1
|
Østergaard S, Jessen C, Paulsson JF, Kasimova MA, Conde-Frieboes KW, Straarup EM, Skyggebjerg RB, Ynddal L, Sanfridson A, Wulff BS, Chambers AP. Variant screening of PYY 3-36 leads to potent long-acting PYY analogs with superior Y 2 receptor selectivity. Sci Transl Med 2025; 17:eadq6392. [PMID: 40138456 DOI: 10.1126/scitranslmed.adq6392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/27/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Abstract
Peptide YY (PYY3-36) has attracted attention in diabetes and obesity research because of its involvement in food intake regulation and glucose homeostasis. Native PYY3-36 maintains high potency on the Y2 receptor with a loss of potency on the Y1, Y4, and Y5 receptors. However, PYY3-36 has a relatively short half-life, and the selectivity displayed by the native peptide may not be optimal if a long-acting analog is to be developed. We performed variant screening of PYY3-36 to identify key canonical amino acids that are pivotal to Y2 receptor selectivity, potency, and peptide stability. In combination with fatty diacid derivatization, this afforded highly selective long-acting analogs against the Y2 receptor, which improved glucose metabolism in diabetic db/db mice. When combined with a long-acting glucagon-like peptide 1 (GLP-1) receptor agonist, these analogs showed superior blood glucose lowering in diabetic ZSF1 rats and greater body weight loss in a high-fat diet-induced mouse model of obesity compared with treatment with the GLP-1 analog alone. One of the tested analogs, PYY1875, has progressed into clinical trials for obesity. Together, our results demonstrate the power of variant screening combined with fatty diacid derivatization in the development of a long-acting, highly efficacious PYY clinical candidate.
Collapse
Affiliation(s)
- Søren Østergaard
- Global Research Technologies, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| | - Carsten Jessen
- Global Research Technologies, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| | - Johan F Paulsson
- Global Drug Discovery, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| | - Marina A Kasimova
- Digital Science and Innovation, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| | | | - Ellen Marie Straarup
- Global Drug Discovery, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| | | | - Lars Ynddal
- Global Research Technologies, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| | - Annika Sanfridson
- Global Drug Discovery, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| | - Birgitte S Wulff
- Global Drug Discovery, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| | - Adam P Chambers
- Global Drug Discovery, Novo Nordisk A/S, Novo Research Park, 2760 Måløv, Denmark
| |
Collapse
|
2
|
Borner T, Pataro AM, De Jonghe BC. Central mechanisms of emesis: A role for GDF15. Neurogastroenterol Motil 2025; 37:e14886. [PMID: 39108013 PMCID: PMC11866100 DOI: 10.1111/nmo.14886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Nausea and emesis are ubiquitously reported medical conditions and often present as treatment side effects along with polymorbidities contributing to detrimental life-threatening outcomes, such as poor nutrition, lower quality of life, and unfavorable patient prognosis. Growth differentiation factor 15 (GDF15) is a stress response cytokine secreted by a wide variety of cell types in response to a broad range of stressors. Circulating GDF15 levels are elevated in a range of medical conditions characterized by cachexia and malaise. In recent years, GDF15 has gained scientific and translational prominence with the discovery that its receptor, GDNF family receptor α-like (GFRAL), is expressed exclusively in the hindbrain. GFRAL activation may results in profound anorexia and body weight loss, effects which have attracted interest for the pharmacological treatment of obesity. PURPOSE This review highlights compelling emerging evidence indicating that GDF15 causes anorexia through the induction of nausea, emesis, and food aversions, which encourage a perspective on GDF15 system function in physiology and behavior beyond homeostatic energy regulation contexts. This highlights the potential role of GDF15 in the central mediation of nausea and emesis following a variety of physiological, and pathophysiological conditions such as chemotherapy-induced emesis, hyperemesis gravidarum, and cyclic vomiting syndrome.
Collapse
Affiliation(s)
- Tito Borner
- Department of Biobehavioral Health Sciences, School of NursingUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of PsychiatryUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Biological Sciences, Human and Evolutionary Biology SectionUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Allison M. Pataro
- Department of Biobehavioral Health Sciences, School of NursingUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Bart C. De Jonghe
- Department of Biobehavioral Health Sciences, School of NursingUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of PsychiatryUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
3
|
Zhang C. Neural pathways of nausea and roles in energy balance. Curr Opin Neurobiol 2025; 90:102963. [PMID: 39765206 PMCID: PMC11839311 DOI: 10.1016/j.conb.2024.102963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025]
Abstract
Our internal sensory systems encode various gut-related sensations, such as hunger, feelings of fullness, and nausea. These internal feelings influence our eating behaviors and play a vital role in regulating energy balance. Among them, the neurological basis for nausea has been the least well characterized, which has hindered comprehension of the connection between these sensations. Single-cell sequencing, along with functional mapping, has brought clarity to the neural pathways of nausea involving the brainstem area postrema. In addition, the newly discovered nausea sensory signals have deepened our understanding of the area postrema in regulating feeding behaviors. Nausea has significant clinical implications, especially in developing drugs for weight loss and metabolism. This review summarizes recent research on the neural pathways of nausea, particularly highlighting their contribution to energy balance.
Collapse
Affiliation(s)
- Chuchu Zhang
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Borner T, De Jonghe BC, Hayes MR. The antiemetic actions of GIP receptor agonism. Am J Physiol Endocrinol Metab 2024; 326:E528-E536. [PMID: 38477667 PMCID: PMC11194054 DOI: 10.1152/ajpendo.00330.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/08/2024] [Accepted: 03/10/2024] [Indexed: 03/14/2024]
Abstract
Nausea and vomiting are primitive aspects of mammalian physiology and behavior that ensure survival. Unfortunately, both are ubiquitously present side effects of drug treatments for many chronic diseases with negative consequences on pharmacotherapy tolerance, quality of life, and prognosis. One of the most critical clinical examples is the profound emesis and nausea that occur in patients undergoing chemotherapy, which continue to be among the most distressing side effects, even with the use of modern antiemetic medications. Similarly, antiobesity/diabetes medications that target the glucagon-like peptide-1 system, despite their remarkable metabolic success, also cause nausea and vomiting in a significant number of patients. These side effects hinder the ability to administer higher dosages for optimal glycemic and weight management and represent the major reasons for treatment discontinuation. Our inability to effectively control these side effects highlights the need to anatomically, molecularly, and functionally characterize novel neural substrates that drive and inhibit nausea and emesis. Here, we discuss clinical and preclinical evidence that highlights the glucose-dependent insulinotropic peptide receptor system as a novel therapeutic central target for the management of nausea and emesis.
Collapse
Affiliation(s)
- Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, United States
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
5
|
Borner T, Doebley SA, Furst CD, Pataro AM, Halas JG, Gao X, Choi GK, Ramadan SA, Chow A, De Jonghe BC. Screening study of anti-emetics to improve GDF15-induced malaise and anorexia: Implications for emesis control. Physiol Behav 2023; 267:114229. [PMID: 37164246 PMCID: PMC10883415 DOI: 10.1016/j.physbeh.2023.114229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Considerable preclinical and clinical attention has focused on the food intake and body weight suppressive effects of growth differentiation factor 15 (GDF15) and its elevated blood levels as a consequence of disease states and disease treatment therapeutics. We have previously reported that exogenous administration of GDF15 induces anorexia through nausea and emesis in multiple species. Importantly, GDF15 signaling as a meditator of chemotherapy-induced anorexia and emesis has recently been demonstrated in both murine and nonhuman primate models. The mechanism, however, by which GDF15 induces malaise and the utility of existing therapeutic targets to counteract its effects remain largely unknown. Using a dose of GDF15 that mimics stimulated levels following chemotherapy administration and reliably induces malaise, we sought to screen anti-emetics that represent distinct pharmacotherapeutic classes hypothesized to reduce GDF15-induced effects in rats. Strikingly, our results showed that none of the tested compounds were effective at preventing GDF15-induced malaise. These results illustrate the complexity of GDF15 signaling mechanism and may have important implications for medical conditions characterized by elevated GDF15 levels and incomplete symptom control, such as chemotherapy-induced nausea and vomiting.
Collapse
Affiliation(s)
- Tito Borner
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States; Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, United States.
| | - Sarah A Doebley
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States
| | - C Daniel Furst
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States
| | - Allison M Pataro
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States
| | - Julia G Halas
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States
| | - Xing Gao
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States
| | - Grace K Choi
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States
| | - Sarah A Ramadan
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States
| | - Angela Chow
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, PA 19104, United States; Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, United States
| |
Collapse
|
6
|
Shine JM, O’Callaghan C, Walpola IC, Wainstein G, Taylor N, Aru J, Huebner B, John YJ. Understanding the effects of serotonin in the brain through its role in the gastrointestinal tract. Brain 2022; 145:2967-2981. [DOI: 10.1093/brain/awac256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The neuromodulatory arousal system imbues the nervous system with the flexibility and robustness required to facilitate adaptive behaviour. While there are well-understood mechanisms linking dopamine, noradrenaline and acetylcholine to distinct behavioural states, similar conclusions have not been as readily available for serotonin. Fascinatingly, despite clear links between serotonergic function and cognitive capacities as diverse as reward processing, exploration, and the psychedelic experience, over 95% of the serotonin in the body is released in the gastrointestinal tract, where it controls digestive muscle contractions (peristalsis). Here, we argue that framing neural serotonin as a rostral extension of the gastrointestinal serotonergic system dissolves much of the mystery associated with the central serotonergic system. Specifically, we outline that central serotonin activity mimics the effects of a digestion/satiety circuit mediated by hypothalamic control over descending serotonergic nuclei in the brainstem. We review commonalities and differences between these two circuits, with a focus on the heterogeneous expression of different classes of serotonin receptors in the brain. Much in the way that serotonin-induced peristalsis facilitates the work of digestion, serotonergic influences over cognition can be reframed as performing the work of cognition. Extending this analogy, we argue that the central serotonergic system allows the brain to arbitrate between different cognitive modes as a function of serotonergic tone: low activity facilitates cognitive automaticity, whereas higher activity helps to identify flexible solutions to problems, particularly if and when the initial responses fail. This perspective sheds light on otherwise disparate capacities mediated by serotonin, and also helps to understand why there are such pervasive links between serotonergic pathology and the symptoms of psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Ishan C Walpola
- Prince of Wales Hospital , Randwick, New South Wales , Australia
| | | | | | - Jaan Aru
- University of Tartu , Tartu , Estonia
| | | | | |
Collapse
|
7
|
Emetic Response to T-2 Toxin Correspond to Secretion of Glucagon-like Peptide-17–36 Amide and Glucose-Dependent Insulinotropic Polypeptide. Toxins (Basel) 2022; 14:toxins14060389. [PMID: 35737050 PMCID: PMC9228683 DOI: 10.3390/toxins14060389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
The T-2 toxin, a major secondary metabolite of Fusarium Gramineae, is considered a great risk to humans and animals due to its toxicity, such as inducing emesis. The mechanism of emesis is a complex signal involving an imbalance of hormones and neurotransmitters, as well as activity of visceral afferent neurons. The T-2 toxin has been proven to induce emesis and possess the capacity to elevate expressions of intestinal hormones glucagon-like peptide-17–36 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), both of which are important emetic factors. In addition, the activation of calcium-sensitive receptor (CaSR) and transient receptor potential (TRP) channels are engaged in intestinal hormone release. However, it is unknown whether hormones GLP-1 and GIP mediate T-2 toxin-induced emetic response through activating CaSR and TRP channels. To further assess the mechanism of T-2 toxin-induced emesis, we studied the hypothesis that T-2 toxin-caused emetic response and intestinal hormones GLP-1 and GIP released in mink are associated with activating calcium transduction. Following oral gavage and intraperitoneal injection T-2 toxin, emetic responses were observed in a dose-dependent manner, which notably corresponded to the secretion of GLP-1 and GIP, and were suppressed by pretreatment with respective antagonist Exending9–39 and Pro3GIP. Additional research found that NPS-2143 (NPS) and ruthenium red (RR), respective antagonists of CaSR and TRP channels, dramatically inhibited both T-2 toxin-induced emesis response and the expression of plasma GLP-1 and GIP. According to these data, we observed that T-2 toxin-induced emetic response corresponds to secretion of GLP-1 and GIP via calcium transduction.
Collapse
|
8
|
Bagues A, López-Tofiño Y, Llorente-Berzal Á, Abalo R. Cannabinoid drugs against chemotherapy-induced adverse effects: focus on nausea/vomiting, peripheral neuropathy and chemofog in animal models. Behav Pharmacol 2022; 33:105-129. [PMID: 35045012 DOI: 10.1097/fbp.0000000000000667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although new drugs are being developed for cancer treatment, classical chemotherapeutic agents are still front-line therapies, despite their frequent association with severe side effects that can hamper their use. Cannabinoids may prevent or palliate some of these side effects. The aim of the present study is to review the basic research which has been conducted evaluating the effects of cannabinoid drugs in the treatment of three important side effects induced by classical chemotherapeutic agents: nausea and vomiting, neuropathic pain and cognitive impairment. Several published studies have demonstrated that cannabinoids are useful in preventing and reducing the nausea, vomits and neuropathy induced by different chemotherapy regimens, though other side effects can occur, such as a reduction of gastrointestinal motility, along with psychotropic effects when using centrally-acting cannabinoids. Thus, peripherally-acting cannabinoids and new pharmacological options are being investigated, such as allosteric or biased agonists. Additionally, due to the increase in the survival of cancer patients, there are emerging data that demonstrate an important cognitive deterioration due to chemotherapy, and because the cannabinoid drugs have a neuroprotective effect, they could be useful in preventing chemotherapy-induced cognitive impairment (as demonstrated through studies in other neurological disorders), but this has not yet been tested. Thus, although cannabinoids seem a promising therapeutic approach in the treatment of different side effects induced by chemotherapeutic agents, future research will be necessary to find pharmacological options with a safer profile. Moreover, a new line of research awaits to be opened to elucidate their possible usefulness in preventing cognitive impairment.
Collapse
Affiliation(s)
- Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC)
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Yolanda López-Tofiño
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC
| | - Álvaro Llorente-Berzal
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland
- Centre for Pain Research and Galway Neuroscience Centre, NCBES, National University of Ireland, Galway, Ireland
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC
- Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
9
|
Assessment of PDE4 Inhibitor-Induced Hypothermia as a Correlate of Nausea in Mice. BIOLOGY 2021; 10:biology10121355. [PMID: 34943270 PMCID: PMC8698290 DOI: 10.3390/biology10121355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/21/2023]
Abstract
Simple Summary Type 4 cAMP-phosphodiesterases (PDE4s) comprise a family of four isoenzymes, PDE4A to D, that hydrolyze and inactivate the second messenger cAMP. Non/PAN-selective PDE4 inhibitors, which inhibit all four PDE4 subtypes simultaneously, produce many promising therapeutic benefits, such as anti-inflammatory or cognition- and memory-enhancing effects. However, unwanted side effects, principally, nausea, diarrhea, and emesis, have long hampered their clinical and commercial success. Targeting individual PDE4 subtypes has been proposed for developing drugs with an improved safety profile, but which PDE4 subtype(s) is/are actually responsible for nausea and emesis remains ill-defined. Based on the observation that nausea is often accompanied by hypothermia in humans and other mammals, we used the measurement of core body temperatures of mice as a potential correlate of nausea induced by PDE4 inhibitors in humans. We find that selective inactivation of any of the four PDE4 subtypes did not change the body temperature of mice, suggesting that PAN-PDE4 inhibitor-induced hypothermia (and hence nausea in humans) requires the simultaneous inhibition of multiple PDE4 subtypes. This finding contrasts with prior reports that proposed PDE4D as the subtype mediating these side effects of PDE4 inhibitors and suggests that subtype-selective inhibitors that target any individual PDE4 subtype, including PDE4D, may not cause nausea. Abstract Treatment with PAN-PDE4 inhibitors has been shown to produce hypothermia in multiple species. Given the growing body of evidence that links nausea and emesis to disturbances in thermoregulation in mammals, we explored PDE4 inhibitor-induced hypothermia as a novel correlate of nausea in mice. Using knockout mice for each of the four PDE4 subtypes, we show that selective inactivation of individual PDE4 subtypes per se does not produce hypothermia, which must instead require the concurrent inactivation of multiple (at least two) PDE4 subtypes. These findings contrast with the role of PDE4s in shortening the duration of α2-adrenoceptor-dependent anesthesia, a behavioral surrogate previously used to assess the emetic potential of PDE4 inhibitors, which is exclusively affected by inactivation of PDE4D. These different outcomes are rooted in the distinct molecular mechanisms that drive these two paradigms; acting as a physiologic α2-adrenoceptor antagonist produces the effect of PDE4/PDE4D inactivation on the duration of α2-adrenoceptor-dependent anesthesia, but does not mediate the effect of PDE4 inhibitors on body temperature in mice. Taken together, our findings suggest that selective inhibition of any individual PDE4 subtype, including inhibition of PDE4D, may be free of nausea and emesis.
Collapse
|
10
|
Hayes MR, Borner T, De Jonghe BC. The Role of GIP in the Regulation of GLP-1 Satiety and Nausea. Diabetes 2021; 70:1956-1961. [PMID: 34176783 PMCID: PMC8576421 DOI: 10.2337/dbi21-0004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022]
Abstract
Gastric inhibitory peptide (GIP) is best known for its role as an incretin hormone in control of blood glucose concentrations. As a classic satiation signal, however, the literature illustrates a mixed picture of GIP involvement with an at best weak anorectic response profile being reported for GIP receptor (GIPR) signaling. Not surprisingly, the pursuit of exploiting the GIP system as a therapeutic target for diabetes and obesity has fallen behind that of the other gastrointestinal-derived incretin, glucagon-like peptide 1 (GLP-1). However, recent discoveries highlighted here support potential therapeutic advantages of combinatorial therapies targeting GIP and GLP-1 systems together, with perhaps the most surprising finding that GIPR agonism may have antiemetic properties. As nausea and vomiting are the most common side effects of all existing GLP-1 pharmacotherapies, the ability for GIP agonism to reduce GLP-1-induced illness behaviors but retain (if not enhance) weight loss and glycemic control may offer a new era in the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
- Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, PA
| | - Tito Borner
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
- Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, PA
| | - Bart C De Jonghe
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
- Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Borner T, Tinsley IC, Doyle RP, Hayes MR, De Jonghe BC. GLP-1 in diabetes care: Can glycemic control be achieved without nausea and vomiting? Br J Pharmacol 2021; 179:542-556. [PMID: 34363224 PMCID: PMC8810668 DOI: 10.1111/bph.15647] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022] Open
Abstract
Introduced less than two decades ago, glucagon-like peptide-1 receptor agonists (GLP-1RAs) rapidly re-shaped the field of type 2 diabetes (T2DM) care by providing glycemic control in tandem with weight loss. However, FDA-approved GLP-1RAs are often accompanied by nausea and emesis, and in some lean T2DM patients, by undesired anorexia. Importantly, the hypophagic and emetic effects of GLP-1RAs are caused by central GLP-1R activation. This review summarizes two different approaches to mitigate the incidence/severity of nausea and emesis related to GLP-1RAs: conjugation with vitamin B12, or related corrin-ring containing compounds ("corrination"), and development of dual-agonists of the GLP-1R with glucose dependent-insulinotropic polypeptide (GIP). Such approaches could lead to the generation of GLP-1RAs with improved therapeutic efficacy thus, decreasing treatment attrition, increasing patient compliance, and extending treatment to a broader population of T2DM patients. The data reviewed show that it is possible to pharmacologically separate emetic effects of GLP-1RAs from glucoregulatory action.
Collapse
Affiliation(s)
- Tito Borner
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania, United States.,Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Ian C Tinsley
- Department of Chemistry, Syracuse University, Syracuse, New York, United States
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, Syracuse, New York, United States.,Departments of Medicine and Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, United States
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania, United States.,Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania, United States.,Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
12
|
Borner T, Workinger JL, Tinsley IC, Fortin SM, Stein LM, Chepurny OG, Holz GG, Wierzba AJ, Gryko D, Nexø E, Shaulson ED, Bamezai A, Da Silva VAR, De Jonghe BC, Hayes MR, Doyle RP. Corrination of a GLP-1 Receptor Agonist for Glycemic Control without Emesis. Cell Rep 2021; 31:107768. [PMID: 32553160 PMCID: PMC7376604 DOI: 10.1016/j.celrep.2020.107768] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/10/2019] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists used to treat type 2 diabetes mellitus often produce nausea, vomiting, and in some patients, undesired anorexia. Notably, these behavioral effects are caused by direct central GLP-1R activation. Herein, we describe the creation of a GLP-1R agonist conjugate with modified brain penetrance that enhances GLP-1R-mediated glycemic control without inducing vomiting. Covalent attachment of the GLP-1R agonist exendin-4 (Ex4) to dicyanocobinamide (Cbi), a corrin ring containing precursor of vitamin B12, produces a "corrinated" Ex4 construct (Cbi-Ex4). Data collected in the musk shrew (Suncus murinus), an emetic mammal, reveal beneficial effects of Cbi-Ex4 relative to Ex4, as evidenced by improvements in glycemic responses in glucose tolerance tests and a profound reduction of emetic events. Our findings highlight the potential for clinical use of Cbi-Ex4 for millions of patients seeking improved glycemic control without common side effects (e.g., emesis) characteristic of current GLP-1 therapeutics.
Collapse
Affiliation(s)
- Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ian C Tinsley
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Samantha M Fortin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren M Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oleg G Chepurny
- Department of Medicine, Upstate Medical University, State University of New York, Syracuse, NY, USA
| | - George G Holz
- Department of Medicine, Upstate Medical University, State University of New York, Syracuse, NY, USA
| | | | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Ebba Nexø
- Department of Clinical Biochemistry and Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | - Evan D Shaulson
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ankur Bamezai
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Valentina A Rodriguez Da Silva
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, Syracuse, NY, USA; Department of Medicine, Upstate Medical University, State University of New York, Syracuse, NY, USA.
| |
Collapse
|
13
|
Gautron L. The Phantom Satiation Hypothesis of Bariatric Surgery. Front Neurosci 2021; 15:626085. [PMID: 33597843 PMCID: PMC7882491 DOI: 10.3389/fnins.2021.626085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 01/26/2023] Open
Abstract
The excitation of vagal mechanoreceptors located in the stomach wall directly contributes to satiation. Thus, a loss of gastric innervation would normally be expected to result in abrogated satiation, hyperphagia, and unwanted weight gain. While Roux-en-Y-gastric bypass (RYGB) inevitably results in gastric denervation, paradoxically, bypassed subjects continue to experience satiation. Inspired by the literature in neurology on phantom limbs, I propose a new hypothesis in which damage to the stomach innervation during RYGB, including its vagal supply, leads to large-scale maladaptive changes in viscerosensory nerves and connected brain circuits. As a result, satiation may continue to arise, sometimes at exaggerated levels, even in subjects with a denervated or truncated stomach. The same maladaptive changes may also contribute to dysautonomia, unexplained pain, and new emotional responses to eating. I further revisit the metabolic benefits of bariatric surgery, with an emphasis on RYGB, in the light of this phantom satiation hypothesis.
Collapse
Affiliation(s)
- Laurent Gautron
- Department of Internal Medicine, Center for Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
14
|
Rix A, Drude N, Mrugalla A, Mottaghy FM, Tolba RH, Kiessling F. Performance of severity parameters to detect chemotherapy-induced pain and distress in mice. Lab Anim 2019; 54:452-460. [PMID: 31660776 DOI: 10.1177/0023677219883327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
According to European Union directive 2010/63/EU a severity classification of experimental procedures performed on laboratory animals is mandatory. This includes a prospective evaluation of all interventions performed within the experiment, as well as an assessment of the actual burden of each animal during the experiment. In this regard, the evaluation and scoring of defined criteria regarding the health state of animals could help to early identify deteriorations in animal health and facilitate the application of humane endpoints. This article discusses the applicability of an adapted score sheet in BALB/cAnNRj mice receiving either cisplatin, doxorubicin or busulfan, three chemotherapeutic agents with different toxicological profiles and longitudinal non-invasive molecular imaging. The health state was investigated by score sheets documenting general state, body weight, spontaneous behaviour and treatment specific parameters (e.g. anaemia, neurotoxicity, persistent diarrhoea). Although blood and serum analyses clearly indicated various organ damage, most scoring parameters except for body weight did not report on the deceasing animal health state. Thus, there is need for more sensitive observational parameters to judge the animal's health state and welfare.
Collapse
Affiliation(s)
- Anne Rix
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Germany
| | - Natascha Drude
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Germany.,Department of Nuclear Medicine, Medical Faculty, RWTH Aachen International University, Germany
| | - Anna Mrugalla
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, Medical Faculty, RWTH Aachen International University, Germany.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), The Netherlands
| | - René H Tolba
- Institute for Laboratory Animal Science, Medical Faculty, RWTH Aachen International University, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Germany
| |
Collapse
|
15
|
Anti-cholinergics mecamylamine and scopolamine alleviate motion sickness-induced gastrointestinal symptoms through both peripheral and central actions. Neuropharmacology 2019; 146:252-263. [DOI: 10.1016/j.neuropharm.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
|
16
|
Martín-Ruíz M, Uranga JA, Mosinska P, Fichna J, Nurgali K, Martín-Fontelles MI, Abalo R. Alterations of colonic sensitivity and gastric dysmotility after acute cisplatin and granisetron. Neurogastroenterol Motil 2019; 31:e13499. [PMID: 30402956 DOI: 10.1111/nmo.13499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/15/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cisplatin is a highly emetogenic antineoplastic drug and induces peripheral neuropathy when given in cycles. Granisetron, a 5-HT3 antagonist, is clinically used to prevent chemotherapy-induced nausea/emesis and abdominal pain in irritable bowel syndrome. The effects of cisplatin on visceral sensitivity and those of granisetron in the context of cancer chemotherapy are not well known. METHODS Adult male Wistar rats received two intraperitoneal injections 30 minutes apart: granisetron (1 mg kg-1 )/vehicle and cisplatin (6 mg kg-1 )/vehicle. Thereafter, nausea-like behavior was measured as bedding intake for 4 hours, and gastric dysmotility was measured radiographically for 8 hours. Gastric weight and size were determined ex vivo and samples of the forestomach, corpus, ileum, and colon were obtained for histological analysis at 4 and 30 hours after cisplatin/vehicle. Visceral sensitivity was measured as abdominal contractions in response to mechanical intracolonic stimulation 2 hours after cisplatin/vehicle. KEY RESULTS Cisplatin-induced bedding intake and gastric dysmotility, and granisetron blocked these effects, which occurred in the absence of frank mucositis. Visceral sensitivity was reduced to a similar extent by both drugs alone or in combination. CONCLUSIONS AND INFERENCES Cisplatin-induced bedding intake and gastric dysmotility were blocked by granisetron, confirming the involvement of serotonin acting on 5-HT3 receptors. Unexpectedly, visceral sensitivity to colonic distension was reduced, to the same extent, by cisplatin, granisetron, and their combination, suggesting important mechanistic differences with nausea and gastric dysmotility that warrant further investigation.
Collapse
Affiliation(s)
- Marta Martín-Ruíz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - José A Uranga
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| | - Paula Mosinska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kulmira Nurgali
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia.,Department of Medicine Western Health, The University of Melbourne, Victoria, Australia
| | - Mª Isabel Martín-Fontelles
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| | - Raquel Abalo
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| |
Collapse
|
17
|
Nelissen E, van Goethem NP, Bonassoli VT, Heckman PRA, van Hagen BTJ, Suay D, Wouters C, Prickaerts J. Validation of the xylazine/ketamine anesthesia test as a predictor of the emetic potential of pharmacological compounds in rats. Neurosci Lett 2019; 699:41-46. [PMID: 30659913 DOI: 10.1016/j.neulet.2019.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 01/03/2019] [Accepted: 01/15/2019] [Indexed: 11/16/2022]
Abstract
The xylazine/ketamine anesthesia test is widely used as a predictor of the emetic potential of pharmacological compounds in rats. An emetic reflex is usually triggered by the emetic center, which is populated with many different chemoreceptors. Inhibition of the α2 adrenergic receptor (α2 receptor) is involved in the initiation of the emetic reflex, and this is the key mechanism behind the xylazine/ketamine anesthesia test. In this study, we attempt to validate this test as a predictor of the emetic potential of pharmacological compounds. Furthermore, it was investigated whether an anti-emetic potential of pharmacological compounds could be assessed within this test as well. Rats were anesthetized with a combination of low doses of ketamine and xylazine, and subsequently treated with PDE4 inhibitor rolipram, α2 receptor antagonist yohimbine, α2 receptor agonist clonidine, tricyclic antidepressant imipramine, D2-receptor antagonist haloperidol, or 5-HT3 receptor antagonist (and anti-emetic drug) ondansetron. We were able to successfully reproduce the reduction in anesthesia time after rolipram or yohimbine treatment, as found in previous studies and has been suggested to be indicative of emetic properties of these treatments is humans. Furthermore, clonidine shortened anesthesia duration whereas imipramine and haloperidol lengthened anesthesia duration. Ondansetron was unable to rescue the reduction in duration of anesthesia induced by either rolipram or yohimbine. Altogether, the xylazine/ketamine anesthesia test is a reliable measure for α2 receptor antagonism. However, it may not be appropriate to assess emesis independent of this mechanism.
Collapse
Affiliation(s)
- Ellis Nelissen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, the Netherlands
| | - Nick P van Goethem
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, the Netherlands
| | - Vivian T Bonassoli
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, the Netherlands
| | - Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, the Netherlands
| | - Britt T J van Hagen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, the Netherlands
| | - Dila Suay
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, the Netherlands
| | - Caroline Wouters
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, the Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, the Netherlands.
| |
Collapse
|
18
|
Palmiter RD. The Parabrachial Nucleus: CGRP Neurons Function as a General Alarm. Trends Neurosci 2018; 41:280-293. [PMID: 29703377 PMCID: PMC5929477 DOI: 10.1016/j.tins.2018.03.007] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/17/2018] [Accepted: 03/07/2018] [Indexed: 12/24/2022]
Abstract
The parabrachial nucleus (PBN), which is located in the pons and is dissected by one of the major cerebellar output tracks, is known to relay sensory information (visceral malaise, taste, temperature, pain, itch) to forebrain structures including the thalamus, hypothalamus, and extended amygdala. The availability of mouse lines expressing Cre recombinase selectively in subsets of PBN neurons and viruses for Cre-dependent gene expression is beginning to reveal the connectivity and functions of PBN component neurons. This review focuses on PBN neurons expressing calcitonin gene-related peptide (CGRPPBN) that play a major role in regulating appetite and transmitting real or potential threat signals to the extended amygdala. The functions of other specific PBN neuronal populations are also discussed. This review aims to encourage investigation of the numerous unanswered questions that are becoming accessible.
Collapse
Affiliation(s)
- Richard D Palmiter
- Howard Hughes Medical Institute, and Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
19
|
Vera G, López-Pérez AE, Uranga JA, Girón R, Martín-Fontelles MI, Abalo R. Involvement of Cannabinoid Signaling in Vincristine-Induced Gastrointestinal Dysmotility in the Rat. Front Pharmacol 2017; 8:37. [PMID: 28220074 PMCID: PMC5292571 DOI: 10.3389/fphar.2017.00037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/18/2017] [Indexed: 01/16/2023] Open
Abstract
Background: In different models of paralytic ileus, cannabinoid receptors are overexpressed and endogenous cannabinoids are massively released, contributing to gastrointestinal dysmotility. The antitumoral drug vincristine depresses gastrointestinal motility and a similar mechanism could participate in this effect. Therefore, our aim was to determine, using CB1 and CB2 antagonists, whether an increased endocannabinoid tone is involved in vincristine-induced gastrointestinal ileus. Methods: First, we confirmed the effects of vincristine on the gut mucosa, by conventional histological techniques, and characterized its effects on motility, by radiographic means. Conscious male Wistar rats received an intraperitoneal injection of vincristine (0.1–0.5 mg/kg), and barium sulfate (2.5 ml; 2 g/ml) was intragastrically administered 0, 24, or 48 h later. Serial X-rays were obtained at different time-points (0–8 h) after contrast. X-rays were used to build motility curves for each gastrointestinal region and determine the size of stomach and caecum. Tissue samples were taken for histology 48 h after saline or vincristine (0.5 mg/kg). Second, AM251 (a CB1 receptor antagonist) and AM630 (a CB2 receptor antagonist) were used to determine if CB1 and/or CB2 receptors are involved in vincristine-induced gastrointestinal dysmotility. Key results: Vincristine induced damage to the mucosa of ileum and colon and reduced gastrointestinal motor function at 0.5 mg/kg. The effect on motor function was particularly evident when the study started 24 h after administration. AM251, but not AM630, significantly prevented vincristine effect, particularly in the small intestine, when administered thrice. AM251 alone did not significantly alter gastrointestinal motility. Conclusions: The fact that AM251, but not AM630, is capable of reducing the effect of vincristine suggests that, like in other experimental models of paralytic ileus, an increased cannabinoid tone develops and is at least partially responsible for the alterations induced by the antitumoral drug on gastrointestinal motor function. Thus, CB1 antagonists might be useful to prevent/treat ileus induced by vincristine.
Collapse
Affiliation(s)
- Gema Vera
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain; Unidad Asociada I+D+i del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain
| | - Ana E López-Pérez
- Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain; Unidad del Dolor, Servicio de Anestesia, Hospital General Universitario Gregorio MarañónMadrid, Spain
| | - José A Uranga
- Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain; Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain
| | - Rocío Girón
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain; Unidad Asociada I+D+i del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain
| | - Ma Isabel Martín-Fontelles
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain; Unidad Asociada I+D+i del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain; Unidad Asociada I+D+i del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain
| |
Collapse
|
20
|
Goineau S, Castagné V. Comparison of three preclinical models for nausea and vomiting assessment. J Pharmacol Toxicol Methods 2016; 82:45-53. [DOI: 10.1016/j.vascn.2016.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/11/2016] [Accepted: 07/27/2016] [Indexed: 01/03/2023]
|
21
|
Lucot JB. Effects of naloxone on motion sickness in cats alone and with broad spectrum antiemetics. Auton Neurosci 2016; 202:97-101. [PMID: 27615675 DOI: 10.1016/j.autneu.2016.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 11/18/2022]
Abstract
Doses of naloxone far below those which elicit emesis increase the sensitivity to motion sickness. In order to evaluate the possible interaction with broad spectrum antiemetics, low doses of naloxone were tested alone and in combination with 8-hydroxy-2-(di-n-propylamine)tetralin (DPAT), fentanyl and the NK1 antagonist CP-99994. A modified autonomic symptom rating scale was unaffected by any drug and thus considered of little value. Fentanyl and NK1 antagonists decreased the duration of the retch/vomit sequence. Naloxone alone and in combination with each of the drugs increased the duration of retching/vomiting. Naloxone also increased the number of vomiting sequences. The results are interpreted in terms of possible site(s) of action of the antiemetic drugs.
Collapse
Affiliation(s)
- James B Lucot
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.
| |
Collapse
|
22
|
Balaban CD, Yates BJ. What is nausea? A historical analysis of changing views. Auton Neurosci 2016; 202:5-17. [PMID: 27450627 DOI: 10.1016/j.autneu.2016.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022]
Abstract
The connotation of "nausea" has changed across several millennia. The medical term 'nausea' is derived from the classical Greek terms ναυτια and ναυσια, which designated the signs and symptoms of seasickness. In classical texts, nausea referred to a wide range of perceptions and actions, including lethargy and disengagement, headache (migraine), and anorexia, with an awareness that vomiting was imminent only when the condition was severe. However, some recent articles have limited the definition to the sensations that immediately precede emesis. Defining nausea is complicated by the fact that it has many triggers, and can build-up slowly or rapidly, such that the prodromal signs and symptoms can vary. In particular, disengagement responses referred to as the "sopite syndrome" are typically present only when emetic stimuli are moderately provocative, and do not quickly culminate in vomiting or withdrawing from the triggering event. This review considers how the definition of "nausea" has evolved over time, and summarizes the physiological changes that occur prior to vomiting that may be indicative of nausea. Also described are differences in the perception of nausea, as well as the accompanying physiological responses, that occur with varying stimuli. This information is synthesized to provide an operational definition of nausea.
Collapse
Affiliation(s)
- Carey D Balaban
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bill J Yates
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
23
|
Rosenberg DM, Horn CC. Neurophysiological analytics for all! Free open-source software tools for documenting, analyzing, visualizing, and sharing using electronic notebooks. J Neurophysiol 2016; 116:252-62. [PMID: 27098025 DOI: 10.1152/jn.00137.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/04/2016] [Indexed: 12/18/2022] Open
Abstract
Neurophysiology requires an extensive workflow of information analysis routines, which often includes incompatible proprietary software, introducing limitations based on financial costs, transfer of data between platforms, and the ability to share. An ecosystem of free open-source software exists to fill these gaps, including thousands of analysis and plotting packages written in Python and R, which can be implemented in a sharable and reproducible format, such as the Jupyter electronic notebook. This tool chain can largely replace current routines by importing data, producing analyses, and generating publication-quality graphics. An electronic notebook like Jupyter allows these analyses, along with documentation of procedures, to display locally or remotely in an internet browser, which can be saved as an HTML, PDF, or other file format for sharing with team members and the scientific community. The present report illustrates these methods using data from electrophysiological recordings of the musk shrew vagus-a model system to investigate gut-brain communication, for example, in cancer chemotherapy-induced emesis. We show methods for spike sorting (including statistical validation), spike train analysis, and analysis of compound action potentials in notebooks. Raw data and code are available from notebooks in data supplements or from an executable online version, which replicates all analyses without installing software-an implementation of reproducible research. This demonstrates the promise of combining disparate analyses into one platform, along with the ease of sharing this work. In an age of diverse, high-throughput computational workflows, this methodology can increase efficiency, transparency, and the collaborative potential of neurophysiological research.
Collapse
Affiliation(s)
- David M Rosenberg
- Biobehavioral Oncology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Charles C Horn
- Biobehavioral Oncology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
Nausea as a sentinel symptom for cytotoxic chemotherapy effects on the gut-brain axis among women receiving treatment for recurrent ovarian cancer: an exploratory analysis. Support Care Cancer 2016; 24:2635-42. [PMID: 26746209 DOI: 10.1007/s00520-015-3071-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/21/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE Nausea is a common and potentially serious effect of cytotoxic chemotherapy for recurrent ovarian cancer and may function as a sentinel symptom reflecting adverse effects on the gut-brain axis (GBA) more generally, but research is scant. As a first exploratory test of this GBA hypothesis, we compared women reporting nausea to women not reporting nausea with regard to the severity of other commonly reported symptoms in this patient population. METHODS A secondary analysis of data systematically collected from women in active chemotherapy treatment for recurrent ovarian cancer (n = 158) was conducted. The Symptom Representation Questionnaire (SRQ) provided severity ratings for 22 common symptoms related to cancer and chemotherapy. Independent sample t tests and regression analyses were used to compare women with and without nausea with regard to their experience of other symptoms. RESULTS Nausea was reported by 89 (56.2 %) women. Symptoms that were significantly associated with nausea in bivariate and regression analyses included abdominal bloating, bowel disturbances, dizziness, depression, drowsiness, fatigue, headache, lack of appetite, memory problems, mood swings, shortness of breath, pain, sleep disturbance, urinary problems, vomiting, and weight loss. Symptoms that were not associated with nausea included hair loss, numbness and tingling, sexuality concerns, and weight gain. CONCLUSIONS Nausea experienced during chemotherapy for recurrent ovarian cancer may be an indicator of broader effects on the gut-brain axis. A better understanding of the mechanisms underlying these effects could lead to the development of novel supportive therapies to increase the tolerability and effectiveness of cancer treatment.
Collapse
|
25
|
De Jonghe BC, Holland RA, Olivos DR, Rupprecht LE, Kanoski SE, Hayes MR. Hindbrain GLP-1 receptor mediation of cisplatin-induced anorexia and nausea. Physiol Behav 2016; 153:109-14. [PMID: 26522737 PMCID: PMC4862654 DOI: 10.1016/j.physbeh.2015.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/09/2015] [Accepted: 10/28/2015] [Indexed: 11/25/2022]
Abstract
While chemotherapy-induced nausea and vomiting are clinically controlled in the acute (<24 h) phase following treatment, the anorexia, nausea, fatigue, and other illness-type behaviors during the delayed phase (>24 h) of chemotherapy are largely uncontrolled. As the hindbrain glucagon-like peptide-1 (GLP-1) system contributes to energy balance and mediates aversive and stressful stimuli, here we examine the hypothesis that hindbrain GLP-1 signaling mediates aspects of chemotherapy-induced nausea and reductions in feeding behavior in rats. Specifically, hindbrain GLP-1 receptor (GLP-1R) blockade, via 4th intracerebroventricular (ICV) exendin-(9-39) injections, attenuates the anorexia, body weight reduction, and pica (nausea-induced ingestion of kaolin clay) elicited by cisplatin chemotherapy during the delayed phase (48 h) of chemotherapy-induced nausea. Additionally, the present data provide evidence that the central GLP-1-producing preproglucagon neurons in the nucleus tractus solitarius (NTS) of the caudal brainstem are activated by cisplatin during the delayed phase of chemotherapy-induced nausea, as cisplatin led to a significant increase in c-Fos immunoreactivity in NTS GLP-1-immunoreactive neurons. These data support a growing body of literature suggesting that the central GLP-1 system may be a potential pharmaceutical target for adjunct anti-emetics used to treat the delayed-phase of nausea and emesis, anorexia, and body weight loss that accompany chemotherapy treatments.
Collapse
Affiliation(s)
- Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, United States.
| | - Ruby A Holland
- Department of Biobehavioral Health Sciences, School of Nursing, United States
| | - Diana R Olivos
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States; Department of Neuroscience, University of Pittsburgh, United States
| | - Laura E Rupprecht
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States; Department of Neuroscience, University of Pittsburgh, United States
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, United States
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
26
|
Abstract
One of the first recognized medical uses of Δ(9)-tetrahydrocannabinol was treatment of chemotherapy-induced nausea and vomiting. Although vomiting is well controlled with the currently available non-cannabinoid antiemetics, nausea continues to be a distressing side effect of chemotherapy and other disorders. Indeed, when nausea becomes conditionally elicited by the cues associated with chemotherapy treatment, known as anticipatory nausea (AN), currently available antiemetics are largely ineffective. Considerable evidence demonstrates that the endocannabinoid system regulates nausea in humans and other animals. In this review, we describe recent evidence suggesting that cannabinoids and manipulations that enhance the functioning of the natural endocannabinoid system are promising treatments for both acute nausea and AN.
Collapse
|
27
|
Cavero I. 14th Annual Meeting of the Safety Pharmacology Society: threading through scientific sessions for originality and novelty. Expert Opin Drug Saf 2015; 14:999-1008. [DOI: 10.1517/14740338.2015.1034104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|