1
|
Puzovic A, Mikulic-Petkovsek M. Comparative Evaluation of Conventional and Emerging Maceration Techniques for Enhancing Bioactive Compounds in Aronia Juice. Foods 2024; 13:3255. [PMID: 39456316 PMCID: PMC11507980 DOI: 10.3390/foods13203255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Ultrasound and microwave maceration techniques have been utilised to lower production costs and reduce processing time, while also preventing the degradation of nutrients like phenolics and vitamin C and preserving physical properties such as colour and viscosity. In this study, the effects of several traditional (cold, enzymatic, and thermal) and innovative (ultrasonic and microwave) maceration methods on some quality parameters of aronia juice were investigated. Microwave maceration significantly impacted the soluble solids content of the analysed juices and resulted in noticeably darker juice samples compared to the controls, with lower L*/lightness (20.1) and b*/blue-yellowness (-3.2) values and an increased a*/redness value (1.7). Different maceration methods also significantly impacted the rheological properties of the treated juices, among which MW treatment consistently showed a higher viscosity. Sorbitol and fructose were the main sugars identified, while malic acid and quinic acid accounted for 85% of the total acid content. Significant increases in the total sugar and acid concentrations were obtained in the juice samples from ultrasonic, microwave, and enzymatic maceration, while thermomaceration had no significant effect. The concentration of total phenolics ranged from 6.45 g/L in the thermomaceration samples to 9.86 and 14.07 g/L in the ultrasonic and microwave samples, respectively. The obtained results suggest that ultrasonic and microwave technologies were superior in terms of colour improvement and the extraction of sugars, acids, and phenolic compounds compared to traditional maceration methods. Ultrasound and microwave technologies present possible approaches to the improvement of aronia juice production in comparison to traditional methods.
Collapse
Affiliation(s)
- Alema Puzovic
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | | |
Collapse
|
2
|
Mu J, Wang RD, Zhao YS, Lu TC, Chen SS, Wang YJ, Wei H, Zou LW. Discovery of lignans and curcuminoids as the effective inhibitors of pancreatic lipase: structure-activity relationship and inhibitory mechanism. Nat Prod Res 2024:1-7. [PMID: 39324240 DOI: 10.1080/14786419.2024.2408657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/01/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Pancreatic lipase (PL) is the main enzyme in the digestive system that breaks down triglyceride and promotes its absorption. In this paper, we found that lignans 2, 3 and 21, curcuminoids 24-26 exhibited significant inhibitory potential against PL. The structure-activity relationship (SAR) indicated that benzo-1, 3-dioxole group in the construction of lignans is essential to inhibitory effects against PL, while double bonds at C-7/C-2 position and 4-hydroxyphenyl moiety in the structure of curcuminoids are beneficial for PL inhibition. The kinetic studies and molecular docking were also conducted, the results showed that the three curcuminoids with the strongest inhibition effect above were all mixed inhibitors of PL. Furthermore, curcuminoids 24-26 displayed a preferential selectivity towards, in contrast to other serine hydrolases. The above results indicate that lignans and curcuminoids are natural functional components for PL inhibition, providing new ideas for finding and developing novel lead compounds for the treatment of obesity.
Collapse
Affiliation(s)
- Jie Mu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Rui-Dong Wang
- Clinical Research Institute, Department, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yi-Shu Zhao
- Shanghai Innostar Bio-tech Co., Ltd, Shanghai, China
| | - Tian-Chi Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si-Si Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Jing Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Torović L, Sazdanić D, Krstonošić MA, Mikulić M, Beara I, Cvejić J. Compositional characteristics, health benefit and risk of commercial bilberry and black chokeberry juices. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Sosnowska D, Kajszczak D, Podsędek A. The Effect of Different Growth Stages of Black Chokeberry Fruits on Phytonutrients, Anti-Lipase Activity, and Antioxidant Capacity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228031. [PMID: 36432132 PMCID: PMC9695515 DOI: 10.3390/molecules27228031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
The present study investigated the nutrients, biologically-active compounds, as well as antioxidant and anti-lipase activities of chokeberry fruits across four different stages of development, from the unripe green to mature black forms. The highest content of total phenolics (12.30% dry weight (DW)), including proanthocyanidins (6.83% DW), phenolic acids (6.57% DW), flavanols (0.56% DW), flavonols (0.62% DW), and flavanones (0.10% DW), was observed in unripe fruits. The unripe green fruits were also characterized by the highest content of protein (2.02% DW), ash (4.05% DW), total fiber (39.43% DW), and chlorophylls (75.48 mg/100 g DW). Ripe black fruits were the richest source of total carotenoids (8.53 mg/100 g DW), total anthocyanins (2.64 g/100 g DW), and total sugars (33.84% DW). The phenolic compounds of green fruits were dominated by phenolic acids (above 83% of the total content), the semi-mature fruits by both phenolic acids and anthocyanins (90%), while the mature berries were dominated by anthocyanins (64%). Unripe fruits were the most effective inhibitor of pancreatic lipase in triolein emulsion, scavenger of 2,2'-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) radical cation, and reducer of ferric ion. Biological activities were mainly correlated with total proanthocyanidins and total phenolics. Considering their strong anti-lipase and antioxidant activities, unripe chokeberry fruits may have potential applications in nutraceuticals and functional foods.
Collapse
|
5
|
Nour V. Quality Characteristics, Anthocyanin Stability and Antioxidant Activity of Apple ( Malus domestica) and Black Chokeberry ( Aronia melanocarpa) Juice Blends. PLANTS (BASEL, SWITZERLAND) 2022; 11:2027. [PMID: 35956504 PMCID: PMC9370388 DOI: 10.3390/plants11152027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Black chokeberries are a valuable source of anthocyanins and other phenolic compounds, but they are underutilized due to their unpalatable astringent taste. The aim of this study was to determine the potential of using black chokeberry juice as a health-promoting ingredient in apple juice with a view to develop a new functional food product and to increase the dietary consumption of bioactive compounds. Mixed juices were prepared from apple (A) juice and black chokeberry (BC) juice at 95:5 (ABC5), 90:10 (ABC10), 85:15 (ABC15), and 80:20 (ABC20) volumetric ratios. Comparative studies on the effect of heat treatment (90 °C, 10 min) and storage (four months, 20 °C) on the physicochemical and antioxidant properties of apple, black chokeberry, and mixed juices were carried out. The soluble solids content, titratable acidity, total phenolic, total anthocyanin and ascorbic acid content, and antioxidant activity increased while the total soluble solids/titratable acidity ratio decreased with increasing addition levels of BC juice. Mixing A juice with BC juice at 95:5 and 90:10 volumetric ratios improved the color and enhanced the palatability and general acceptability of the juice. The percentage losses of anthocyanins and polyphenols registered after heat treatment and storage increased with increasing addition levels of BC juice.
Collapse
Affiliation(s)
- Violeta Nour
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania
| |
Collapse
|
6
|
Comparative Phytochemical Analysis of Aronia melanocarpa L. Fruit Juices on Bulgarian Market. PLANTS 2022; 11:plants11131655. [PMID: 35807606 PMCID: PMC9269608 DOI: 10.3390/plants11131655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022]
Abstract
Aronia melanocarpa L. (black chokeberry), belonging to the Rosaceae family, contains high amounts of polyphenolics and therefore exhibits one of the highest antioxidant and anti-inflammatory activities among berry fruits. Chokeberries are used in the food industry for juice, nectar, and wine production and as colorants. We aimed to compare the phytochemical composition of three chokeberry juices commercially available in the local market as sources of beneficial phytochemicals. Using GC–MS and LC–MS/MS, we performed the identification and quantitation of polar compounds and polyphenolics. The concentrations of 13 amino acids, including 6 essential amino acids, 10 organic acids, 20 sugar alcohols and derivatives, 14 saccharides, 12 fatty acids and esters, and 38 polyphenols, were estimated. One of the analyzed juices had the highest polyphenolic content (5273.87 ± 63.16 µg/mL), possibly due to 2.9 times higher anthocyanin concentration compared to anthocyanins in other tested juices. This study provides new data concerning phytochemical composition in terms of amino acids, organic acids, sugar acids, fatty acids and their esters, and polyphenols as phytocomponents of commercially available chokeberry juices. Results show that after all processing techniques and possibly different plant growth conditions, chokeberry juices are a valuable source of health-promoting phytochemicals such as phenolic acids, pro-anthocyanins, and anthocyanins, thus considering them as functional foods. We demonstrated a diversity of the active substances in bioactive foods marketed as “same”; therefore, the standardized therapeutic effect could be expected only by the utilization of food supplements with guaranteed constant content.
Collapse
|
7
|
Sosnowska D, Podsędek A, Kucharska AZ. Proanthocyanidins as the main pancreatic lipase inhibitors in chokeberry fruits. Food Funct 2022; 13:5616-5625. [PMID: 35506494 DOI: 10.1039/d1fo04429j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pancreatic lipase inhibitors are recognized as important in strategies for the management of overweight and obesity. The phytocompounds in chokeberry fruit show multidirectional pro-health effects, including anti-obesity activity. The aims of this study were to fractionate and identify the phenolic compounds of chokeberry fruit phenolic-rich extract that are active as pancreatic lipase inhibitors. Phenolic compounds were fractionated using Sephadex LH-20 resin, followed by polyphenol profile analysis using chromatographic and spectrophotometric methods, while pancreatic inhibitory activity was determined using 4-methylumbelliferyl oleate and emulsified triolein as enzyme substrates. Among the six fractions isolated from extract, two fractions rich in highly polymerized proanthocyanidins showed the greatest ability to inhibit pancreatic lipase activity. In comparison, fractions containing mainly low-molecular-weight phenolic compounds, such as phenolic acids, flavonols and anthocyanins, were 11-64 times less active. The most active fraction showed a mixed mode of pancreatic lipase inhibition, as determined by Lineweaver-Burk plot analysis, and exhibited a cumulative effect with orlistat. This study shows that black chokeberry polyphenols, particularly highly polymerized procyanidins, can effectively inhibit pancreatic lipase activity determined by in vitro methods.
Collapse
Affiliation(s)
- Dorota Sosnowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland.
| | - Anna Podsędek
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland.
| | - Alicja Z Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland.
| |
Collapse
|
8
|
Dwibedi V, Jain S, Singhal D, Mittal A, Rath SK, Saxena S. Inhibitory activities of grape bioactive compounds against enzymes linked with human diseases. Appl Microbiol Biotechnol 2022; 106:1399-1417. [PMID: 35106636 DOI: 10.1007/s00253-022-11801-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
A quest for identification of novel, safe and efficient natural compounds, as additives in the modern food and cosmetic industries, has been prompted by concerns about toxicity and side effects of synthetic products. Plant phenolic compounds are one of the most documented natural products due to their multifarious biological applications. Grape (Vitis vinifera) is an important source of phenolic compounds such as phenolic acids, tannins, quinones, coumarins and, most importantly, flavonoids/flavones. This review crisply encapsulates enzyme inhibitory activities of various grape polyphenols towards different key human-ailment-associated enzymes: xanthine oxidase (gout), tyrosinase (hyperpigmentation), α-amylase and α-glucosidase (diabetes mellitus), pancreatic lipase (obesity), cholinesterase (Alzheimer's disease), angiotensin i-converting enzymes (hypertension), α-synuclein (Parkinson's disease) and histone deacetylase (various diseases). The review also depicts the enzyme inhibitory mechanism of various grape polyphenols and briefly discusses their stature as potential therapeutic and drug development candidates. KEY POINTS: • Nineteen major bioactive polyphenols from the grape/grape products and their disease targets are presented • Sixty-two important polyphenols as enzyme inhibitors from grape/grape products are presented • A thorough description and graphical presentation of biological significance of polyphenols against various diseases.
Collapse
Affiliation(s)
- Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147001, India
| | - Sahil Jain
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Divya Singhal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Anuradha Mittal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Santosh Kumar Rath
- Department of Pharmaceutical Chemistry, Danteswari College of Pharmacy, Borpadar, Jagdalpur, Chhattisgarh, 494221, India.
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147001, India
| |
Collapse
|
9
|
Jaradat N, Qadi M, Ali I, Hussein F, Issa L, Rashdan D, Jamoos M, Najem R, Zarour A, Arar M. Phytochemical screening, antiobesity, antidiabetic and antimicrobial assessments of Orobanche aegyptiaca from Palestine. BMC Complement Med Ther 2021; 21:256. [PMID: 34625075 PMCID: PMC8501537 DOI: 10.1186/s12906-021-03431-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Background Microbial resistance, diabetes mellitus, and obesity are global health care problems that have posed a serious threat to both human and environmental ecosystems. The goals of the present investigations are to investigate the phytoconstituents, antilipase, anti-α-amylase, and antimicrobial activity of Orobanche aegyptiaca Pers. (OA) from Palestine. Methods Identification of the phytoconstituents of OA plant petroleum ether, methylene chloride, chloroform, acetone, and methanol extracts were conducted using pharmacopeia’s methods, while porcine pancreatic lipase and α–amylase inhibitory activities were examined using p-nitrophenyl butyrate and 3,5-dinitro salicylic acid methods, respectively. Moreover, the antimicrobial activity was evaluated utilizing broth microdilution assay against eight bacterial and fungal strains. Results The phytochemical screening results showed that the methanol extract of the OA plant is rich in phytochemical components, also this extract has powerful antilipase potential with an IC50 value of 19.49 ± 0.16 μg/ml comparing with the positive control (Orlistat) which has antilipase activity with IC50 value of 12.3 ± 0.35 μg/ml. Moreover, the methanol and chloroform extracts have powerful α-amylase inhibitory activity with IC50 values of 28.18 ± 0.22 and 28.18 ± 1.22 μg/ml, respectively comparing with Acarbose which has α-amylase inhibitory activity with IC50 dose of 26.3.18 ± 0.28 μg/ml. The antibacterial results showed that the methylene chloride extract exhibited the highest antibacterial activity among the other OA plant extracts with a MIC value of 0.78 mg/ml against S. aureus, while, the methylene chloride, petroleum ether, and chloroform extracts of the OA plant showed potential antifungal activity against C. albicans strains with MIC value of 0.78 mg/ml. Conclusion The OA methanol and chloroform extracts could be excellent candidates as antilipase and anti-α-amylase bioactive materials. In addition, methylene chloride, petroleum ether, and chloroform extracts could be potential natural antimicrobial products.
Collapse
Affiliation(s)
- Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine.
| | - Mohammad Qadi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine.
| | - Iyad Ali
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Fatima Hussein
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Linda Issa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Doaa Rashdan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Manal Jamoos
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Re'as Najem
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Abdulraziq Zarour
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Mohammad Arar
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| |
Collapse
|
10
|
Jurendić T, Ščetar M. Aronia melanocarpa Products and By-Products for Health and Nutrition: A Review. Antioxidants (Basel) 2021; 10:antiox10071052. [PMID: 34209985 PMCID: PMC8300639 DOI: 10.3390/antiox10071052] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022] Open
Abstract
Due to factors such as cultivar, fertilization, maturation or climate conditions, as well as the date of their harvest, chokeberries (Aronia melanocarpa) differ in their content of minerals, vitamins, carbohydrates, amino acids, organic acids, fats, aroma compounds and especially polyphenols, substances exerting a beneficial impact on health. The total content of the most important ingredients, polyphenolic compounds, influence many proven chokeberry activities like antioxidative, anti-inflammatory, hypotensive, antiviral, anticancer, antiplatelet, antidiabetic and antiatherosclerotic, respectively. Polyphenolic compounds such as anthocyanins, flavonoids, procyanidins and phenolic acids in different rates and amounts are responsible for all mentioned activities. In the human body, they undergo different biotransformative processes strengthening their bioactivity inside and outside cells. The popularity of chokeberry has been significant lately because of its effects on human health and not just because of its nutritional value. The main interest in this review has been refocused on the chokeberry benefits to human health, nutritional contribution of its components, particularly polyphenolic compounds, and its physiological effects.
Collapse
Affiliation(s)
- Tomislav Jurendić
- Bioquanta Ltd. for Research and Development, Trg Zlate Bartl 11/A, 48000 Koprivnica, Croatia
- Correspondence: ; Tel.: +385-48-863-467
| | - Mario Ščetar
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| |
Collapse
|
11
|
Xue J, Sheng X, Zhang BJ, Zhang C, Zhang G. The Sirtuin-1 relied antioxidant and antiaging activity of 5,5'-diferulic acid glucoside esters derived from corn bran by enzymatic method. J Food Biochem 2020; 44:e13519. [PMID: 33078415 DOI: 10.1111/jfbc.13519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 11/30/2022]
Abstract
Maize is the food crop with the highest total output in the world. However, corn bran is only a by-product with low price. The 5,5'-diferulic acid glucoside esters (DFG) were obtained from corn bran using the enzymatic method. DFG showed obvious antioxidant capacity in cell, Caenorhabditis elegans (C. elegans) and in mouse. DFG decreased ROS and MDA content in 500 μM H2 O2 stimulated ARPE-19 cells to 48.6% and 32.2%, respectively. DFG decreased ROS content in C. elegans to 49.1% and MDA content in acute ethanol (50%, 12 ml/kg) stimulated mouse to 30.4%. DFG also increased SOD protein content significantly in cell, C. elegans and mouse to 175.5%, 120.1%, and 126.2%, respectively. DFG significantly extended the lifespan of C. elegans both under heat stress and natural situation. The median survival time was prolonged to 133.3% and 116.7%, respectively. This capacity relied on the SIR-2.1 activity. SIR-2.1 is an ortholog of human Sirtuin-1 (SIRT-1). DFG also upregulated SIRT-1 and PCG-1α expression level obviously in H2 O2 -stimulated ARPE-19 cells (to 134.4% and 127.1%, respectively) and in acute ethanol stimulated mouse eyes (to 135.1% and 111.5%, respectively) and liver (to 123.3% and 113.6%, respectively). These results indicate that DFG has multiple bioactivities. Our research provides a new application prospect of corn bran. And to our best knowledge, this is the first time, the sirtuins-relied lifespan extension activity of the 5,5'-diferulic acid extracted from corn bran was reported. PRACTICAL APPLICATIONS: The traditional method for extracting diferulic acid from corn bran is to use the strong alkali. Obviously, this is not welcomed by the food industry. We employed the biological enzyme method in a relatively mild pH range during the extraction process. It is more environmentally friendly and more economical. DFG can be added as a raw material for functional foods like yogurt, fruit juice, and cereals. As well, the solid precipitate obtained after extraction can also be used as high-quality dietary fiber to produce functional food. Meanwhile, concerning for the 5,5'-diferulic acid derived from corn bran, the relevant research is still not abundant. And to our best knowledge, we have reported for the first time about the effect of this kinds of diferulic acid on prolonging life span and its SIRT-1-dependent activity. It also provides a new perspective for the study of diferulic acid.
Collapse
Affiliation(s)
- Jianbin Xue
- School of Life Science, Jilin University, Changchun, China
| | - Xue Sheng
- School of Life Science, Jilin University, Changchun, China
| | | | - Cijia Zhang
- School of Life Science, Jilin University, Changchun, China
| | - Guirong Zhang
- School of Life Science, Jilin University, Changchun, China
| |
Collapse
|
12
|
Krongyut O, Sutthanut K. Phenolic Profile, Antioxidant Activity, and Anti-obesogenic Bioactivity of Mao Luang Fruits ( Antidesma bunius L.). Molecules 2019; 24:E4109. [PMID: 31739440 PMCID: PMC6891370 DOI: 10.3390/molecules24224109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
To investigate the anti-obesity potential of Antidesma bunius L. (MM), a Thai local fruit which is named "Mao Luang," we have focused on the effects on pancreatic α-amylase and lipase enzyme activity and on adipocyte life cycle using the 3T3-L1 cell line as a model. In addition, the phytochemical composition and anti-oxidation potential were also analyzed using HPLC-PDA UV and colorimetric methods. The ethanolic extract of MM fruits prepared by a maceration method was used in the experiments. MM extract, yield 12.08% w/w, is composed primarily of phenolics and anthocyanins as the major phytochemicals, among which, gallic acid, catechin, anthocyanin-3-glucoside, and protocatechuic acid were initially identified. In addition, susceptibly inhibitory effects on oxidation in a DPPH assay; on lipase enzyme activity rather than amylase enzyme; and on adipocyte adipogenesis of MM were demonstrated. Interestingly, a concentration-dependent bi-modular manner of activity on adipocyte adipogenesis was discovered, whereby a significant anti-adipogenic effect was demonstrated at high concentration, whilst low concentrations of MM showed adipogenic induction. Lipolytic induction was manifested. Conclusively, the ethanolic MM extract was discovered to be a potential anti-obesity agent contributed by inhibitory effects on lipase enzyme and anti-differentiation and -adipogenesis in adipocytes which significantly correlated to the total phenolics content, as well as anti-oxidation as the mechanism of action. Nevertheless, to achieve effective application, further investigation in in vivo models should be considered.
Collapse
Affiliation(s)
- Ornnicha Krongyut
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Khaetthareeya Sutthanut
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
13
|
Black Chokeberry Aronia melanocarpa L .-A Qualitative Composition, Phenolic Profile and Antioxidant Potential. Molecules 2019; 24:molecules24203710. [PMID: 31619015 PMCID: PMC6832535 DOI: 10.3390/molecules24203710] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 11/18/2022] Open
Abstract
Black chokeberry (Aronia melnocarpa) is a source of many bioactive compounds with a wide spectrum of health-promoting properties. Fresh, unprocessed chokeberry fruits are rarely consumed due to their astringent taste, but they are used in the food industry for the production of juices, nectars, syrups, jams, preserves, wines, tinctures, fruit desserts, jellies, fruit teas and dietary supplements. Polyphenols are biofactors that determine the high bioactivity of chokeberries, some of the richest sources of polyphenols, which include anthocyanins, proanthocyanidins, flavonols, flavanols, proanthocyanidins, and phenolic acids. Chokeberry fruit and products have great antioxidant and health-promoting potential as they reduce the occurrence of free radicals. This publication reviewed the scientific research regarding the phenolic compounds and the antioxidant potential of chokeberry fruits, products and isolated compounds. These findings may be crucial in future research concerning chokeberry based functional food products. Chokeberry fruits can be considered as promising component of designed food with enhanced antioxidant potential. However, like other plants and medicinal products of natural origin, black chokeberry requires extensive studies to determine its antioxidant potential, safety and mechanisms of action.
Collapse
|
14
|
Sosnowska D, Podsędek A, Redzynia M, Kucharska AZ. Inhibitory effect of black chokeberry fruit polyphenols on pancreatic lipase – Searching for most active inhibitors. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
15
|
Jurikova T, Mlcek J, Skrovankova S, Sumczynski D, Sochor J, Hlavacova I, Snopek L, Orsavova J. Fruits of Black Chokeberry Aronia melanocarpa in the Prevention of Chronic Diseases. Molecules 2017; 22:E944. [PMID: 28590446 PMCID: PMC6152740 DOI: 10.3390/molecules22060944] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022] Open
Abstract
In recent years, growing attention has been focused on the utilization of natural sources of antioxidants in the prevention of chronic diseases. Black chokeberry (Aronia melanocarpa) represents a lesser known fruit species utilized mainly as juices, purees, jams, jellies and wine, as important food colorants or nutritional supplements. The fruit is valued as a great source of antioxidants, especially polyphenols, such as phenolic acids (neochlorogenic and chlorogenic acids) and flavonoids (anthocyanins, proanthocyanidins, flavanols and flavonols), particularly cyanidin-3-galactoside and cyanidin-3-arabinoside, as well as (-)-epicatechin units. The berries of A. melanocarpa, due to the presence and the high content of these bioactive components, exhibit a wide range of positive effects, such as strong antioxidant activity and potential medicinal and therapeutic benefits (gastroprotective, hepatoprotective, antiproliferative or anti-inflammatory activities). They could be also contributory toward the prevention of chronic diseases including metabolic disorders, diabetes and cardiovascular diseases, because of supportive impacts on lipid profiles, fasting plasma glucose and blood pressure levels.
Collapse
Affiliation(s)
- Tunde Jurikova
- Institute for teacher training, Faculty of Central European Studies, Constantine the Philosopher University in Nitra, Drazovska 4, Nitra SK-949 74, Slovakia.
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, CZ-760 01 Zlín, Czech Republic.
| | - Sona Skrovankova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, CZ-760 01 Zlín, Czech Republic.
| | - Daniela Sumczynski
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, CZ-760 01 Zlín, Czech Republic.
| | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, CZ-691 44 Lednice, Czech Republic.
| | - Irena Hlavacova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, CZ-760 01 Zlín, Czech Republic.
| | - Lukas Snopek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, CZ-760 01 Zlín, Czech Republic.
| | - Jana Orsavova
- Language Centre, Faculty of Humanities, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, CZ-760 01 Zlín, Czech Republic.
| |
Collapse
|
16
|
Kucharska AZ, Sokół-Łętowska A, Oszmiański J, Piórecki N, Fecka I. Iridoids, Phenolic Compounds and Antioxidant Activity of Edible Honeysuckle Berries (Lonicera caerulea var. kamtschatica Sevast.). Molecules 2017; 22:molecules22030405. [PMID: 28273885 PMCID: PMC6155291 DOI: 10.3390/molecules22030405] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 11/26/2022] Open
Abstract
Iridoid and polyphenol profiles of 30 different honeysuckle berry cultivars and genotypes were studied. Compounds were identified by ultra-performance liquid chromatography coupled with electrospray ionization mass spectrometry (UPLC-ESI-qTOF-MS/MS) in positive and negative ion modes and quantified by HPLC-PDA. The 50 identified compounds included 15 iridoids, 6 anthocyanins, 9 flavonols, 2 flavanonols (dihydroflavonols), 5 flavones, 6 flavan-3-ols, and 7 phenolic acids. 8-epi-Loganic acid, pentosyl-loganic acid, taxifolin 7-O-dihexoside, and taxifolin 7-O-hexoside were identified in honeysuckle berries for the first time. Iridoids and anthocyanins were the major groups of bioactive compounds of honeysuckle constituents. The total content of quantified iridoids and anthocyanins was between 128.42 mg/100 g fresh weight (fw) (‘Dlinnoplodnaya’) and 372 mg/100 g fw (‘Kuvshinovidnaya’) and between 150.04 mg/100 g fw (‘Karina’) and 653.95 mg/100 g fw (‘Amur’), respectively. Among iridoids, loganic acid was the dominant compound, and it represented between 22% and 73% of the total amount of quantified iridoids in honeysuckle berry. A very strong correlation was observed between the antioxidant potential and the quantity of anthocyanins. High content of iridoids in honeysuckle berries can complement antioxidant properties of phenolic compounds.
Collapse
Affiliation(s)
- Alicja Z Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Science, Chełmońskiego 37, 51-630 Wrocław, Poland.
| | - Anna Sokół-Łętowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Science, Chełmońskiego 37, 51-630 Wrocław, Poland.
| | - Jan Oszmiański
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Science, Chełmońskiego 37, 51-630 Wrocław, Poland.
| | - Narcyz Piórecki
- Arboretum and Institute of Physiography in Bolestraszyce, 37-700 Przemyśl, Poland.
- University of Rzeszów, Towarnickiego 3, 35-959 Rzeszów, Poland.
| | - Izabela Fecka
- Department of Pharmacognosy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland.
| |
Collapse
|