1
|
Pons WF, Marcus RK. Isolation of Urinary Extracellular Vesicles (EVs) via Hydrophobic Interaction Chromatography Using a Nylon-6 Capillary-Channeled Polymer (C-CP) Fiber Column. J Sep Sci 2025; 48:e70093. [PMID: 39933961 PMCID: PMC11813829 DOI: 10.1002/jssc.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025]
Abstract
Exosomes, a subset of extracellular vesicles (EVs) ranging in size from 30 to 150 nm, are of significant interest for biomedical applications such as diagnostic testing and therapeutics delivery. Biofluids, including urine, blood, and saliva, contain exosomes that carry biomarkers reflective of their host cells. However, isolation of EVs is often a challenge due to their size range, low density, and high hydrophobicity. Isolations can involve long separation times (ultracentrifugation) or result in impure eluates (size exclusion chromatography, polymer-based precipitation). As an alternative to these methods, this study evaluates the first use of nylon-6 capillary-channeled polymer (C-CP) fiber columns to separate EVs from human urine via a step-gradient hydrophobic interaction chromatography method. Different from previous efforts using polyester fiber columns for EV separations, nylon-6 shows potential for increased isolation efficiency, including somewhat higher column loading capacity and more gentle EV elution solvent strength. The efficacy of this approach to EV separation has been determined by scanning electron and transmission microscopy, nanoparticle flow cytometry (NanoFCM), and Bradford protein assays. Electron microscopy showed isolated vesicles of the expected morphology. Nanoparticle flow cytometry determined particle densities of eluates yielding up to 5 × 108 particles mL-1, a typical distribution of vesicle sizes in the eluate (60-100 nm), and immunoconfirmation using fluorescent anti-CD81 antibodies. Bradford assays confirmed that protein concentrations in the EV eluate were significantly reduced (approx. sevenfold) from raw urine. Overall, this approach provides a low-cost and time-efficient (< 20 min) column separation to yield urinary EVs of the high purities required for downstream applications, including diagnostic testing and therapeutics.
Collapse
Affiliation(s)
- William F. Pons
- Department of ChemistryBiosystems Research ComplexClemson UniversityClemsonSouth CarolinaUSA
| | - R. Kenneth Marcus
- Department of ChemistryBiosystems Research ComplexClemson UniversityClemsonSouth CarolinaUSA
| |
Collapse
|
2
|
Bin Islam MK, Marcus RK. Isolation and quantification of human urinary exosomes using a Tween-20 elution solvent from polyester, capillary-channeled polymer fiber columns. Anal Chim Acta 2024; 1329:343242. [PMID: 39396305 PMCID: PMC11471952 DOI: 10.1016/j.aca.2024.343242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/08/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Exosomes, a subset of extracellular vesicles (EVs), are a type of membrane-secreted vesicle essential for intercellular communication. There is a great deal of interest in developing methods to isolate and quantify exosomes to study their role in intercellular processes and as potential therapeutic delivery systems. Polyester, capillary-channeled polymer fiber columns and spin-down tips are highly efficient, low-cost means of exosome isolation. As the methodology evolves, there remain questions as to the optimum elution solvent for specific end-uses of the recovered vesicles; fundamental biochemistry, clinical diagnostics, or therapeutic vectors. RESULTS While both acetonitrile and glycerol have been proven highly successful in terms of EV recoveries in the hydrophobic interaction chromatography workflow, many biological studies entail the use of the non-ionic detergent, Tween-20, as a working solvent. Here we evaluate the use of Tween-20 as the elution solvent for the recovery of exosomes. A novel 10-min, two-step gradient elution method, employing 0.1 % v/v Tween-20, efficiently isolated EVs at a concentration of ∼1011 EV mL-1 from a 100 μL urine injection. Integration of absorbance and multi-angle light scattering detectors in standard HPLC instrumentation enables a comprehensive single-injection determination of eluted exosome concentration and sizes. Transmission electron microscopy verifies the retention of the vesicular structure of the exosomes. The micro-bicinchoninic acid protein quantification assay confirmed high-purity isolations of exosomes (∼99 % removal of background proteins) SIGNIFICANCE: The effective use of Tween-20 as an elution solvent for exosome isolation/purification using capillary-channeled polymer fiber columns adds greater versatility to the portfolio of the approach. The proposed method holds promise for a wide range of fundamental biochemistry, clinical diagnostics, and therapeutic applications, marking a significant advancement in EV-based methodologies.
Collapse
Affiliation(s)
- Md Khalid Bin Islam
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634-0973, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634-0973, USA.
| |
Collapse
|
3
|
Xuan R, Shi B, Li D, Chen Y, Hou C, Jiang R, Guo M, Zhang Y, Wang T. Halloysite nanotubes-based hybrid silica monolithic spin tip for hydrophilic solid-phase extraction of sulbactam, cefoperazone, and cefuroxime in whole blood. J Chromatogr A 2024; 1725:464943. [PMID: 38691924 DOI: 10.1016/j.chroma.2024.464943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
In this study, we proposed a novel method utilizing polyethyleneimine (PEI)-modified halloysite nanotubes (HNTs)-based hybrid silica monolithic spin tip to analyze hydrophilic β-lactam antibiotics and β-lactamases inhibitors in whole blood samples for the first time. HNTs were incorporated directly into the hybrid silica monolith via a sol-gel method, which improved the hydrophilicity of the matrix. The as-prepared monolith was further modified with PEI by glutaraldehyde coupling reaction. It was found that the PEI-modified HNTs-based hybrid silica monolith enabled a large adsorption capacity of cefoperazone at 35.7 mg g-1. The monolithic spin tip-based purification method greatly reduced the matrix effect of whole blood samples and had a detection limit as low as 0.1 - 0.2 ng mL-1. In addition, the spiked recoveries of sulbactam, cefuroxime, and cefoperazone in blank whole blood were in the range of 89.3-105.4 % for intra-day and 90.6-103.5 % for inter-day, with low relative standard deviations of 1.3-7.2 % and 4.9-10.5 %, respectively. This study introduces a new strategy for preparing nanoparticles incorporated in a hybrid silica monolith with a high adsorption capacity. Moreover, it offers a valuable tool to monitor sulbactam, cefoperazone, and cefuroxime in whole blood from pregnant women with the final aim of guiding their administration.
Collapse
Affiliation(s)
- Rongrong Xuan
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Bingye Shi
- Affiliated Hospital of Hebei University, 071002 Baoding China
| | - Dongchen Li
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Yihui Chen
- Ningbo Customs technology Center, Ningbo 315040, China.
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Rufeng Jiang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Mengyue Guo
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Yongyan Zhang
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Tingting Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China.
| |
Collapse
|
4
|
Mao X, Li T, Qi W, Miao Z, Zhu L, Zhang C, Jin H, Pan H, Wang D. Advances in the study of plant-derived extracellular vesicles in the skeletal muscle system. Pharmacol Res 2024; 204:107202. [PMID: 38704110 DOI: 10.1016/j.phrs.2024.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Plant-derived extracellular vesicles (PDEV) constitute nanoscale entities comprising lipids, proteins, nucleic acids and various components enveloped by the lipid bilayers of plant cells. These vesicles play a crucial role in facilitating substance and information transfer not only between plant cells but also across different species. Owing to its safety, stability, and the abundance of raw materials, this substance has found extensive utilization in recent years within research endeavors aimed at treating various diseases. This article provides an overview of the pathways and biological characteristics of PDEV, along with the prevalent methods employed for its isolation, purification, and storage. Furthermore, we comprehensively outline the therapeutic implications of diverse sources of PDEV in musculoskeletal system disorders. Additionally, we explore the utilization of PDEV as platforms for engineering drug carriers, aiming to delve deeper into the significance and potential contributions of PDEV in the realm of the musculoskeletal system.
Collapse
Affiliation(s)
- Xinning Mao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China
| | - Tenghui Li
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China
| | - Weihui Qi
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China
| | - Zhimin Miao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China
| | - Li Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China
| | - Chunchun Zhang
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, Zhejiang Province 310007, PR China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China; Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, Zhejiang Province 310021, PR China; Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, Zhejiang Province 310007, PR China.
| | - Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University ( Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province 310000, PR China; Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, Zhejiang Province 310021, PR China; Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, Zhejiang Province 310007, PR China.
| |
Collapse
|
5
|
Dai C, Xu Q, Li L, Liu Y, Qu S. Milk Extracellular Vesicles: Natural Nanoparticles for Enhancing Oral Drug Delivery against Bacterial Infections. ACS Biomater Sci Eng 2024; 10:1988-2000. [PMID: 38529792 DOI: 10.1021/acsbiomaterials.3c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Oral drug delivery is typically preferred as a therapeutic intervention due to the complexities and expenses associated with intravenous administration. However, some drugs are poorly absorbed orally, requiring intravenous administration to bypass the gastrointestinal tract and deliver the drug directly into the bloodstream. Thus, there is an urgent need to develop novel drug delivery platforms to overcome the challenges of oral drug delivery with low solubility, low permeability, oral degradation, and low bioavailability. Advances in extracellular vesicles (EVs) as natural carriers have provided emerging approaches to improve potential therapeutic applications. Milk not only contains traditional nutrients but is also rich in EVs. In this Review, we focus mainly on the purification of milk EVs (mEVs), their safety, and the advantages of mEV-based drug carriers in combatting intestinal infections. Additionally, we summarize several advantages of mEVs over conventional synthetic carriers, such as low immunogenicity, high biocompatibility, and the ability to transfer bioactive molecules between cells. Considering the unmet gaps of mEVs in clinical translation, it is essential to review the cargo loading into mEVs and future perspectives for their use as natural drug carriers for oral delivery. This overview of mEV-based drug carriers for oral delivery sheds light on alternative approaches to treat clinical infections associated with intestinal pathogens and the development of novel oral delivery systems.
Collapse
Affiliation(s)
- Cunchun Dai
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qingjun Xu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ying Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shaoqi Qu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Wysor SK, Marcus RK. Quantitative Recoveries of Exosomes and Monoclonal Antibodies from Chinese Hamster Ovary Cell Cultures by Use of a Single, Integrated Two-Dimensional Liquid Chromatography Method. Anal Chem 2023; 95:17886-17893. [PMID: 37995145 PMCID: PMC11095952 DOI: 10.1021/acs.analchem.3c04044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cultured cell lines are very commonly used for the mass production of therapeutic proteins, such as monoclonal antibodies (mAbs). In particular, Chinese hamster ovary (CHO) cell lines are widely employed due to their high tolerance to variations in experimental conditions and their ability to grow in suspension or serum free media. CHO cell lines are known for their ability to produce high titers of biotherapeutic products such as immunoglobulin G (IgG). An emergent alternative means of treating diseases, such as cancer, is the use of gene therapies, wherein genetic cargo is "packaged" in nanosized vesicular structures, referred to as "vectors". One particularly attractive vector option is extracellular vesicles (EVs), of which exosomes are of greatest interest. While exosomes can be harvested from virtually any human body fluid, bovine milk, or even plants, their production in cell cultures is an attractive commercial approach. In fact, the same CHO cell types employed for mAb production also produce exosomes as a natural byproduct. Here, we describe a single integrated 2D liquid chromatography (2DLC) method for the quantitative recovery of both exosomes and antibodies from a singular sample aliquot. At the heart of the method is the use of polyester capillary-channeled polymer (C-CP) fibers as the first dimension column, wherein exosomes/EVs are captured from the supernatant sample and subsequently determined by multiangle light scattering (MALS), while the mAbs are captured, eluted, and quantified using a protein A-modified C-CP fiber column in the second dimension, all in a 10 min workflow. These efforts demonstrate the versatility of the C-CP fiber phases with the capacity to harvest both forms of therapeutics from a single bioreactor, suggesting an appreciable potential impact in the field of biotherapeutics production.
Collapse
Affiliation(s)
- Sarah K Wysor
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, South Carolina 29634-0973, United States
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, South Carolina 29634-0973, United States
| |
Collapse
|
7
|
de Carvalho TG, Lara P, Jorquera-Cordero C, Aragão CFS, de Santana Oliveira A, Garcia VB, de Paiva Souza SV, Schomann T, Soares LAL, da Matta Guedes PM, de Araújo Júnior RF. Inhibition of murine colorectal cancer metastasis by targeting M2-TAM through STAT3/NF-kB/AKT signaling using macrophage 1-derived extracellular vesicles loaded with oxaliplatin, retinoic acid, and Libidibia ferrea. Biomed Pharmacother 2023; 168:115663. [PMID: 37832408 DOI: 10.1016/j.biopha.2023.115663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Colorectal cancer is still unmanageable despite advances in target therapy. However, extracellular vesicles (EVs) have shown potential in nanomedicine as drug delivery systems, especially for modulating the immune cells in the tumor microenvironment (TME). In this study, M1 Macrophage EVs (M1EVs) were used as nanocarriers of oxaliplatin (M1EV1) associated with retinoic acid (M1EV2) and Libidibia ferrea (M1EV3), alone or in combination (M1EV4) to evaluate their antiproliferative and immunomodulatory potential on CT-26 and MC-38 colorectal cancer cell lines and prevent metastasis in mice of allograft and peritoneal colorectal cancer models. Tumors were evaluated by qRT-PCR and immunohistochemistry. The cell death profile and epithelial-mesenchymal transition process (EMT) were analyzed in vitro in colorectal cancer cell lines. Polarization of murine macrophages (RAW264.7 cells) was also carried out. M1EV2 and M1EV3 used alone or particularly M1EV4 downregulated the tumor progression by TME immunomodulation, leading to a decrease in primary tumor size and metastasis in the peritoneum, liver, and lungs. STAT3, NF-kB, and AKT were the major genes downregulated by of M1EV systems. Tumor-associated macrophages (TAMs) shifted from an M2 phenotype (CD163) to an M1 phenotype (CD68) reducing levels of IL-10, TGF-β and CCL22. Furthermore, malignant cells showed overexpression of FADD, APAF-1, caspase-3, and E-cadherin, and decreased expression of MDR1, survivin, vimentin, and PD-L1 after treatment with systems of M1EVs. The study shows that EVs from M1 antitumor macrophages can transport drugs and enhance their immunomodulatory and antitumor activity by modulating pathways associated with cell proliferation, migration, survival, and drug resistance.
Collapse
Affiliation(s)
- Thaís Gomes de Carvalho
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Inflammation and Cancer Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Pablo Lara
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Carla Jorquera-Cordero
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Cícero Flávio Soares Aragão
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Medicines Quality Control Laboratory (LCQMed), Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Artur de Santana Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Medicines Quality Control Laboratory (LCQMed), Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Vinicius Barreto Garcia
- Inflammation and Cancer Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Shirley Vitória de Paiva Souza
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Inflammation and Cancer Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Timo Schomann
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Luiz Alberto Lira Soares
- Post Graduation Program in Therapeutic Innovation, Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Paulo Marcos da Matta Guedes
- Department of Parasitology and Microbiology and Post-Graduation Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raimundo Fernandes de Araújo Júnior
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Inflammation and Cancer Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil.
| |
Collapse
|
8
|
Islam MKB, Kenneth Marcus R. Loading characteristics of streptavidin on polypropylene capillary channeled polymer fibers and capture performance towards biotinylated proteins. Anal Bioanal Chem 2023; 415:6711-6721. [PMID: 37740120 DOI: 10.1007/s00216-023-04948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
The development of higher-throughput, potentially lower-cost means to isolate proteins, for a variety of end uses, is of continuing emphasis. Polypropylene (PP) capillary-channeled polymer (C-CP) fiber columns are modified with the biotin-binding protein streptavidin (SAV) to capture biotinylated proteins. The loading characteristics of SAV on fiber supports were determined using breakthrough curves and frontal analysis. Based on adsorption data, a 3-min on-column loading at a flow rate of 0.5 mL min-1 (295.2 cm h-1) with a SAV feed concentration of 0.5 mg mL-1 produces a SAV loading capacity of 1.4 mg g-1 fiber. SAV has an incredibly high affinity for the small-molecule biotin (10-14 M), such that this binding relationship can be exploited by labeling a target protein with biotin via an Avi-tag. To evaluate the capture of the biotinylated proteins on the modified PP surface, the biotinylated versions of bovine serum albumin (b-BSA) and green fluorescent protein (b-GFP) were utilized as probe species. The loading buffer composition and flow rate were optimized towards protein capture. The non-ionic detergent Tween-20 was added to the deposition solutions to minimize non-specific binding. Values of 0.25-0.50% (v/v) Tween-20 in PBS exhibited better capture efficiency, while minimizing the non-specific binding for b-BSA and b-GFP, respectively. The C-CP fiber platform has the potential to provide a fast and low-cost method to capture targeted proteins for applications including protein purification or pull-down assays.
Collapse
Affiliation(s)
- Md Khalid Bin Islam
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634-0973, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634-0973, USA.
| |
Collapse
|
9
|
Jalaludin I, Lubman DM, Kim J. A guide to mass spectrometric analysis of extracellular vesicle proteins for biomarker discovery. MASS SPECTROMETRY REVIEWS 2023; 42:844-872. [PMID: 34747512 DOI: 10.1002/mas.21749] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Exosomes (small extracellular vesicles) in living organisms play an important role in processes such as cell proliferation or intercellular communication. Recently, exosomes have been extensively investigated for biomarker discoveries for various diseases. An important aspect of exosome analysis involves the development of enrichment methods that have been introduced for successful isolation of exosomes. These methods include ultracentrifugation, size exclusion chromatography, polyethylene glycol-based precipitation, immunoaffinity-based enrichment, ultrafiltration, and asymmetric flow field-flow fractionation among others. To confirm the presence of exosomes, various characterization methods have been utilized such as Western blot analysis, atomic force microscopy, electron microscopy, optical methods, zeta potential, visual inspection, and mass spectrometry. Recent advances in high-resolution separations, high-performance mass spectrometry and comprehensive proteome databases have all contributed to the successful analysis of exosomes from patient samples. Herein we review various exosome enrichment methods, characterization methods, and recent trends of exosome investigations using mass spectrometry-based approaches for biomarker discovery.
Collapse
Affiliation(s)
- Iqbal Jalaludin
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Jackson KK, Marcus RK. Rapid isolation and quantification of extracellular vesicles from suspension-adapted human embryonic kidney cells using capillary-channeled polymer fiber spin-down tips. Electrophoresis 2023; 44:190-202. [PMID: 35973415 PMCID: PMC10087738 DOI: 10.1002/elps.202200149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 02/01/2023]
Abstract
Exosomes, a subset of extracellular vesicles (EVs, 30-200-nm diameter), serve as biomolecular snapshots of their cell of origin and vehicles for intercellular communication, playing roles in biological processes, including homeostasis maintenance and immune modulation. The large-scale processing of exosomes for use as therapeutic vectors has been proposed, but these applications are limited by impure, low-yield recoveries from cell culture milieu (CCM). Current isolation methods are also limited by tedious and laborious workflows, especially toward an isolation of EVs from CCM for therapeutic applications. Employed is a rapid (<10 min) EV isolation method on a capillary-channeled polymer fiber spin-down tip format. EVs are isolated from the CCM of suspension-adapted human embryonic kidney cells (HEK293), one of the candidate cell lines for commercial EV production. This batch solid-phase extraction technique allows 1012 EVs to be obtained from only 100-µl aliquots of milieu, processed using a benchtop centrifuge. The tip-isolated EVs were characterized using transmission electron microscopy, multi-angle light scattering, absorbance quantification, an enzyme-linked immunosorbent assay to tetraspanin marker proteins, and a protein purity assay. It is believed that the demonstrated approach has immediate relevance in research and analytical laboratories, with opportunities for production-level scale-up projected.
Collapse
Affiliation(s)
- Kaylan K Jackson
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - R Kenneth Marcus
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
11
|
Jackson KK, Mata C, Marcus RK. A rapid capillary-channeled polymer (C-CP) fiber spin-down tip approach for the isolation of plant-derived extracellular vesicles (PDEVs) from 20 common fruit and vegetable sources. Talanta 2023; 252:123779. [DOI: 10.1016/j.talanta.2022.123779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 10/15/2022]
|
12
|
Determination of the Loading Capacity and Recovery of Extracellular Vesicles Derived from Human Embryonic Kidney Cells and Urine Matrices on Capillary-Channeled Polymer (C-CP) Fiber Columns. SEPARATIONS 2022. [DOI: 10.3390/separations9090251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are 50–1000 nm membranous vesicles secreted from all cells that play important roles in many biological processes. Exosomes, a smaller-sized subset of EVs, have become of increasing interest in fundamental biochemistry and clinical fields due to their rich biological cargos and their roles in processes such as cell-signaling, maintaining homeostasis, and regulating cellular functions. To be implemented effectively in fundamental biochemistry and clinical diagnostics fields of study, and for their proposed use as vectors in gene therapies, there is a need for new methods for the isolation of large concentrations of high-purity exosomes from complex matrices in a timely manner. To address current limitations regarding recovery and purity, described here is a frontal throughput and recovery analysis of exosomes derived from human embryonic kidney (HEK) cell cultures and human urine specimens using capillary-channeled polymer (C-CP) fiber stationary phases via high performance liquid chromatography (HPLC). Using the C-CP fiber HPLC method for EV isolations, the challenge of recovering purified EVs from small sample volumes imparted by the traditional techniques was overcome while introducing significant benefits in processing, affordability (~5 $ per column), loading (~1012 particles), and recovery (1011–1012 particles) from whole specimens without further processing requirements.
Collapse
|
13
|
Jackson KK, Powell RR, Marcus RK, Bruce TF. Comparison of the capillary-channeled polymer (C-CP) fiber spin-down tip approach to traditional methods for the isolation of extracellular vesicles from human urine. Anal Bioanal Chem 2022; 414:3813-3825. [PMID: 35412060 DOI: 10.1007/s00216-022-04023-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
Capillary-channeled polymer fiber (C-CP) solid-phase extraction tips have demonstrated the ability to produce clean and concentrated extracellular vesicle (EV) recoveries from human urine samples in the small EV size range (< 200 nm). An organic modifier-assisted hydrophobic interaction chromatography (HIC) approach is applied in the spin-tip method under non-denaturing conditions-preserving the structure and bioactivity of the recovered vesicles. The C-CP tip method can employ either acetonitrile or glycerol as an elution modifier. The EV recoveries from the C-CP tip method (using both of these solvents) were compared to those obtained using the ultracentrifugation (UC) and polymer precipitation (exoEasy and ExoQuick) EV isolation methods for the same human urine specimen. The biophysical and quantitative characteristics of the recovered EVs using the five isolation methods were assessed based on concentration, size distribution, shape, tetraspanin surface marker protein content, and purity. In comparison to the traditionally used UC method and commercially available polymeric precipitation-based isolation kits, the C-CP tip introduces significant benefits with efficient (< 15 min processing of 12 samples here) and low-cost (< $1 per tip) EV isolations, employing sample volumes (10 µL-1 mL) and concentration (up to 4 × 1012 EVs mL-1) scales relevant for fundamental and clinical analyses. Recoveries of the target vesicles versus matrix proteins were far superior for the tip method versus the other approaches.
Collapse
Affiliation(s)
- Kaylan K Jackson
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Rhonda R Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, 29634, USA
| | - R Kenneth Marcus
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Terri F Bruce
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
14
|
Improving Isolation of Extracellular Vesicles by Utilizing Nanomaterials. MEMBRANES 2021; 12:membranes12010055. [PMID: 35054584 PMCID: PMC8780510 DOI: 10.3390/membranes12010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/04/2023]
Abstract
Extracellular vesicles (EVs) as the new form of cellular communication have been demonstrated their potential use for disease diagnosis, prognosis and treatment. EVs are vesicles with a lipid bilayer and are present in various biofluids, such as blood, saliva and urine. Therefore, EVs have emerged as one of the most appealing sources for the discovery of clinical biomarkers. However, isolation of the target EVs from different biofluids is required for the use of EVs as diagnostic and therapeutic entities in clinical settings. Owing to their unique properties and versatile functionalities, nanomaterials have been widely investigated for EV isolation with the aim to provide rapid, simple, and efficient EV enrichment. Herein, this review presents the progress of nanomaterial-based isolations for EVs over the past five years (from 2017 to 2021) and discusses the use of nanomaterials for EV isolations based on the underlying mechanism in order to offer insights into the design of nanomaterials for EV isolations.
Collapse
|
15
|
Adriano B, Cotto NM, Chauhan N, Jaggi M, Chauhan SC, Yallapu MM. Milk exosomes: Nature's abundant nanoplatform for theranostic applications. Bioact Mater 2021; 6:2479-2490. [PMID: 33553829 PMCID: PMC7856328 DOI: 10.1016/j.bioactmat.2021.01.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a unique subpopulation of naturally occurring extracellular vesicles which are smaller intracellular membrane nanoparticle vesicles. Exosomes have proven to be excellent nanocarriers for carrying lipids, proteins, mRNAs, non-coding RNAs, and DNAs, and disseminating long-distance intercellular communications in various biological processes. Among various cell-line or biological fluid derived exosomes, milk exosomes are abundant in nature and exhibit many nanocarrier characteristics favorable for theranostic applications. To be an effective delivery carrier for their clinical translation, exosomes must inbuilt loading, release, targeting, and imaging/tracking characteristics. Considering the unmet gaps of milk exosomes in theranostic technology it is essential to focus the current review on drug delivery and imaging applications. This review delineates the efficiency of exosomes to load therapeutic or imaging agents and their successful delivery approaches. It is emphasized on possible modifications of exosomes towards increasing the stability and delivery of agents. This article also summarizes the specific applications and the process of developing milk exosomes as a future pharmaceutical drug delivery vehicle.
Collapse
Affiliation(s)
- Benilde Adriano
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Nycol M. Cotto
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| |
Collapse
|
16
|
Aarts J, Boleij A, Pieters BCH, Feitsma AL, van Neerven RJJ, Ten Klooster JP, M'Rabet L, Arntz OJ, Koenders MI, van de Loo FAJ. Flood Control: How Milk-Derived Extracellular Vesicles Can Help to Improve the Intestinal Barrier Function and Break the Gut-Joint Axis in Rheumatoid Arthritis. Front Immunol 2021; 12:703277. [PMID: 34394100 PMCID: PMC8356634 DOI: 10.3389/fimmu.2021.703277] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Many studies provided compelling evidence that extracellular vesicles (EVs) are involved in the regulation of the immune response, acting as both enhancers and dampeners of the immune system, depending on the source and type of vesicle. Research, including ours, has shown anti-inflammatory effects of milk-derived EVs, using human breast milk as well as bovine colostrum and store-bought pasteurized cow milk, in in vitro systems as well as therapeutically in animal models. Although it is not completely elucidated which proteins and miRNAs within the milk-derived EVs contribute to these immunosuppressive capacities, one proposed mechanism of action of the EVs is via the modulation of the crosstalk between the (intestinal) microbiome and their host health. There is increasing awareness that the gut plays an important role in many inflammatory diseases. Enhanced intestinal leakiness, dysbiosis of the gut microbiome, and bowel inflammation are not only associated with intestinal diseases like colitis and Crohn's disease, but also characteristic for systemic inflammatory diseases such as lupus, multiple sclerosis, and rheumatoid arthritis (RA). Strategies to target the gut, and especially its microbiome, are under investigation and hold a promise as a therapeutic intervention for these diseases. The use of milk-derived EVs, either as stand-alone drug or as a drug carrier, is often suggested in recent years. Several research groups have studied the tolerance and safety of using milk-derived EVs in animal models. Due to its composition, milk-derived EVs are highly biocompatible and have limited immunogenicity even cross species. Furthermore, it has been demonstrated that milk-derived EVs, when taken up in the gastro-intestinal tract, stay intact after absorption, indicating excellent stability. These characteristics make milk-derived EVs very suitable as drug carriers, but also by themselves, these EVs already have a substantial immunoregulatory function, and even without loading, these vesicles can act as therapeutics. In this review, we will address the immunomodulating capacity of milk-derived EVs and discuss their potential as therapy for RA patients. Review criteria The search terms "extracellular vesicles", "exosomes", "microvesicles", "rheumatoid arthritis", "gut-joint axis", "milk", and "experimental arthritis" were used. English-language full text papers (published between 1980 and 2021) were identified from PubMed and Google Scholar databases. The reference list for each paper was further searched to identify additional relevant articles.
Collapse
Affiliation(s)
- Joyce Aarts
- Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center (Radboudumc), Nijmegen, Netherlands
| | - Annemarie Boleij
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center (Radboudumc), Nijmegen, Netherlands
| | - Bartijn C H Pieters
- Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center (Radboudumc), Nijmegen, Netherlands
| | | | - R J Joost van Neerven
- FrieslandCampina, Amersfoort, Netherlands.,Cell Biology and Immunology, Wageningen University & Research, Wageningen, Netherlands
| | - Jean Paul Ten Klooster
- Research Centre for Healthy and Sustainable Living, Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences, Utrecht, Netherlands
| | - Laura M'Rabet
- Research Centre for Healthy and Sustainable Living, Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences, Utrecht, Netherlands
| | - Onno J Arntz
- Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center (Radboudumc), Nijmegen, Netherlands
| | - Marije I Koenders
- Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center (Radboudumc), Nijmegen, Netherlands
| | - Fons A J van de Loo
- Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center (Radboudumc), Nijmegen, Netherlands
| |
Collapse
|
17
|
Ong SL, Blenkiron C, Haines S, Acevedo-Fani A, Leite JAS, Zempleni J, Anderson RC, McCann MJ. Ruminant Milk-Derived Extracellular Vesicles: A Nutritional and Therapeutic Opportunity? Nutrients 2021; 13:2505. [PMID: 34444665 PMCID: PMC8398904 DOI: 10.3390/nu13082505] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Milk has been shown to contain a specific fraction of extracellular particles that are reported to resist digestion and are purposefully packaged with lipids, proteins, and nucleic acids to exert specific biological effects. These findings suggest that these particles may have a role in the quality of infant nutrition, particularly in the early phase of life when many of the foundations of an infant's potential for health and overall wellness are established. However, much of the current research focuses on human or cow milk only, and there is a knowledge gap in how milk from other species, which may be more commonly consumed in different regions, could also have these reported biological effects. Our review provides a summary of the studies into the extracellular particle fraction of milk from a wider range of ruminants and pseudo-ruminants, focusing on how this fraction is isolated and characterised, the stability and uptake of the fraction, and the reported biological effects of these fractions in a range of model systems. As the individual composition of milk from different species is known to differ, we propose that the extracellular particle fraction of milk from non-traditional and minority species may also have important and distinct biological properties that warrant further study.
Collapse
Affiliation(s)
- Siew Ling Ong
- Smart Foods Innovation Centre of Excellence, Te Ohu Rangahau Kai, AgResearch Ltd., Massey University Campus, Palmerston North 4410, New Zealand;
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1051, New Zealand;
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1051, New Zealand
| | - Stephen Haines
- Beyond Food Innovation Centre of Excellence, AgResearch Ltd., Lincoln 7674, New Zealand;
| | - Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.A.-F.); (J.A.S.L.)
| | - Juliana A. S. Leite
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.A.-F.); (J.A.S.L.)
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Rachel C. Anderson
- Smart Foods Innovation Centre of Excellence, Te Ohu Rangahau Kai, AgResearch Ltd., Massey University Campus, Palmerston North 4410, New Zealand;
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.A.-F.); (J.A.S.L.)
| | - Mark J. McCann
- Smart Foods Innovation Centre of Excellence, Te Ohu Rangahau Kai, AgResearch Ltd., Massey University Campus, Palmerston North 4410, New Zealand;
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.A.-F.); (J.A.S.L.)
| |
Collapse
|
18
|
Jackson KK, Powell RR, Bruce TF, Marcus RK. Rapid isolation of extracellular vesicles from diverse biofluid matrices via capillary-channeled polymer fiber solid-phase extraction micropipette tips. Analyst 2021; 146:4314-4325. [PMID: 34105528 DOI: 10.1039/d1an00373a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) play essential roles in biological systems based on their ability to carry genetic and protein cargos, intercede in cellular communication and serve as vectors in intercellular transport. As such, EVs are species of increasing focus from the points of view of fundamental biochemistry, clinical diagnostics, and therapeutics delivery. Of particular interest are 30-200 nm EVs called exosomes, which have demonstrated high potential for use in diagnostic and targeted delivery applications. The ability to collect exosomes from patient biofluid samples would allow for comprehensive yet remote diagnoses to be performed. While several exosome isolation methods are in common use, they generally produce low recoveries, whose purities are compromised by concomitant inclusion of lipoproteins, host cell proteins, and protein aggregates. Those methods often work on lengthy timescales (multiple hours) and result in very low throughput. In this study, capillary-channeled polymer (C-CP) fiber micropipette tips were employed in a hydrophobic interaction chromatography (HIC) solid-phase extraction (SPE) workflow. Demonstrated is the isolation of exosomes from human urine, saliva, cervical mucus, serum, and goat milk matrices. This method allows for quick (<15 min) and low-cost (<$1 per tip) isolations at sample volume and time scales relevant for clinical applications. The tip isolation was evaluated using absorbance (scattering) detection, nanoparticle tracking analysis (NTA), and transmission electron microscopy (TEM). Exosome purity was assessed by Bradford assay, based on the removal of free proteins. An enzyme-linked immunosorbent assay (ELISA) to the CD81 tetraspanin protein was used to confirm the presence of the known exosomal-biomarker on the vesicles.
Collapse
Affiliation(s)
- Kaylan K Jackson
- Clemson University, Department of Chemistry, Clemson, SC 29634, USA.
| | - Rhonda R Powell
- Clemson University, Clemson Light Imaging Facility, Clemson, SC 29634, USA
| | - Terri F Bruce
- Clemson University, Department of Bioengineering, Clemson, SC 29634, USA
| | - R Kenneth Marcus
- Clemson University, Department of Chemistry, Clemson, SC 29634, USA.
| |
Collapse
|
19
|
Huang S, Ji X, Jackson KK, Lubman DM, Ard MB, Bruce TF, Marcus RK. Rapid separation of blood plasma exosomes from low-density lipoproteins via a hydrophobic interaction chromatography method on a polyester capillary-channeled polymer fiber phase. Anal Chim Acta 2021; 1167:338578. [PMID: 34049630 DOI: 10.1016/j.aca.2021.338578] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Exosomes are membrane-bound, cell-secreted vesicles, with sizes ranging from 30 to 150 nm. Exosomes in blood plasma have become proposed targets as measurable indicators of disease conditions. Current methods for plasma-based exosome isolation are time-consuming, complex, and have high operational costs. One of the most commonly reported shortcomings of current isolation protocols is the co-extraction of lipoproteins (e.g. low-density lipoproteins, LDLs) with the target exosomes. This report describes the use of a rapid, single-operation hydrophobic interaction chromatography (HIC) procedure on a polyester (PET) capillary-channeled polymer (C-CP) fiber column, demonstrating the ability to efficiently purify exosomes. The method has previously been demonstrated for isolation of exosomes from diverse biological matrices, but questions were raised about the potential co-elution of LDLs. In the method described herein, a step-gradient procedure sequentially elutes spiked lipoproteins and blood plasma-originating exosomes in 10 min, with the LDLs excluded from the desired exosome fraction. Mass spectrometry (MS) was used to characterize an impurity in the primary LDL material, identifying the presence of exosomal material. Transmission electron microscopy (TEM) and an enzyme-linked immunosorbent assay (ELISA) were used to identify the various elution components. The method serves both as a rapid means of high purity exosome isolation as well as a screening tool for the purity of LDL samples with respect to extracellular vesicles.
Collapse
Affiliation(s)
- Sisi Huang
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA
| | - Xiaohui Ji
- Department of Surgery, Medical Science Research Building I, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kaylan K Jackson
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA
| | - David M Lubman
- Department of Surgery, Medical Science Research Building I, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mary B Ard
- Georgia Electron Microscopy Core Facility, University of Georgia Athens, GA, 30602, USA
| | - Terri F Bruce
- Department of Bioengineering, Life Sciences Facility, Clemson University, Clemson, SC, 29634, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
20
|
Huang S, Bruce TF, Ding H, Wei Y, Marcus RK. Rapid isolation of lentivirus particles from cell culture media via a hydrophobic interaction chromatography method on a polyester, capillary-channeled polymer fiber stationary phase. Anal Bioanal Chem 2021; 413:2985-2994. [PMID: 33608753 DOI: 10.1007/s00216-021-03232-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/26/2022]
Abstract
Lentiviruses are increasingly used as gene delivery vehicles for vaccines and immunotherapies. However, the purification of clinical-grade lentivirus vectors for therapeutic use is still troublesome and limits preclinical and clinical experiments. Current purification methods such as ultracentrifugation and ultrafiltration are time consuming and do not remove all of the impurities such as cellular debris, membrane fragments, and denatured proteins from the lentiviruses. The same challenges exist in terms of their analytical characterization. Presented here is the novel demonstration of the chromatographic isolation of virus particles from culture media based on the hydrophobicity characteristics of the vesicles. A method was developed to isolate lentivirus from media using a hydrophobic interaction chromatography (HIC) method performed on a polyester, capillary-channeled polymer (PET C-CP) stationary phase and a standard liquid chromatography apparatus. The method is an extension of the approach developed in this laboratory for the isolation of extracellular vesicles (EVs). Quantitative polymerase chain reaction (qPCR) was used to verify and quantify lentiviruses in elution fractions. Load and elution mobile phase compositions were optimized to affect high efficiency and throughput. The process has been visualized via scanning electron microscopy (SEM) of the fiber surfaces following media injection, the elution of proteinaceous material, and the elution of lentiviruses. This effort has yielded a rapid (<10 min), low-cost (< $15 per column, providing multiple separations), and efficient method for the isolation/purification of lentivirus particles from cell culture media at the analytical scale.
Collapse
Affiliation(s)
- Sisi Huang
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA
| | - Terri F Bruce
- Department of Bioengineering, Life Sciences Facility, Clemson University, Clemson, SC, 29634, USA
| | - Hui Ding
- Department of Biological Sciences, Life Sciences Facility, Clemson University, Clemson, SC, 29634, USA
| | - Yanzhang Wei
- Department of Biological Sciences, Life Sciences Facility, Clemson University, Clemson, SC, 29634, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
21
|
Ji X, Huang S, Zhang J, Bruce TF, Tan Z, Wang D, Zhu J, Marcus RK, Lubman DM. A novel method of high-purity extracellular vesicle enrichment from microliter-scale human serum for proteomic analysis. Electrophoresis 2021; 42:245-256. [PMID: 33169421 PMCID: PMC8018574 DOI: 10.1002/elps.202000223] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 01/02/2023]
Abstract
We have developed a rapid, low-cost, and simple separation strategy to separate extracellular vesicles (EVs) from a small amount of serum (i.e.,<100 μL) with minimal contamination by serum proteins and lipoprotein particles to meet the high purity requirement for EV proteome analysis. EVs were separated by a novel polyester capillary channel polymer (PET C-CP) fiber phase/hydrophobic interaction chromatography (HIC) method which is rapid and can process small size samples. The collected EV fractions were subjected to a post-column cleanup protocol using a centrifugal filter to perform buffer exchange and eliminate potential coeluting non-EV proteins while minimizing EV sample loss. Downstream characterization demonstrated that our current strategy can separate EVs with the anticipated exosome-like particle size distribution and high yield (∼1 × 1011 EV particles per mL of serum) in approximately 15 min. Proteome profiling of the EVs reveals that a group of genuine EV components were identified that have significantly less high-abundance blood proteins and lipoprotein particle contamination in comparison to traditional separation methods. The use of this methodology appears to address the major challenges facing EV separation for proteomics analysis. In addition, the EV post-column cleanup protocol proposed in the current work has the potential to be combined with other separation methods, such as ultracentrifugation (UC), to further purify the separated EV samples.
Collapse
Affiliation(s)
- Xiaohui Ji
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, P. R. China
| | - Sisi Huang
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, USA
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Terri F. Bruce
- Department of Bioengineering, Life Sciences Facility, Clemson University, Clemson, SC, USA
| | - Zhijing Tan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Donglin Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, P. R. China
| | - Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - R. Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, USA
| | - David M. Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|