1
|
Lukose SJ, Divya MP, Beena AK, Rajakumar SN, Babu PS. Reduced allergenicity of hydrolysed whey protein concentrate complexed with iron: the effect of different enzymes, degree of hydrolysis and ascorbic acid. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:940-951. [PMID: 40182682 PMCID: PMC11961856 DOI: 10.1007/s13197-024-06085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 04/05/2025]
Abstract
Cow's milk allergy is a hypersensitivity reaction to bovine milk proteins and is immune-related. β-lactoglobulin, the primary allergenic protein found in milk, is a whey protein with a higher biological value than casein. The study aimed to develop a hypoallergenic fortified supplement, with hydrolysed whey proteins as a channel for iron fortification. A degree of hydrolysis (DH) of upto five per cent was selected for better functional properties. The allergenicity of eleven treatments including protein hydrolysates, iron complexed protein hydrolysates, at both 3% and 5% degree of hydrolysis and all complexes with added ascorbic acid were analyzed by direct ELISA based on the ability to bind the specific IgE antibody coated plates.The antibodies specific to the whey protein allergen β-lactoglobulin were used in the present study. Allergy studies revealed a reduction in the allergenicity of iron-complexed whey protein (23%) and iron-complexed hydrolysates (28.27-59%). Allergenicity was further reduced (53.59-60.63%) when protein hydrolysate was complexed with iron in the presence of ascorbic acid. Statistical analysis at 0.01level of significance (P value 0.001) revealed significant differences among all treatments. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06085-y.
Collapse
Affiliation(s)
- Smitha J. Lukose
- Department of Dairy Chemistry, VKIDFT, KVASU, Mannuthy, Kerala India
| | - M. P. Divya
- Department of Dairy Chemistry, VKIDFT, KVASU, Mannuthy, Kerala India
| | - A. K. Beena
- Department of Dairy Microbiology, VKIDFT, KVASU, Mannuthy, Kerala India
| | - S. N. Rajakumar
- Department of Dairy Technology, VKIDFT, KVASU, Mannuthy, Kerala India
| | - P. Sudheer Babu
- Department of Dairy Engineering, VKIDFT, KVASU, Mannuthy, Kerala India
| |
Collapse
|
2
|
Wang X, Zhang X, Mao Y, Wu Y, Lv X, Liu L, Han W, Yin S, Wu R, Chen J, Liu Y. Ethanol-Inducible Bioproduction of Human α-Lactalbumin in Komagataella phaffii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9246-9260. [PMID: 40173411 DOI: 10.1021/acs.jafc.5c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
α-Lactalbumin (α-LA) is the most abundant whey protein in human milk. Microbially expressed α-LA serves as a potential additive in infant formula to improve the protein composition and amino acid profile, enhancing the deep simulation of human milk. Komagataella phaffii is widely recognized for its ability to achieve high-density fermentation and robust secretion of heterologous proteins, making it ideal for large-scale production with relatively simple fermentation conditions. At present, the expression of human α-LA in K. phaffii remains challenged by the potential toxicity of using methanol as an inducer and inefficient bioproduction. In this study, we first employed the ethanol-transcriptional signal amplification device system in K. phaffii to express human α-LA, achieving a titer of 7.39 mg·L-1 in shake flask fermentation. Next, through hybrid optimization of the native α-factor signal peptide and multicopy integration of the target gene, the α-LA titer was further increased to 16.52 mg·L-1 in the shake flask. Finally, by addressing acetic acid accumulation in bioreactor fermentation, the engineered production strain achieved a titer of 0.60 g·L-1 in a 3 L bioreactor. This work represents the first demonstration of high-efficiency methanol-free production of human α-LA in K. phaffii and provides strategies for the efficient expression and secretion of recombinant proteins in this host organism.
Collapse
Affiliation(s)
- Xinyi Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Xuguang Zhang
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, Inner Mongolia 011517, China
| | - Yuejian Mao
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, Inner Mongolia 011517, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Weiwei Han
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, Inner Mongolia 011517, China
| | - Shenming Yin
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, Inner Mongolia 011517, China
| | - Ruonan Wu
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, Inner Mongolia 011517, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| |
Collapse
|
3
|
Zhang Q, Liu T, Yuan X, Zhao X, Zhou L. Aptasensors application for cow's milk allergens detection and early warning: Progress, challenge, and perspective. Talanta 2025; 281:126808. [PMID: 39260252 DOI: 10.1016/j.talanta.2024.126808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Cow's milk allergy (CMA) is considered one of the most prevalent food allergies and a public health concern. Modern medical research shows that the effective way to prevent allergic reactions is to prevent allergic patients from consuming allergenic substances. Therefore, the development of rapid and accurate detection technology for milk allergens detection and early warning is critical to safeguarding those with a cow milk allergy. As the oligonucleotide sequences with high specificity and selectivity, aptamers frequently assemble with transduction elements forming multifarious aptasensors for quantitative detection owing to their high-affinity binding to the target. Current aptasensors in the field of cow's milk allergen detection in recent years are explored in this review. This review takes a look back at a few common assays, including ELISA and PCR, before presenting a clear overview of the aptamer and threshold doses. It delves into a detailed discussion of the current aptamer-based detection techniques and related theories for milk allergen identification. Last but not least, we conclude with a discussion and outlook of the advancements made in allergen detection with aptamers. We sincerely hope that there will be more extensive applications for aptasensors in the future contributing to reducing the possibility of patients suffering from adverse reactions.
Collapse
Affiliation(s)
- Qingya Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Xiongjie Zhao
- College of Chemistry and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan, 425199, China.
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| |
Collapse
|
4
|
Canbolat AA, Lombardo M, Mondragon ADC, López JMM, Bechelany M, Karav S. Bovine Colostrum in Pediatric Nutrition and Health. Nutrients 2024; 16:4305. [PMID: 39770926 PMCID: PMC11677144 DOI: 10.3390/nu16244305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Bovine colostrum (BC), the first milk secreted by mammals after birth, is a trending alternative source for supplementing infants and children, offering benefits for gut and immune health. Its rich components, such as proteins, immunoglobulins, lactoferrin, and glycans, are used to fortify diets and support development. Preterm development is crucial, especially in the maturation of essential systems, and from 2010 to 2020, approximately 15% of all premature births occurred at less than 32 weeks of gestation worldwide. This review explores the composition, benefits, and effects of BC on general infants and children, along with preterm infants who require special care, and highlights its role in growth and development. BC is also associated with specific pediatric diseases, including necrotizing enterocolitis (NEC), infectious diarrhea, inflammatory bowel disease (IBD), short-bowel syndrome (SBS), neonatal sepsis, gastrointestinal and respiratory infections, and some minor conditions. This review also discusses the clinical trials regarding these specific conditions which are occasionally encountered in preterm infants. The anti-inflammatory, antimicrobial, immunomodulatory, and antiviral properties of BC are discussed, emphasizing its mechanisms of action. Clinical trials, particularly in humans, provide evidence supporting the inclusion of BC in formulas and diets, although precise standards for age, feeding time, and amounts are needed to ensure safety and efficacy. However, potential adverse effects, such as allergic reactions to caseins and immunoglobulin E, must be considered. More comprehensive clinical trials are necessary to expand the evidence on BC in infant feeding, and glycans, important components of BC, should be further studied for their synergistic effects on pediatric diseases. Ultimately, BC shows promise for pediatric health and should be incorporated into nutritional supplements with caution.
Collapse
Affiliation(s)
- Ahmet Alperen Canbolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di 11 Val Cannuta 247, 00166 Rome, Italy;
| | - Alicia del Carmen Mondragon
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición Bromatología, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain; (A.d.C.M.); (J.M.M.L.)
| | - Jose Manuel Miranda López
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición Bromatología, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain; (A.d.C.M.); (J.M.M.L.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France;
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| |
Collapse
|
5
|
Wang ZL, Tang X, Wang M, She YX, Yang BR, Sheng QH, Abd El-Aty AM. β-Lactoglobulin separation from whey protein: A comprehensive review of isolation and purification techniques and future perspectives. J Dairy Sci 2024; 107:11785-11795. [PMID: 39343213 DOI: 10.3168/jds.2024-25321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024]
Abstract
Cow milk, although rich in essential nutrients, is a well-known food allergen that can cause allergic reactions in infants and young children. β-Lactoglobulin accounts for 10% of the total protein in milk and 50% of the whey protein, which has high nutritional value and excellent functional properties but is also the main allergen leading to milk protein allergy. Exploring the mechanism of milk allergy and selecting suitable separation and purification methods to obtain high-purity β-LG is the premise of research on reducing allergenicity. In this review, the research progress in membrane technology, gel filtration chromatography, ion exchange chromatography, affinity chromatography, precipitation, and aqueous 2-phase system separation for the separation and purification of milk β-LG is reviewed in detail to promote the further development of milk β-LG separation and purification methods and provide a new method for the development of hypoallergenic dairy products in the future. Among these methods, ion exchange chromatography and gel chromatography are widely used, precipitation is generally used as a crude purification step, and HPLC and membrane technology are used for further purification to improve the purity of allergens.
Collapse
Affiliation(s)
- Z L Wang
- School of Food Science and Technology, Hebei Agricultural University, 07100, Baoding, China
| | - X Tang
- School of Food Science and Technology, Hebei Agricultural University, 07100, Baoding, China
| | - M Wang
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China.
| | - Y X She
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - B R Yang
- Food Sciences, Department of Life Technologies, Faculty of Technology, University of Turku, FI-20014, Finland
| | - Q H Sheng
- School of Food Science and Technology, Hebei Agricultural University, 07100, Baoding, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
6
|
Li H, Yang L, Li J, Gao Q, Liu T, Zou Y, Chen X, Li H, Yu J. Allergenicity evaluation of an extensively hydrolyzed infant formula based on cow milk protein. Food Funct 2024; 15:11036-11046. [PMID: 39431858 DOI: 10.1039/d4fo03582h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Cow milk protein allergy (CMPA) is the most common food allergy in infants. Currently, hypoallergenic infant formulas on the market are mainly divided into extensively hydrolyzed whey protein formulas and extensively hydrolyzed casein formulas. There are few extensively hydrolyzed infant formulas (EHFs) with a similar protein composition to breast milk. Therefore, we developed a hypoallergenic infant formula based on extensively hydrolyzed cow milk protein (whey protein-to-casein ratio of 6 : 4) and evaluated its allergenicity in vitro and in vivo. The results showed that the antigenicity of EHF was significantly decreased. The levels of Treg and Th1 cells were increased, while the levels of Th2 cells, IgE and IgG1, plasma histamine and serum mast cell enzymes were significantly decreased. At the same time, the allergic symptoms of the jejunum and lungs of mice were relieved. This study provides a solution for the development of cow milk protein based hypoallergenic infant formulas.
Collapse
Affiliation(s)
- Hongbo Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Lin Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jiayi Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Quan Gao
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tiantian Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yang Zou
- Tianjin Haihe Dairy Co., Ltd, No. 158, Jingwu Road, Tianjin Airport Economic Zone, Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, China
| | - Xiaohong Chen
- Tianjin Haihe Dairy Co., Ltd, No. 158, Jingwu Road, Tianjin Airport Economic Zone, Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, China
| | - Hongjuan Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jinghua Yu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
7
|
Hassan L, Reynoso M, Xu C, Al Zahabi K, Maldonado R, Nicholson RA, Boehm MW, Baier SK, Sharma V. The bubbly life and death of animal and plant milk foams. SOFT MATTER 2024; 20:8215-8229. [PMID: 39370983 DOI: 10.1039/d4sm00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Milk foams are fragile objects, readily prepared for frothy cappuccinos and lattes using bovine milk. However, evolving consumer preferences driven by health, climate change, veganism, and sustainability have created a substantial demand for creating frothy beverages using plant-based milk alternatives or plant milks. In this contribution, we characterize maximum foam volume and half-lifetime as metrics for foamability and foam stability and drainage kinetics of two animal milks (cow and goat) and compared them to those of the six most popular, commercially available plant milks: almond, oat, soy, pea, coconut, and rice. We used three set-ups: an electric frother with cold (10 °C) and hot (65 °C) settings to emulate the real-life application of creating foam for cappuccinos, a commercial device called a dynamic foam analyzer or DFA and fizzics-scope, a bespoke device we built. Fizzics-scope visualizes foam creation, evolution, and destruction using an extended prism-based imaging system facilitating the capture of spatiotemporal variation in foam microstructure over a broader range of heights and liquid fractions. Among the chosen eight milks, oat produces the longest-lasting foams, and rice has the lowest amount and stability of foam. Using the hot settings, animal milks produce more foam volume using an electric frother than the top three plant milks in terms of foamability (oat, pea, and soy). Using the cold settings, oat, soy, and almond outperform cow milk in terms of foam volume and lifetime for foams made with the frother and sparging. Most plant milks have higher viscosity due to added polysaccharide thickeners, and in some, lecithin and saponin can supplement globular proteins as emulsifiers. Our studies combining foam creation by frothing or sparging with imaging protocols to track global foam volume and local bubble size changes present opportunities for contrasting the physicochemical properties and functional attributes of animal and plant-based milk and ingredients for engineering better alternatives.
Collapse
Affiliation(s)
- Lena Hassan
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Monse Reynoso
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Chenxian Xu
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Karim Al Zahabi
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | - Ramiro Maldonado
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| | | | | | - Stefan K Baier
- Motif FoodWorks Inc., Boston, MA 02210, USA
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA.
| |
Collapse
|
8
|
Wang Y, Wu J, Zhang H, Yang X, Gu R, Liu Y, Wu R. Comprehensive review of milk fat globule membrane proteins across mammals and lactation periods in health and disease. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39106211 DOI: 10.1080/10408398.2024.2387763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Milk fat globule membrane (MFGM) is a three-layer membrane-like structure encasing natural milk fat globules (MFGs). MFGM holds promise as a nutritional supplement because of the numerous physiological functions of its constituent protein. This review summarizes and compares the differences in MFGM protein composition across various species, including bovines, goats, camels, mares, and donkeys, and different lactation periods, such as colostrum and mature milk, as assessed by techniques such as proteomics and mass spectrometry. We also discuss the health benefits of MFGM proteins throughout life. MFGM proteins promote intestinal development, neurodevelopment, and glucose and lipid metabolism by upregulating tight junction protein expression, brain function-related genes, and glucose and fatty acid biosynthesis processes. We focus on the mechanisms underlying these beneficial effects of MFGM proteins. MFGM proteins activate key substances in in signaling pathways, such as the phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, and myosin light chain kinase signaling pathways. Overall, the consumption of MFGM proteins plays an essential role in conferring health benefits, some of which are important throughout the mammalian life cycle.
Collapse
Affiliation(s)
- Ying Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, P.R. China
| | - Xujin Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, P.R. China
| | - Ruixia Gu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, P.R. China
| |
Collapse
|
9
|
Tara A, Singh P, Gautam D, Tripathi G, Uppal C, Malhotra S, De S, Singh MK, Telugu BP, Selokar NL. CRISPR-mediated editing of β-lactoglobulin (BLG) gene in buffalo. Sci Rep 2024; 14:14822. [PMID: 38937564 PMCID: PMC11211398 DOI: 10.1038/s41598-024-65359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Milk is a good source of nutrition but is also a source of allergenic proteins such as α-lactalbumin, β-lactoglobulin (BLG), casein, and immunoglobulins. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas technology has the potential to edit any gene, including milk allergens. Previously, CRISPR/Cas has been successfully employed in dairy cows and goats, but buffaloes remain unexplored for any milk trait. In this study, we utilized the CRISPR/Cas9 system to edit the major milk allergen BLG gene in buffaloes. First, the editing efficiency of designed sgRNAs was tested in fibroblast cells using the T7E assay and Sanger sequencing. The most effective sgRNA was selected to generate clonal lines of BLG-edited cells. Analysis of 15 single-cell clones, through TA cloning and Sanger sequencing, revealed that 7 clones exhibited bi-allelic (-/-) heterozygous, bi-allelic (-/-) homozygous, and mono-allelic (-/+) disruptions in BLG. Bioinformatics prediction analysis confirmed that non-multiple-of-3 edited nucleotide cell clones have frame shifts and early truncation of BLG protein, while multiple-of-3 edited nucleotides resulted in slightly disoriented protein structures. Somatic cell nuclear transfer (SCNT) method was used to produce blastocyst-stage embryos that have similar developmental rates and quality with wild-type embryos. This study demonstrated the successful bi-allelic editing (-/-) of BLG in buffalo cells through CRISPR/Cas, followed by the production of BLG-edited blastocyst stage embryos using SCNT. With CRISPR and SCNT methods described herein, our long-term goal is to generate gene-edited buffaloes with BLG-free milk.
Collapse
Affiliation(s)
- Aseem Tara
- Animal Biotechnology Division (ABTD), ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Priyanka Singh
- Animal Biotechnology Division (ABTD), ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Devika Gautam
- Animal Biotechnology Division (ABTD), ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Gaurav Tripathi
- Animal Biotechnology Division (ABTD), ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Chirag Uppal
- Animal Biotechnology Division (ABTD), ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Shreya Malhotra
- Animal Biotechnology Division (ABTD), ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sacchinandan De
- Animal Biotechnology Division (ABTD), ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Manoj K Singh
- Animal Biotechnology Division (ABTD), ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Bhanu P Telugu
- Division of Animal Science, University of Missouri, Columbia, MO, 65211, USA
| | - Naresh L Selokar
- Animal Biotechnology Division (ABTD), ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
10
|
Xu Y, Zhang F, Mu G, Zhu X. Effect of lactic acid bacteria fermentation on cow milk allergenicity and antigenicity: A review. Compr Rev Food Sci Food Saf 2024; 23:e13257. [PMID: 38284611 DOI: 10.1111/1541-4337.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 01/30/2024]
Abstract
Cow milk is a major allergenic food. The potential prevention and treatment effects of lactic acid bacteria (LAB)-fermented dairy products on allergic symptoms have garnered considerable attention. Cow milk allergy (CMA) is mainly attributed to extracellular and/or cell envelope proteolytic enzymes with hydrolysis specificity. Numerous studies have demonstrated that LAB prevents the risk of allergies by modulating the development and regulation of the host immune system. Specifically, LAB and its effectors can enhance intestinal barrier function and affect immune cells by interfering with humoral and cellular immunity. Fermentation hydrolysis of allergenic epitopes is considered the main mechanism of reducing CMA. This article reviews the linear epitopes of allergens in cow milk and the effect of LAB on these allergens and provides insight into the means of predicting allergenic epitopes by conventional laboratory analysis methods combined with molecular simulation. Although LAB can reduce CMA in several ways, the mechanism of action remains partially clarified. Therefore, this review additionally attempts to summarize the main mechanism of LAB fermentation to provide guidance for establishing an effective preventive and treatment method for CMA and serve as a reference for the screening, research, and application of LAB-based intervention.
Collapse
Affiliation(s)
- Yunpeng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P. R. China
| | - Feifei Zhang
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, P. R. China
| | - Guangqing Mu
- Dalian Key Laboratory of Functional Probiotics, Dalian, Liaoning, P. R. China
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P. R. China
| |
Collapse
|
11
|
Xiong Z, Wang W, Ma X, Zhang X, Wu Z, Yang A, Wu Y, Meng X, Chen H, Li X. Development of a Two-Step Hydrolysis Hypoallergenic Cow's Milk Formula and Evaluation of Residue Allergenicity by Peptidomics and Immunoreactivity Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12237-12249. [PMID: 37531557 DOI: 10.1021/acs.jafc.3c01221] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Cow's milk allergy (CMA) is an abnormal immune response that severely affects the nutritional supplementation of allergic infants. Currently, only a limited number of hypoallergenic formulas are available on the market, and these are only categorized according to their degree of hydrolysis, which still poses an allergy risk and cannot be consumed by CMA patients, especially infants. To address this issue, we developed a two-step hydrolysis hypoallergenic formula targeting destruction of allergen epitope from whey protein. Then, a comprehensive evaluation system was constructed, including peptidomics analysis, in vivo and in vitro allergenicity assessments, revealing allergic changes in the product from the epitope structure level to the immunological level. The results showed that 97.14% of hydrolyzed peptides from α-lactalbumin and β-lactoglobulin did not contain allergenic epitopes after treatment with trypsin and flavourzyme. In vitro and in vivo allergenicity assessment results confirmed that the two-step hydrolysis method effectively reduced the allergenicity of whey protein. Compared with the common milk powder, the hypoallergenic formula induced lower levels of basophil degranulation and relieved the body's anaphylactic symptoms caused by cow milk. This study provides a promising solution to the limited hypoallergenic formula problem and may benefit allergic infants who require nutritional supplements.
Collapse
Affiliation(s)
- Ziyi Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Wenjie Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xin Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zhihua Wu
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Anshu Yang
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yong Wu
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xuanyi Meng
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hongbing Chen
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
12
|
Lajnaf R, Feki S, Ben Ameur S, Attia H, Kammoun T, Ayadi MA, Masmoudi H. Cows' milk alternatives for children with cows' milk protein allergy - Review of health benefits and risks of allergic reaction. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
13
|
Secrets behind Protein Sequences: Unveiling the Potential Reasons for Varying Allergenicity Caused by Caseins from Cows, Goats, Camels, and Mares Based on Bioinformatics Analyses. Int J Mol Sci 2023; 24:ijms24032481. [PMID: 36768806 PMCID: PMC9916876 DOI: 10.3390/ijms24032481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
This study systematically investigated the differences in allergenicity of casein in cow milk (CM), goat milk (GM), camel milk (CAM), and mare milk (MM) from protein structures using bioinformatics. Primary structure sequence analysis reveals high sequence similarity between the α-casein of CM and GM, while all allergenic subtypes are likely to have good hydrophilicity and thermal stability. By analyzing linear B-cell epitope, T-cell epitope, and allergenic peptides, the strongest casein allergenicity is observed for CM, followed by GM, and the casein of MM has the weakest allergenicity. Meanwhile, 7, 9, and 16 similar or identical amino acid fragments in linear B-cell epitopes, T-cell epitopes, and allergenic peptides, respectively, were observed in different milks. Among these, the same T-cell epitope FLGAEVQNQ was shared by κ-CN in all four different species' milk. Epitope results may provide targets of allergenic fragments for reducing milk allergenicity through physical or/and chemical methods. This study explained the underlying secrets for the high allergenicity of CM to some extent from the perspective of casein and provided new insights for the dairy industry to reduce milk allergy. Furthermore, it provides a new idea and method for comparing the allergenicity of homologous proteins from different species.
Collapse
|
14
|
Hu Y, Wang Y, Nie L, Lin J, Wu S, Li S, Wu J, Ji X, Lv H, Muyldermans S, Wang S. Exploration of Specific Nanobodies As Immunological Reagents to Detect Milk Allergen of β-Lactoglobulin without Interference of Hydrolytic Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15271-15282. [PMID: 36412552 DOI: 10.1021/acs.jafc.2c06175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Milk proteins are widely used for food supplementation, despite the potential risk of food allergy, especially against β-lactoglobulin (BLG), which makes BLG surveillance critical. Possible interaction of detecting antibodies with BLG-derived peptides will result in unprecise inspection. Thus, in this study, it was proposed to generate nanobodies (Nbs) and validate the immunological detection of intact BLG rather than hydrolytic peptides. Nbs were successfully retrieved and characterized with high stability and target specificity. A competitive enzyme-linked immunosorbent assay (cELISA) was developed with a linear range from 39 to 10,000 ng/mL and a detection limit (LOD) of 4.55 ng/mL, with a recovery of 86.30%-95.09% revealed by analysis of spiked samples. Meanwhile, a sandwich ELISA (sELISA) was established with Nb82 and BLG polyclonal antibody (pAb-BLG) providing a linear range from 29.7 to 1250 ng/mL and an LOD of 13.82 ng/mL with a recovery of 87.82%-103.97%. The interaction of selected Nbs with BLG-derived peptides was investigated by Nb structure modeling and BLG docking. No binding on hydrolytic peptides was revealed, confirming the precision of Nb-mediated immunoassays. In summary, this study successfully identified BLG-specific Nbs for immunoassay development and guaranteed the monitoring of intact BLG without interference of hydrolytic peptides, providing experimental evidence that our Nbs recognize intact food allergen.
Collapse
Affiliation(s)
- Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Linqing Nie
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Lin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sihao Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shijie Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Serge Muyldermans
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
The effect of kefir fermentation on the protein profile and the monoterpenic bioactive compounds in goat milk. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Rahmeh R, Akbar A, Alomirah H, Kishk M, Al-Ateeqi A, Al-Milhm S, Shajan A, Akbar B, Al-Merri S, Alotaibi M, Esposito A. Camel milk microbiota: A culture-independent assessment. Food Res Int 2022; 159:111629. [DOI: 10.1016/j.foodres.2022.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
|
17
|
dos Santos ALS, dos Santos PPB, de Almeida Amaral G, Soares EC, de Oliveira e Silva CA, de Souza SVC. Effect of thermal processing on the antigenicity of allergenic milk, egg and soy proteins. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2617-2628. [PMID: 35734132 PMCID: PMC9207025 DOI: 10.1007/s13197-021-05281-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 06/15/2023]
Abstract
The detection of allergenic proteins and the influence of processing on the structure and antigenicity of these proteins are relevant topics. Using commercial enzyme-linked immunosorbent assay kits, this study aimed to evaluate the degradation profiles of milk, egg and soy proteins during the processing of semisweet biscuits. The formulations were baked under different conditions according to a complete factorial experiment that included a three-level temperature factor and a six-level time factor. β-lactoglobulin and egg white proteins were severely degraded, the degradation of casein was intermediate, and soy proteins were the most stable. Complete allergen protein degradation was found under only the extreme baking conditions, which resulted in products that were not sensorily acceptable. Residual levels of the proteins were detected after baking, indicating that this thermal processing reduced but did not eliminate the antigenicity of these proteins; thus, baking cannot be considered a strategy to protect allergic consumers.
Collapse
Affiliation(s)
- Ana Luiza Soares dos Santos
- Postgraduate Program in Food Science (ALM/PPGCA), Faculty of Pharmacy (FAFAR), Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Campus da UFMG, Pampulha, Belo Horizonte, Minas Gerais 31270-010 Brazil
| | - Pedro Paulo Borges dos Santos
- Postgraduate Program in Food Science (ALM/PPGCA), Faculty of Pharmacy (FAFAR), Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Campus da UFMG, Pampulha, Belo Horizonte, Minas Gerais 31270-010 Brazil
| | - Gustavo de Almeida Amaral
- Postgraduate Program in Food Science (ALM/PPGCA), Faculty of Pharmacy (FAFAR), Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Campus da UFMG, Pampulha, Belo Horizonte, Minas Gerais 31270-010 Brazil
| | - Eduardo Costa Soares
- Postgraduate Program in Food Science (ALM/PPGCA), Faculty of Pharmacy (FAFAR), Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Campus da UFMG, Pampulha, Belo Horizonte, Minas Gerais 31270-010 Brazil
| | - Cláudia Aparecida de Oliveira e Silva
- Ezequiel Dias Foundation, Health Public Laboratory of Minas Gerais State, Rua Conde Pereira Carneiro, 80, Gameleira, Belo Horizonte, Minas Gerais 30.5010-010 Brazil
| | - Scheilla Vitorino Carvalho de Souza
- Postgraduate Program in Food Science (ALM/PPGCA), Faculty of Pharmacy (FAFAR), Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Campus da UFMG, Pampulha, Belo Horizonte, Minas Gerais 31270-010 Brazil
| |
Collapse
|
18
|
Immobilization and characterization of latex cysteine peptidases on different supports and application for cow’s milk protein hydrolysis. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Spina AA, Ceniti C, Piras C, Tilocca B, Britti D, Morittu VM. Mid-Infrared (MIR) Spectroscopy for the quantitative detection of cow’s milk in buffalo milk. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:531-538. [PMID: 35709130 PMCID: PMC9184705 DOI: 10.5187/jast.2022.e22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/12/2022] [Accepted: 04/01/2022] [Indexed: 11/27/2022]
Abstract
In Italy, buffalo mozzarella is a largely sold and consumed dairy product. The
fraudulent adulteration of buffalo milk with cheaper and more available milk of
other species is very frequent. In the present study, Fourier transform infrared
spectroscopy (FTIR), in combination with multivariate analysis by partial least
square (PLS) regression, was applied to quantitatively detect the adulteration
of buffalo milk with cow milk by using a fully automatic equipment dedicated to
the routine analysis of the milk composition. To enhance the heterogeneity, cow
and buffalo bulk milk was collected for a period of over three years from
different dairy farms. A total of 119 samples were used for the analysis to
generate 17 different concentrations of buffalo-cow milk mixtures. This
procedure was used to enhance variability and to properly randomize the trials.
The obtained calibration model showed an R2 ≥
0.99 (R2cal. = 0.99861; root mean square error of
cross-validation [RMSEC] = 2.04; R2val. = 0.99803;
root mean square error of prediction [RMSEP] = 2.84; root mean square error of
cross-validation [RMSECV] = 2.44) suggesting that this method could be
successfully applied in the routine analysis of buffalo milk composition,
providing rapid screening for possible adulteration with cow’s milk at no
additional cost.
Collapse
Affiliation(s)
- Anna Antonella Spina
- Interdepartmental Services Centre of
Veterinary for Human and Animal Health, Department of Health Science, Magna
Græcia University, Catanzaro 88100, Italy
- Corresponding author: Anna Antonella Spina,
Interdepartmental Services Centre of Veterinary for Human and Animal Health,
Department of Health Science, Magna Græcia University, Catanzaro 88100,
Italy. Tel: +39-0961-3694146, E-mail:
| | - Carlotta Ceniti
- Interdepartmental Services Centre of
Veterinary for Human and Animal Health, Department of Health Science, Magna
Græcia University, Catanzaro 88100, Italy
- Corresponding author: Carlotta Ceniti,
Interdepartmental Services Centre of Veterinary for Human and Animal Health,
Department of Health Science, Magna Græcia University, Catanzaro 88100,
Italy. Tel: +39-0961-3694146, E-mail:
| | - Cristian Piras
- Interdepartmental Services Centre of
Veterinary for Human and Animal Health, Department of Health Science, Magna
Græcia University, Catanzaro 88100, Italy
| | - Bruno Tilocca
- Interdepartmental Services Centre of
Veterinary for Human and Animal Health, Department of Health Science, Magna
Græcia University, Catanzaro 88100, Italy
| | - Domenico Britti
- Interdepartmental Services Centre of
Veterinary for Human and Animal Health, Department of Health Science, Magna
Græcia University, Catanzaro 88100, Italy
| | - Valeria Maria Morittu
- Interdepartmental Services Centre of
Veterinary for Human and Animal Health, Department of Health Science, Magna
Græcia University, Catanzaro 88100, Italy
| |
Collapse
|
20
|
Burnett CL, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Heldreth B. Safety Assessment of Bovine Milk Proteins and Protein Derivatives as Used in Cosmetics. Int J Toxicol 2022; 41:43S-56S. [PMID: 35510869 DOI: 10.1177/10915818221098137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of 16 bovine milk proteins and protein-derived ingredients, which function mainly as skin and hair conditioning agents in personal care products. The Panel reviewed relevant data provided in this safety assessment, and concluded that these ingredients are safe in the present practices of use and concentration.
Collapse
Affiliation(s)
| | | | | | - Ronald A Hill
- Former Expert Panel for Cosmetic Ingredient Safety Member
| | | | | | - James G Marks
- Former Expert Panel for Cosmetic Ingredient Safety Member
| | | | | | | | | |
Collapse
|
21
|
Alternatives to Cow’s Milk-Based Infant Formulas in the Prevention and Management of Cow’s Milk Allergy. Foods 2022; 11:foods11070926. [PMID: 35407012 PMCID: PMC8997926 DOI: 10.3390/foods11070926] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/27/2022] Open
Abstract
Cow’s milk-based infant formulas are the most common substitute to mother’s milk in infancy when breastfeeding is impossible or insufficient, as cow’s milk is a globally available source of mammalian proteins with high nutritional value. However, cow’s milk allergy (CMA) is the most prevalent type of food allergy among infants, affecting up to 3.8% of small children. Hypoallergenic infant formulas based on hydrolysed cow’s milk proteins are commercially available for the management of CMA. Yet, there is a growing demand for more options for infant feeding, both in general but especially for the prevention and management of CMA. Milk from other mammalian sources than the cow, such as goat, sheep, camel, donkey, and horse, has received some attention in the last decade due to the different protein composition profile and protein amino acid sequences, resulting in a potentially low cross-reactivity with cow’s milk proteins. Recently, proteins from plant sources, such as potato, lentil, chickpeas, quinoa, in addition to soy and rice, have gained increased interest due to their climate friendly and vegan status as well as potential lower allergenicity. In this review, we provide an overview of current and potential future infant formulas and their relevance in CMA prevention and management.
Collapse
|
22
|
Radosavljević J, Stanić-Vučinić D, Stojadinović M, Radomirović M, Simović A, Radibratović M, Veličković TĆ. Application of Ion Exchange and Adsorption Techniques for Separation of
Whey Proteins from Bovine Milk. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017666210108092338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The world production of whey was estimated to be more than 200 million tons per year.
Although whey is an important source of proteins with high nutritional value and biotechnological importance, it is still
considered as a by-product of the dairy industry with low economic value due to low industrial exploitation. There are
several challenges in the separation of whey proteins: low concentration, the complexity of the material and similar
properties (pI, molecular mass) of some proteins.
Methods:
A narrative review of all the relevant papers on the present methodologies based on ion-exchange and
adsorption principles for isolation of whey proteins, known to the authors, was conducted.
Results:
Traditional ion-exchange techniques are widely used for the separation and purification of the bovine whey
proteins. These methodologies, based on the anion or cation chromatographic procedures, as well as combination of
aforementioned techniques are still preferential methods for the isolation of the whey proteins on the laboratory scale.
However, more recent research on ion exchange membranes for this purpose has been introduced, with promising
potential to be applied on the pilot industrial scale. Newly developed methodologies based either on the ion-exchange
separation (for example: simulated moving bed chromatography, expanded bed adsorption, magnetic ion exchangers, etc.)
or adsorption (for example: adsorption on hydroxyapatite or activated carbon, or molecular imprinting) are promising
approaches for scaling up of the whey proteins’ purification processes.
Conclusion:
Many procedures based on ion exchange are successfully implemented for separation and purification of
whey proteins, providing protein preparations of moderate-to-high yield and satisfactory purity. However, the authors
anticipate further development of adsorption-based methodologies for separation of whey proteins by targeting the
differences in proteins’ structures rather than targeting the differences in molecular masses and pI. The complex
composite multilayered matrices, including also inorganic components, are promising materials for simultaneous
exploiting of the differences in the masses, pI and structures of whey proteins for the separation.
Collapse
Affiliation(s)
- Jelena Radosavljević
- Department of Biochemistry & Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12‑16, 11000 Belgrade,Serbia
| | - Dragana Stanić-Vučinić
- Department of Biochemistry & Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12‑16, 11000 Belgrade,Serbia
| | - Marija Stojadinović
- Department of Biochemistry & Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12‑16, 11000 Belgrade,Serbia
| | - Mirjana Radomirović
- Department of Biochemistry & Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12‑16, 11000 Belgrade,Serbia
| | - Ana Simović
- Department of Biochemistry & Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12‑16, 11000 Belgrade,Serbia
| | - Milica Radibratović
- Center for Chemistry, University of Belgrade - Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade,Serbia
| | - Tanja Ćirković Veličković
- Department of Biochemistry & Centre of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12‑16, 11000 Belgrade,Serbia
| |
Collapse
|
23
|
A UCMPs@MIL-100 based thermo-sensitive molecularly imprinted fluorescence sensor for effective detection of β-lactoglobulin allergen in milk products. J Nanobiotechnology 2022; 20:51. [PMID: 35078480 PMCID: PMC8787952 DOI: 10.1186/s12951-022-01258-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022] Open
Abstract
In this study, a thermo-sensitive molecularly imprinted fluorescence sensor was developed for the specific detection of β-Lactoglobulin (β-LG) allergen in milk products. The metal–organic frameworks (MIL-100) with a high specific surface area was coated on the surface of upconversion micro-particles (UCMPs). As the core, an imprinted polymer layer allowing for swelling and shrinking with response to temperature was prepared, which exhibited high adsorption and mass transfer capabilities for β-LG allergen. The fluorescence intensity of UCMPs@MIL-100@MIP decreased linearly with the concentration of β-LG in the range of 0.1–0.8 mg mL−1, and the limit of detection was 0.043 mg mL−1. The imprinting factor reached 3.415, which indicated that excellent specificity of the UCMPs@MIL-100@MIP for β-LG allergen. In the analysis of β-LG allergen in actual milk samples, the proposed UCMPs@MIL-100@MIP fluorescence sensor produced reliable and accurate results (recovery: 86.0–98.4%, RSD: 2.8–6.8%), closely related to the results of standard HPLC method (correlation coefficient: 0.9949), indicating that its feasibility in the detection of β-LG allergen.
Collapse
|
24
|
Martín-Hernández MDC, Burnand D, Jud C, Portmann R, Egger L. Interaction of magnetic silica nanoparticles with food proteins during in vitro digestion. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Cau S, Tilocca M, Spanu C, Soro B, Tedde T, Salza S, Melillo R, Piras G, Virgilio S, Vodret B, Mudadu A. Detection of celery (Apium graveolens) allergen in foods of animal and plant origin by droplet digital PCR assay. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Tarapoulouzi M, Theocharis CR. Discrimination of Cheddar, Kefalotyri, and Halloumi cheese samples by the chemometric analysis of Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectra. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Chun SH, Lee KW. Immune-enhancing effects of β-lactoglobulin glycated with lactose following in vitro digestion on cyclophosphamide-induced immunosuppressed mice. J Dairy Sci 2021; 105:623-636. [PMID: 34763913 DOI: 10.3168/jds.2021-20681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
β-Lactoglobulin (β-LG) is a major milk protein, making up more than 53% of the total whey proteins, and is seen as a valuable ingredient in food processing because of its high essential amino acid content and diverse functional applications. The Maillard reaction can occur during the storage and processing of food and generate various beneficial effects, including anti-allergenicity, antioxidant, and immunomodulatory effects. The addition of an β-LG-lactose conjugate (LGL) produced by the Maillard reaction was shown to have a strong immune-enhancing effect, increasing both nitric oxide generation and cytokine expression through activation of RAW 264.7 cells, even after in vitro digestion. Furthermore, daily LGL administration resulted in the upregulation of several immune markers in a cyclophosphamide-induced immunosuppressive mouse model, indicating that this treatment stimulates multiple immune cells, including macrophages, natural killer cells, and lymphocytes, enhancing the proliferation and activation of both the innate and adaptive immune responses. Taken together, these findings indicate that consuming LGL on a regular basis can improve immunity by increasing the natural production of various immune cells.
Collapse
Affiliation(s)
- Su-Hyun Chun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Biomedical Science and Food Safety, Korea University, Anam-dong, Sungbuk-Gu, Seoul 02841, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
28
|
Qiu Q, Ni X, Liu T, Li Z, An X, Chen X. An electrochemical aptasensor for the milk allergen β-lactoglobulin detection based on a target-induced nicking site reconstruction strategy. Analyst 2021; 146:6808-6814. [PMID: 34647930 DOI: 10.1039/d1an01483h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Food allergy is an immune system reaction to a particular food, milk being the most common one. β-Lactoglobulin (β-Lg) is the main ingredient of milk protein and the main cause of infant milk allergy. On such an occasion, the determination of β-Lg is very important and the electrochemical sensors are a good alternative for this purpose since they are sensitive, selective and inexpensive. In this work, an electrochemical aptasensor was fabricated for the quantitative detection of β-Lg in hypoallergenic formula (HF) milk. A tri-functional hairpin (HP) was designed, which was composed of an aptamer sequence, a nicking site and a DNA sequence (T1). In the absence of β-Lg, the aptamer part hybridized with T1 to form a stable stem-loop structure. However, in the presence of β-Lg, the capture of the aptamer sequence towards β-Lg caused the reconstruction of HP and thus the nicking sites were exposed. Then, the nicking enzyme was activated and T1 could be released, which bound with the end of the hairpin 1-methylene blue (HP1-MB)/HP2-MB conjugation on the Au nanoparticle (AuNP) modified electrode surface. Thus, the insulating property of the electrode was enhanced and the current response of MB decreased, which built the quantitative basis for β-Lg detection. In this way, the proposed aptasensor exhibited a wide linear range of 0.01-100 ng mL-1 and a low detection limit of 5.7 pg mL-1. This aptasensor also displayed high selectivity, reproducibility and stability, and became a promising platform for β-Lg detection in real food samples.
Collapse
Affiliation(s)
- Qianying Qiu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Xiao Ni
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Tianchen Liu
- Nanjing Foreign Language School, Nanjing 210018, PR China
| | - Zening Li
- Nanjing Foreign Language School, Nanjing 210018, PR China
| | - Xinyi An
- Nanjing Foreign Language School, Nanjing 210018, PR China
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China. .,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, PR China
| |
Collapse
|
29
|
Antonopoulos D, Vougiouklaki D, Laliotis GP, Tsironi T, Valasi I, Chatzilazarou A, Halvatsiotis P, Houhoula D. Identification of Polymorphisms of the CSN2 Gene Encoding β-Casein in Greek Local Breeds of Cattle. Vet Sci 2021; 8:vetsci8110257. [PMID: 34822630 PMCID: PMC8625921 DOI: 10.3390/vetsci8110257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/09/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
This e research focused on the detection and identification of genetic polymorphisms in exon 7 of the β-casein CSN2 gene in blood samples from Greek Holstein cows and from local breeds of cattle, such as Vrachykeratiki, Katerinis, and Sykias. For this purpose, DNA was isolated from 780 blood samples obtained from Greek Holstein cows, 86 from three local breeds of cattle, namely Brachyceros, Katerinis, and Sykias, and 14 from Greek buffalo. The desired region of exon 7 was amplified by PCR, resulting in 121 and 251 bp products in bovine and buffalo samples. The PCR product was digested with restriction fragment length polymorphism (RFLP) on agarose gels. The restriction enzymes DdeI and TaqI were used. All of the blood samples had the amplified size. The results showed that 74.4% of the Greek Holstein cows had the A2A2 β-casein genotype, the three native breads Vrachykeratiki had 57.7%, and the other two had 100% of the A2A2 β-casein. From the 14 Greek buffalo, 100% had the A2A2 β-casein.
Collapse
Affiliation(s)
- Dionysios Antonopoulos
- Department of Food Science and Technology, Faculty of Food Sciences, University of West Attica, 12243 Athens, Greece; (D.A.); (D.V.)
| | - Despina Vougiouklaki
- Department of Food Science and Technology, Faculty of Food Sciences, University of West Attica, 12243 Athens, Greece; (D.A.); (D.V.)
| | - George P. Laliotis
- Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Theofania Tsironi
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece;
| | - Irene Valasi
- Department of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Archodoula Chatzilazarou
- Department of Wine, Vine and Beverage Sciences, Faculty of Food Sciences, University of West Attica, 12243 Athens, Greece;
| | - Panagiotis Halvatsiotis
- 2nd Propaedeutic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, 12462 Chaidari, Greece;
| | - Dimitra Houhoula
- Department of Food Science and Technology, Faculty of Food Sciences, University of West Attica, 12243 Athens, Greece; (D.A.); (D.V.)
- Correspondence:
| |
Collapse
|
30
|
Zhu Y, Hsieh YHP. Effect of storage and processing on the immunodetectability of fish proteins using pooled monoclonal antibodies in ELISA and dot blot. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Marques ITO, Vasconcelos FR, Alves JPM, Montenegro AR, Fernandes CCL, Oliveira FBB, Silva CP, Nagano CS, Figueiredo FC, Beserra FJ, Moura AA, Rondina D. Proteome of milk fat globule membrane and mammary gland tissue in goat fed different lipid supplementation. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Nguyen AV, Lee D, Williams KM, Jackson LS, Bedford B, Kwon J, Scholl PF, Khuda SE. Effectiveness of antibody specific for heat-processed milk proteins and incurred calibrants for ELISA-based quantification of milk in dark chocolate matrices. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Spöttel J, Brockelt J, Badekow S, Rohn S. Immunological Analysis of Isothiocyanate-Modified α-Lactalbumin Using High-Performance Thin Layer Chromatography. Molecules 2021; 26:molecules26071842. [PMID: 33805932 PMCID: PMC8036266 DOI: 10.3390/molecules26071842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Undirected modifications between food proteins and secondary plant metabolites can occur during food processing. The results of covalent interactions can alter the functional and biological properties of the proteins. The present work studied the extent of which covalent conjugation of the bioactive metabolite benzyl isothiocyanate (BITC; a glucosinolate breakdown product) to the whey protein α-lactalbumin affects the protein’s allergenicity. Additional to the immunological analysis of native untreated and BITC-modified α-lactalbumin, the analysis of antigenic properties of proteolytically digested protein derivatives was also performed by high performance thin layer chromatography and immunostaining. As a result of the chemical modifications, structural changes in the protein molecule affected the allergenic properties. In this process, epitopes are destroyed or inactivated, but at the same time, buried epitopes can be exposed or newly formed, so that the net effect was an increase in allergenicity, in this case. Results from the tryptic hydrolysis suggest that BITC conjugation sterically hindered the cleavage sites for the enzyme, resulting in reduced digestibility and allergenicity. Residual antigenicity can be still present as short peptide fragments that provide epitopes. The desire to make food safer for allergy sufferers and to protect sensitized individuals from an allergenic reaction makes it clear that the detection of food antigens is mandatory; especially by considering protein interactions.
Collapse
Affiliation(s)
- Jenny Spöttel
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (J.S.); (J.B.); (S.B.)
| | - Johannes Brockelt
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (J.S.); (J.B.); (S.B.)
| | - Svenja Badekow
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (J.S.); (J.B.); (S.B.)
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (J.S.); (J.B.); (S.B.)
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, TIB 4/3-1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Correspondence: ; Tel.: +49-30-314-72583
| |
Collapse
|
34
|
Milk Ingredients in Meat Products: Can Autoclaving and In Vitro Gastroduodenal Digestion Mitigate Their IgE-Binding Capacity? Nutrients 2021; 13:nu13030931. [PMID: 33805703 PMCID: PMC8000631 DOI: 10.3390/nu13030931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 12/03/2022] Open
Abstract
The food industry commonly uses milk ingredients as technological aids in an uncounted number of products. On the other hand, milk contains allergenic proteins causing adverse allergic reactions in sensitized/allergic individuals. This work intends to evaluate the effect of autoclaving and in vitro digestion on the allergenicity of milk proteins incurred in meat products. Protein profiles of raw and autoclaved sausages without and with the addition of 10% of milk protein concentrates were analyzed by gel electrophoresis and liquid chromatography–mass spectrometry. Additionally, residual IgE-reactivity was evaluated by immunoblot analysis using pooled sera of cow’s-milk-allergic individuals followed by bioinformatic analysis. Results showed that autoclaving led to an increase in protein fragmentation (higher number of short peptides) and consequently to a higher digestion rate, that was found to be more pronounced in β-casein. The IgE-binding capacity of milk proteins seems to be reduced after autoclaving prior to digestion, with a residual reactivity in caseins, but was eliminated following digestion. This study highlights the importance of autoclaving as a processing strategy to produce hypoallergenic formulas.
Collapse
|
35
|
Cow's Milk Processing-Friend or Foe in Food Allergy? Foods 2021; 10:foods10030572. [PMID: 33803451 PMCID: PMC8000412 DOI: 10.3390/foods10030572] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cow’s milk (CM) is an integral part of our daily diet starting in infancy and continuing throughout our lifetime. Its composition is rich in proteins with a high nutritional value, bioactive components, milk minerals including calcium, and a range of immunoactive substances. However, cow’s milk can also induce a range of immune-mediated diseases including non-IgE-mediated food allergies and IgE-mediated food allergies. Cow’s milk allergens have been identified and characterized and the most relevant ones can be assigned to both, the whey and casein fraction. For preservation a range of processing methods are applied to make cow’s milk and dairy products safe for consumers. However, these methods affect milk components and thus alter the overall immunogenic activity of cow’s milk. This review summarizes the current knowledge on cow’s milk allergens and immunoactive substances and the impact of the different processes up- or downregulating the immunogenicity of the respective proteins. It highlights the gaps of knowledge of the related disease mechanisms and the still unidentified beneficial immunomodulating compounds of cow’s milk.
Collapse
|
36
|
Hostetler GL, Barber CM, Miklus MB, Prieto PA. Determination of Casein Allergens in Extensively Hydrolyzed Casein Infant Formula by Liquid Chromatography-Tandem Mass Spectrometry. J AOAC Int 2021; 104:172-179. [PMID: 33064804 PMCID: PMC8372038 DOI: 10.1093/jaoacint/qsaa142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The use of hypoallergenic infant formulas and the need for reliable tests to determine the presence of residual antigens have increased in parallel. OBJECTIVE An LC-MS method for quantitation of casein was validated using incurred samples and a matrix-matched external standard curve. METHOD Powdered infant formula samples were extracted in a buffer of sodium deoxycholate and ammonium bicarbonate at 60°C and filtered through 7 kDa desalting columns. Samples were digested overnight with trypsin and precipitated with acid prior to analysis of marker peptides by tandem mass spectrometry. RESULTS Based on three marker peptides, the linear range for casein was 1.8-42 μg/g of powdered infant formula with an LOQ of 1.8 μg/g. The determination coefficients (R2) for each curve were ≥0.99 for casein peptides. Method repeatability was ≤22% RSD and intermediate precision was ≤23% RSD; recovery of casein from incurred material (2-20 µg/g) ranged from 78% to 118%. CONCLUSIONS An LC-MS/MS method was developed and validated for confirmation of casein allergens in hypoallergenic infant formula. HIGHLIGHTS A method was developed to accurately and reliably quantify casein allergens in extensively hydrolyzed casein infant formula by LC-MS without the need for custom peptide standards.
Collapse
Affiliation(s)
- Gregory L Hostetler
- Perrigo Nutritionals, Research and Development, 147 Industrial Park Road, Georgia, VT 05468, USA
| | - Cynthia M Barber
- Perrigo Nutritionals, Scientific Affairs, 652 Peter Jefferson Parkway, Charlottesville, VA 22911, USA
| | - Michael B Miklus
- Perrigo Nutritionals, Research and Development, 147 Industrial Park Road, Georgia, VT 05468, USA
| | - Pedro A Prieto
- Perrigo Nutritionals, Scientific Affairs, 652 Peter Jefferson Parkway, Charlottesville, VA 22911, USA
| |
Collapse
|
37
|
Shrestha A, Samuelsson LM, Sharma P, Day L, Cameron-Smith D, Milan AM. Comparing Response of Sheep and Cow Milk on Acute Digestive Comfort and Lactose Malabsorption: A Randomized Controlled Trial in Female Dairy Avoiders. Front Nutr 2021; 8:603816. [PMID: 33659266 PMCID: PMC7917135 DOI: 10.3389/fnut.2021.603816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Sheep milk (SM) is a possible alternate dairy source for those who experience digestive symptoms with cow milk (CM). While both the milks contain lactose, one of the causes for self-reported intolerance to CM, the composition of SM and CM also differs across proteins and fats, which have been shown to impact digestive processes. Objective: To compare the acute digestive comfort and lactose malabsorption of SM to CM in female dairy avoiders. Method: In a double-blinded, randomized cross over trial, 30 dairy-avoiding females (aged 20-30 years) drank 650 mL of SM or CM (each reconstituted from spray dried powder) following an overnight fast, on two separate occasions at least 1 week apart. Blood samples were collected for glucose and insulin assessment, and single nucleotide polymorphisms of the lactase (LCT) gene (C/T13910 and G/A22018). Breath H2 and visual analog scale (VAS) digestive symptom scores were recorded at fasting and regular intervals over 4 h after ingestion. Results: Eighty percentage of study participants were lactase non-persistent (LNP; CC13910 and GG22018 genotype). Digestive symptoms, including abdominal cramps, distension, rumbling, bloating, belching, diarrhea, flatulence, vomiting, and nausea, were similar in response to SM and CM ingestion (milk × time, P > 0.05). Breath H2 was greater after CM than SM (72 ± 10 vs. 43 ± 6 ppm at 240 min, P < 0.001), which may be due to greater lactose content in CM (33 vs. 25 g). Accordingly, when corrected for the lactose content breath H2 did not differ between the two milks. The response remained similar when analyzed in the LNP subset alone (n = 20). Conclusions: Despite a higher energy and nutrient content, SM did not increase adverse digestive symptoms after ingestion, relative to CM, although there was a reduced breath H2 response, which could be attributed to the lower lactose content in SM. The tolerability of SM should be explored in populations without lactose intolerance for whom underlying trigger for intolerance is unknown.
Collapse
Affiliation(s)
- Aahana Shrestha
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | | | - Pankaja Sharma
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Li Day
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - David Cameron-Smith
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.,Riddet Institute, Palmerston North, New Zealand.,Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Amber M Milan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.,AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North, New Zealand
| |
Collapse
|
38
|
Złotkowska D, Stachurska E, Fuc E, Wróblewska B, Mikołajczyk A, Wasilewska E. Differences in Regulatory Mechanisms Induced by β-Lactoglobulin and κ-Casein in Cow's Milk Allergy Mouse Model-In Vivo and Ex Vivo Studies. Nutrients 2021; 13:nu13020349. [PMID: 33503831 PMCID: PMC7911159 DOI: 10.3390/nu13020349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
The presence of various proteins, including modified ones, in food which exhibit diverse immunogenic and sensitizing properties increases the difficulty of predicting host immune responses. Still, there is a lack of sufficiently reliable and comparable data and research models describing allergens in dietary matrices. The aim of the study was to estimate the immunomodulatory effects of β-lactoglobulin (β-lg) in comparison to those elicited by κ-casein (κ-CN), in vivo and ex vivo, using naïve splenocytes and a mouse sensitization model. Our results revealed that the humoral and cellular responses triggered by β-lg and κ-CN were of diverse magnitudes and showed different dynamics in the induction of control mechanisms. β-Lg turned out to be more immunogenic and induced a more dominant Th1 response than κ-CN, which triggered a significantly higher IgE response. For both proteins, CD4+ lymphocyte profiles correlated with CD4+CD25+ and CD4+CD25+Foxp3+ T cells induction and interleukin 10 secretion, but β-lg induced more CD4+CD25+Foxp3- Tregs. Moreover, ex vivo studies showed the risk of interaction of immune responses to different milk proteins, which may exacerbate allergy, especially the one caused by β-lg. In conclusion, the applied model of in vivo and ex vivo exposure to β-lg and κ-CN showed significant differences in immunoreactivity of the tested proteins (κ-CN demonstrated stronger allergenic potential than β-lg), and may be useful for the estimation of allergenic potential of various food proteins, including those modified in technological processes.
Collapse
Affiliation(s)
- Dagmara Złotkowska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
- Correspondence: (D.Z.); (E.W.); Tel.: +48-89-523-46-75 (D.Z.); +48-89-523-46-03 (E.W.)
| | - Emilia Stachurska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
| | - Ewa Fuc
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
| | - Barbara Wróblewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
| | - Anita Mikołajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| | - Ewa Wasilewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
- Correspondence: (D.Z.); (E.W.); Tel.: +48-89-523-46-75 (D.Z.); +48-89-523-46-03 (E.W.)
| |
Collapse
|
39
|
Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens? Clin Rev Allergy Immunol 2021; 62:1-36. [DOI: 10.1007/s12016-020-08826-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/31/2022]
|
40
|
Calvano CD, Bianco M, Losito I, Cataldi TRI. Proteomic Analysisof Food Allergens by MALDI TOF/TOF Mass Spectrometry. Methods Mol Biol 2021; 2178:357-376. [PMID: 33128761 DOI: 10.1007/978-1-0716-0775-6_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is largely recognized as an important tool in the analysis of many biomolecules such as proteins and peptides. The MS analysis of digested peptides to identify a protein or some of its modifications is a key step in proteomics. MALDI-MS is well suited for the peptide mass fingerprinting (PMF) technique, as well as selected fragmentation of various precursors using collisional-induced dissociation (CID) or post-source decay (PSD).In the last few years, MALDI-MS has played a significant role in food chemistry, especially in the detection of food adulterations, characterization of food allergens, and investigation of protein structural modifications induced by various industrial processes that could be an issue in terms of food quality and safety.Here, we present simple extraction protocols of allergenic proteins in food commodities such as milk, egg, hazelnut , and lupin seeds. Classic bottom-up approaches based on Sodium Dodecyl Sulphate (SDS) gel electrophoresis separation followed by in-gel digestion or direct in-solution digestion of whole samples are described. MALDI-MS and MS /MS analyses are discussed along with a comparison of data obtained by using the most widespread matrices for proteomic studies, namely, α-cyano-4-hydroxy-cinnamic acid (CHCA) and α-cyano-4-chloro-cinnamic acid (CClCA). The choice of the most suitable MALDI matrix is fundamental for high-throughput screening of putative food allergens.
Collapse
Affiliation(s)
- Cosima D Calvano
- Centro Interdipartimentale di Ricerca SMART, Università degli Studi di Bari "Aldo Moro", Bari, Italy. .,Dipartimento di Farmacia- Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| | - Mariachiara Bianco
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Ilario Losito
- Centro Interdipartimentale di Ricerca SMART, Università degli Studi di Bari "Aldo Moro", Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Tommaso R I Cataldi
- Centro Interdipartimentale di Ricerca SMART, Università degli Studi di Bari "Aldo Moro", Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
41
|
Pujol-Vila F, Aveling Jenkins AT, Muñoz-Berbel X, Mas Gordi J. Nanoplasmonic Paper-Based Platform for General Screening of Biomacromolecules. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2335. [PMID: 33255587 PMCID: PMC7760946 DOI: 10.3390/nano10122335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 11/28/2022]
Abstract
Hygiene assessment in industrial and clinical environments is crucial in the prevention of health risks. Current technologies for routine cleanliness evaluation rely on the detection of specific biomolecules, thus requiring more than one test for broad-range screening. Herein, the modulation of the catalytic activity of gold nanoparticles (AuNPs) by biomacromolecules was employed to develop a nanoplasmonic platform for general hygiene screening. AuNPs were immobilized on cellulose paper by simple adsorption. When ferricyanide was dispensed onto the paper, the AuNPs catalysed the ferricyanide's dissociation, releasing free cyanide ions that dissolved them. The AuNP dissolution produced an intense colour shift detectable with the naked eye. When biomacromolecules (e.g., proteins and polysaccharides) were present, they spontaneously attached to AuNPs, forming a biomolecular corona (biocorona), reducing their catalytic activity until complete suppression when the NPs were fully covered by molecules. The concentration-dependent decrease in the catalytic activity was here used to quantify biomacromolecules and complex samples such as milk, eggs, soy sauce and yeast extract (in 20 min), with detection limits comparable to those of standard methods, i.e., 0.25 µg mL-1 for albumin. This nano-enabled technology may be applied as a broad-range (unspecific) alert system for inexpensive cleanliness evaluation, with potential applications in sensitive sectors including productive industries and hospitals.
Collapse
Affiliation(s)
- Ferran Pujol-Vila
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, 08193 Barcelona, Spain;
| | | | - Xavier Muñoz-Berbel
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, 08193 Barcelona, Spain;
| | - Jordi Mas Gordi
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
| |
Collapse
|
42
|
Bagwe-Parab S, Yadav P, Kaur G, Tuli HS, Buttar HS. Therapeutic Applications of Human and Bovine Colostrum in the Treatment of Gastrointestinal Diseases and Distinctive Cancer Types: The Current Evidence. Front Pharmacol 2020; 11:01100. [PMID: 33071773 PMCID: PMC7533576 DOI: 10.3389/fphar.2020.01100] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
The incidence of gastrointestinal disorders (GID) and cancers is escalating all over the world. Limited consumption of colostrum by newborns not only weakens the immune system but also predisposes infants to microbial infections. Colostrum is nature's perfect food, sometimes referred to as the 'elixir of life'. Breast-fed infants have a lower incidence of GI tract infections than infants fed formula or cow's milk. As per WHO statistics, cancer is the most prevalent disease globally and causes 9.6 million deaths worldwide. The current strategies for treating cancer include chemotherapy, radiation, and surgery. However, chemotherapy and radiation exposure are usually associated with serious long-term side effects and deterioration in the quality of life (QOL) of patients. Furthermore, the hospitalization and medication costs for treating cancers are exorbitant and impose high economic burden on healthcare systems. People are desperately looking for cost-effective and affordable alternative therapies for treating GID and cancers. Therefore, there is an urgent need for clinically evaluating the anticancer compounds isolated from plants and animals. Such therapies would not only be economical and have fewer side effects, but also help to improve the QOL of cancer patients. Recently, bovine colostrum (BC) has caught the attention of many investigators to explore its anticancer potential in humans. BC impregnated dressings are highly effective in treating chronic wounds and diabetic foot ulcer. BC is rich in lactoferrin, a glycoprotein with strong antioxidant, anti-inflammatory, anti-cancer, and anti-microbial properties. Intravaginal application of BC tablets is effective in causing the regression of low-grade cervical intraepithelial neoplasia. The underlying mechanisms of BC at cellular, genetic, and molecular levels remain to be ascertained. Oral BC supplement is well-tolerated, but some people may experience problems such as flatulence and nausea. Well-designed, randomized, placebo-controlled, clinical trials are needed to access the therapeutic potential, long-term safety, and optimal doses of BC products. This review is aimed to highlight the anticancer potential of BC and its components, and the therapeutic applications of BC supplements in treating gastrointestinal diseases in children and adults. We also discuss the health promotion benefits and therapeutic potential of BC nutraceuticals in reducing the incidence of non-communicable diseases.
Collapse
Affiliation(s)
- Siddhi Bagwe-Parab
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandals Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Pratik Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandals Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandals Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
43
|
Pawlos M, Znamirowska A, Zaguła G, Buniowska M. Use of Calcium Amino Acid Chelate in the Production of Acid-Curd Goat Cheese. Foods 2020; 9:E994. [PMID: 32722227 PMCID: PMC7466320 DOI: 10.3390/foods9080994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
Amino acid chelates are a new group of compounds approved for food enrichment, however there is no previous research using calcium amino acid chelate to enrich goat's milk products. The purpose of this research was to evaluate the possibility of using calcium amino acid chelate to produce goat's acid-curd cheese. In this study, four types of acid-curd cheeses from goat's milk subjected to 85 °C/5 min treatment were produced: control cheeses-made from milk without calcium addition and cheeses from milk enriched with 30, 35 and 40 mg of Ca (in 100 g of milk) in the form of calcium amino acid chelate. Goat cheese with calcium amino acid chelate had a higher moisture content, and a lower fat content. More fat was separated with the whey. In cheeses made from the milk with calcium amino acid chelate there was no goaty taste. Enrichment with 35 mg of Ca in 100 g of goat milk increased the calcium content in cheese by 60.5% in comparison to the control sample. However, the enrichment of goat milk with 40 mg Ca (in 100 g of processed milk) increased the calcium content in cheese by only 63.29%.
Collapse
Affiliation(s)
- Małgorzata Pawlos
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 2D, 35601 Rzeszów, Poland;
| | - Agata Znamirowska
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 2D, 35601 Rzeszów, Poland;
| | - Grzegorz Zaguła
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 2D, 35601 Rzeszów, Poland;
| | - Magdalena Buniowska
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 2D, 35601 Rzeszów, Poland;
| |
Collapse
|
44
|
Mansor M, Al-Obaidi JR, Jaafar NN, Ismail IH, Zakaria AF, Abidin MAZ, Selamat J, Radu S, Jambari NN. Optimization of Protein Extraction Method for 2DE Proteomics of Goat's Milk. Molecules 2020; 25:2625. [PMID: 32516945 PMCID: PMC7321142 DOI: 10.3390/molecules25112625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/17/2022] Open
Abstract
Two-dimensional electrophoretic (2DE)-based proteomics remains a powerful tool for allergenomic analysis of goat's milk but requires effective extraction of proteins to accurately profile the overall causative allergens. However, there are several current issues with goat's milk allergenomic analysis, and among these are the absence of established standardized extraction method for goat's milk proteomes and the complexity of goat's milk matrix that may hamper the efficacy of protein extraction. This study aimed to evaluate the efficacies of three different protein extraction methods, qualitatively and quantitatively, for the 2DE-proteomics, using milk from two commercial dairy goats in Malaysia, Saanen, and Jamnapari. Goat's milk samples from both breeds were extracted by using three different methods: a milk dilution in urea/thiourea based buffer (Method A), a triphasic separation protocol in methanol/chloroform solution (Method B), and a dilution in sulfite-based buffer (Method C). The efficacies of the extraction methods were assessed further by performing the protein concentration assay and 1D and 2D SDS-PAGE profiling, as well as identifying proteins by MALDI-TOF/TOF MS/MS. The results showed that method A recovered the highest amount of proteins (72.68% for Saanen and 71.25% for Jamnapari) and produced the highest number of protein spots (199 ± 16.1 and 267 ± 10.6 total spots for Saanen and Jamnapari, respectively) with superior gel resolution and minimal streaking. Six milk protein spots from both breeds were identified based on the positive peptide mass fingerprinting matches with ruminant milk proteins from public databases, using the Mascot software. These results attest to the fitness of the optimized protein extraction protocol, method A, for 2DE proteomic and future allergenomic analysis of the goat's milk.
Collapse
Affiliation(s)
- Muzammeer Mansor
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (M.M.); (N.N.J.); (J.S.); (S.R.)
| | - Jameel R. Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia
| | - Nurain Nadiah Jaafar
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (M.M.); (N.N.J.); (J.S.); (S.R.)
| | - Intan Hakimah Ismail
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (I.H.I.); (M.A.Z.A.)
| | - Atiqah Farah Zakaria
- Department of Otorhinolaryngology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Mohd Azri Zainal Abidin
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (I.H.I.); (M.A.Z.A.)
| | - Jinap Selamat
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (M.M.); (N.N.J.); (J.S.); (S.R.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - Son Radu
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (M.M.); (N.N.J.); (J.S.); (S.R.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| | - Nuzul Noorahya Jambari
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (M.M.); (N.N.J.); (J.S.); (S.R.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
45
|
Panahipour L, Tabatabaei AA, Gruber R. Hypoallergenic infant formula lacks transforming growth factor beta activity and has a lower anti-inflammatory activity than regular infant formula. J Dairy Sci 2020; 103:6771-6781. [PMID: 32505409 DOI: 10.3168/jds.2019-18067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/27/2020] [Indexed: 01/02/2023]
Abstract
Hypoallergenic formulas are recommended for infants who are not breastfed and cannot tolerate cow milk formulas due to allergy. These formulas are hydrolyzed to break down larger protein chains into shorter, easy-to-digest, and potentially less allergenic proteins. Hydrolysis, however, possibly occurs at the expense of the transforming growth factor beta (TGF-β) and anti-inflammatory activity that is inherent in regular formula. Our objective was to determine the TGF-β and the anti-inflammatory activity of commercially available hypoallergenic and regular formulas. Human gingival fibroblasts were incubated with reconstituted formulas followed by detection of TGF-β target genes and activation of Smad2/3 signaling. Gingival fibroblasts and the oral squamous cell carcinoma cell line HSC-2 were also exposed to formulas before adding interleukin (IL)1β and tumor necrosis factor (TNF)α to provoke expression of pro-inflammatory cytokines. For murine bone marrow-derived macrophages, pro-inflammatory cytokine expression was stimulated with saliva. Changes in p65 nuclear translocation and phosphorylation of smad3 and p38 were analyzed by immunostaining. Our study demonstrated that regular formula, but not hypoallergenic formula, enhanced the expression of TGF-β target genes IL11, PRG4, and NOX4 in gingival fibroblasts. Hypoallergenic formulas also failed to initiate nuclear translocation of Smad2/3 and phosphorylation of Smad3. Moreover, regular formulas were more potent than hypoallergenic formulas in reducing the expression of pro-inflammatory cytokines in gingival fibroblasts, HSC-2 epithelial cells, and murine bone marrow macrophages. Hypoallergenic and regular formulas had a similar capacity to reduce p65 nuclear translocation and phosphorylation of p38 in fibroblasts. These findings suggest that hypoallergenic formulas lack in vitro TGF-β activity and have a lower anti-inflammatory activity compared with regular formulas.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | | | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland; Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200 Vienna, Austria.
| |
Collapse
|
46
|
Villa C, Costa J, Oliveira MBP, Mafra I. Cow's milk allergens: Screening gene markers for the detection of milk ingredients in complex meat products. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
47
|
Development of synchronous fluorescence method for identification of cow, goat, ewe and buffalo milk species. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Li X, Bai H, Wu Y, Cheng W, Wu Y, Wu Z, Yang A, Tong P, Chen H. Structural analysis and allergenicity assessment of an enzymatically cross-linked bovine α-lactalbumin polymer. Food Funct 2020; 11:628-639. [DOI: 10.1039/c9fo02238d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic cross-linking is frequently used in bio-processing of dairy products since it could change the physiochemical and functional characterization.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
- School of Food Science and Technology
| | - Hao Bai
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
- School of Food Science and Technology
| | - Yuanyuan Wu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
- School of Food Science and Technology
| | - Wei Cheng
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
- School of Food Science and Technology
| | - Yong Wu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
- Sino-German Joint Research Institute
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
- Sino-German Joint Research Institute
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
- Sino-German Joint Research Institute
| | - Ping Tong
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
- Sino-German Joint Research Institute
| |
Collapse
|
49
|
Critical review on proteotypic peptide marker tracing for six allergenic ingredients in incurred foods by mass spectrometry. Food Res Int 2019; 128:108747. [PMID: 31955787 DOI: 10.1016/j.foodres.2019.108747] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022]
Abstract
Peptide marker identification is one of the most important steps in the development of a mass spectrometry (MS) based method for allergen detection, since the robustness and sensitivity of the overall analytical method will strictly depend on the reliability of the proteotypic peptides tracing for each allergen. The European legislation in place issues the mandatory labelling of fourteen allergenic ingredients whenever used in different food formulations. Among these, six allergenic ingredients, namely milk, egg, peanut, soybean, hazelnut and almond, can be prioritized in light of their higher occurrence in food recalls for undeclared presence with serious risk decision. In this work, we described the results of a comprehensive evaluation of the current literature on MS-based allergen detection aiming at collecting all available information about proteins and peptide markers validated in independent studies for the six allergenic ingredients of interest. The main features of the targeted proteins were commented reviewing all details available about known isoforms and sequence homology particularly in plant-derived allergens. Several critical aspects affecting peptide markers reliability were discussed and according to this evaluation a final short-list of candidate markers was compiled likely to be standardized and implemented in MS methods for allergen analysis.
Collapse
|
50
|
Linhart B, Freidl R, Elisyutina O, Khaitov M, Karaulov A, Valenta R. Molecular Approaches for Diagnosis, Therapy and Prevention of Cow´s Milk Allergy. Nutrients 2019; 11:E1492. [PMID: 31261965 PMCID: PMC6683018 DOI: 10.3390/nu11071492] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cow´s milk is one of the most important and basic nutrients introduced early in life in our diet but can induce IgE-associated allergy. IgE-associated allergy to cow´s milk can cause severe allergic manifestations in the gut, skin and even in the respiratory tract and may lead to life-threatening anaphylactic shock due to the stability of certain cow´s milk allergens. Here, we provide an overview about the allergen molecules in cow´s milk and the advantages of the molecular diagnosis of IgE sensitization to cow´s milk by serology. In addition, we review current strategies for prevention and treatment of cow´s milk allergy and discuss how they could be improved in the future by innovative molecular approaches that are based on defined recombinant allergens, recombinant hypoallergenic allergen derivatives and synthetic peptides.
Collapse
Affiliation(s)
- Birgit Linhart
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria.
| | - Raphaela Freidl
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Olga Elisyutina
- NRC Institute of Immunology FMBA of Russia, 115478, Moscow, Russia
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, 115478, Moscow, Russia
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, 115478, Moscow, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| |
Collapse
|