1
|
Einerhand AWC, Mi W, Haandrikman A, Sheng XY, Calder PC. The Impact of Linoleic Acid on Infant Health in the Absence or Presence of DHA in Infant Formulas. Nutrients 2023; 15:2187. [PMID: 37432333 DOI: 10.3390/nu15092187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Both linoleic acid (LA) and α-linolenic acid (ALA) are essential dietary fatty acids, and a balanced dietary supply of these is of the utmost importance for health. In many countries across the globe, the LA level and LA/ALA ratio in breast milk (BM) are high. For infant formula (IF), the maximum LA level set by authorities (e.g., Codex or China) is 1400 mg LA/100 kcal ≈ 28% of total fatty acid (FA) ≈ 12.6% of energy. The aims of this study are: (1) to provide an overview of polyunsaturated fatty acid (PUFA) levels in BM across the world, and (2) to determine the health impact of different LA levels and LA/ALA ratios in IF by reviewing the published literature in the context of the current regulatory framework. The lipid composition of BM from mothers living in 31 different countries was determined based on a literature review. This review also includes data from infant studies (intervention/cohort) on nutritional needs regarding LA and ALA, safety, and biological effects. The impact of various LA/ALA ratios in IF on DHA status was assessed within the context of the current worldwide regulatory framework including China and the EU. Country averages of LA and ALA in BM range from 8.5-26.9% FA and 0.3-2.65% FA, respectively. The average BM LA level across the world, including mainland China, is below the maximum 28% FA, and no toxicological or long-term safety data are available on LA levels > 28% FA. Although recommended IF LA/ALA ratios range from 5:1 to 15:1, ratios closer to 5:1 seem to promote a higher endogenous synthesis of DHA. However, even those infants fed IF with more optimal LA/ALA ratios do not reach the DHA levels observed in breastfed infants, and the levels of DHA present are not sufficient to have positive effects on vision. Current evidence suggests that there is no benefit to going beyond the maximum LA level of 28% FA in IF. To achieve the DHA levels found in BM, the addition of DHA to IF is necessary, which is in line with regulations in China and the EU. Virtually all intervention studies investigating LA levels and safety were conducted in Western countries in the absence of added DHA. Therefore, well-designed intervention trials in infants across the globe are required to obtain clarity about optimal and safe levels of LA and LA/ALA ratios in IF.
Collapse
Affiliation(s)
| | - Wiola Mi
- Bunge Loders Croklaan Nutrition, Shanghai 200051, China
| | | | - Xiao-Yang Sheng
- Department of Developmental Behavioral Pediatric & Children Healthcare, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200051, China
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
2
|
Wu D, Zhang L, Tan CP, Zheng Z, Liu Y. Comparative Lipidomic Analysis Reveals the Lactational Changes in the Lipid Profiles of Chinese Human Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5403-5416. [PMID: 36951298 DOI: 10.1021/acs.jafc.2c08857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Human milk (HM) lipid plays a crucial role in infant development, whereas its complex lipid profiles and its dynamic changes during prolonged lactation have not been investigated yet. Comparative lipidomic analyses were employed in investigating the lipid profiles of breast milk covering all lactation stages herein. Results revealed significant differences between colostrum and the remaining lactations. A total of 237 species of glycerolipids (GLs) and 231 phospholipids (PLs) were identified. Colostrum had the most abundant lipid species and was enriched with triacylglycerols (TGs) with a high molecular weight. TG(17:1/18:1/24:1), TG(24:1/24:1/26:1), TG(24:0/24:1/26:1), and SM(d20:1/14:1) were characteristic lipids of colostrum. Differential lipid species which were responsible for distinguishing the adjacent lactations were also indicated. Our findings can help deepen the overall understanding of HM lipid profiles and its dynamic changes, which will facilitate the development of infant formulas suitable for Chinese babies in diverse age groups.
Collapse
Affiliation(s)
- Danjie Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Le Zhang
- Department of Neonatology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Malaysia
| | - Zhaojun Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
3
|
Liu H, Huang J, Olajide T, Liu T, Liu Z, Liao X, Weng X. Preparation of human milk fat substitute and improvement of its oxidative stability. GRASAS Y ACEITES 2023. [DOI: 10.3989/gya.0444211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
1,3-Dioleoyl-2-palmitoylglycerol (OPO) was synthesized by enzymatic interesterification using palm stearin rich in tripalmitin (PPP) and ethyl oleate. Enzymatic interesterification parameters such as temperature, water content, enzyme load, and substrate molar ratio were optimized. High contents of C52 (primarily OPO and its isomeric compounds) production (46.7%) and sn-2 palmitic acid (PA) content of 75.3% were detected. In addition, OPO-human milk fat substitute (HMFS) was blended with coconut, soybean, algal and microbial oils at a weight ratio of 0.70:0.18:0.11:0.004:0.007 to simulate fatty acids in human milk fat (HMF) according to the mathematical model. The main and important fatty acids in the Final-HMFS were within the ranges of those present in HMF. The Final-HMFS could promote the absorption of fats and minerals and the development of retina tissues in infants. The mixture of L-ascorbyl palmitate (L-AP) and vitamin E (VE) resulted in a synergistic antioxidant effect both in OPO-HMFS and OPO-HMFS emulsions. This finding has great significance in improving the quality and extending shelf-life of HMFS.
Collapse
|
4
|
Kloek W, Timmer CJ, Groot ND, Feitsma AL. Similarity index and soap forming capacity in milk fat- and OPO-containing infant formulas. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
5
|
Ren C, Jin J, Zhang Y, Jin Q, Wang X. Triacylglycerol fingerprint of sow milks during different lactation stages and from different breeds. J DAIRY RES 2022; 89:1-10. [PMID: 36128794 DOI: 10.1017/s0022029922000607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sow milk fats not only provide energy but also essential nutrients for piglets. Thus, feeding strategies must be aligned with fat composition, especially triacylglycerols (TAGs) and their isomers. The triacylglycerol (TAG) profiles of sow milk fats from five typical breeds (Landrace × Large White, Landrace, Large White, Duroc, Pietrain) and two lactation stages (colostrum and milk) were systematically studied. A total of 45 major TAG species were identified using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The most abundant TAG was oleic acid-palmitic acid-linoleic acid (O-P-L) (13.92% and 12.03% in colostrum and milk, respectively), which was not significantly different in colostrum among all breeds. TAG composition of sow milk was affected mainly by the lactation stage rather than sow breed. Furthermore, TAG compositions of sow milk fats were similar to those of human milk fats, but significant differences were observed between commercial piglet formulas and sow milk. Therefore, the results will contribute to the optimization of piglet formulas to improve the growth and wellness of piglets, as well as potentially providing a basis for food usage as a new source of nutrients for human infants in future.
Collapse
Affiliation(s)
- Cuirong Ren
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jun Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanbing Zhang
- HuaNong Lipid Nutrition Technology Co., Ltd in Shandong Province, Binzhou, 256600, China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Yuan T, Wang L, Jin J, Mi L, Pang J, Liu Z, Gong J, Sun C, Li J, Wei W, Jin Q, Wang X. Role Medium-Chain Fatty Acids in the Lipid Metabolism of Infants. Front Nutr 2022; 9:804880. [PMID: 35757267 PMCID: PMC9218682 DOI: 10.3389/fnut.2022.804880] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Human breastmilk, the ideal food for healthy infants, naturally contains a high concentration of medium-chain fatty acids (MCFAs, about 15% of total fatty acids). MCFAs are an important energy source for infants due to their unique digestive and metabolic properties. MCFA-enriched oils are widely used in an infant formula, especially the formula produced for preterm infants. Recently, there has been a growing interest in the triglyceride structure of MCFAs in human milk, their metabolism, and their effects on infant health. This study summarized the MCFA composition and structure in both human milk and infant formula. Recent studies on the nutritional effects of MCFAs on infant gut microbiota have been reviewed. Special attention was given to the MCFAs digestion and metabolism in the infants. This paper aims to provide insights into the optimization of formulations to fulfill infant nutritional requirements.
Collapse
Affiliation(s)
- Tinglan Yuan
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Lei Wang
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lijuan Mi
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Beijing, China
| | - Jinzhu Pang
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Beijing, China
| | - Zhengdong Liu
- Yashili International Group Co., Ltd., Guangzhou, China
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Cong Sun
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Jufang Li
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Beijing, China
| | - Wei Wei
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Hokkanen S, Frey AD, Yang B, Linderborg KM. Similarity Index for the Fat Fraction between Breast Milk and Infant Formulas. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6191-6201. [PMID: 35543583 PMCID: PMC9136929 DOI: 10.1021/acs.jafc.1c08029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
The similarity of the fat fraction in infant formulas rich in either bovine milk fat (MF) or vegetable oil (VO) to breast milk was evaluated by analyzing their lipid composition. Milk fat-rich formulas were highly similar (average similarity index 0.68) to breast milk compared to the VO-rich formulas (average similarity index 0.56). The highest difference in the indices was found in the contents of cholesterol (0.66 vs 0.28 in MF- and VO-rich formulas, respectively, on average) and polar lipids (0.84 vs 0.53), the positional distribution of fatty acids in the sn-2 position of triacylglycerols (0.53 vs 0.28), and fatty acid composition (0.72 vs 0.54). The VO-based formulas were superior in similarity in n - 6 PUFA. Thus, the addition of bovine MF fractions is an effective way to increase the similarity between the lipid composition of infant formulas and human milk.
Collapse
Affiliation(s)
- Sanna Hokkanen
- Molecular
Biotechnology, Department of Bioproducts and Biosystems, School of
Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Alexander D. Frey
- Molecular
Biotechnology, Department of Bioproducts and Biosystems, School of
Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Baoru Yang
- Food
Chemistry and Food Development, Department of Life Technologies, University of Turku, 20500 Turku, Finland
| | - Kaisa M. Linderborg
- Food
Chemistry and Food Development, Department of Life Technologies, University of Turku, 20500 Turku, Finland
| |
Collapse
|
8
|
Korma SA, Li L, Wei W, Liu P, Zhang X, Bakry IA, An P, Abdrabo KAE, Manzoor MF, Umair M, Cacciotti I, Lorenzo JM, Conte-Junior CA. A Comparative Study of Milk Fat Extracted from the Milk of Different Goat Breeds in China: Fatty Acids, Triacylglycerols and Thermal and Spectroscopic Characterization. Biomolecules 2022; 12:biom12050730. [PMID: 35625657 PMCID: PMC9138446 DOI: 10.3390/biom12050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Goat milk (GM) is an excellent alternative to cow milk and has recently been used in commercial infant formula preparation due to its superior fat composition. Here, the fatty acid (FA) composition, triacylglycerol (TAG) molecular species, thermal behavior and infrared spectra of extracted milk fat from the milk of the two main breeds of dairy goat bred in China (Guanzhong GM (GZG) and Xinong Saanen GM (XSG)) are investigated. Gas chromatography, Fourier-transform infrared spectroscopy, differential scanning calorimetry and ultra-performance convergence chromatography with quadrupole time-of-flight mass spectrometry are applied. The obtained results evidence significant fat compositional differences based on the breed that produced the considered GM. The major FAs in both GM fats were capric (C10:0), myristic (C14:0), palmitic (C16:0), stearic (C18:0) and oleic (C18:1 n-9c). GZG presented a higher content of medium-chain saturated FAs, while XSG had higher unsaturated FAs with higher ratios of L/Ln and n-6/n-3. A total of 339 and 359 TAGs were detected and quantified in GZG and XSG, and the major TAGs were those of m/z 740.6712 (14.10 ± 0.27%) and m/z 684.6094 (10.94 ± 0.02%), respectively. Milk TAGs of GZG and XSG showed 24–54 and 26–54 total acyl carbon numbers with a 0–4 and 0–5 double bond number at 68 and 72 various retention times, respectively. Thermal analysis showed that all GM fat samples melted below normal body temperature. Infrared spectra revealed higher absorption values of GZG milk fat. This study provides valuable information to the dairy industry sector about GM fat produced in China, assessing the appropriateness of Chinese GM fat to be applied in Chinese infant formula.
Collapse
Affiliation(s)
- Sameh A. Korma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.A.K.); (P.L.); (P.A.); (K.A.E.A.); (M.F.M.)
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Li Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.A.K.); (P.L.); (P.A.); (K.A.E.A.); (M.F.M.)
- Sino-Singapore International Joint Research Institute, Guangzhou 510000, China
- Correspondence: (L.L.); (W.W.); Tel.: +86-208-711-4262 (L.L.); +86-510-858-767-99 (W.W.)
| | - Wei Wei
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- Correspondence: (L.L.); (W.W.); Tel.: +86-208-711-4262 (L.L.); +86-510-858-767-99 (W.W.)
| | - Pengzhan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.A.K.); (P.L.); (P.A.); (K.A.E.A.); (M.F.M.)
| | - Xinghe Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Ibrahim A. Bakry
- Department of Food and Dairy Technology, Faculty of Technology and Development, Zagazig University, Zagazig 44519, Egypt;
| | - Peipei An
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.A.K.); (P.L.); (P.A.); (K.A.E.A.); (M.F.M.)
| | - Khaled A. E. Abdrabo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.A.K.); (P.L.); (P.A.); (K.A.E.A.); (M.F.M.)
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.A.K.); (P.L.); (P.A.); (K.A.E.A.); (M.F.M.)
| | - Muhammad Umair
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome “Niccolò Cusano”, 00166 Roma, Italy;
| | - José M. Lorenzo
- Centro Tecnológico de La Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Facultad de Ciencias de Ourense, Área de Tecnología de los Alimentos, Universidade de Vigo, 32004 Ourense, Spain
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil;
| |
Collapse
|
9
|
Karrar E, Mohamed Ahmed IA, Huppertz T, Wei W, Jin J, Wang X. Fatty acid composition and stereospecificity and sterol composition of milk fat from different species. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
He G, Li G, Jiang Y, Hua J, Chu X, Xiong L, Gong J, Xiao G, Ye X. Macronutrient content and fatty acid composition and their positional distribution in human breast milk from Zhejiang Province, China in different lactation periods. Food Sci Nutr 2021; 9:6746-6761. [PMID: 34925804 PMCID: PMC8645764 DOI: 10.1002/fsn3.2626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022] Open
Abstract
Lactational changes in macronutrient content, lipid profile, fatty acid composition, and positional distribution of human breast milk were investigated in this study. A total of 378 milk samples of six different lactation periods, including 0‒5, 6‒14, 15‒30, 31‒90, 91‒180, and 181‒360 days, were collected cross-sectionally from healthy lactating women in Zhejiang, China. As lactation progressed from 0‒5 to 15‒30 days, the lipid content and the percentages of C10:0, C12:0, C14:0, C18:2n-6, and C18:3n-3 increased significantly, while the protein concentration and the proportions of phospholipids, cholesterols, C16:0, C18:1n-9, C24:1n-9, C20:4n-6, C22:4n-6, C22:5n-3, and C22:6n-3 decreased notably. When lactation was further extended to 181‒360 days, the protein content continued to decrease, and the percentages of C12:0 and C14:0 continued to increase, whereas the levels of other tested nutrients remained stable. Although the triacylglycerol positional distributions of some fatty acids underwent significant lactational variations, C14:0, C16:0, C24:1n-9, C22:4n-6, C22:5n-3, and C22:6n-3 were located mainly at the sn-2 position, while C18:1n-9, C18:2n-6, and C18:3n-3 were primarily distributed at the sn-1,3 positions. Compared with human breast milk reported in Western countries, samples in our study demonstrated higher percentages of C18:2n-6, C18:3n-3, C20:4n-6, and C22:6n-3, but lower proportions of C12:0, C14:0, and C18:1n-9. The results from this study indicated a nutritional composition different from that of the Western countries and may provide useful data for the development of infant formulas closer to Chinese breast milk in terms of the fatty acid composition and its specified positional distribution on triglyceride structure.
Collapse
Affiliation(s)
- Guanghua He
- Department of Food Science and NutritionZhejiang UniversityHangzhouChina
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Guipu Li
- Beingmate (Hangzhou) Food Research Institute Co., LtdHangzhouChina
| | - Yanxi Jiang
- Beingmate (Hangzhou) Food Research Institute Co., LtdHangzhouChina
| | - Jiacai Hua
- Beingmate (Hangzhou) Food Research Institute Co., LtdHangzhouChina
| | - Xiaojun Chu
- Beingmate (Hangzhou) Food Research Institute Co., LtdHangzhouChina
| | - Lina Xiong
- Beingmate (Hangzhou) Food Research Institute Co., LtdHangzhouChina
| | - Jinyan Gong
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Gongnian Xiao
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Xingqian Ye
- Department of Food Science and NutritionZhejiang UniversityHangzhouChina
| |
Collapse
|
11
|
de Wolf JR, Lenferink A, Lenferink A, Otto C, Bosschaart N. Evaluation of the changes in human milk lipid composition and conformational state with Raman spectroscopy during a breastfeed. BIOMEDICAL OPTICS EXPRESS 2021; 12:3934-3947. [PMID: 34457390 PMCID: PMC8367237 DOI: 10.1364/boe.427646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Human milk fat forms the main energy source for breastfed infants, and is highly variable in terms of concentration and composition. Understanding the changes in human milk lipid composition and conformational state during a breastfeed can provide insight into lipid synthesis and secretion in the mammary gland. Therefore, the aim of this study was to evaluate human milk fatty acid length, degree of unsaturation (lipid composition) and lipid phase (lipid conformational state) at different stages during a single breastfeed (fore-, bulk- and hindmilk). A total of 48 samples from 16 lactating subjects were investigated with confocal Raman spectroscopy. We did not observe any significant changes in lipid composition between fore-, bulk and hindmilk. A new finding from this study is that lipid conformational state at room temperature changed significantly during a breastfeed, from almost crystalline to almost liquid. This observation suggests that lipid synthesis in the mammary gland changes during a single breastfeed.
Collapse
Affiliation(s)
- Johanna R. de Wolf
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Anki Lenferink
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Aufried Lenferink
- Medical Cell BioPhysics Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Cees Otto
- Medical Cell BioPhysics Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Nienke Bosschaart
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
12
|
Liu L, Zhang X, Liu Y, Wang L, Li X. Simulated In Vitro Infant Gastrointestinal Digestion of Infant Formulas Containing Different Fat Sources and Human Milk: Differences in Lipid Profiling and Free Fatty Acid Release. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6799-6809. [PMID: 34126744 DOI: 10.1021/acs.jafc.1c01760] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Simulated in vitro infant gastrointestinal digestion of human milk and four infant formulas containing different fat sources was analyzed and compared in this study. Although there are disadvantages brought about by its larger droplet size than infant formulas, human milk exhibited a higher lipolysis level due to the presence of MFGM interfacial layers. Higher hydrolysis efficiency of infant formulas (IFB, IFC, and IFM) was due to the presence of MFGM/phospholipid-enriched materials. Human milk released higher free fatty acid levels, especially long-chain fatty acid, and less undigested TAG molecules at the end of digestion than infant formulas. Human milk had a higher proportion of MAG and DAG linked to long-chain fatty acid. Furthermore, several lipids were identified as potential biomarkers that could be used to further analyze differences in the biological properties of human, bovine, and caprine milk. This comprehensive analysis might be fruitful to formulate an infant formula closest to human milk.
Collapse
Affiliation(s)
- Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Yibo Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Lina Wang
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| |
Collapse
|
13
|
Ni M, Wang Y, Wu R, Zhang L, Xu X, Yang Y, Chen J. Total and Sn-2 Fatty Acid Profile in Human Colostrum and Mature Breast Milk of Women Living in Inland and Coastal Areas of China. ANNALS OF NUTRITION AND METABOLISM 2021; 77:29-37. [PMID: 33730729 DOI: 10.1159/000510379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/11/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Although lipid is the major energy source and exerts beneficial effects on infant growth, research on the composition of fatty acid (FA) at the sn-2 position of human milk (HM) in China and abroad is limited. OBJECTIVES This study aimed to investigate the FA positional distribution in colostrum and mature HM of women living in the inland and coastal areas of China and explore the potential influences of geographical region and lactation stage on the FA profile of Chinese women. METHODS Colostrum milk (n = 61) and mature milk (n = 56) samples were obtained longitudinally from healthy lactating women in Guangzhou and Chengdu, China. Gas chromatography was used to determine the total and sn-2 FA composition. RESULTS Significant differences were observed in the FA profile of HM between different regions and lactation stages, with differences in polyunsaturated FA levels being the most pronounced. Nearly 70% of sn-2 FAs were saturated FAs, of which C16:0 accounted for approximately 75%. C8:0, C10:0, C18:0, C20:0, C22:0, and all of the unsaturated FAs were mainly located at the sn-1 and sn-3 positions, while C14:0, C15:0, and C16:0 were mainly at the sn-2 position. The proportion of C12:0 and C17:0 at sn-2 was approximately equivalent to that at the sn-1, 3 positions. CONCLUSIONS The results indicate the variability in the FA profile of HM between regions and lactation stages. The contents of polyunsaturated FAs and sn-2 FAs, especially palmitic acid, should be paid more attention when optimizing infant formula.
Collapse
Affiliation(s)
- Mengmei Ni
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | | | - Rui Wu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xuebing Xu
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| | | | - Jinyao Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Zhang X, Liu L, Wang L, Pan Y, Hao X, Zhang G, Li X, Hussain M. Comparative Lipidomics Analysis of Human Milk and Infant Formulas Using UHPLC-Q-TOF-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1146-1155. [PMID: 33464051 DOI: 10.1021/acs.jafc.0c06940] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The lipidome and fatty acid composition of human milk and different infant formulas with animal- and/or plant-based fat sources are analyzed and compared in this study. The results obtained using positive and negative ionization modes indicate that there are 48 and 71 lipid species, respectively, that are common between the human milk and infant formulas. Moreover, the fatty acid composition in infant formulas varies significantly, depending on the fat source. Human milk is rich in triacylglycerols that contain linoleic acid, α-linolenic acid, arachidonic acid, and docosahexaenoic acid. Meanwhile, the triacylglycerols in IFB comprise long-chain fatty acids at the sn-1,3 position. Compared to human milk, IFC has the same level of sphingomyelin species. Based on univariate and multivariate analyses, there are 37, 34, 31, and 36 lipid species that can be used to distinguish between human milk and infant formulas. Overall, the results reported herein are useful in designing new milk formulas that better mimic human milk.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Lu Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Lina Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Yue Pan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Xinyue Hao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Gengxu Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodong Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Muhammad Hussain
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
15
|
Application of the similarity index to evaluate fat composition and structure in infant formulas. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Viriato RLS, Queirós MDS, Macedo GA, Ribeiro APB, Gigante ML. Design of new lipids from bovine milk fat for baby nutrition. Crit Rev Food Sci Nutr 2020; 62:145-159. [PMID: 32876475 DOI: 10.1080/10408398.2020.1813073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The lipid phase of infant formulas is generally composed of plant-based lipids structured with a high concentration of palmitic acid (C16:0) esterified at the sn-2 position of triacylglycerol since this structure favors the absorption and metabolism of fatty acids. Palm oil is commonly used to make up the lipid phase of infant formulas due to its high concentration of palmitic acid and solids profile and melting point similar to human milk fat. However, the addition of palm oil to infant formulas has been associated with the presence of 3-monochloropropane-1,2-diol (3-MCPD) esters, a group of glycerol-derived chemical contaminants (1,2,3-propanotriol), potentially toxic, formed during the refining process of vegetable oil. Bovine milk fat obtained from the complex biosynthesis in the mammary gland has potential as a technological alternative to replace palm oil and its fractions for the production of structured lipids to be used in infant formulas. Its application as a substitute is due to its composition and structure, which resembles breast milk fat, and essentially to the preferential distribution pattern of palmitic acids (C16:0) with approximately 85% distributed at the sn-1 and sn-2 position of triacylglycerol. This review will address the relationship between the chemical composition and structure of lipids in infant nutrition, as well as the potential of bovine milk fat as a basis for the production of structured lipids in substitution for the lipid phase of vegetable origin currently used in infant formulas.
Collapse
Affiliation(s)
- Rodolfo Lázaro Soares Viriato
- Department of Food Technology, School of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Mayara de Souza Queirós
- Department of Food Technology, School of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Gabriela Alves Macedo
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Ana Paula Badan Ribeiro
- Department of Food Technology, School of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Mirna Lúcia Gigante
- Department of Food Technology, School of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
17
|
Floris LM, Stahl B, Abrahamse-Berkeveld M, Teller IC. Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins Leukot Essent Fatty Acids 2020; 156:102023. [PMID: 31699594 DOI: 10.1016/j.plefa.2019.102023] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/18/2019] [Accepted: 10/15/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Lipids in human milk (HM) provide the majority of energy for developing infants, as well as crucial essential fatty acids (FA). The FA composition of HM is highly variable and influenced by multiple factors. We sought to increase understanding of the variation in HMFA profiles and their development over the course of lactation, and after term and preterm delivery, using a pooled data analysis. OBJECTIVE To review the literature and perform a pooled data analysis to qualitatively describe an extensive FA profile (36 FAs) in term and preterm colostrum, transitional - and mature milk up to 60 days postpartum. DESIGN A Medline search was conducted for HMFA profile data following term or preterm delivery. The search was confined to English language papers published between January 1980 and August 2018. Studies reporting original data, extensive FA profiles in HM from healthy mothers were included. Weighted least squares (WLS) means were calculated from the pooled data using random or fixed effect models. RESULTS Our pooled data analysis included data from 55 studies worldwide, for a total of 4374 term milk samples and 1017 preterm milk samples, providing WLS means for 36 FAs. Patterns in both term and preterm milk were apparent throughout lactation for some FAs: The most abundant FAs (palmitic, linoleic and oleic acid) remained stable over time, whereas several long-chain polyunsaturated FAs (including ARA and DHA) seemed to decrease and short- and medium-chain FAs increased over time. CONCLUSIONS High heterogeneity between individual studies was observed for the reported levels of some FAs, whereas other FAs were remarkably consistent between studies. Our pooled data suggests that specific FA categories fluctuate according to distinct patterns over the course of lactation; many of these patterns are comparable between term and preterm milk.
Collapse
Affiliation(s)
- L M Floris
- Danone Nutricia Research, Utrecht, 3584 CT, the Netherlands
| | - B Stahl
- Danone Nutricia Research, Utrecht, 3584 CT, the Netherlands; Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands.
| | | | - I C Teller
- Danone Nutricia Research, Utrecht, 3584 CT, the Netherlands
| |
Collapse
|
18
|
Triacylglycerol containing medium-chain fatty acids (MCFA-TAG): The gap between human milk and infant formulas. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.104545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
de la Garza Puentes A, Martí Alemany A, Chisaguano AM, Montes Goyanes R, Castellote AI, Torres-Espínola FJ, García-Valdés L, Escudero-Marín M, Segura MT, Campoy C, López-Sabater MC. The Effect of Maternal Obesity on Breast Milk Fatty Acids and Its Association with Infant Growth and Cognition-The PREOBE Follow-Up. Nutrients 2019; 11:nu11092154. [PMID: 31505767 PMCID: PMC6770754 DOI: 10.3390/nu11092154] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 02/02/2023] Open
Abstract
This study analyzed how maternal obesity affected fatty acids (FAs) in breast milk and their association with infant growth and cognition to raise awareness about the programming effect of maternal health and to promote a healthy prenatal weight. Mother–child pairs (n = 78) were grouped per maternal pre-pregnancy body mass index (BMI): normal-weight (BMI = 18.5–24.99), overweight (BMI = 25–29.99) and obese (BMI > 30). Colostrum and mature milk FAs were determined. Infant anthropometry at 6, 18 and 36 months of age and cognition at 18 were analyzed. Mature milk exhibited lower arachidonic acid (AA) and docosahexaenoic acid (DHA), among others, than colostrum. Breast milk of non-normal weight mothers presented increased saturated FAs and n6:n3 ratio and decreased α-linolenic acid (ALA), DHA and monounsaturated FAs. Infant BMI-for-age at 6 months of age was inversely associated with colostrum n6 (e.g., AA) and n3 (e.g., DHA) FAs and positively associated with n6:n3 ratio. Depending on the maternal weight, infant cognition was positively influenced by breast milk linoleic acid, n6 PUFAs, ALA, DHA and n3 LC-PUFAs, and negatively affected by n6:n3 ratio. In conclusion, this study shows that maternal pre-pregnancy BMI can influence breast milk FAs and infant growth and cognition, endorsing the importance of a healthy weight in future generations.
Collapse
Affiliation(s)
- Andrea de la Garza Puentes
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària UB (INSA-UB), 08921 Barcelona, Spain.
- Teaching, Research & Innovation Unit, Parc Sanitari Sant Joan de Déu, 08830 Sant Boi, Spain.
| | - Adrià Martí Alemany
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Aida Maribel Chisaguano
- Nutrition, Faculty of Health Sciences, University of San Francisco de Quito, 170157 Quito, Ecuador
| | - Rosa Montes Goyanes
- Food Research and Analysis Institute, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Ana I Castellote
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària UB (INSA-UB), 08921 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition CIBERobn, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Franscisco J Torres-Espínola
- Centre of Excellence for Paediatric Research EURISTIKOS, University of Granada, 18071 Granada, Spain
- Department of Paediatrics, University of Granada, 18071 Granada, Spain
| | - Luz García-Valdés
- Centre of Excellence for Paediatric Research EURISTIKOS, University of Granada, 18071 Granada, Spain
- Department of Paediatrics, University of Granada, 18071 Granada, Spain
| | - Mireia Escudero-Marín
- Centre of Excellence for Paediatric Research EURISTIKOS, University of Granada, 18071 Granada, Spain
- Department of Paediatrics, University of Granada, 18071 Granada, Spain
| | - Maria Teresa Segura
- Centre of Excellence for Paediatric Research EURISTIKOS, University of Granada, 18071 Granada, Spain
- Department of Paediatrics, University of Granada, 18071 Granada, Spain
| | - Cristina Campoy
- Centre of Excellence for Paediatric Research EURISTIKOS, University of Granada, 18071 Granada, Spain
- Department of Paediatrics, University of Granada, 18071 Granada, Spain
- CIBER Epidemiology and Public Health CIBEResp, Institute of Health Carlos III, 28029 Madrid, Spain
| | - M Carmen López-Sabater
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària UB (INSA-UB), 08921 Barcelona, Spain.
- CIBER Physiopathology of Obesity and Nutrition CIBERobn, Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
20
|
Deng L, Zou Q, Liu B, Ye W, Zhuo C, Chen L, Deng ZY, Fan YW, Li J. Fatty acid positional distribution in colostrum and mature milk of women living in Inner Mongolia, North Jiangsu and Guangxi of China. Food Funct 2018; 9:4234-4245. [PMID: 29999510 DOI: 10.1039/c8fo00787j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to investigate the fatty acid composition and distribution in colostrum and mature milk, breast milk samples and 24 h food records were obtained from 65 lactating women across three regions in China (Inner Mongolia, North Jiangsu and Guangxi). Fatty acid methyl esters were prepared by standard methods and separated and identified by gas chromatography. Compared with the Chinese breast milk fatty acid data 10 years ago, SFA and trans fatty acids (TFA) in breast milk decreased, while PUFA increased in the present study. Most SFA (C16:0, C15:0, C14:0), cis-C16:1 and several LC-PUFA (C22:5n-3 and C22:6n-3) were predominantly acylated at the sn-2 position. The cis-C17:1 and C22:6n-3 were distributed equally in three positions of triacylglycerol (TAG). Whereas, TFA, conjugated linoleic acids (CLA), cis-C18:1, C18:2n-6, C18:3n-3 and C20:5n-3 were acylated at the sn-1, 3 positions of TAG in human milk. The composition of fatty acids in breast milk was closely related to the diet of lactating mothers. PUFA in breast milk was negatively correlated with the intake of protein, fat and meat, but positively correlated with the intake of carbohydrates. MUFA of human milk was negatively correlated with the intake of dairy products, eggs, fish and shrimp. SFA in breast milk was positively correlated with the maternal intake of meat. In addition, the present results showed that the composition of total fatty acids and sn-2 fatty acids in breast milk varied with the lactation period and the geographical regions in China; however, the regiospecific fatty acid profile seemed not to be affected by the lactation time and regions, although the quantities at each position could be changed.
Collapse
Affiliation(s)
- Long Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Osimani A, Milanović V, Cardinali F, Garofalo C, Clementi F, Ruschioni S, Riolo P, Isidoro N, Loreto N, Galarini R, Moretti S, Petruzzelli A, Micci E, Tonucci F, Aquilanti L. Distribution of Transferable Antibiotic Resistance Genes in Laboratory-Reared Edible Mealworms ( Tenebrio molitor L.). Front Microbiol 2018; 9:2702. [PMID: 30510544 PMCID: PMC6252353 DOI: 10.3389/fmicb.2018.02702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/23/2018] [Indexed: 11/25/2022] Open
Abstract
In the present study, the distribution of antibiotic resistance genes in laboratory-reared fresh mealworm larvae (Tenebrio molitor L.), their feeding substrates (carrots and wheatmeal), and frass was assessed. Microbial counts on selective media added with antibiotics highlighted the presence of lactic acid bacteria resistant to ampicillin and vancomycin and, more specifically, enterococci resistant to the latter antibiotic. Moreover, staphylococci resistant to gentamicin, erythromycin, tetracycline, and vancomycin were detected. Enterobacteriaceae resistant to ampicillin and gentamicin were also found, together with Pseudomonadaceae resistant to gentamicin. Some of the genes coding for resistance to macrolide-lincosamide-streptogramin B (MLSB) [erm(A), erm(C)], vancomycin [vanA, vanB], tetracycline [tet(O)], and β-lactams [mecA and blaZ] were absent in all of the samples. For the feeding substrates, organic wheatmeal was positive for tet(S) and tet(K), whereas no AR genes were detected in organic carrots. The genes tet(M), tet(K), and tet(S) were detected in both mealworms and frass, whereas gene aac-aph, coding for resistance to amynoglicosides was exclusively detected in frass. No residues for any of the 64 antibiotics belonging to 10 different drug classes were found in either the organic wheatmeal or carrots. Based on the overall results, the contribution of feed to the occurrence of antibiotic resistance (AR) genes and/or antibiotic-resistant microorganisms in mealworm larvae was hypothesized together with vertical transmission via insect egg smearing.
Collapse
Affiliation(s)
- Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Sara Ruschioni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Paola Riolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Nunzio Isidoro
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Nino Loreto
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Simone Moretti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Annalisa Petruzzelli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, Pesaro, Italy
| | - Eleonora Micci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, Pesaro, Italy
| | - Franco Tonucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, Pesaro, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
22
|
Fatty acid positional distribution (sn-2 fatty acids) and phospholipid composition in Chinese breast milk from colostrum to mature stage. Br J Nutr 2018; 121:65-73. [PMID: 30378505 DOI: 10.1017/s0007114518002994] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study quantified the fatty acid profile with emphasis on the stereo-specifically numbered (sn) 2 positional distribution in TAG and the composition of main phospholipids at different lactation stages. Colostrum milk (n 70), transitional milk (n 96) and mature milk (n 82) were obtained longitudinally from healthy lactating women in Shanghai. During lactation, total fatty acid content increased, with SFA dominating in fatty acid profile. A high ratio of n-6:n-3 PUFA was observed as 11:1 over lactation due to the abundance of linoleic acid in Chinese human milk. As the main SFA, palmitic acid showed absolute sn-2 selectivity, while oleic acid, linoleic acid and α-linolenic acid, the main unsaturated fatty acids, were primarily esterified at the sn-1 and sn-3 positions. Nervonic acid and C22 PUFA including DHA were more enriched in colostrum with an sn-2 positional preference. A total of three dominant phospholipids (phosphatidylethanolamine (PE), phosphatidylcholine (PC) and sphingomyelin (SM)) were analysed in the collected samples, and each showed a decline in amount over lactation. PC was the dominant compound followed by SM and PE. With prolonged breast-feeding time, percentage of PE in total phospholipids remained constant, but PC decreased, and SM increased. Results from this study indicated a lipid profile different from Western reports and may aid the development of future infant formula more suitable for Chinese babies.
Collapse
|
23
|
Bread enriched with cricket powder (Acheta domesticus): A technological, microbiological and nutritional evaluation. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.06.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Osimani A, Milanović V, Garofalo C, Cardinali F, Roncolini A, Sabbatini R, De Filippis F, Ercolini D, Gabucci C, Petruzzelli A, Tonucci F, Clementi F, Aquilanti L. Revealing the microbiota of marketed edible insects through PCR-DGGE, metagenomic sequencing and real-time PCR. Int J Food Microbiol 2018; 276:54-62. [DOI: 10.1016/j.ijfoodmicro.2018.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/24/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
|
25
|
Zhao P, Zhang S, Liu L, Pang X, Yang Y, Lu J, Lv J. Differences in the Triacylglycerol and Fatty Acid Compositions of Human Colostrum and Mature Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4571-4579. [PMID: 29658706 DOI: 10.1021/acs.jafc.8b00868] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human colostrum is important for immune system development and plays a protective role for infants. However, the comprehensive exploration of lipids, which account for 3-5% of milk, and their biological functions in human colostrum was limited. In present study, the triacylglycerol (TAG) and fatty acid (FA) compositions of human colostrum and mature milk were analyzed and compared. Variations were observed in both the TAG and FA compositions. The concentrations of 18:1/18:1/16:0 TAG, high-molecular-weight and unsaturated TAGs were significantly higher in colostrum, whereas mature milk contained more low/medium-molecular-weight TAGs and medium-chain FAs. Furthermore, there were also specific TAGs in both colostrum and mature milk. Our data highlighted targets for further investigation to elucidate the biological function of lipids in colostrum milk. In addition, the comprehensive analysis of TAGs in Chinese colostrum might help in designing infant formula for Chinese babies, especially the preterm ones.
Collapse
Affiliation(s)
- Pu Zhao
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology , Chinese Academy of Agricultural Science , Beijing 100193 , People's Republic of China
| | - Shuwen Zhang
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology , Chinese Academy of Agricultural Science , Beijing 100193 , People's Republic of China
| | - Lu Liu
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology , Chinese Academy of Agricultural Science , Beijing 100193 , People's Republic of China
| | - Xiaoyang Pang
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology , Chinese Academy of Agricultural Science , Beijing 100193 , People's Republic of China
| | - Yang Yang
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology , Chinese Academy of Agricultural Science , Beijing 100193 , People's Republic of China
| | - Jing Lu
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology , Chinese Academy of Agricultural Science , Beijing 100193 , People's Republic of China
| | - Jiaping Lv
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology , Chinese Academy of Agricultural Science , Beijing 100193 , People's Republic of China
| |
Collapse
|
26
|
Osimani A, Milanović V, Cardinali F, Garofalo C, Clementi F, Pasquini M, Riolo P, Ruschioni S, Isidoro N, Loreto N, Franciosi E, Tuohy K, Petruzzelli A, Foglini M, Gabucci C, Tonucci F, Aquilanti L. The bacterial biota of laboratory-reared edible mealworms (Tenebrio molitor L.): From feed to frass. Int J Food Microbiol 2018. [PMID: 29525619 DOI: 10.1016/j.ijfoodmicro.2018.03.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tenebrio molitor represents one of the most popular species used for the large-scale conversion of plant biomass into protein and is characterized by high nutritional value. In the present laboratory study, the bacterial biota characterizing a pilot production chain of fresh T. molitor larvae was investigated. To this end, different batches of fresh mealworm larvae, their feeding substrate (wheatmeal) and frass were analyzed by viable microbial counts, PCR-DGGE and Illumina sequencing. Moreover, the occurrence of Coxiella burnetii, Pseudomonas aeruginosa and Shiga toxin-producing E. coli (STEC) was assessed through qualitative real-time PCR assays. Microbial viable counts highlighted low microbial contamination of the wheatmeal, whereas larvae and frass were characterized by high loads of Enterobacteriaceae, lactic acid bacteria, and several species of mesophilic aerobes. Spore-forming bacteria were detected to a lesser extent in all the samples. The combined molecular approach used to profile the microbiota confirmed the low microbial contamination of wheatmeal and allowed the detection of Enterobacter spp., Erwinia spp., Enterococcus spp. and Lactococcus spp. as dominant genera in both larvae and frass. Moreover, Klebsiella spp., Pantoea spp., and Xenorhabdus spp. were found to be in the minority. Entomoplasmatales (including Spiroplasma spp.) constituted a major fraction of the microbiota of one batch of larvae. From the real-time PCR assays, no sample was positive for either C. burnetii or STEC, whereas P. aeruginosa was detected in one sample of frass. Based on the overall results, two sources of microbial contamination were hypothesized, namely feeding with wheatmeal and vertical transmission of microorganisms from mother to offspring. Since mealworms are expected to be eaten as a whole, the overall outcomes collected in this laboratory study discourage the consumption of fresh mealworm larvae. Moreover, microbial loads and the absence of potential pathogens known to be associated with this insect species should be carefully assessed in order to reduce the minimum risk for consumers, by identifying the most opportune processing methods (e.g., boiling, frying, drying, etc.).
Collapse
Affiliation(s)
- Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Marina Pasquini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Paola Riolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Sara Ruschioni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Nunzio Isidoro
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Nino Loreto
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Elena Franciosi
- Food Quality and Nutrition Department (DQAN), Research and Innovation Center, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Kieran Tuohy
- Food Quality and Nutrition Department (DQAN), Research and Innovation Center, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Annalisa Petruzzelli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Martina Foglini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Claudia Gabucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Franco Tonucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Centro di Riferimento Regionale Autocontrollo, via Canonici 140, 61100, Villa Fastiggi, Pesaro, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
27
|
Sun C, Wei W, Su H, Zou X, Wang X. Evaluation of sn-2 fatty acid composition in commercial infant formulas on the Chinese market: A comparative study based on fat source and stage. Food Chem 2017; 242:29-36. [PMID: 29037692 DOI: 10.1016/j.foodchem.2017.09.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 11/29/2022]
Abstract
The sn-2 fatty acid composition of 180 commercial infant, follow-on and growing-up formulas with three fat sources (plant oil, cows' milk and goats' milk) was investigated and compared with mature human milk (MHM). Sn-2 fatty acids in formulas were mostly dependent on fat source and stage. Compared with MHM, all types of formulas contained lower levels of palmitic acid (PA), saturated fatty acid and long-chain polyunsaturated fatty acids (LC-PUFA), and higher levels of oleic acid (OA), linoleic acid (LA) and α-linolenic acid (LNA) at the sn-2 position. Even some formulas were supplemented with 1,3-dioleoyl-2-palmitoylglycerol, the proportions of relative PA at the sn-2 position in formulas were much lower than that in MHM. Moreover, formulas had higher proportions of relative OA, LA and LNA, and lower LC-PUFAs at the sn-2 position. This study indicated that there were significant differences in the positional distribution of fatty acids between formulas and MHM.
Collapse
Affiliation(s)
- Cong Sun
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu Province, PR China
| | - Wei Wei
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu Province, PR China
| | - Hang Su
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu Province, PR China
| | - Xiaoqiang Zou
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu Province, PR China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
28
|
Şahin-Yeşilçubuk N, Akoh CC. Biotechnological and Novel Approaches for Designing Structured Lipids Intended for Infant Nutrition. J AM OIL CHEM SOC 2017. [DOI: 10.1007/s11746-017-3013-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neşe Şahin-Yeşilçubuk
- ; Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering; Istanbul Technical University; Maslak Istanbul 34469 Turkey
| | - Casimir C. Akoh
- ; Department of Food Science and Technology; The University of Georgia; Athens 30602-2610 Georgia
| |
Collapse
|
29
|
Zou L, Pande G, Akoh CC. Infant Formula Fat Analogs and Human Milk Fat: New Focus on Infant Developmental Needs. Annu Rev Food Sci Technol 2016; 7:139-65. [DOI: 10.1146/annurev-food-041715-033120] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Long Zou
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia 30602; , ,
- Bunge Ingredient Innovation Center, Bradley, Illinois 60915
| | - Garima Pande
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia 30602; , ,
| | - Casimir C. Akoh
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia 30602; , ,
| |
Collapse
|
30
|
Vyssotski M, Bloor SJ, Lagutin K, Wong H, Williams DBG. Efficient Separation and Analysis of Triacylglycerols: Quantitation of β-Palmitate (OPO) in Oils and Infant Formulas. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5985-5992. [PMID: 26073429 DOI: 10.1021/acs.jafc.5b01835] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A high-efficiency, convenient, and reliable method for the separation of structurally similar triacylglycerols is detailed and applied in the quantitative analysis of 1,3-dioleoyl-2-palmitoylglycerol (OPO) in infant formulas and OPO oils. OPO is an important lipid component in "humanized" infant formula. A fast preparative isolation of an OPO-containing fraction from the crude complex mixture, by nonaqueous reversed phase HPLC, followed by Ag(+)-HPLC with detection at 205 nm allowed fine separation and detection of the desired fraction. OPO was quantitated independently of its regioisomer 1,2-dioleoyl-3-palmitoylglycerol (OOP) and isomers of stearoyl-linoleoyl-palmitoyl glycerol that might be present in infant formulas. For samples with low OPO content, an evaporative light-scattering detector (ELSD) was more preferable than UV detection, with a calculated LOD of 0.1 μg of OPO injected and LOQ of 0.3 μg. The method, which showed high reproducibility (RSD < 5%), was suitable for both high OPO content oils and low OPO products such as unenriched infant formula. A number of possible interference issues were considered and dealt with.
Collapse
Affiliation(s)
- Mikhail Vyssotski
- †Callaghan Innovation, 69 Gracefield Road, P.O. Box 31310, Lower Hutt 5040, New Zealand
| | - Stephen J Bloor
- †Callaghan Innovation, 69 Gracefield Road, P.O. Box 31310, Lower Hutt 5040, New Zealand
| | - Kirill Lagutin
- †Callaghan Innovation, 69 Gracefield Road, P.O. Box 31310, Lower Hutt 5040, New Zealand
| | - Herbert Wong
- †Callaghan Innovation, 69 Gracefield Road, P.O. Box 31310, Lower Hutt 5040, New Zealand
| | - D Bradley G Williams
- †Callaghan Innovation, 69 Gracefield Road, P.O. Box 31310, Lower Hutt 5040, New Zealand
- §Gracefield Research Centre, Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| |
Collapse
|
31
|
Massmann PF, França EL, Souza EGD, Souza MS, Brune MFSS, Honorio-França AC. Maternal hypertension induces alterations in immunological factors of colostrum and human milk. FRONTIERS IN LIFE SCIENCE 2014. [DOI: 10.1080/21553769.2013.876451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Mozzon M, Pacetti D, Lucci P, Balzano M, Frega NG. Crude palm oil from interspecific hybrid Elaeis oleifera×Elaeis guineensis: fatty acid regiodistribution and molecular species of glycerides. Food Chem 2013; 141:245-52. [PMID: 23768354 DOI: 10.1016/j.foodchem.2013.03.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/23/2013] [Accepted: 03/05/2013] [Indexed: 11/16/2022]
Abstract
The composition and structure of triacylglycerols (TAGs) and partial glycerides of crude palm oil obtained from interspecific hybrid Elaeis oleifera×Elaeis guineensis, grown in Colombia, were fully characterised and compared to data obtained by analysing crude African palm oil. Hybridisation appears to substantially modify the biosynthesis of fatty acids (FAs) rather than their assembly in TAGs. In fact, total FAs analysis showed significant differences between these two types of oil, with hybrid palm oil having a higher percentage of oleic acid (54.6 ± 1.0 vs 41.4 ± 0.3), together with a lower saturated fatty acid content (33.5 ± 0.5 vs 47.3 ± 0.1), while the percentage of essential fatty acid, linoleic acid, does not undergo significant changes. Furthermore, 34 TAG types were identified, with no qualitative differences between African and E. guineensis×E. oleifera hybrid palm oil samples. Short and medium chain FAs (8:0, 10:0, 12:0, 14:0) were utilised, together, to build a restricted number of TAG molecular species. Oil samples from the E. guineensis×E. oleifera hybrid showed higher contents of monosaturated TAGs (47.5-51.0% vs 36.7-37.1%) and triunsaturated TAGs (15.5-15.6% vs 5.2-5.4%). The sn-2 position of TAGs in hybrid palm oil was shown to be predominantly esterified with oleic acid (64.7-66.0 mol% vs 55.1-58.2 mol% in African palm oil) with only 10-15% of total palmitic acid and 6-20% of stearic acid acylated in the secondary position. The total amount of diacylglycerols (DAGs) was in agreement with the values of free acidity; DAG types found were in agreement with the representativeness of different TAG species.
Collapse
Affiliation(s)
- Massimo Mozzon
- Department of Agricultural, Food, and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | | | | | | |
Collapse
|