1
|
Olivares-Berjaga D, Martínez-Pinteño A, Rodríguez N, Mas S, Morén C, Parellada E, Gassó P. Effectiveness of positive allosteric modulators of metabotropic glutamate receptor 2/3 (mGluR2/3) in animal models of schizophrenia. Transl Psychiatry 2025; 15:11. [PMID: 39809758 PMCID: PMC11733226 DOI: 10.1038/s41398-024-03194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Schizophrenia (SZ) is a deleterious brain disorder characterised by its heterogeneity and complex symptomatology consisting of positive, negative and cognitive deficits. Current antipsychotic drugs ameliorate the positive symptomatology, but are inefficient in treating the negative symptomatology and cognitive deficits. The neurodevelopmental glutamate hypothesis of SZ has opened new avenues in the development of drugs targeting the glutamatergic system. One of these new therapies involves the positive allosteric modulators (PAMs) of metabotropic glutamate receptors, mainly types 2/3 (mGluR2/3). mGluR2/3 PAMs are selective for the receptor, present high tolerability and can modulate the activity of the receptor for long periods. There is not much research in clinical trials regarding mGluR2/3 PAMs. However, several lines of evidence from animal models have indicated the efficiency of mGluR2/3 PAMs. In this review, focusing on in vivo animal studies, we will specifically discuss the utilization of SZ animal models and the various methods employed to assess animal behaviour before summarising the evidence obtained to date in the field of mGluR2/3 PAMs. By doing so, we aim to deepen our understanding of the underlying mechanisms and the potential efficiency of mGluR2/3 PAMs in treating SZ. Overall, mGluR2/3 PAMs have demonstrated efficiency in attenuating SZ-like behavioural and molecular deficits in animal models and could be useful for the early management of the disorder or to treat specific subsets of patients.
Collapse
Affiliation(s)
- David Olivares-Berjaga
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Martínez-Pinteño
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Natalia Rodríguez
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sergi Mas
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Constanza Morén
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
- Barcelona Clínic Schizophrenia Unit (BCSU), Department of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
- Department of Fundamental and Clinical Nursing, Faculty of Nursing, University of Barcelona, Barcelona, Spain
| | - Eduard Parellada
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
- Barcelona Clínic Schizophrenia Unit (BCSU), Department of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain.
| | - Patricia Gassó
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| |
Collapse
|
2
|
Kim JY, Kong CH, Kim DY, Min JW, Park K, Jeon M, Kang WC, Jung SY, Ryu JH. Effect of D-pinitol on MK-801-induced schizophrenia-like behaviors in mice. Phytother Res 2023; 37:5904-5915. [PMID: 37654104 DOI: 10.1002/ptr.8002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/13/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
Schizophrenia is a chronic brain disorder characterized by positive symptoms (delusions or hallucinations), negative symptoms (impaired motivation or social withdrawal), and cognitive impairment. In the present study, we explored whether D-pinitol could ameliorate schizophrenia-like behaviors induced by MK-801, an N-methyl-D-aspartate receptor antagonist. Acoustic startle response test was conducted to evaluate the effects of D-pinitol on sensorimotor gating function. Social interaction and novel object recognition tests were employed to measure the impact of D-pinitol on social behavior and cognitive function, respectively. Additionally, we examined whether D-pinitol affects motor coordination. Western blotting was conducted to investigate the mechanism of action of D-pinitol. Single administration of D-pinitol at 30, 100, or 300 mg/kg improved the sensorimotor gating deficit induced by MK801 in the acoustic startle response test. D-Pinitol also reversed social behavior deficits and cognitive impairments induced by MK-801 without causing any motor coordination deficits. Furthermore, D-pinitol reversed increased expression levels of pNF-kB induced by MK-801 treatment and consequently increased expression levels of TNF-α and IL-6 in the prefrontal cortex. These results suggest that D-pinitol could be a potential candidate for treating sensorimotor gating deficits and cognitive impairment observed in schizophrenia by down-regulating transcription factor NF-κB and pro-inflammatory cytokines in the prefrontal cortex.
Collapse
Affiliation(s)
- Jae Youn Kim
- Department of Integrated Drug Development and Natural Products, Kyung Hee University, Seoul, Republic of Korea
| | - Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Do Yeon Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Won Min
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Hoon Ryu
- Department of Integrated Drug Development and Natural Products, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
- Department of Oriental Pharmaceutical Science College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Panthi S, Lyons NMA, Leitch B. Impact of Dysfunctional Feed-Forward Inhibition on Glutamate Decarboxylase Isoforms and γ-Aminobutyric Acid Transporters. Int J Mol Sci 2021; 22:ijms22147740. [PMID: 34299369 PMCID: PMC8306481 DOI: 10.3390/ijms22147740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 12/02/2022] Open
Abstract
Absence seizures are associated with generalised synchronous 2.5–4 Hz spike-wave discharges causing brief and sudden alteration of awareness during childhood, which is known as childhood absence epilepsy (CAE). CAE is also associated with impaired learning, psychosocial challenges, and physical danger. Absence seizures arise from disturbances within the cortico-thalamocortical (CTC) network, including dysfunctional feed-forward inhibition (FFI); however, the precise mechanisms remain unclear. In epileptic stargazers, a genetic mouse model of CAE with chronic seizures, levels of γ-aminobutyric acid (GABA), and expression of GABA receptors are altered within the CTC network, implicating altered GABAergic transmission in absence seizures. However, the expression of GABA synthesising enzymes (GAD65 and GAD67) and GABA transporters (GAT-1 and 3) have not yet been characterised within absence seizure models. We found a specific upregulation of GAD65 in the somatosensory cortex but not the thalamus of epileptic stargazer mice. No differences were detected in GAD67 and GAT-3 levels in the thalamus or somatosensory cortex. Then, we assessed if GAD65 upregulation also occurred in Gi-DREADD mice exhibiting acute absence seizures, but we found no change in the expression profiles of GAD65/67 or GAT-3. Thus, the upregulation of GAD65 in stargazers may be a compensatory mechanism in response to long-term dysfunctional FFI and chronic absence seizures.
Collapse
Affiliation(s)
| | | | - Beulah Leitch
- Correspondence: ; Tel.: +64-3-479-7618; Fax: +64-3-479-7254
| |
Collapse
|
4
|
Martínez-Pinteño A, García-Cerro S, Mas S, Torres T, Boloc D, Rodríguez N, Lafuente A, Gassó P, Arnaiz JA, Parellada E. The positive allosteric modulator of the mGlu2 receptor JNJ-46356479 partially improves neuropathological deficits and schizophrenia-like behaviors in a postnatal ketamine mice model. J Psychiatr Res 2020; 126:8-18. [PMID: 32407891 DOI: 10.1016/j.jpsychires.2020.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 12/30/2022]
Abstract
Current antipsychotics have limited efficacy in controlling cognitive and negative symptoms of schizophrenia (SZ). Glutamatergic dysregulation has been implicated in the pathophysiology of SZ, based on the capacity of N-methyl-D-aspartate receptor (NMDAR) antagonists such as ketamine (KET) to induce SZ-like behaviors. This could be related to their putative neuropathological effect on gamma-aminobutyric (GABAergic) interneurons expressing parvalbumin (PV), which would lead to a hyperglutamatergic condition. Metabotropic glutamate receptor 2 (mGluR2) negatively modulates glutamate release and has been considered a potential clinical target for novel antipsychotics drugs. Our aim was to evaluate the efficacy of JNJ-46356479 (JNJ), a positive allosteric modulator (PAM) of the mGluR2, in reversing neuropathological and behavioral deficits induced in a postnatal KET mice model of SZ. These animals presented impaired spontaneous alternation in the Y-maze test, suggesting deficits in spatial working memory, and a decrease in social motivation and memory, assessed in both the Three-Chamber and the Five Trial Social Memory tests. Interestingly, JNJ treatment of adult mice partially reversed these deficits. Mice treated with KET also showed a reduction in PV+ in the mPFC and dentate gyrus together with an increase in c-Fos expression in this hippocampal area. Compared to the control group, mice treated with KET + JNJ showed a similar PV density and c-Fos activity pattern. Our results suggest that pharmacological treatment with a PAM of the mGluR2 such as JNJ could help improve cognitive and negative symptoms related to SZ.
Collapse
Affiliation(s)
| | - Susana García-Cerro
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Sergi Mas
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Teresa Torres
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Daniel Boloc
- Department of Medicine, University of Barcelona, Spain
| | - Natalia Rodríguez
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Amalia Lafuente
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Patricia Gassó
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Joan Albert Arnaiz
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Clinical Pharmacology Department, Hospital Clínic de Barcelona, Spain.
| | - Eduard Parellada
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Department of Medicine, University of Barcelona, Spain; Barcelona Clinic Schizophrenia Unit (BCSU), Institute of Neuroscience, Hospital Clinic of Barcelona, University of Barcelona, Spain.
| |
Collapse
|
5
|
Altered excitatory transmission onto hippocampal interneurons in the IQSEC2 mouse model of X-linked neurodevelopmental disease. Neurobiol Dis 2020; 137:104758. [PMID: 31978606 DOI: 10.1016/j.nbd.2020.104758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/16/2019] [Accepted: 01/20/2020] [Indexed: 02/01/2023] Open
Abstract
Mutations in the X-linked gene IQSEC2 are associated with multiple cases of epilepsy, epileptic encephalopathy, intellectual disability and autism spectrum disorder, the mechanistic understanding and successful treatment of which remain a significant challenge in IQSEC2 and related neurodevelopmental genetic diseases. To investigate disease etiology, we studied behaviors and synaptic function in IQSEC2 deficient mice. Hemizygous Iqsec2 null males exhibit growth deficits, hyperambulation and hyperanxiety phenotypes. Adult hemizygotes experience lethal spontaneous seizures, but paradoxically have a significantly increased threshold to electrically induced limbic seizures and relative resistance to chemically induced seizures. Although there are no gross defects in brain morphology, hemizygotes exhibit stark hippocampal reactive astrogliosis. Electrophysiological recordings of hippocampal neurons reveal increased excitatory drive specifically onto interneurons, and significant alterations in intrinsic electrical properties specific to the interneuron population. As they age, hemizygotes also develop an increased abundance of parvalbumin-positive interneurons in the hippocampus, neurons in which IQSEC2 is expressed in addition to the excitatory neurons. These findings point to a novel role of IQSEC2 in hippocampal interneuron synaptic function and development with implications for a class of intractable neurodevelopmental diseases.
Collapse
|
6
|
Short-Term Exposure to Enriched Environment in Adult Rats Restores MK-801-Induced Cognitive Deficits and GABAergic Interneuron Immunoreactivity Loss. Mol Neurobiol 2019; 55:26-41. [PMID: 28822057 DOI: 10.1007/s12035-017-0715-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Perinatal injections of N-methyl-D-aspartate (NMDA) receptor antagonist in rodents emulate some cognitive impairments and neurochemical alterations, such as decreased GABAergic (gamma aminobutyric acid) interneuron immunoreactivity, also found in schizophrenia. These features are pervasive, and developing neuroprotective or neurorestorative strategies is of special interest. In this work, we aimed to investigate if a short exposure to enriched environment (EE) in early adulthood (P55-P73) was an effective strategy to improve cognitive dysfunction and to restore interneuron expression in medial prefrontal cortex (mPFC) and hippocampus (HPC). For that purpose, we administered MK-801 intraperitoneally to Long Evans rats from postnatal days 10 to 20. Twenty-four hours after the last injection, MK-801 produced a transient decrease in spontaneous motor activity and exploration, but those abnormalities were absent at P24 and P55. The open field test on P73 manifested that EE reduced anxiety-like behavior. In addition, MK-801-treated rats showed cognitive impairment in novel object recognition test that was reversed by EE. We quantified different interneuron populations based on their calcium-binding protein expression (parvalbumin, calretinin, and calbindin), glutamic acid decarboxylase 67, and neuronal nuclei-positive cells by means of unbiased stereology and found that EE enhanced interneuron immunoreactivity up to normal values in MK-801-treated rats. Our results demonstrate that a timely intervention with EE is a powerful tool to reverse long-lasting changes in cognition and neurochemical markers of interneurons in an animal model of schizophrenia.
Collapse
|
7
|
Faatehi M, Basiri M, Nezhadi A, Shabani M, Masoumi-Ardakani Y, Soltani Z, Nozari M. Early enriched environment prevents cognitive impairment in an animal model of schizophrenia induced by MK-801: Role of hippocampal BDNF. Brain Res 2019; 1711:115-119. [DOI: 10.1016/j.brainres.2019.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/25/2018] [Accepted: 01/20/2019] [Indexed: 12/16/2022]
|
8
|
Cadinu D, Grayson B, Podda G, Harte MK, Doostdar N, Neill JC. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacology 2018; 142:41-62. [DOI: 10.1016/j.neuropharm.2017.11.045] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/28/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023]
|
9
|
Riordan AJ, Schaler AW, Fried J, Paine TA, Thornton JE. Estradiol and luteinizing hormone regulate recognition memory following subchronic phencyclidine: Evidence for hippocampal GABA action. Psychoneuroendocrinology 2018. [PMID: 29529524 DOI: 10.1016/j.psyneuen.2018.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The cognitive symptoms of schizophrenia are poorly understood and difficult to treat. Estrogens may mitigate these symptoms via unknown mechanisms. To examine these mechanisms, we tested whether increasing estradiol (E) or decreasing luteinizing hormone (LH) could mitigate short-term episodic memory loss in a phencyclidine (PCP) model of schizophrenia. We then assessed whether changes in cortical or hippocampal GABA may underlie these effects. Female rats were ovariectomized and injected subchronically with PCP. To modulate E and LH, animals received estradiol capsules or Antide injections. Short-term episodic memory was assessed using the novel object recognition task (NORT). Brain expression of GAD67 was analyzed via western blot, and parvalbumin-containing cells were counted using immunohistochemistry. Some rats received hippocampal infusions of a GABAA agonist, GABAA antagonist, or GAD inhibitor before behavioral testing. We found that PCP reduced hippocampal GAD67 and abolished recognition memory. Antide restored hippocampal GAD67 and rescued recognition memory in PCP-treated animals. Estradiol prevented PCP's amnesic effect in NORT but failed to restore hippocampal GAD67. PCP did not cause significant differences in number of parvalbumin-expressing cells or cortical expression of GAD67. Hippocampal infusions of a GABAA agonist restored recognition memory in PCP-treated rats. Blocking hippocampal GAD or GABAA receptors in ovx animals reproduced recognition memory loss similar to PCP and inhibited estradiol's protection of recognition memory in PCP-treated animals. In summary, decreasing LH or increasing E can lessen short-term episodic memory loss, as measured by novel object recognition, in a PCP model of schizophrenia. Alterations in hippocampal GABA may contribute to both PCP's effects on recognition memory and the hormones' ability to prevent or reverse them.
Collapse
Affiliation(s)
- Alexander J Riordan
- Oberlin College, Neuroscience Department, 119 Woodland St, Oberlin, OH 44074, USA.
| | - Ari W Schaler
- Oberlin College, Neuroscience Department, 119 Woodland St, Oberlin, OH 44074, USA
| | - Jenny Fried
- Oberlin College, Neuroscience Department, 119 Woodland St, Oberlin, OH 44074, USA
| | - Tracie A Paine
- Oberlin College, Neuroscience Department, 119 Woodland St, Oberlin, OH 44074, USA
| | - Janice E Thornton
- Oberlin College, Neuroscience Department, 119 Woodland St, Oberlin, OH 44074, USA
| |
Collapse
|
10
|
Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis. Transl Psychiatry 2017; 7:e1147. [PMID: 28585933 PMCID: PMC5537645 DOI: 10.1038/tp.2017.124] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/26/2017] [Accepted: 05/03/2017] [Indexed: 01/17/2023] Open
Abstract
Data from animal models and from postmortem studies suggest that schizophrenia is associated with brain GABAergic dysfunction. The extent to which this is reflected in data from in vivo studies of GABA function in schizophrenia is unclear. The Medline database was searched to identify articles published until 21 October 2016. The search terms included GABA, proton magnetic resonance spectroscopy (1H-MRS), positron emission tomography (PET), single photon emission computed tomography (SPECT), schizophrenia and psychosis. Sixteen GABA 1H-MRS studies (538 controls, 526 patients) and seven PET/SPECT studies of GABAA/benzodiazepine receptor (GABAA/BZR) availability (118 controls, 113 patients) were identified. Meta-analyses of 1H-MRS GABA in the medial prefrontal cortex (mPFC), parietal/occipital cortex (POC) and striatum did not show significant group differences (mFC: g=-0.3, 409 patients, 495 controls, 95% confidence interval (CI): -0.6 to 0.1; POC: g=-0.3, 139 patients, 111 controls, 95% CI: -0.9 to 0.3; striatum: g=-0.004, 123 patients, 95 controls, 95% CI: -0.7 to 0.7). Heterogeneity across studies was high (I2>50%), and this was not explained by subsequent moderator or meta-regression analyses. There were insufficient PET/SPECT receptor availability studies for meta-analyses, but a systematic review did not suggest replicable group differences in regional GABAA/BZR availability. The current literature does not reveal consistent alterations in in vivo GABA neuroimaging measures in schizophrenia, as might be hypothesized from animal models and postmortem data. The analysis highlights the need for further GABA neuroimaging studies with improved methodology and addressing potential sources of heterogeneity.
Collapse
|
11
|
Shojaei A, Anaraki AK, Mirnajafi-Zadeh J, Atapour N. Modifications of inhibitory transmission onto pyramidal neurons by postnatal exposure to MK-801: Effects of enriched environment. Int J Dev Neurosci 2017; 57:56-61. [PMID: 28099880 DOI: 10.1016/j.ijdevneu.2017.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 11/30/2022] Open
Abstract
Early enriched environment (EE) prevents several deficits associated with postnatal MK-801 [N-Methyl-d-Aspartate (NMDA) receptor antagonist] treatment such as cognitive and locomotor deficits. We sought physiological correlates to such changes by looking at inhibitory synaptic inputs onto pyramidal cells in a prefrontal cortex slice preparation. Pharmacologically isolated γ-amino-butyric acid A (GABAA) receptor-mediated currents were measured using whole-cell patch clamp recordings. Wistar rats were raised in standard or EE from birth up to the time of experiments and were injected with saline or MK-801 (1mg/kg) on postnatal days (P) 6-10. We recorded miniature inhibitory post-synaptic currents (mIPSCs) of pyramidal cells in layer II/III of prefrontal cortex and measured their frequency, amplitude and kinetics. In control animals, the amplitude and frequency of mIPSCs increased strikingly during development from P21 to P28. MK-801 accelerated the development of mIPSCs frequency but caused a significant decrease in the amplitude of mIPSCs on P28 suggesting a significant reduction of inhibition onto pyramidal cells. EE per se led to a significant increase in both frequency and amplitude of mIPSCs, but its application to MK-801-treated rats resulted in moderate rescue of GABAergic transmission on P28. We conclude that postnatal MK-801 leads to reduced inhibitory transmission onto pyramidal cells of prefrontal cortex at adolescence which may underlie behavioural and morphological differences detected in vivo in rats. EE presentation from birth rather prevents GABAergic alterations associated with postnatal MK-801 treatment at adolescence.
Collapse
Affiliation(s)
- Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Afsaneh Kamali Anaraki
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Atapour
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran; Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia.
| |
Collapse
|
12
|
Nozari M, Suzuki T, Rosa MGP, Yamakawa K, Atapour N. The impact of early environmental interventions on structural plasticity of the axon initial segment in neocortex. Dev Psychobiol 2016; 59:39-47. [DOI: 10.1002/dev.21453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/12/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Masoumeh Nozari
- Neuroscience Research Center, Neuropharmacology Institute; Kerman University of Medical Sciences; Kerman Iran
| | - Toshimitsu Suzuki
- Laboratory for Neurogenetics; RIKEN Brain Science Institute; Wako-shi Saitama Japan
| | - Marcello G. P. Rosa
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Physiology; Monash University; Melbourne Victoria Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function; Monash University Node; Clayton Victoria Australia
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics; RIKEN Brain Science Institute; Wako-shi Saitama Japan
| | - Nafiseh Atapour
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Physiology; Monash University; Melbourne Victoria Australia
| |
Collapse
|
13
|
Li JT, Su YA, Wang HL, Zhao YY, Liao XM, Wang XD, Si TM. Repeated Blockade of NMDA Receptors During Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex. Front Mol Neurosci 2016; 9:17. [PMID: 26973457 PMCID: PMC4776083 DOI: 10.3389/fnmol.2016.00017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/19/2016] [Indexed: 11/13/2022] Open
Abstract
Adolescence is of particular significance to schizophrenia, since psychosis onset typically occurs in this critical period. Based on the N-methyl-D-aspartate (NMDA) receptor hypofunction hypothesis of schizophrenia, in this study, we investigated whether and how repeated NMDA receptor blockade during adolescence would affect GABAergic interneurons in rat medial prefrontal cortex (mPFC) and mPFC-mediated cognitive functions. Specifically, adolescent rats were subjected to intraperitoneal administration of MK-801 (0.1, 0.2, 0.4 mg/kg), a non-competitive NMDA receptor antagonist, for 14 days and then tested for reference memory and reversal learning in the water maze. The density of parvabumin (PV)-, calbindin (CB)- and calretinin (CR)-positive neurons in mPFC was analyzed at either 24 h or 7 days after drug cessation. We found that MK-801 treatment delayed reversal learning in the water maze without affecting initial acquisition. Strikingly, MK-801 treatment also significantly reduced the density of PV+ and CB+ neurons, and this effect persisted for 7 days after drug cessation at the dose of 0.2 mg/kg. We further demonstrated that the reduction in PV+ and CB+ neuron densities was ascribed to a downregulation of the expression levels of PV and CB, but not to neuronal death. These results parallel the behavioral and neuropathological changes of schizophrenia and provide evidence that adolescent NMDA receptors antagonism offers a useful tool for unraveling the etiology of the disease.
Collapse
Affiliation(s)
- Ji-Tao Li
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University) Beijing, China
| | - Yun-Ai Su
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University) Beijing, China
| | - Hong-Li Wang
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University) Beijing, China
| | - Ying-Ying Zhao
- Depression Treatment Center, Beijing Anding Hospital of Capital Medical University Beijing, China
| | - Xue-Mei Liao
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University) Beijing, China
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine Hangzhou, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders, (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University) Beijing, China
| |
Collapse
|
14
|
Postnatal MK-801 treatment of female rats impairs acquisition of working memory, but not reference memory in an eight-arm radial maze; no beneficial effects of enriched environment. Psychopharmacology (Berl) 2015; 232:2541-50. [PMID: 25743756 DOI: 10.1007/s00213-015-3890-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/10/2015] [Indexed: 10/23/2022]
Abstract
RATIONALE Memory impairment has been documented in MK-801 (NMDA receptor antagonist) model of schizophrenia, but less is known on the rescue and/or differential effects of MK-801 on short- and long-term memories. OBJECTIVES We determined the effects of MK-801 treatment and/or enriched environment (EE) on acquisition of reference and working memory in developing rats. METHODS Female Wistar rats were injected with MK-801 (1 mg/kg) from postnatal days (P) 6-10. Task acquisition, working memory error (WME), and reference memory error (RME) were assessed in an eight-arm radial maze task. Behavioral performance of rats was also tested in an open field test before (P35-P40) and after (P65-P70) radial maze training to assess anxiety and locomotion. EE was applied from birth up to the end of experiments. RESULTS MK-801 treatment did not influence task acquisition in the radial maze; however, by the end of training, MK-801-treated rats made significantly more WME, but not RME, compared to control rats. Ratio of WME to total error was also significantly higher in MK-801 group. EE prevented MK-801-associated behaviors in the open field but did not exert beneficial effects on working memory deficit in the radial maze task. EE per se affected behavioral performance of rats only in the open field test. CONCLUSIONS Our results suggest that postnatal MK-801 treatment differentially affects working and reference memory in a young brain. Anxiety and hyperactivity associated with MK-801 are observed more severely in adulthood. Dissociation of the positive effects of EE may suggest selective modification of distinct pathways.
Collapse
|
15
|
Nozari M, Shabani M, Farhangi AM, Mazhari S, Atapour N. Sex-specific restoration of MK-801-induced sensorimotor gating deficit by environmental enrichment. Neuroscience 2015; 299:28-34. [PMID: 25934034 DOI: 10.1016/j.neuroscience.2015.04.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 12/16/2022]
Abstract
Despite ample evidence of N-methyl-D-aspartate (NMDA) receptor dysfunction in schizophrenia, no study has addressed the effects of enriched environment (EE) on sensorimotor gating deficits induced by postnatal NMDA receptor blockade. We evaluated the effect of EE on sensorimotor gating (measured by prepulse inhibition, PPI), or on sensorimotor gating deficit induced by the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) in both sexes of Wistar rats. Rats were injected with MK-801 (1 mg/kg) on postnatal days (P) 6-10. EE was provided from birth up to the time of experiments on P28-30 or P58-60. PPI data were collected at three prepulse intensities and then averaged to yield global PPI. MK-801 treatment reduced PPI significantly in both sexes. While EE per se had no significant effect on PPI, it restored MK-801-induced PPI deficit only in male rats. An extended period of EE did not influence PPI deficit in female rats. Our results indicate that postnatal exposure to MK-801 may exert long-lasting effects on neuronal circuits underlying sensorimotor gating. Sex-specific modulation of such effects by EE suggests sexually dimorphic mechanisms are involved.
Collapse
Affiliation(s)
- M Nozari
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - M Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - A M Farhangi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - S Mazhari
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - N Atapour
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
16
|
Nozari M, Shabani M, Hadadi M, Atapour N. Enriched environment prevents cognitive and motor deficits associated with postnatal MK-801 treatment. Psychopharmacology (Berl) 2014; 231:4361-70. [PMID: 24770628 DOI: 10.1007/s00213-014-3580-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/06/2014] [Indexed: 11/26/2022]
Abstract
RATIONALE Previous studies have shown the beneficial effects of enriched environment (EE) in rescuing behavioral deficits such as pre-pulse inhibition and locomotor hyperactivity associated with N-methyl-D-aspartate (NMDA) receptor blockade; however, cognitive deficits remain unresponsive. OBJECTIVES We designed experiments to determine the consequences of raising rat pups in an EE on several behavioral aberrations, mainly cognitive deficits, observed in rats postnatally exposed to MK-801 (NMDA receptor antagonist). METHODS Male Wistar rats were injected with MK-801 (1 mg/kg) from postnatal day (P) 6-10. Rat pups were housed in an EE from birth up to the time of behavioral experiments at P28-34. The effects of EE in correcting MK-801-associated behaviors were assessed by rotarod, wire grip, open filed, and Morris water maze tests. RESULTS We found that EE not only has beneficial effects on cognitive performance of normal rats but also prevents spatial learning and memory deficits in Morris water maze induced by MK-801. Postnatal MK-801 treatment also led to motor deficits both in wire grip and accelerating rotarod tests. These deficits were not observed in MK-801-treated rats raised in EE. In the open field test, EE prevented increase in "frequency of grooming" and decrease in "time spent in the center" associated with MK-801. CONCLUSIONS Our results suggest that exposure to an EE would be strongly beneficial in correcting deficits, notably cognitive, associated with MK-801. Given that the postnatal MK-801 treatment represents an animal model of schizophrenia, we propose timely environmental interventions might be an effective strategy in the protection against schizophrenia.
Collapse
Affiliation(s)
- Masoumeh Nozari
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | |
Collapse
|
17
|
Souchet B, Guedj F, Sahún I, Duchon A, Daubigney F, Badel A, Yanagawa Y, Barallobre MJ, Dierssen M, Yu E, Herault Y, Arbones M, Janel N, Créau N, Delabar JM. Excitation/inhibition balance and learning are modified by Dyrk1a gene dosage. Neurobiol Dis 2014; 69:65-75. [PMID: 24801365 DOI: 10.1016/j.nbd.2014.04.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 11/21/2022] Open
Abstract
Cognitive deficits in Down syndrome (DS) have been linked to increased synaptic inhibition, leading to an imbalance of excitation/inhibition (E/I). Various mouse models and studies from human brains have implicated an HSA21 gene, the serine/threonine kinase DYRK1A, as a candidate for inducing cognitive dysfunction. Here, consequences of alterations in Dyrk1a dosage were assessed in mouse models with varying copy numbers of Dyrk1a: mBACtgDyrk1a, Ts65Dn and Dp(16)1Yey (with 3 gene copies) and Dyrk1a(+/-) (one functional copy). Molecular (i.e. immunoblotting/immunohistochemistry) and behavioral analyses (e.g., rotarod, Morris water maze, Y-maze) were performed in mBACtgDyrk1a mice. Increased expression of DYRK1A in mBACtgDyrk1a induced molecular alterations in synaptic plasticity pathways, particularly expression changes in GABAergic and glutaminergic related proteins. Similar alterations were observed in models with partial trisomy of MMU16, Ts65Dn and Dp(16)1Yey, and were reversed in the Dyrk1a(+/-) model. Dyrk1a overexpression produced an increased number and signal intensity of GAD67 positive neurons, indicating enhanced inhibition pathways in three different models: mBACtgDyrk1a, hYACtgDyrk1a and Dp(16)1Yey. Functionally, Dyrk1a overexpression protected mice from PTZ-induced seizures related to GABAergic neuron plasticity. Our study shows that DYRK1A overexpression affects pathways involved in synaptogenesis and synaptic plasticity and influences E/I balance toward inhibition. Inhibition of DYRK1A activity offers a therapeutic target for DS, but its inhibition/activation may also be relevant for other psychiatric diseases with E/I balance alterations.
Collapse
Affiliation(s)
- Benoit Souchet
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France
| | - Fayçal Guedj
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France
| | - Ignasi Sahún
- Genomic Regulation Center, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Arnaud Duchon
- IGBMC, CNRS, INSERM, UMR7104, UMR964, Illkirch, France
| | - Fabrice Daubigney
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France
| | - Anne Badel
- MTI, Univ Paris Diderot, Sorbonne Paris Cité, France
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine and JST, CREST, Japan
| | - Maria Jose Barallobre
- Plataforma de Recerca Aplicada en Animal de Laboratori (PRAAL), Parc Científic de Barcelona (PCB), Spain
| | - Mara Dierssen
- Genomic Regulation Center, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Eugene Yu
- Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Yann Herault
- IGBMC, CNRS, INSERM, UMR7104, UMR964, Illkirch, France
| | - Mariona Arbones
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain; Plataforma de Recerca Aplicada en Animal de Laboratori (PRAAL), Parc Científic de Barcelona (PCB), Spain
| | - Nathalie Janel
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France
| | - Nicole Créau
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France.
| | - Jean Maurice Delabar
- Univ Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, UMR CNRS 8251, 75205 Paris, France.
| |
Collapse
|
18
|
Smith KM, Maragnoli ME, Phull PM, Tran KM, Choubey L, Vaccarino FM. Fgfr1 inactivation in the mouse telencephalon results in impaired maturation of interneurons expressing parvalbumin. PLoS One 2014; 9:e103696. [PMID: 25116473 PMCID: PMC4130531 DOI: 10.1371/journal.pone.0103696] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 07/04/2014] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factors (Fgfs) and their receptors (Fgfr) are expressed in the developing and adult CNS. Previous studies demonstrated a decrease in cortical interneurons and locomotor hyperactivity in mice with a conditional Fgfr1 deletion generated in radial glial cells during midneurogenesis (Fgfr1f/f;hGfapCre+). Here, we report earlier and more extensive inactivation of Fgfr1 in neuroepithelial cells of the CNS (Fgfr1f/f;NesCre+). Similar to findings in Fgfr1f/f;hGfapCre+ mice, parvalbumin positive (PV+) cortical interneurons are also decreased in the neocortex of Fgfr1f/f;NesCre+ mice when compared to control littermates (Fgfr1f/f). Fgfr1f/f;NesCre+ embryos do not differ from controls in the initial specification of GABAergic cells in the ganglionic eminence (GE) as assessed by in situ hybridization for Dlx2, Mash1 and Nkx2. Equal numbers of GABAergic neuron precursors genetically labeled with green fluorescent protein (GFP) were observed at P0 in Fgfr1f/f;hGfapCre+;Gad1-GFP mutant mice. However, fewer GFP+ and GFP+/PV+ interneurons were observed in these mutants at adulthood, indicating that a decrease in cortical interneuron markers is occurring postnatally. Fgfr1 is expressed in cortical astrocytes in the postnatal brain. To test whether the astrocytes of mice lacking Fgfr1 are less capable of supporting interneurons, we co-cultured wild type Gad1-GFP+ interneuron precursors isolated from the medial GE (MGE) with astrocytes from Fgfr1f/f control or Fgfr1f/f;hGfapCre+ mice. Interneurons grown on Fgfr1 deficient astrocytes had small soma size and fewer neurites per cell, but no differences in cell survival. Decreased soma size of Gad67 immunopositive interneurons was also observed in the cortex of adult Fgfr1f/f;NesCre+ mice. Our data indicate that astrocytes from Fgfr1 mutants are impaired in supporting the maturation of cortical GABAergic neurons in the postnatal period. This model may elucidate potential mechanisms of impaired PV interneuron maturation relevant to neuropsychiatric disorders that develop in childhood and adolescence.
Collapse
Affiliation(s)
- Karen Müller Smith
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | | | - Pooja M. Phull
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | - Kathy May Tran
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | - Lisha Choubey
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
- Department of Neurobiology, Yale University, New Haven, Connecticut, United States of America
- Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
19
|
Zhou Z, Zhang G, Li X, Liu X, Wang N, Qiu L, Liu W, Zuo Z, Yang J. Loss of Phenotype of Parvalbumin Interneurons in Rat Prefrontal Cortex Is Involved in Antidepressant- and Propsychotic-Like Behaviors Following Acute and Repeated Ketamine Administration. Mol Neurobiol 2014; 51:808-19. [DOI: 10.1007/s12035-014-8798-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/15/2014] [Indexed: 01/19/2023]
|
20
|
Seo S, Leitch B. Altered thalamic GABAA-receptor subunit expression in the stargazer mouse model of absence epilepsy. Epilepsia 2014; 55:224-232. [PMID: 24417662 DOI: 10.1111/epi.12500] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2013] [Indexed: 01/11/2023]
Abstract
PURPOSE Absence seizures, also known as petit mal seizures, arise from disruptions within the cortico-thalamocortical network. Interconnected circuits within the thalamus consisting of inhibitory neurons of the reticular thalamic nucleus (RTN) and excitatory relay neurons of the ventral posterior (VP) complex, generate normal intrathalamic oscillatory activity. The degree of synchrony in this network determines whether normal (spindle) or pathologic (spike wave) oscillations occur; however, the cellular and molecular mechanisms underlying absence seizures are complex and multifactorial and currently are not fully understood. Recent experimental evidence from rodent models suggests that regional alterations in γ-aminobutyric acid (GABA)ergic inhibition may underlie hypersynchronous oscillations featured in absence seizures. The aim of the current study was to investigate whether region-specific differences in GABAA receptor (GABAAR) subunit expression occur in the VP and RTN thalamic regions in the stargazer mouse model of absence epilepsy where the primary deficit is in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) expression. METHODS Immunofluorescence confocal microscopy and semiquantitative Western blot analysis were used to investigate region-specific changes in GABAAR subunits in the thalamus of the stargazer mouse model of absence epilepsy to determine whether changes in GABAergic inhibition could contribute to the mechanisms underlying seizures in this model of absence epilepsy. KEY FINDINGS Immunofluorescence confocal microscopy revealed that GABAAR α1 and β2 subunits are predominantly expressed in the VP, whereas α3 and β3 subunits are localized primarily in the RTN. Semiquantitative Western blot analysis of VP and RTN samples from epileptic stargazers and their nonepileptic littermates showed that GABAAR α1 and β2 subunit expression levels in the VP were significantly increased (α1: 33%, β2: 96%) in epileptic stargazers, whereas α3 and β3 subunits in the RTN were unchanged in the epileptic mice compared to nonepileptic control littermates. SIGNIFICANCE These findings suggest that region-specific differences in GABAAR subunits in the thalamus of epileptic mice, specifically up-regulation of GABAARs in the thalamic relay neurons of the VP, may contribute to generation of hypersynchronous thalamocortical activity in absence seizures. Understanding region-specific differences in GABAAR subunit expression could help elucidate some of the cellular and molecular mechanisms underlying absence seizures and thereby identify targets by which drugs can modulate the frequency and severity of epileptic seizures. Ultimately, this information could be crucial for the development of more specific and effective therapeutic drugs for treatment of this form of epilepsy.
Collapse
Affiliation(s)
- Steve Seo
- Department of Anatomy, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
21
|
Different MK-801 administration schedules induce mild to severe learning impairments in an operant conditioning task: Role of buspirone and risperidone in ameliorating these cognitive deficits. Behav Brain Res 2013; 257:156-65. [DOI: 10.1016/j.bbr.2013.09.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 09/21/2013] [Accepted: 09/24/2013] [Indexed: 02/07/2023]
|
22
|
Kocsis B, Brown RE, McCarley RW, Hajos M. Impact of ketamine on neuronal network dynamics: translational modeling of schizophrenia-relevant deficits. CNS Neurosci Ther 2013; 19:437-47. [PMID: 23611295 PMCID: PMC3663928 DOI: 10.1111/cns.12081] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 12/25/2022] Open
Abstract
Subanesthetic doses of the psychomimetic, ketamine, have been used for many years to elicit behavioral effects reminiscent of schizophrenia in both healthy humans and in animal models of the disease. More recently, there has been a move toward the use of simple neurophysiological measures (event-related potentials, brain oscillations) to assay the functional integrity of neuronal circuits in schizophrenia as these measures can be assessed in patients, healthy controls, intact animals, and even in brain slices. Furthermore, alterations of these measures are correlated with basic information processing deficits that are now considered central to the disease. Thus, here we review recent studies that determine the effect of ketamine on these measures and discuss to what extent they recapitulate findings in patients with schizophrenia. In particular, we examine methodological differences between human and animal studies and compare in vivo and in vitro effects of ketamine. Ketamine acts on multiple cortical and subcortical sites, as well as on receptors other than the N-methyl-d-aspartate receptor. Acute ketamine models' changes correlated with psychotic states (e.g. increased baseline gamma-band oscillations), whereas chronic ketamine causes cortical circuit changes and neurophysiological deficits (e.g. impaired event-related gamma-band oscillations) correlated with cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Bernat Kocsis
- Laboratory of Neurophysiology, Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
23
|
Thomases DR, Cass DK, Tseng KY. Periadolescent exposure to the NMDA receptor antagonist MK-801 impairs the functional maturation of local GABAergic circuits in the adult prefrontal cortex. J Neurosci 2013; 33:26-34. [PMID: 23283319 PMCID: PMC3544161 DOI: 10.1523/jneurosci.4147-12.2013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/24/2012] [Accepted: 10/28/2012] [Indexed: 01/28/2023] Open
Abstract
A developmental disruption of prefrontal cortical inhibitory circuits is thought to contribute to the adolescent onset of cognitive deficits observed in schizophrenia. However, the developmental mechanisms underlying such a disruption remain elusive. The goal of this study is to examine how repeated exposure to the NMDA receptor antagonist dizocilpine maleate (MK-801) during periadolescence [from postnatal day 35 (P35) to P40] impacts the normative development of local prefrontal network response in rats. In vivo electrophysiological analyses revealed that MK-801 administration during periadolescence elicits an enduring disinhibited prefrontal local field potential (LFP) response to ventral hippocampal stimulation at 20 Hz (beta) and 40 Hz (gamma) in adulthood (P65-P85). Such a disinhibition was not observed when MK-801 was given during adulthood, indicating that the periadolescent transition is indeed a sensitive period for the functional maturation of prefrontal inhibitory control. Accordingly, the pattern of prefrontal LFP disinhibition induced by periadolescent MK-801 treatment resembles that observed in the normal P30-P40 prefrontal cortex (PFC). Additional pharmacological manipulations revealed that these developmentally immature prefrontal responses can be mimicked by single microinfusion of the GABA(A) receptor antagonist picrotoxin into the normal adult PFC. Importantly, acute administration of the GABA(A)-positive allosteric modulator Indiplon into the PFC reversed the prefrontal disinhibitory state induced by periadolescent MK-801 to normal levels. Together, these results indicate a critical role of NMDA receptors in regulating the periadolescent maturation of GABAergic networks in the PFC and that pharmacologically induced augmentation of local GABA(A)-receptor-mediated transmission is sufficient to overcome the disinhibitory prefrontal state associated with the periadolescent MK-801 exposure.
Collapse
Affiliation(s)
- Daniel R. Thomases
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Daryn K. Cass
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Kuei Y. Tseng
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| |
Collapse
|
24
|
Pehrson AL, Bondi CO, Totah NKB, Moghaddam B. The influence of NMDA and GABA(A) receptors and glutamic acid decarboxylase (GAD) activity on attention. Psychopharmacology (Berl) 2013; 225:31-9. [PMID: 22797703 PMCID: PMC3580768 DOI: 10.1007/s00213-012-2792-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/20/2012] [Indexed: 12/18/2022]
Abstract
RATIONALE Attention dysfunction is the hallmark of cognitive deficits associated with major psychiatric illnesses including schizophrenia. Cognitive deficits of schizophrenia have been attributed to reduced function of the N-methyl-D-aspartate (NMDA) receptor or reduced expression of the gamma-aminobutyric acid (GABA)-synthesizing enzyme glutamic acid decarboxylase-67, which presumably leads to attenuated neurotransmission at GABA(A) receptors. OBJECTIVE The present study used a rodent model to compare the inhibition of NMDA and GABA(A) receptors, and GAD activity on attention. We tested the impact of inhibiting these proteins brain wide or in the anterior cingulate cortex (ACC), a prefrontal cortex region critical for attentional processing. METHODS Rats were trained on the three choice serial reaction time task (3-CSRT), an attention test. The impact of systemic or intra-ACC injection of drugs on performance was measured in well-trained rats. RESULTS Reducing GABA(A) receptor function within the ACC with the direct antagonist SR95531 (1 or 3 ng/side) or brain wide using systemic injection of the benzodiazepine inverse agonist FG7142 (5 mg/kg) impaired accuracy and increased omissions. Systemic or intra-ACC inhibition of NMDA receptors using MK-801 (at 3 mg/kg or 3 μg, respectively) also impaired performance. Inhibition of GAD with 3-mercaptopropionic acid, even at high doses, had no effect on 3-CSRT accuracy or omissions when administered systemically or within the ACC. CONCLUSIONS These data demonstrate that, while tonic stimulation of NMDA and GABA(A) receptors within the ACC are critical for attentional performance, reduction in GAD activity may have little functional significance and is not indicative of reduced GABA neurotransmission.
Collapse
Affiliation(s)
- Alan L. Pehrson
- Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Corina O. Bondi
- Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Nelson K. B. Totah
- Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Bita Moghaddam
- Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| |
Collapse
|
25
|
Piper M, Beneyto M, Burne THJ, Eyles DW, Lewis DA, McGrath JJ. The neurodevelopmental hypothesis of schizophrenia: convergent clues from epidemiology and neuropathology. Psychiatr Clin North Am 2012; 35:571-84. [PMID: 22929867 DOI: 10.1016/j.psc.2012.06.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neurodevelopmental hypothesis of schizophrenia suggests that the disruption of early brain development increases the risk of later developing schizophrenia. This hypothesis focuses attention on critical periods of early brain development. From an epidemiologic perspective, various prenatal and perinatal risk factors have been linked to schizophrenia, including exposures related to infection, nutrition, and obstetric complications. From a genetic perspective, candidate genes have also been linked to altered brain development. In recent decades evidence from neuropathology has provided support for the neurodevelopmental hypothesis. Animal models involving early life exposures have been linked to changes in these same brain systems, providing convergent evidence for this long-standing hypothesis.
Collapse
Affiliation(s)
- Michael Piper
- School of Biomedical Science, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Turner CP, Gutierrez S, Liu C, Miller L, Chou J, Finucane B, Carnes A, Kim J, Shing E, Haddad T, Phillips A. Strategies to defeat ketamine-induced neonatal brain injury. Neuroscience 2012; 210:384-92. [PMID: 22406413 DOI: 10.1016/j.neuroscience.2012.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 11/19/2022]
Abstract
Studies using animal models have shown that general anesthetics such as ketamine trigger widespread and robust apoptosis in the infant rodent brain. Recent clinical evidence suggests that the use of general anesthetics on young children (at ages equivalent to those used in rodent studies) can promote learning deficits as they mature. Thus, there is a growing need to develop strategies to prevent this injury. In this study, we describe a number of independent approaches to address therapeutic intervention. Postnatal day 7 (P7) rats were injected with vehicle (sterile PBS) or the NMDAR antagonist ketamine (20 mg/kg). After 8 h, we prepared brains for immunohistochemical detection of the pro-apoptotic enzyme activated caspase-3 (AC3). Focusing on the somatosensory cortex, AC3-positive cells were then counted in a non-biased stereological manner. We found AC3 levels were markedly increased in ketamine-treated animals. In one study, microarray analysis of the somatosensory cortex from ketamine-treated P7 pups revealed that expression of activity dependent neuroprotective protein (ADNP) was enhanced. Thus, we injected P7 animals with the ADNP peptide fragment NAPVSIPQ (NAP) 15 min before ketamine administration and found we could dose-dependently reverse the injury. In separate studies, pretreatment of P6 animals with 20 mg/kg vitamin D(3) or a nontoxic dose of ketamine (5 mg/kg) also prevented ketamine-induced apoptosis at P7. In contrast, pretreatment of P7 animals with aspirin (30 mg/kg) 15 min before ketamine administration actually increased AC3 counts in some regions. These data show that a number of unique approaches can be taken to address anesthesia-induced neurotoxicity in the infant brain, thus providing MDs with a variety of alternative strategies that enhance therapeutic flexibility.
Collapse
Affiliation(s)
- C P Turner
- Neurobiology & Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gutierrez S, Carnes A, Finucane B, Musci G, Oelsner W, Hicks L, Russell GB, Liu C, Turner CP. Is age-dependent, ketamine-induced apoptosis in the rat somatosensory cortex influenced by temperature? Neuroscience 2010; 168:253-62. [PMID: 20298758 PMCID: PMC2871987 DOI: 10.1016/j.neuroscience.2010.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/09/2010] [Accepted: 03/08/2010] [Indexed: 01/18/2023]
Abstract
General anesthetics have long been thought to be relatively safe but recent clinical studies have revealed that exposure of very young children (4 years or less) to agents that act by blocking the N-methyl-D-aspartate receptor (NMDAR) can lead to cognitive deficits as they mature. In rodent and non-human primate studies, blockade of this receptor during the perinatal period leads to a number of molecular, cellular and behavioral pathologies. Despite the overwhelming evidence from such studies, doubt remains as to their clinical relevance. A key issue is whether the primary injury (apoptotic cell death) is specific to receptor blockade or due to non-specific, patho-physiological changes. Principal to this argument is that loss of core body temperature following NMDAR blockade could explain why injury is observed hours later. We therefore examined the neurotoxicity of the general anesthetic ketamine in P7, P14 and P21 rats while monitoring core body temperature. We found that, at P7, ketamine induced the pro-apoptotic enzyme activated caspase-3 in a dose-dependent manner. As expected, injury was greatly diminished by P14 and absent by P21. However, contrary to expectations, we found that core body temperature was not a factor in determining injury. Our data imply that injury is directly related to receptor blockade and is unlikely to be overcome by artificially changing core body temperature.
Collapse
Affiliation(s)
- S Gutierrez
- Department of Neurobiology & Anatomy, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27157-1010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Lyall A, Swanson J, Liu C, Blumenthal TD, Turner CP. Neonatal exposure to MK801 promotes prepulse-induced delay in startle response time in adult rats. Exp Brain Res 2009; 197:215-22. [PMID: 19565228 PMCID: PMC2752751 DOI: 10.1007/s00221-009-1906-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
The acoustic startle reflex in rats can be inhibited if a prepulse stimulus is presented just before the startle stimulus (prepulse inhibition; PPI). When postnatal day 7 (P7) rats are exposed to agents that block the NMDA receptor (NMDAR), robust apoptosis is observed within hours and is thought to be followed at later ages by a significant loss of PPI. To understand these observations further, we exposed rat pups to vehicle or the NMDAR antagonist MK801 (1 mg/kg) at P6, P8, and P10. We then examined animals for PPI at P28 and P56. Compared to vehicle controls, we found no evidence for PPI deficits in the MK801-treated group, although we did observe prepulse-induced delay in response time at P56 (but not at P28). In a parallel study, we also performed histological analysis of brain sections for evidence of the pro-apoptotic marker activated caspase-3, 8 h after vehicle or MK801 injection into P6 animals. We found that there was a robust increase in this marker of cell death in the inferior colliculus of MK801 compared to vehicle-treated animals. Thus, transient blockade of the NMDAR during the postnatal period not only promotes early apoptosis in a brain region critical for acoustic processing but also leads to auditory deficits at a later age, suggesting that injury-induced loss of collicular neurons leads to network reorganization in the auditory system that is progressive in nature.
Collapse
Affiliation(s)
- Amanda Lyall
- Department of Neurobiology and Anatomy, 4100 Gray Bldg, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston Salem, NC 27157-1010, USA
| | | | | | | | | |
Collapse
|