique information that TERS can provide as well as point out the common pitfalls in experimental work and data interpretation and the possible ways of averting them.
Collapse
Affiliation(s)
- Dušan Mrđenović
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Zhen-Feng Cai
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Yashashwa Pandey
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
15
|
Seweryn S, Skirlińska-Nosek K, Sofińska K, Szajna K, Kobierski J, Awsiuk K, Szymoński M, Lipiec E. Optimization of tip-enhanced Raman spectroscopy for probing the chemical structure of DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121595. [PMID: 35843060 DOI: 10.1016/j.saa.2022.121595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Tip-enhanced Raman (TER) spectroscopy combines the nanometric spatial resolution of atomic force microscopy (AFM) and the chemical sensitivity of Raman spectroscopy. Thus, it provides a unique possibility to obtain spectroscopic information on individual, nanometre-size molecules. The enhancement of Raman scattering cross-section requires modification of the AFM tip apex with a plasmonic nanostructure. Despite numerous advances of TERS research, attaining good reproducibility and stable enhancement is still challenging mainly due to the lack of optimized probes and sample preparation procedures. Moreover, current nanospectroscopic standard samples - carbon nanotubes (CNTs) have relatively simple chemical structure, and therefore, they are far from real-life analytes, especially biological samples. In this work we focus on the optimization of TERS technique for efficient DNA measurements, including: a preparation of atomically-flat gold substrates, fixative free deposition of DNA and optimization of TERS probe preparation. Here we demonstrate a comprehensive comparison of the efficacy of several types of TERS probes. Applying the systematic approach, we obtained reliable and reproducible TER spectra of DNA. Thus, we provide preparation procedures of a new standard TERS sample, TERS substrates and TERS probes. Our research provides a solid foundation for further research on DNA and its interaction with other biomolecules upon biologically significant processes such as DNA damage and repair.
Collapse
Affiliation(s)
- Sara Seweryn
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | | | - Kamila Sofińska
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Konrad Szajna
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Jan Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, 31-007 Kraków, Poland
| | - Kamil Awsiuk
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Marek Szymoński
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
| |
Collapse
|
16
|
Mrđenović D, Ge W, Kumar N, Zenobi R. Nanoscale Chemical Imaging of Human Cell Membranes Using Tip-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202210288. [PMID: 36057139 PMCID: PMC9826433 DOI: 10.1002/anie.202210288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 01/11/2023]
Abstract
Lack of appropriate tools for visualizing cell membrane molecules at the nanoscale in a non-invasive and label-free fashion limits our understanding of many vital cellular processes. Here, we use tip-enhanced Raman spectroscopy (TERS) to visualize the molecular distribution in pancreatic cancer cell (BxPC-3) membranes in ambient conditions without labelling, with a spatial resolution down to ca. 2.5 nm. TERS imaging reveals segregation of phenylalanine-, histidine-, phosphatidylcholine-, protein-, and cholesterol-rich BxPC-3 cell membrane domains at the nm length-scale. TERS imaging also showed a cell membrane region where cholesterol is mixed with protein. Interestingly, the higher resolution TERS imaging revealed that the molecular domains observed on the BxPC-3 cell membrane are not chemically "pure" but also contain other biomolecules. These results demonstrate the potential of TERS for non-destructive and label-free imaging of cell membranes with nanoscale resolution.
Collapse
Affiliation(s)
- Dušan Mrđenović
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Wenjie Ge
- Department of BiologyETH ZurichOtto-Stern-Weg 78093ZürichSwitzerland
| | - Naresh Kumar
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Renato Zenobi
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| |
Collapse
|
17
|
Jafari M, Mousavi M, Shirzad K, Hosseini MA, Badiei A, Pourhakkak P, Ghasemi JB. A TiO2 nanotube array decorated by Ag nanoparticles for highly sensitive SERS determination and self-cleaning of vitamin B12. Microchem J 2022; 181:107813. [DOI: 10.1016/j.microc.2022.107813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Nanoscale chemical imaging of human cell membrane using Tip‐enhanced Raman spectroscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Jelken J, Avilés MO, Lagugné-Labarthet F. The Hidden Flower in WS 2 Flakes: A Combined Nanomechanical and Tip-Enhanced Raman Exploration. ACS NANO 2022; 16:12352-12363. [PMID: 35876460 DOI: 10.1021/acsnano.2c03441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report on tungsten disulfide (WS2) flakes grown by chemical vapor deposition (CVD), which exhibit a flower-like surface structure above the primary few-layer flake with a triangular shape. The fine structure is only revealed in the mechanical, chemical, and electronic properties of the flake but not in the topography. The origin of this structure is the peculiar one-step growth during the CVD process that permits to control the sulfur concentration at any time. A high concentration of S at the onset of the deposition process leads to a rapid growth of the flake, resulting in tungsten vacancies. Reducing the sulfur concentration toward the end of the growth slows down the reaction and leads to sulfur vacancies. These microscale domains were studied by confocal- and tip-enhanced Raman spectroscopy revealing their chemical composition with high spatial resolution. A strong quenching of the photoluminescence in the tungsten-vacancy domains is observed. Atomic force microscope measurements, performed in intermittent contact mode, force modulation mode (including lateral force mode), and PeakForce quantitative nanomechanics mode, show that the mechanical properties of these domains differ. Within the tungsten-vacancy domains, the adhesion force is reduced, while the friction force increased. Kelvin probe force microscopy measurements show that the electronic properties of the flakes are modulated by these domains. The combined nanomechanical and nanospectroscopy measurements provide detailed insights on the inhomogeneous surface properties of the single WS2 flake, further highlighting how its multidomain properties can be finely tuned using CVD.
Collapse
Affiliation(s)
- Joachim Jelken
- The Centre for Advanced Materials and Biomaterials Research (CAMBR), Department of Chemistry, The University of Western Ontario (Western University), 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - María O Avilés
- The Centre for Advanced Materials and Biomaterials Research (CAMBR), Department of Chemistry, The University of Western Ontario (Western University), 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - François Lagugné-Labarthet
- The Centre for Advanced Materials and Biomaterials Research (CAMBR), Department of Chemistry, The University of Western Ontario (Western University), 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
20
|
Toda K, Hirose Y, Kazuma E, Kim Y, Taketsugu T, Iwasa T. Excited States of Metal-Adsorbed Dimethyl Disulfide: A TDDFT Study with Cluster Model. J Phys Chem A 2022; 126:4191-4198. [PMID: 35759698 PMCID: PMC9272398 DOI: 10.1021/acs.jpca.2c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The optical near field refers to a localized light field near a surface that can induce photochemical phenomena such as dipole-forbidden transitions. Recently, the photodissociation of the S-S bond of dimethyl disulfide (DMDS) was investigated using a scanning tunneling microscope with far- and near-field light. This reaction is thought to be initiated by the lowest-energy highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) transition of the DMDS molecule under far-field light. In near-field light, photodissociation proceeds at lower photon energies than in far-field light. To gain insight into the underlying mechanism, we theoretically investigated the excited states of DMDS adsorbed on Cu and Ag surfaces modeled by a tetrahedral 20-atom cluster. The frontier orbitals of the molecule were delocalized by the interaction with the metal, resulting in narrowing of the HOMO-LUMO gap energy. The excited-state distribution was analyzed using the Mulliken population analysis, decomposing molecular orbitals into metal and DMDS fragments. The excited states of the intra-DMDS transitions were found over a wider energy range, but at low energies, their oscillator strengths were negligible, which is consistent with the experimental results. Sparse modeling analysis showed that typical electronic transitions differed between the higher and lower excited states. If these low-lying excited states are efficiently excited by near-field light with different selection rules, the S-S bond dissociation reaction can proceed.
Collapse
Affiliation(s)
- Keijiro Toda
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Yoshihiro Hirose
- School
of Interdisciplinary Mathematical Science, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
| | - Emiko Kazuma
- Surface
and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- JST
PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yousoo Kim
- Surface
and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tetsuya Taketsugu
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060−0810, Japan
- WPI-ICReDD, Hokkaido University, Sapporo 001-0021, Japan
- ESICB, Kyoto University, Kyoto 615-8245, Japan
| | - Takeshi Iwasa
- JST
PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060−0810, Japan
- WPI-ICReDD, Hokkaido University, Sapporo 001-0021, Japan
- ESICB, Kyoto University, Kyoto 615-8245, Japan
| |
Collapse
|
21
|
Krishna R, Colak I. Advances in Biomedical Applications of Raman Microscopy and Data Processing: A Mini Review. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2094391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Ram Krishna
- Department of Mechanical Engineering, Madanapalle Institute of Technology & Science, Madanapalle, Andhra Pradesh, India
- Electrical and Electronics Engineering, Nisantasi University, Istanbul, Turkey
- Ohm Janki Biotech Research Private Limited, India
| | - Ilhami Colak
- Electrical and Electronics Engineering, Nisantasi University, Istanbul, Turkey
| |
Collapse
|
22
|
Rahaman M, Zahn DRT. Plasmon-enhanced Raman spectroscopy of two-dimensional semiconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:333001. [PMID: 35671747 DOI: 10.1088/1361-648x/ac7689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) semiconductors have grown fast into an extraordinary research field due to their unique physical properties compared to other semiconducting materials. The class of materials proved extremely fertile for both fundamental studies and a wide range of applications from electronics/spintronics/optoelectronics to photocatalysis and CO2reduction. 2D materials are highly confined in the out-of-plane direction and often possess very good environmental stability. Therefore, they have also become a popular material system for the manipulation of optoelectronic properties via numerous external parameters. Being a versatile characterization technique, Raman spectroscopy is used extensively to study and characterize various physical properties of 2D materials. However, weak signals and low spatial resolution hinder its application in more advanced systems where decoding local information plays an important role in advancing our understanding of these materials for nanotechnology applications. In this regard, plasmon-enhanced Raman spectroscopy has been introduced in recent time to investigate local heterogeneous information of 2D semiconductors. In this review, we summarize the recent progress of plasmon-enhanced Raman spectroscopy of 2D semiconductors. We discuss the current state-of-art and provide future perspectives on this specific branch of Raman spectroscopy applied to 2D semiconductors.
Collapse
Affiliation(s)
- Mahfujur Rahaman
- Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, 19104 Pennsilvania, United States of America
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), 09126 Chemnitz, Germany
| |
Collapse
|
23
|
Wang D, Zhang L, Chen S, Pan Q, Yu Z, Jia X, He L, Li C, Zhao Y. Preparation of a Large Amount of Ultrathin Graphdiyne. Chemistry 2022; 28:e202200442. [DOI: 10.1002/chem.202200442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Danbo Wang
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| | - Lin Zhang
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| | - Siqi Chen
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| | - Qingyan Pan
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| | - Zefang Yu
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| | - Xu Jia
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| | - Lixia He
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| | - Chaoqin Li
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| | - Yingjie Zhao
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| |
Collapse
|
24
|
Tanaka T, Yano TA, Kato R. Nanostructure-enhanced infrared spectroscopy. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2541-2561. [PMID: 39635668 PMCID: PMC11501225 DOI: 10.1515/nanoph-2021-0661] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 12/07/2024]
Abstract
While infrared spectroscopy is a powerful technique that provides molecular information such as chemical constituents and chemical structures of analytes, it suffers from low absorption cross-section resulting in low sensitivity and poor signal-to-noise or signal-to-background ratios. Surface-enhanced infrared absorption (SEIRA) spectroscopy, which is supported by nanometer scale structures, is a promising technology to overcome these problems in conventional infrared (IR) spectroscopy and enhances IR signals using the field enhancement properties of surface plasmon resonance. Recently resonant SEIRA technique was proposed, and signal enhancement factor was significantly improved. In this review, we present an overview of the recent progresses on resonant SEIRA technologies including nanoantenna- and metamaterial-based SEIRA, and also SEIRA techniques with nanoimaging capabilities.
Collapse
Affiliation(s)
- Takuo Tanaka
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics,2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8560, Japan
| | - Taka-aki Yano
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics,2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8560, Japan
| | - Ryo Kato
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics,2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8560, Japan
| |
Collapse
|
25
|
Theoretical Study on the Ultrafast Selective Excitation of Surface-Enhanced Coherent Anti-Stokes Raman Scattering Based on Fano Resonance of Disk-Ring Nanostructures by Shaped Femtosecond Laser Pulses. PHOTONICS 2022. [DOI: 10.3390/photonics9050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The enhancement and selective excitation of coherent anti-Stokes Raman scattering (CARS) and the suppression of background noise are very important problems for real-time detection at the single-molecule level. Optimizing the plasmonic substrate to ensure that all the hot spots of the pump, probe, Stokes, and anti-Stokes light are at the same position is the key to increasing the CARS signal to reach the level of single-molecule detection. The selective excitation of the target CARS peak and the suppression of the other peaks are the key to improving the signal-to-noise ratio. In this paper, we present a theoretical study to control the selective excitation and enhancement of any one of the three CARS peaks using the Fano resonance of a disk-ring structure. By optimizing the modulation of the pump, Stokes, and probe pulse, one CARS peak is maximized, while the other two are suppressed to zero. Fano resonance is applied to simultaneously enhance the four surface plasmon modes of the pump, probe, Stokes, and anti-Stokes light and to ensure that all the hot spots are located at the same position by adjusting the size of the disk-ring structure. The hot spots of the four pulses are concentrated in the disk-ring gap with a deviation distance of less than 2 nm, and the intensity of the CARS is enhanced by 1.43 × 1012 times, which is much higher than the requirement of single-molecule detection. The time, frequency, and phase distribution of the input and the response of the four pulses are studied in detail. It was found that the selective excitation and the spectra of CARS are both well preserved.
Collapse
|
26
|
Wu X, Ehehalt R, Razinskas G, Feichtner T, Qin J, Hecht B. Light-driven microdrones. NATURE NANOTECHNOLOGY 2022; 17:477-484. [PMID: 35449413 DOI: 10.1038/s41565-022-01099-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
When photons interact with matter, forces and torques occur due to the transfer of linear and angular momentum, respectively. The resulting accelerations are small for macroscopic objects but become substantial for microscopic objects with small masses and moments of inertia, rendering photon recoil very attractive to propel micro- and nano-objects. However, until now, using light to control object motion in two or three dimensions in all three or six degrees of freedom has remained an unsolved challenge. Here we demonstrate light-driven microdrones (size roughly 2 μm and mass roughly 2 pg) in an aqueous environment that can be manoeuvred in two dimensions in all three independent degrees of freedom (two translational and one rotational) using two overlapping unfocused light fields of 830 and 980 nm wavelength. To actuate the microdrones independent of their orientation, we use up to four individually addressable chiral plasmonic nanoantennas acting as nanomotors that resonantly scatter the circular polarization components of the driving light into well-defined directions. The microdrones are manoeuvred by only adjusting the optical power for each motor (the power of each circular polarization component of each wavelength). The actuation concept is therefore similar to that of macroscopic multirotor drones. As a result, we demonstrate manual steering of the microdrones along complex paths. Since all degrees of freedom can be addressed independently and directly, feedback control loops may be used to counteract Brownian motion. We posit that the microdrones can find applications in transport and release of cargos, nanomanipulation, and local probing and sensing of nano and mesoscale objects.
Collapse
Affiliation(s)
- Xiaofei Wu
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany.
- Leibniz Institute of Photonic Technology, Jena, Germany.
| | - Raphael Ehehalt
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
| | - Gary Razinskas
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Thorsten Feichtner
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
| | - Jin Qin
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany
| | - Bert Hecht
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
27
|
Sarycheva A, Shanmugasundaram M, Krayev A, Gogotsi Y. Tip-Enhanced Raman Scattering Imaging of Single- to Few-Layer Ti 3C 2T x MXene. ACS NANO 2022; 16:6858-6865. [PMID: 35404582 DOI: 10.1021/acsnano.2c01868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MXenes are among the most widely researched materials due to a unique combination of high electronic conductivity and hydrophilic surface, confined in a 2D structure. Therefore, comprehensive characterization of individual MXene flakes is of great importance. Here we report on nanoscale Raman imaging of single-layer and few-layer flakes of Ti3C2Tx MXene deposited on a gold substrate using tip-enhanced Raman scattering (TERS). TERS spectra of MXene monolayers are dominated by an intense peak at around 201 cm-1 and two well-defined peaks at around 126 and 725 cm-1. Absolute intensities of these peaks decrease with increasing number of layers, though the relative intensity of the 126 and 725 cm-1 bands as compared to the 201 cm-1 band increases. The peak positions of the main MXene bands do not significantly change in flakes of different number of layers, suggesting weak coupling between the MXene layers. In addition, we observed stiffening of the 201 cm-1 vibration over the wrinkles in MXene flakes. Using TERS for nanoscale spectroscopic characterization of Ti3C2Tx allows fast Raman mapping with deep subdiffraction resolution at the laser power density on the sample about an order of magnitude lower as compared to confocal Raman measurements. Finally, we demonstrate very high environmental stability of stoichiometric single-layer MXenes and show that the intensity of TERS response from the single- and few-layer flakes of Ti3C2Tx can be used to track early stages of degradation, well before significant morphological changes appear.
Collapse
Affiliation(s)
- Asia Sarycheva
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | | | - Andrey Krayev
- HORIBA Scientific 20 Knightsbridge Road, Piscataway, New Jersey 08854, United States
| | - Yury Gogotsi
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
28
|
Foti A, Venkatesan S, Lebental B, Zucchi G, Ossikovski R. Comparing Commercial Metal-Coated AFM Tips and Home-Made Bulk Gold Tips for Tip-Enhanced Raman Spectroscopy of Polymer Functionalized Multiwalled Carbon Nanotubes. NANOMATERIALS 2022; 12:nano12030451. [PMID: 35159798 PMCID: PMC8840094 DOI: 10.3390/nano12030451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) combines the high specificity and sensitivity of plasmon-enhanced Raman spectroscopy with the high spatial resolution of scanning probe microscopy. TERS has gained a lot of attention from many nanoscience fields, since this technique can provide chemical and structural information of surfaces and interfaces with nanometric spatial resolution. Multiwalled carbon nanotubes (MWCNTs) are very versatile nanostructures that can be dispersed in organic solvents or polymeric matrices, giving rise to new nanocomposite materials, showing improved mechanical, electrical and thermal properties. Moreover, MWCNTs can be easily functionalized with polymers in order to be employed as specific chemical sensors. In this context, TERS is strategic, since it can provide useful information on the cooperation of the two components at the nanoscale for the optimization of the macroscopic properties of the hybrid material. Nevertheless, efficient TERS characterization relies on the geometrical features and material composition of the plasmonic tip used. In this work, after comparing the TERS performance of commercial Ag coated nanotips and home-made bulk Au tips on bare MWCNTs, we show how TERS can be exploited for characterizing MWCNTs mixed with conjugated fluorene copolymers, thus contributing to the understanding of the polymer/CNT interaction process at the local scale.
Collapse
Affiliation(s)
- Antonino Foti
- CNR—IPCF, Istituto per I Processi Chimico-Fisici, Viale F. Stagno d’Alcontres 37, 98158 Messina, Italy
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
- Correspondence: (A.F.); (R.O.)
| | - Suriya Venkatesan
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
| | - Bérengère Lebental
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
- COSYS-LISIS, Université Gustave Eiffel, IFSTTAR, 77454 Marne-la-Vallée, France
| | - Gaël Zucchi
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
| | - Razvigor Ossikovski
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
- Correspondence: (A.F.); (R.O.)
| |
Collapse
|
29
|
Shao F, Zheng L, Lan J, Zenobi R. Nanoscale Chemical Imaging of Coadsorbed Thiolate Self-Assembled Monolayers on Au(111) by Tip-Enhanced Raman Spectroscopy. Anal Chem 2022; 94:1645-1653. [DOI: 10.1021/acs.analchem.1c03968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feng Shao
- Department of Physics and Astronomy, National Graphene Institute, University of Manchester, Manchester M13 9PL, U.K
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Liqing Zheng
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jinggang Lan
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
30
|
Cai ZF, Merino JP, Fang W, Kumar N, Richardson JO, De Feyter S, Zenobi R. Molecular-Level Insights on Reactive Arrangement in On-Surface Photocatalytic Coupling Reactions Using Tip-Enhanced Raman Spectroscopy. J Am Chem Soc 2021; 144:538-546. [PMID: 34941263 DOI: 10.1021/jacs.1c11263] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Plasmon-enhanced photocatalytic coupling reactions have been used as model systems in surface-enhanced Raman spectroscopy and tip-enhanced Raman spectroscopy (TERS) research for decades. However, the role of reactive arrangement on efficiency of these model reactions has remained largely unknown to date often leading to conflicting interpretations of experimental results. Herein, we use an interdisciplinary toolbox of nanoscale TERS imaging in combination with molecular-resolution ambient scanning tunnelling microscopy (STM) and density functional theory (DFT) modeling to investigate the role of reactive arrangement in photocatalytic coupling of 4-nitrobenzenethiol (4-NTP) to p,p'-dimercaptoazobisbenzene on single-crystal and polycrystalline Au surfaces for the first time. TERS imaging with 3 nm resolution clearly revealed a significantly higher catalytic efficiency inside a kinetically driven disordered phase of the 4-NTP adlayer on Au compared to the thermodynamically stable ordered phase. Furthermore, molecular level details of the self-assembled structures in the disordered and ordered phases obtained using ambient high-resolution STM enabled an unambiguous structure-reactivity correlation of photocatalytic coupling. Finally, quantitative mechanistic insights obtained from DFT modeling based on the accurate parameters determined from STM imaging emphatically confirmed that a combination of steric hindrance effect and energetic barrier leads to a lower reaction efficiency in the ordered phase of the 4-NTP adlayer. This fundamental study establishes the first direct structure-reactivity correlation in photocatalytic coupling and highlights the critical role of reactive arrangement in the efficiency of on-surface coupling reactions in heterogeneous catalysis at large.
Collapse
Affiliation(s)
- Zhen-Feng Cai
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| | - Juan Pedro Merino
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Wei Fang
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland.,Department of Chemistry, Fudan University, Shanghai 200438, People's Republic of China
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| | - Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| |
Collapse
|
31
|
Raman and Photoluminescence Spectroscopy with a Variable Spectral Resolution. SENSORS 2021; 21:s21237951. [PMID: 34883954 PMCID: PMC8659809 DOI: 10.3390/s21237951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/02/2022]
Abstract
Raman and photoluminescence (PL) spectroscopy are important analytic tools in materials science that yield information on molecules’ and crystals’ vibrational and electronic properties. Here, we show results of a novel approach for Raman and PL spectroscopy to exploit variable spectral resolution by using zoom optics in a monochromator in the front of the detector. Our results show that the spectral intervals of interest can be recorded with different zoom factors, significantly reducing the acquisition time and changing the spectral resolution for different zoom factors. The smallest spectral intervals recorded at the maximum zoom factor yield higher spectral resolution suitable for Raman spectra. In contrast, larger spectral intervals recorded at the minimum zoom factor yield the lowest spectral resolution suitable for luminescence spectra. We have demonstrated the change in spectral resolution by zoom objective with a zoom factor of 6, but the perspective of such an approach is up to a zoom factor of 20. We have compared such an approach on the prototype Raman spectrometer with the high quality commercial one. The comparison was made on ZrO2 and TiO2 nanocrystals for Raman scattering and Al2O3 for PL emission recording. Beside demonstrating that Raman spectrometer can be used for PL and Raman spectroscopy without changing of grating, our results show that such a spectrometer could be an efficient and fast tool in searching for Raman and PL bands of unknown materials and, thereafter, spectral recording of the spectral interval of interest at an appropriate spectral resolution.
Collapse
|
32
|
Lu F, Zhang W, Sun L, Mei T, Yuan X. Circular nanocavity substrate-assisted plasmonic tip for its enhancement in nanofocusing and optical trapping. OPTICS EXPRESS 2021; 29:37515-37524. [PMID: 34808821 DOI: 10.1364/oe.441689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Plasmonic tip nanofocusing has widely been applied in tip-enhanced Raman spectroscopy, optical trapping, nonlinear optics, and super-resolution imaging due to its capability of high local field enhancement. In this work, a substrate with a circular nanocavity is proposed to enhance the nanofocusing and optical trapping characteristics of the plasmonic tip. Under axial illumination of a tightly focused radial polarized beam, the circular nanohole etched on a metallic substrate can form a nanocavity to induce an interference effect and further enhance the electric field intensity. When a plasmonic tip is placed closely above such a substrate, the electric field intensity of the gap-plasmon mode can further be improved, which is 10 folds stronger than that of the conventional gap-plasmon mode. Further analysis reveals that the enhanced gap-plasmon mode can significantly strengthen the optical force exerted on a nanoparticle and stably trap a 4-nm-diameter dielectric nanoparticle. Our proposed method can improve the performance of tip-enhanced spectroscopy, plasmonic tweezers and extend their applications. We anticipate that our methods allow simultaneously manipulating and characterizing single nanoparticles in-situ.
Collapse
|
33
|
Malard LM, Lafeta L, Cunha RS, Nadas R, Gadelha A, Cançado LG, Jorio A. Studying 2D materials with advanced Raman spectroscopy: CARS, SRS and TERS. Phys Chem Chem Phys 2021; 23:23428-23444. [PMID: 34651627 DOI: 10.1039/d1cp03240b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman spectroscopy has been established as a valuable tool to study and characterize two-dimensional (2D) systems, but it exhibits two drawbacks: a relatively weak signal response and a limited spatial resolution. Recently, advanced Raman spectroscopy techniques, such as coherent anti-Stokes spectroscopy (CARS), stimulated Raman scattering (SRS) and tip-enhanced Raman spectroscopy (TERS), have been shown to overcome these two limitations. In this article, we review how useful physical information can be retrieved from different 2D materials using these three advanced Raman spectroscopy and imaging techniques, discussing results on graphene, hexagonal boron-nitride, and transition metal di- and mono-chalcogenides, thus providing perspectives for future work in this early-stage field of research, including similar studies on unexplored 2D systems and open questions.
Collapse
Affiliation(s)
- Leandro M Malard
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Lucas Lafeta
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Renan S Cunha
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Rafael Nadas
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Andreij Gadelha
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Luiz Gustavo Cançado
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| | - Ado Jorio
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123-970, Brazil.
| |
Collapse
|
34
|
Development and characterization of a novel reference sample for tip-enhanced Raman spectroscopy. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Gadelha AC, Vasconcelos TL, Cançado LG, Jorio A. Nano-optical Imaging of In-Plane Homojunctions in Graphene and MoS 2 van der Waals Heterostructures on Talc and SiO 2. J Phys Chem Lett 2021; 12:7625-7631. [PMID: 34351150 DOI: 10.1021/acs.jpclett.1c01804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the impact of doping variations on the physical properties of two-dimensional materials is important for their application in electronic and optoelectronic devices. Here we report a nano-optical study on graphene and MoS2 homojunctions by placing these two materials partly on top of a layered talc substrate, partly on top of an SiO2 substrate. By analyzing the nano-Raman scattering from graphene and the nanophotoluminescense emission from MoS2, two different doping zones are evident with sub-100 nm wide charge oscillations. The oscillations occur abruptly at the homojuction and extend over longer distances away from the interface, indicating imperfect deposition of the two-dimensional layer on the substrate. These results evidence fine and unexpected details of the homojuctions, important to build better electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Andreij C Gadelha
- Physics Department, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
- Department of Physics, Department of Chemistry, and JILA, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Thiago L Vasconcelos
- Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, RJ 25250-020, Brazil
| | - Luiz G Cançado
- Physics Department, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ado Jorio
- Physics Department, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
- Electrical Engineering Graduate Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| |
Collapse
|
36
|
Cai ZF, Zheng LQ, Zhang Y, Zenobi R. Molecular-Scale Chemical Imaging of the Orientation of an On-Surface Coordination Complex by Tip-Enhanced Raman Spectroscopy. J Am Chem Soc 2021; 143:12380-12386. [PMID: 34329556 DOI: 10.1021/jacs.1c06366] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic coordination structures at interfaces play an essential role in many biological and chemical systems. Understanding the molecular specificity, orientation, and spatial distribution of the coordination complexes at the nanometer scale is of great importance for effective molecular engineering of nanostructures and fabrication of functional devices with controllable properties. However, fundamental properties of such coordination systems are still rarely studied directly. In this work, we present a spectroscopic approach on the basis of tip-enhanced Raman spectroscopy (TERS) to investigate cobalt(II) tetraphenyl-porphyrine coordination species on the scale of a single molecule under ambient conditions. Coordination species anchored on gold surfaces modified with pyridine thiol self-assembled monolayers can be spectroscopically distinguished and mapped with ca. 2 nm resolution. In addition, in combination with density functional theory simulations, the adsorption configuration and molecular orientation of the coordination complexes are also revealed using TERS imaging.
Collapse
Affiliation(s)
- Zhen-Feng Cai
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| | - Li-Qing Zheng
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| | - Yao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| |
Collapse
|
37
|
Chen R, Wang D, Hao W, Shao F, Zhao Y. Tessellation strategy for the interfacial synthesis of an anthracene-based 2D polymer via [4+4]-photocycloaddition. Chem Commun (Camb) 2021; 57:5794-5797. [PMID: 33998616 DOI: 10.1039/d1cc02179f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by the tessellation or tiling process in daily life, a rigid triangular macrocyclic molecule containing anthracene as a photo-active moiety was synthesized to realize pre-organization through π-π interactions. The successful preparation of a 2D polymer monolayer at the air/water interface was achieved through [4+4]-photocycloaddition.
Collapse
Affiliation(s)
- Renzeng Chen
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Wenbo Hao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Feng Shao
- Department of Physics and Astronomy, National Graphene Institute, University of Manchester, Manchester, M13 9PL, UK.
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
38
|
Zhang K, Bao Y, Cao M, Taniguchi SI, Watanabe M, Kambayashi T, Okamoto T, Haraguchi M, Wang X, Kobayashi K, Yamada H, Ren B, Tachizaki T. Low-Background Tip-Enhanced Raman Spectroscopy Enabled by a Plasmon Thin-Film Waveguide Probe. Anal Chem 2021; 93:7699-7706. [PMID: 34014089 DOI: 10.1021/acs.analchem.1c00806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is a nano-optical approach to extract spatially resolved chemical information with nanometer precision. However, in the case of direct-illumination TERS, which is often employed in commercial TERS instruments, strong fluorescence or far-field Raman signals from the illuminated areas may be excited as a background. They may overwhelm the near-field TERS signal and dramatically decrease the near-field to far-field signal contrast of TERS spectra. It is still challenging for TERS to study the surface of fluorescent materials or a bulk sample that cannot be placed on an Au/Ag substrate. In this study, we developed an indirect-illumination TERS probe that allows a laser to be focused on a flat interface of a thin-film waveguide located far away from the region generating the TERS signal. Surface plasmon polaritons are generated stably on the waveguide and eventually accumulated at the tip apex, thereby producing a spatially and energetically confined hotspot to ensure stable and high-resolution TERS measurements with a low background. With this thin-film waveguide probe, TERS spectra with obvious contrast from a diamond plate can be acquired. Furthermore, the TERS technique based on this probe exhibits excellent TERS signal stability, a long lifetime, and good spatial resolution. This technique is expected to have commercial potential and enable further popularization and development of TERS technology as a powerful analytical method.
Collapse
Affiliation(s)
- Kaifeng Zhang
- Research & Development Group, Hitachi, Ltd., Yokohama 244-0817, Kanagawa, Japan.,Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yifan Bao
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Maofeng Cao
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shin-Ichi Taniguchi
- Research & Development Group, Hitachi, Ltd., Yokohama 244-0817, Kanagawa, Japan
| | - Masahiro Watanabe
- Research & Development Group, Hitachi, Ltd., Yokohama 244-0817, Kanagawa, Japan
| | - Takuya Kambayashi
- Research & Development Group, Hitachi, Ltd., Yokohama 244-0817, Kanagawa, Japan
| | - Toshihiro Okamoto
- Department of Optical Science and Technology, Faculty of Engineering, Tokushima University, Tokushima 770-8501, Japan
| | - Masanobu Haraguchi
- Department of Optical Science and Technology, Faculty of Engineering, Tokushima University, Tokushima 770-8501, Japan
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kei Kobayashi
- Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Yamada
- Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Takehiro Tachizaki
- School of Engineering, Tokai University, Hiratsuka 259-1292, Kanagawa, Japan
| |
Collapse
|
39
|
Liu S, Hammud A, Wolf M, Kumagai T. Atomic Point Contact Raman Spectroscopy of a Si(111)-7 × 7 Surface. NANO LETTERS 2021; 21:4057-4061. [PMID: 33934600 PMCID: PMC8288640 DOI: 10.1021/acs.nanolett.1c00998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Indexed: 05/06/2023]
Abstract
Tip-enhanced Raman scattering (TERS) has recently demonstrated the exceptional sensitivity to observe vibrational structures on the atomic scale. However, it strongly relies on electromagnetic enhancement in plasmonic nanogaps. Here, we demonstrate that atomic point contact (APC) formation between a plasmonic tip and the surface of a bulk Si sample can lead to a dramatic enhancement of Raman scattering and consequently the phonons of the reconstructed Si(111)-7 × 7 surface can be detected. Furthermore, we demonstrate the chemical sensitivity of APC-TERS by probing local vibrations resulting from Si-O bonds on the partially oxidized Si(111)-7 × 7 surface. This approach will expand the applicability of ultrasensitive TERS, exceeding the previous measurement strategies that exploit intense gap-mode plasmons, typically requiring a plasmonic substrate.
Collapse
Affiliation(s)
- Shuyi Liu
- Department
of Physical Chemistry, Fritz-Haber Institute
of the Max-Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Adnan Hammud
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max-Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Martin Wolf
- Department
of Physical Chemistry, Fritz-Haber Institute
of the Max-Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Takashi Kumagai
- Department
of Physical Chemistry, Fritz-Haber Institute
of the Max-Planck Society, Faradayweg 4-6, Berlin 14195, Germany
- Center
for Mesoscopic Sciences, Institute for Molecular
Science, Okazaki 444-8585, Japan
| |
Collapse
|
40
|
Zhang J, Ruediger A. In situ evaluation of plasmonic enhancement of gold tips for plasmon-enhanced imaging techniques. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:053004. [PMID: 34243334 DOI: 10.1063/5.0050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
Plasmonic nanoantennas are at the core of various optical near-field scanning techniques such as tip-enhanced Raman spectroscopy as they provide the amplification and confinement of the electromagnetic field, which ultimately provides sensitivity and spatial resolution. With a cornucopia of different fabrication methods available, the actual performance of a nanoantenna is often only assessed by whether or not near-field imaging is possible, implying the complete alignment and landing procedure of the scanning probe. We present a semi-quantitative approach to assess the plasmonic enhancement of gold tips via localized surface plasmon resonance (LSPR) enhancement of intrinsic gold photoluminescence without the need for interaction with the sample. As the intensity of the plasmon at the apex decreases, a significant change in the shape of the tip signal spectrum is observed, reflecting itself as a decrease in the R2 value (fit quality) for numerical fitting with a Lorentzian, which also provides an approximation for the LSPR wavelength. Our findings suggest that the potential of a tip to perform well as an optical near field antenna may already be assessed in an early stage of the experiment.
Collapse
Affiliation(s)
- Jiawei Zhang
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique (INRS-EMT), Université du Québec, 1650, Blvd. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Andreas Ruediger
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique (INRS-EMT), Université du Québec, 1650, Blvd. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| |
Collapse
|
41
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
42
|
Moriyama T, Umakoshi T, Hattori Y, Taguchi K, Verma P, Kitamura M. Polarization Raman Imaging of Organic Monolayer Islands for Crystal Orientation Analysis. ACS OMEGA 2021; 6:9520-9527. [PMID: 33869932 PMCID: PMC8047675 DOI: 10.1021/acsomega.0c06313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
An organic semiconductor film made of diphenyl derivative dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DPh-DNTT) has high carrier mobility. However, this mobility may be greatly affected by the crystal orientation of the DPh-DNTT's first layer. Polarization Raman microscopy is widely used to quantitatively analyze the molecular orientation, and thus holds great potential as a powerful tool to investigate the crystal orientation of monolayer DPh-DNTT with high spatial resolution. In this study, we demonstrate polarization Raman imaging of monolayer DPh-DNTT islands for crystal orientation analysis. We found that the DPh-DNTT sample indicated a strong dependence of the Raman intensity on the incident polarization direction. Based on the polarization dependence, we developed an analytical method of determining the crystal orientation of the monolayer DPh-DNTT islands and experimentally confirmed that our technique was highly effective at imaging the islands' crystal orientation with a spatial resolution of a few hundred nanometers.
Collapse
Affiliation(s)
- Toki Moriyama
- Department
of Applied Physics, Osaka University, 2-1, Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Takayuki Umakoshi
- Department
of Applied Physics, Osaka University, 2-1, Yamadaoka,
Suita, Osaka 565-0871, Japan
- PRESTO,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yoshiaki Hattori
- Department
of Electrical and Electronic Engineering, Kobe University, 1-1, Rokkodai-cho, Nada, Kobe 657-8501, Japan
| | - Koki Taguchi
- Department
of Applied Physics, Osaka University, 2-1, Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Prabhat Verma
- Department
of Applied Physics, Osaka University, 2-1, Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Masatoshi Kitamura
- Department
of Electrical and Electronic Engineering, Kobe University, 1-1, Rokkodai-cho, Nada, Kobe 657-8501, Japan
| |
Collapse
|
43
|
Raman and Fluorescence Enhancement Approaches in Graphene-Based Platforms for Optical Sensing and Imaging. NANOMATERIALS 2021; 11:nano11030644. [PMID: 33808013 PMCID: PMC7999291 DOI: 10.3390/nano11030644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 01/15/2023]
Abstract
The search for novel platforms and metamaterials for the enhancement of optical and particularly Raman signals is still an objective since optical techniques offer affordable, noninvasive methods with high spatial resolution and penetration depth adequate to detect and image a large variety of systems, from 2D materials to molecules in complex media and tissues. Definitely, plasmonic materials produce the most efficient enhancement through the surface-enhanced Raman scattering (SERS) process, allowing single-molecule detection, and are the most studied ones. Here we focus on less explored aspects of SERS such as the role of the inter-nanoparticle (NP) distance and the ultra-small NP size limit (down to a few nm) and on novel approaches involving graphene and graphene-related materials. The issues on reproducibility and homogeneity for the quantification of the probe molecules will also be discussed. Other light enhancement mechanisms, in particular resonant and interference Raman scatterings, as well as the platforms that allow combining several of them, are presented in this review with a special focus on the possibilities that graphene offers for the design and fabrication of novel architectures. Recent fluorescence enhancement platforms and strategies, so important for bio-detection and imaging, are reviewed as well as the relevance of graphene oxide and graphene/carbon nanodots in the field.
Collapse
|
44
|
Sun Q, Pan Q, Ban Y, Liu H, Fan C, Sun L, Zhao Y. Donor-Acceptor Interactions Induced Interfacial Synthesis of an Ultrathin Fluoric 2D Polymer by Photochemical [2+2] Cycloaddition. Chemistry 2021; 27:3661-3664. [PMID: 33264450 DOI: 10.1002/chem.202004797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/26/2020] [Indexed: 01/02/2023]
Abstract
Two-dimensional polymers (2DPs) have attracted much interest due to their unique 2D atomic-thick covalent network with periodically linked monomers. The preparation of mono- or few-layered 2DPs with highly ordered structures is still a big challenge. Herein, we report a preparation of ultrathin 2DP film based on photo-triggered [2+2] cycloaddition at the air/water interface. The pre-assembly process induced by the D-A interactions before the polymerization plays a key role in constructing the highly ordered structure. The precise structure and chemical compositions of the continuous 2DP films were proved by selected area electron diffraction (SAED), Tip-Enhanced Raman Spectroscopy (TERS) and molecular-mechanics-based structural simulation.
Collapse
Affiliation(s)
- Qingzhu Sun
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qingyan Pan
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yanqi Ban
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hui Liu
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chunyan Fan
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lishui Sun
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yingjie Zhao
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
45
|
Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 2021; 590:405-409. [DOI: 10.1038/s41586-021-03252-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/04/2020] [Indexed: 11/08/2022]
|
46
|
Takenaka M, Taketsugu T, Iwasa T. Theoretical method for near-field Raman spectroscopy with multipolar Hamiltonian and real-time-TDDFT: Application to on- and off-resonance tip-enhanced Raman spectroscopy. J Chem Phys 2021; 154:024104. [PMID: 33445901 DOI: 10.1063/5.0034933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tip-enhanced Raman spectroscopy in combination with scanning tunneling microscopy could produce ultrahigh-resolution Raman spectra and images for single-molecule vibrations. Furthermore, a recent experimental study successfully decoupled the interaction between the molecule and the substrate/tip to investigate the intrinsic properties of molecules and their near-field interactions by Raman spectroscopy. In such a circumstance, more explicit treatments of the near field and molecular interactions beyond the dipole approximation would be desirable. Here, we propose a theoretical method based on the multipolar Hamiltonian that considers full spatial distribution of the electric field under the framework of real-time time-dependent density functional theory. This approach allows us to treat the on- and off-resonance Raman phenomena on the same footing. For demonstration, a model for the on- and off-resonance tip-enhanced Raman process in benzene was constructed. The obtained Raman spectra are well understood by considering both the spatial structure of the near field and the molecular vibration in the off-resonance condition. For the on-resonance condition, the Raman spectra are governed by the transition moment, in addition to the selection rule of off-resonance Raman. Interestingly, on-resonance Raman can be activated even when the near field forbids the π-π* transition at equilibrium geometry due to vibronic couplings originating from structural distortions.
Collapse
Affiliation(s)
- Masato Takenaka
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
47
|
Takele WM, Piatkowski L, Wackenhut F, Gawinkowski S, Meixner AJ, Waluk J. Scouting for strong light-matter coupling signatures in Raman spectra. Phys Chem Chem Phys 2021; 23:16837-16846. [PMID: 34323915 DOI: 10.1039/d1cp01863a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strong coupling between vibrational transitions and a vacuum field of a cavity mode leads to the formation of vibrational polaritons. These hybrid light-matter states have been widely explored because of their potential to control chemical reactivity. However, the possibility of altering Raman scattering through the formation of vibrational polaritons has been rarely reported. Here, we present the Raman scattering properties of different molecules under vibrational strong coupling conditions. The polariton states are clearly observed in the IR transmission spectra of the coupled system for benzonitrile and methyl salicylate in liquid phase and for polyvinyl acetate in a solid polymer film. However, none of the studied systems exhibits a signature of the polariton states in the Raman spectra. For the solid polymer film, we have used cavities with different layer structures to investigate the influence of vibrational strong coupling on the Raman spectra. The only scenario where alterations of the Raman spectra are observed is for a thin Ag layer being in direct contact with the polymer film. This shows that, even though the system is in the vibrational strong coupling regime, changes in the Raman spectra do not necessarily result from the strong coupling, but are caused by the surface enhancement effects.
Collapse
Affiliation(s)
- Wassie Mersha Takele
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
48
|
Liu X, Sachan AK, Howell ST, Conde-Rubio A, Knoll AW, Boero G, Zenobi R, Brugger J. Thermomechanical Nanostraining of Two-Dimensional Materials. NANO LETTERS 2020; 20:8250-8257. [PMID: 33030906 PMCID: PMC7662931 DOI: 10.1021/acs.nanolett.0c03358] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/27/2020] [Indexed: 05/07/2023]
Abstract
Local bandgap tuning in two-dimensional (2D) materials is of significant importance for electronic and optoelectronic devices but achieving controllable and reproducible strain engineering at the nanoscale remains a challenge. Here, we report on thermomechanical nanoindentation with a scanning probe to create strain nanopatterns in 2D transition metal dichalcogenides and graphene, enabling arbitrary patterns with a modulated bandgap at a spatial resolution down to 20 nm. The 2D material is in contact via van der Waals interactions with a thin polymer layer underneath that deforms due to the heat and indentation force from the heated probe. Specifically, we demonstrate that the local bandgap of molybdenum disulfide (MoS2) is spatially modulated up to 10% and is tunable up to 180 meV in magnitude at a linear rate of about -70 meV per percent of strain. The technique provides a versatile tool for investigating the localized strain engineering of 2D materials with nanometer-scale resolution.
Collapse
Affiliation(s)
- Xia Liu
- Microsystems
Laboratory, École Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Amit Kumar Sachan
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, 8093 Zurich, Switzerland
| | - Samuel Tobias Howell
- Microsystems
Laboratory, École Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ana Conde-Rubio
- Microsystems
Laboratory, École Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Armin W. Knoll
- IBM
Research - Zurich, Säumerstrasse
4, 8803 Rüschlikon, Switzerland
| | - Giovanni Boero
- Microsystems
Laboratory, École Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Renato Zenobi
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, 8093 Zurich, Switzerland
| | - Jürgen Brugger
- Microsystems
Laboratory, École Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
49
|
Schultz JF, Mahapatra S, Li L, Jiang N. The Expanding Frontiers of Tip-Enhanced Raman Spectroscopy. APPLIED SPECTROSCOPY 2020; 74:1313-1340. [PMID: 32419485 DOI: 10.1177/0003702820932229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fundamental understanding of chemistry and physical properties at the nanoscale enables the rational design of interface-based systems. Surface interactions underlie numerous technologies ranging from catalysis to organic thin films to biological systems. Since surface environments are especially prone to heterogeneity, it becomes crucial to characterize these systems with spatial resolution sufficient to localize individual active sites or defects. Spectroscopy presents as a powerful means to understand these interactions, but typical light-based techniques lack sufficient spatial resolution. This review describes the growing number of applications for the nanoscale spectroscopic technique, tip-enhanced Raman spectroscopy (TERS), with a focus on developments in areas that involve measurements in new environmental conditions, such as liquid, electrochemical, and ultrahigh vacuum. The expansion into unique environments enables the ability to spectroscopically define chemistry at the spatial limit. Through the confinement and enhancement of light at the apex of a plasmonic scanning probe microscopy tip, TERS is able to yield vibrational fingerprint information of molecules and materials with nanoscale resolution, providing insight into highly localized chemical effects.
Collapse
Affiliation(s)
- Jeremy F Schultz
- Department of Chemistry, 14681University of Illinois at Chicago, Chicago, USA
| | - Sayantan Mahapatra
- Department of Chemistry, 14681University of Illinois at Chicago, Chicago, USA
| | - Linfei Li
- Department of Chemistry, 14681University of Illinois at Chicago, Chicago, USA
| | - Nan Jiang
- Department of Chemistry, 14681University of Illinois at Chicago, Chicago, USA
| |
Collapse
|
50
|
Bartolomeo GL, Goubert G, Zenobi R. Tip Recycling for Atomic Force Microscopy-Based Tip-Enhanced Raman Spectroscopy. APPLIED SPECTROSCOPY 2020; 74:1358-1364. [PMID: 32166961 DOI: 10.1177/0003702820916234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for the characterization of surfaces and two-dimensional materials, delivering both topographical and chemical information with nanometer-scale spatial resolution. Atomic force microscopy (AFM)-TERS combines AFM with a Raman spectrometer and is a very versatile technique, capable of working in vacuum, air, and liquid, and on a variety of different samples. A metalized AFM tip is necessary in order to take advantage of the plasmonic enhancement. The most commonly used metal is Ag, thanks to its high plasmonic activity in the visible range. Unfortunately, though, the tip metallization process is still challenging and not fully reliable, yielding inconsistent enhancement factors even within the same batch of tips; as a consequence, many tips are usually prepared at once (for a single experiment), to ensure that at least one of them is sufficiently active. As the lifetime of an unprotected, Ag-coated plasmonic probe is only a few hours, the procedure is inefficient and results in a substantial waste of materials and money. In this work, we establish a cleaning routine to effectively re-use Ag-coated AFM-TERS probes, drastically reducing costs without compromising the quality of the experimental results.
Collapse
Affiliation(s)
- Giovanni Luca Bartolomeo
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Guillaume Goubert
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|