1
|
Stafin K, Śliwa P, Pia Tkowski M, Matýsek D. Chitosan as a Templating Agent of Calcium Phosphate Crystalline Phases in Biomimetic Mineralization: Theoretical and Experimental Studies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63155-63169. [PMID: 39526983 DOI: 10.1021/acsami.4c11887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Highlighting the essential role of chitosan (CS), known for its biocompatibility, biodegradability, and ability to promote cell adhesion and proliferation, this study explores its utility in modulating the biomimetic mineralization of calcium phosphate (CaP). This approach holds promise for developing biomaterials suitable for bone regeneration. However, the interactions between the CS surface and in situ precipitated CaP still require further exploration. In the theoretical section, molecular dynamics (MD) simulations demonstrate that, at an appropriate pH level during the prenucleation stage, calcium ions (Ca2+) and hydrogen phosphate ions (HPO42-) form Posner-like clusters. Additionally, the interaction between these clusters and the CS molecule enhances system stability. Together, these phenomena facilitate the transition to subsequent heterogeneous nucleation on the surface of the organic matrix, which is a more controlled process than homogeneous nucleation in solution. Dynamic simulation results suggest that CS acts as a stabilizing matrix at pH 8.0 during biomimetic mineralization. In the experimental section, the effects of pH and the molecular weight of CS were investigated, with a focus on their impact on the crystal structure of the resulting material. X-ray diffraction and scanning electron microscopy analyses reveal that, under conditions of approximately pH 8.0 and a CS molecular weight of 20 000 g/mol, and controlled ion concentration, ultrasound radiation, and temperature, the dominant CaP phases in the material are carbonate-doped hydroxyapatite (CHA) and octacalcium phosphate (OCP). These findings suggest that CS, when adjusted for molecular weight and pH, facilitates the formation of CaP crystal phases that closely resemble the natural inorganic composition of bone, highlighting its protective and regulatory roles in the growth and maturation of crystals during mineralization. The theoretical predictions and experimental outcomes confirm the crucial role of CS as a templating agent, enabling the development of a biomimetic mineralization pathway. CS's ability to guide this process may prove valuable in the design of materials for bone tissue engineering, particularly in developing effective materials for bone tissue healing and regeneration.
Collapse
Affiliation(s)
- Krzysztof Stafin
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Paweł Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Marek Pia Tkowski
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Dalibor Matýsek
- Faculty of Mining and Geology, Technical University of Ostrava, 708 00 Ostrava, Czech Republic
| |
Collapse
|
2
|
Mindler GT, Stauffer A, Kranzl A, Penzkofer S, Ganger R, Radler C, Haeusler G, Raimann A. Persistent Lower Limb Deformities Despite Amelioration of Rickets in X-Linked Hypophosphatemia (XLH) - A Prospective Observational Study. Front Endocrinol (Lausanne) 2022; 13:866170. [PMID: 35399930 PMCID: PMC8987359 DOI: 10.3389/fendo.2022.866170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Gait deviations, lower limb pain and joint stiffness represent key symptoms in patients with X-linked hypophosphatemia (XLH, OMIM 307800), a rare disorder of mineral homeostasis. While the pathomechanism for rickets is well understood, the direct role of PHEX (Phosphate-regulating neutral endopeptidase) deficiency in non-rachitic features including complex deformities, skull and dental affections remains unclear. FGF23-inhibiting antibody treatment can normalize serum phosphate levels and to improve rickets in XLH patients. However, linear growth remains impaired and effects on lower limb deformity and gait are insufficiently studied. AIMS To characterize and evaluate the course of lower limb deformity in a case series of pediatric XLH patients receiving Burosumab therapy. METHODS Comparative assessment of planar radiographs, gait analysis, biochemical and clinical features of pediatric patients before and ≥12 months after initiation of FGF23-inhibiting was performed prospectively. Lower limb maltorsion was quantified by torsional MRI and gait analysis. Standardized deformity analysis of lower limb anteroposterior radiographs was conducted. RESULTS Seven patients (age 9.0 +/-3.6 years) were eligible for this study. All patients received conventional treatment before onset of antibody treatment. Maltorsion of the femur was observed in 8/14 legs using torsional MRI (mean antetorsion 8.79°). Maltorsion of the tibia was observed in 9/14 legs (mean external torsion 2.8°). Gait analysis confirmed MRI findings with femoral external malrotation prior to and one year after onset of Burosumab therapy. Internal foot progression (intoeing gait) remained pathological in all cases (mean 2.2°). Knee rotation was pathologically internal 10/14 legs. Mean mechanical axis deviation (MAD) of 16.1mm prior to Burosumab changed in average by 3.9mm. Three children underwent guided growth procedures within the observation period. Mild postprocedural rebound of frontal axis deviation was observed under Burosumab treatment in one patient. CONCLUSIONS This is the first study to investigate lower limb deformity parameters quantitatively in children with XLH receiving Burosumab. One year of Burosumab therapy was associated with persistent maltorsion and frontal axis deviation (varus/valgus) despite improved rickets in this small, prospective uncontrolled study.
Collapse
Affiliation(s)
- Gabriel T. Mindler
- Department of Pediatric Orthopaedics, Orthopaedic Hospital Speising, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Alexandra Stauffer
- Department of Pediatric Orthopaedics, Orthopaedic Hospital Speising, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Andreas Kranzl
- Vienna Bone and Growth Center, Vienna, Austria
- Laboratory for Gait and Movement Analysis, Orthopaedic Hospital Speising, Vienna, Austria
| | - Stefan Penzkofer
- MRI Institute Bader, Orthopaedic Hospital Speising, Vienna, Austria
| | - Rudolf Ganger
- Department of Pediatric Orthopaedics, Orthopaedic Hospital Speising, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Christof Radler
- Department of Pediatric Orthopaedics, Orthopaedic Hospital Speising, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Gabriele Haeusler
- Vienna Bone and Growth Center, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Vienna, Austria
| | - Adalbert Raimann
- Vienna Bone and Growth Center, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Adalbert Raimann,
| |
Collapse
|
3
|
Uskoković V, Janković-Častvan I, Wu VM. Bone Mineral Crystallinity Governs the Orchestration of Ossification and Resorption during Bone Remodeling. ACS Biomater Sci Eng 2019; 5:3483-3498. [DOI: 10.1021/acsbiomaterials.9b00255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Engineering Gateway 4200, Irvine, California 92697, United States
- Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, Illinois 60607-7052, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 1600 Fourth Street, San Francisco, California 94158, United States
| | - Ivona Janković-Častvan
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade 11000, Serbia
| | - Victoria M. Wu
- Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, Illinois 60607-7052, United States
| |
Collapse
|
4
|
Amenta E, King HE, Petermann H, Uskoković V, Tommasini SM, Macica CM. Vibrational spectroscopic analysis of hydroxyapatite in HYP mice and individuals with X-linked hypophosphatemia. Ther Adv Chronic Dis 2018; 9:268-281. [PMID: 30719271 PMCID: PMC6348532 DOI: 10.1177/2040622318804753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND X-linked hypophosphatemia (XLH) is the most common form of familial phosphate-wasting disorders, due to an inactivating mutation in the phosphate-regulating neutral endopeptidase, X-linked gene. Persistent osteomalacia, enthesophytes, osteophytes, degenerative arthritis and dental abscesses/periodontal disease dominate the adult disorder. However, the impact of insufficient phosphate on hydroxyapatite composition, the major inorganic component of bone and teeth, is unknown in individuals with XLH. METHODS Using Raman spectroscopy, the carbonate (CO3 2-) to phosphate (PO4 3-) ion ratio was measured in HYP and wild-type mice and in primary and permanent teeth from XLH individuals and unaffected controls. RESULTS There was a significant difference in carbonate ion substitution between the HYP and wild-type femoral cortical bone (0.36 ± 0.08 versus 0.24 ± 0.04; p < 0.001). Carbonate ion substitution levels were also higher in permanent XLH teeth compared with unaffected individuals (0.39 ± 0.12 versus 0.23 ± 0.04; p < 0.001), but not in primary teeth (0.29 ± 0.11 versus 0.26 ± 0.02; p = 0.29). Complementary Fourier transform infrared analyses demonstrated higher relative intensities of the four major vibrational bands originating from the carbonate anion in XLH teeth compared with unaffected controls. CONCLUSION Ionic substitution within the crystal lattice is a common feature of hydroxyapatite and one that confers the physiological properties of bone that impact mechanical strength and the process of bone remodeling. Our data demonstrating anionic substitution in human dentin from individuals with XLH validate the use of dentin as a proxy for bone and to better understand the molecular adaptations that occur in the biochemical milieu of XLH.
Collapse
Affiliation(s)
- Eva Amenta
- Department of Medical Sciences, Frank H. Netter, M.D., School of Medicine at Quinnipiac University, North Haven, CT, USA
| | - Helen E. King
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Holger Petermann
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | - Vuk Uskoković
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, USA
| | - Steven M. Tommasini
- Department of Orthopaedics and Rehabilitation, Yale University, New Haven, CT, USA
| | - Carolyn M. Macica
- Frank H. Netter MD School of Medicine, Quinnipiac University, 275 Mt. Carmel Avenue, NH-MED MNH-311H, Hamden, CT 06518, USA
| |
Collapse
|
5
|
Garip Ustaoglu S, Evis Z, Ilbay G, Boskey AL, Severcan F. Side-Effects of Convulsive Seizures and Anti-Seizure Therapy on Bone in a Rat Model of Epilepsy. APPLIED SPECTROSCOPY 2018; 72:689-705. [PMID: 28905646 DOI: 10.1177/0003702817734617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The severe sole effects of seizures on the cortical part of bone were reported in our previous study. However, the side effects of anti-epileptic drug therapy on bones has not been differentiated from the effects of the convulsive seizures, yet. This study provides the first report on differentiation of the effects of seizures and carbamazepine (a widely used antiepileptic drug) therapy on bones; 50 mg/kg/day drug was given to genetically induced absence epileptic rats for five weeks. Distinct bone regions including cortical, trabecular, and growth plate in each of tibia, femur, and spine tissues were studied using Fourier transform infrared (FT-IR) imaging and Vickers microhardness test. Blood levels of vitamin D and bone turnover biomarkers were also measured. According to the FT-IR imaging results, both seizure and carbamazepine-treated groups, more dominantly the drug-treated group, had lower mineral content with altered collagen crosslinks and higher crystallinity, implying reduced bone strength. Lower microhardness values also supported lower mechanical strength in bones. The most affected bone tissue and region from seizures and treatment was found as the spine and cortical, respectively. While there was a reduction in vitamin D and calcium levels in both seizure and carbamazepin-treated groups, significantly elevated PTH and bone turnover biomarkers were only seen in the drug-treated group.
Collapse
Affiliation(s)
- Sebnem Garip Ustaoglu
- 1 Department of Biochemistry, 187458 Middle East Technical University , Ankara, Turkey
- 2 Department of Medical Biochemistry, 187458 Faculty of Medicine, Altinbas University, Istanbul, Turkey
| | - Zafer Evis
- 3 Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Gul Ilbay
- 4 Department of Physiology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Adele Ludin Boskey
- 5 25062 Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Feride Severcan
- 6 Department of Biological Sciences, 187458 Middle East Technical University , Ankara, Turkey
- 7 Department of Biophysics, 187458 Faculty of Medicine, Altinbas University, Istanbul, Turkey
| |
Collapse
|
6
|
Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. Ann N Y Acad Sci 2018; 1410:93-106. [PMID: 29265417 DOI: 10.1111/nyas.13572] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Bone quality encompasses all the characteristics of bone that, in addition to density, contribute to its resistance to fracture. In this review, we consider changes in architecture, porosity, and composition, including collagen structure, mineral composition, and crystal size. These factors all are known to vary with tissue and animal ages, and health status. Bone morphology and presence of microcracks, which also contribute to bone quality, will not be discussed in this review. Correlations with mechanical performance for collagen cross-linking, crystallinity, and carbonate content are contrasted with mineral content. Age-dependent changes in humans and rodents are discussed in relation to rodent models of disease. Examples are osteoporosis, osteomalacia, osteogenesis imperfecta (OI), and osteopetrosis in both humans and animal models. Each of these conditions, along with aging, is associated with increased fracture risk for distinct reasons.
Collapse
Affiliation(s)
- Adele L Boskey
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, New York.,Department of Biochemistry, Weill Cornell Medical College, New York, New York
| | - Laurianne Imbert
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, New York
| |
Collapse
|
7
|
Abstract
Rickets is a bone disease associated with abnormal serum calcium and phosphate levels. The clinical presentation is heterogeneous and depends on the age of onset and pathogenesis but includes bowing deformities of the legs, short stature and widening of joints. The disorder can be caused by nutritional deficiencies or genetic defects. Mutations in genes encoding proteins involved in vitamin D metabolism or action, fibroblast growth factor 23 (FGF23) production or degradation, renal phosphate handling or bone mineralization have been identified. The prevalence of nutritional rickets has substantially declined compared with the prevalence 200 years ago, but the condition has been re-emerging even in some well-resourced countries; prematurely born infants or breastfed infants who have dark skin types are particularly at risk. Diagnosis is usually established by medical history, physical examination, biochemical tests and radiography. Prevention is possible only for nutritional rickets and includes supplementation or food fortification with calcium and vitamin D either alone or in combination with sunlight exposure. Treatment of typical nutritional rickets includes calcium and/or vitamin D supplementation, although instances infrequently occur in which phosphate repletion may be necessary. Management of heritable types of rickets associated with defects in vitamin D metabolism or activation involves the administration of vitamin D metabolites. Oral phosphate supplementation is usually indicated for FGF23-independent phosphopenic rickets, whereas the conventional treatment of FGF23-dependent types of rickets includes a combination of phosphate and activated vitamin D; an anti-FGF23 antibody has shown promising results and is under further study.
Collapse
|
8
|
Murali SK, Andrukhova O, Clinkenbeard EL, White KE, Erben RG. Excessive Osteocytic Fgf23 Secretion Contributes to Pyrophosphate Accumulation and Mineralization Defect in Hyp Mice. PLoS Biol 2016; 14:e1002427. [PMID: 27035636 PMCID: PMC4818020 DOI: 10.1371/journal.pbio.1002427] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/08/2016] [Indexed: 11/24/2022] Open
Abstract
X-linked hypophosphatemia (XLH) is the most frequent form of inherited rickets in humans caused by mutations in the phosphate-regulating gene with homologies to endopeptidases on the X-chromosome (PHEX). Hyp mice, a murine homologue of XLH, are characterized by hypophosphatemia, inappropriately low serum vitamin D levels, increased serum fibroblast growth factor-23 (Fgf23), and osteomalacia. Although Fgf23 is known to be responsible for hypophosphatemia and reduced vitamin D hormone levels in Hyp mice, its putative role as an auto-/paracrine osteomalacia-causing factor has not been explored. We recently reported that Fgf23 is a suppressor of tissue nonspecific alkaline phosphatase (Tnap) transcription via FGF receptor-3 (FGFR3) signaling, leading to inhibition of mineralization through accumulation of the TNAP substrate pyrophosphate. Here, we report that the pyrophosphate concentration is increased in Hyp bones, and that Tnap expression is decreased in Hyp-derived osteocyte-like cells but not in Hyp-derived osteoblasts ex vivo and in vitro. In situ mRNA expression profiling in bone cryosections revealed a ~70-fold up-regulation of Fgfr3 mRNA in osteocytes versus osteoblasts of Hyp mice. In addition, we show that blocking of increased Fgf23-FGFR3 signaling with anti-Fgf23 antibodies or an FGFR3 inhibitor partially restored the suppression of Tnap expression, phosphate production, and mineralization, and decreased pyrophosphate concentration in Hyp-derived osteocyte-like cells in vitro. In vivo, bone-specific deletion of Fgf23 in Hyp mice rescued the suppressed TNAP activity in osteocytes of Hyp mice. Moreover, treatment of wild-type osteoblasts or mice with recombinant FGF23 suppressed Tnap mRNA expression and increased pyrophosphate concentrations in the culture medium and in bone, respectively. In conclusion, we found that the cell autonomous increase in Fgf23 secretion in Hyp osteocytes drives the accumulation of pyrophosphate through auto-/paracrine suppression of TNAP. Hence, we have identified a novel mechanism contributing to the mineralization defect in Hyp mice. A novel mechanism involving autocrine and paracrine actions of fibroblast growth factor-23 contributes to the mineralization defect observed in Hyp, a mouse model for X-linked hypophosphatemia. X-linked hypophosphatemia (XLH) is the most frequent form of inherited rickets in humans. A mouse model of XLH, known as Hyp, is characterized by exceptionally low serum phosphate and vitamin D levels, increased serum levels of the hormone fibroblast growth factor-23 (Fgf23), and impaired bone mineralization. Fgf23 is secreted from two classes of bone cells known as osteoblasts and osteocytes. Fgf23 increases urinary phosphate excretion and suppresses vitamin D hormone production in the kidney. Although Fgf23 is known to be responsible for lower blood phosphate and vitamin D hormone levels in Hyp mice, its putative role as a signaling factor causing impaired mineralization has not been explored. We recently reported that Fgf23 is a suppressor of tissue nonspecific alkaline phosphatase (Tnap) gene expression via FGF receptor-3 (FGFR3) signaling in osteoblasts, leading to inhibition of mineralization through accumulation of the TNAP substrate pyrophosphate. Pyrophosphate is a potent inhibitor of mineralization. Using a combination of cell culture and animal models, we report that the increase in osteocyte Fgf23 secretion of Hyp mice leads to FGFR3-mediated suppression of TNAP with subsequent accumulation of pyrophosphate. Hence, we have identified a novel signaling mechanism by which excessive osteocytic secretion of Fgf23 contributes to the mineralization defect in Hyp mice.
Collapse
Affiliation(s)
- Sathish K. Murali
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Olena Andrukhova
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Erica L. Clinkenbeard
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kenneth E. White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Reinhold G. Erben
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
- * E-mail:
| |
Collapse
|
9
|
Bai X, Miao D, Xiao S, Qiu D, St-Arnaud R, Petkovich M, Gupta A, Goltzman D, Karaplis AC. CYP24 inhibition as a therapeutic target in FGF23-mediated renal phosphate wasting disorders. J Clin Invest 2016; 126:667-80. [PMID: 26784541 DOI: 10.1172/jci81928] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022] Open
Abstract
CYP24A1 (hereafter referred to as CYP24) enzymatic activity is pivotal in the inactivation of vitamin D metabolites. Basal renal and extrarenal CYP24 is usually low but is highly induced by its substrate 1,25-dihydroxyvitamin D. Unbalanced high and/or long-lasting CYP24 expression has been proposed to underlie diseases like chronic kidney disease, cancers, and psoriasis that otherwise should favorably respond to supplemental vitamin D. Using genetically modified mice, we have shown that renal phosphate wasting hypophosphatemic states arising from high levels of fibroblast growth factor 23 (FGF23) are also associated with increased renal Cyp24 expression, suggesting that elevated CYP24 activity is pivotal to the pathophysiology of these disorders. We therefore crossed 2 mouse strains, each with distinct etiology for high levels of circulating FGF23, onto a Cyp24-null background. Specifically, we evaluated Cyp24 deficiency in Hyp mice, the murine homolog of X-linked dominant hypophosphatemic rickets, and transgenic mice that overexpress a mutant FGF23 (FGF23R176Q) that is associated with the autosomal dominant form of hypophosphatemic rickets. Loss of Cyp24 in these murine models of human disease resulted in near-complete recovery of rachitic/osteomalacic bony abnormalities in the absence of any improvement in the serum biochemical profile. Moreover, treatment of Hyp and FGF23R1760-transgenic mice with the CYP24 inhibitor CTA102 also ameliorated their rachitic bones. Our results link CYP24 activity to the pathophysiology of FGF23-dependent renal phosphate wasting states and implicate pharmacologic CYP24 inhibition as a therapeutic adjunct for their treatment.
Collapse
|
10
|
Mobley CG, Kuzynski M, Zhang H, Jani P, Qin C, Napierala D. Dspp-independent Effects of Transgenic Trps1 Overexpression on Dentin Formation. J Dent Res 2015; 94:1128-34. [PMID: 25999324 DOI: 10.1177/0022034515586709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Trps1 transcription factor is highly expressed in dental mesenchyme and preodontoblasts, while in mature, secretory odontoblasts, it is expressed at low levels. Previously, we have shown that high Trps1 levels in mature odontoblasts impair their function in vitro and in vivo. Col1a1-Trps1 transgenic (Trps1-Tg) mice demonstrate defective dentin secretion and mineralization, which are associated with significantly decreased Dspp expression due to direct repression of the Dspp gene by Trps1. Here, by crossing Trps1-Tg and Col1a1-Dspp transgenic (Dspp-Tg) mice, we generated Col1a1-Trps1;Col1a1-Dspp double transgenic (double-Tg) mice in which Dspp was restored in odontoblasts overexpressing Trps1. Comparative micro-computed tomography analyses revealed partial correction of the dentin volume and no improvement of dentin mineralization in double transgenic mice in comparison with Trps1-Tg and wild-type (WT) mice. In addition, dentin of double-Tg mice has an irregular mineralization pattern characteristic for dentin in hypophosphatemic rickets. Consistent with this phenotype, decreased levels of Phex, Vdr, and Fam20c proteins are detected in both Trps1-Tg and double-Tg odontoblasts in comparison with WT and Dspp-Tg odontoblasts. This suggests that the Dspp-independent dentin mineralization defects in Trps1-Tg mice are a result of downregulation of a group of proteins critical for mineral deposition within the dentin matrix. In summary, by demonstrating that Trps1 functions as a repressor of later stages of dentinogenesis, we provide functional significance of the dynamic Trps1 expression pattern during dentinogenesis.
Collapse
Affiliation(s)
- C G Mobley
- Institute of Oral Health Research, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Kuzynski
- Institute of Oral Health Research, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - H Zhang
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - P Jani
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - C Qin
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - D Napierala
- Institute of Oral Health Research, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
11
|
Ohata Y, Yamazaki M, Kawai M, Tsugawa N, Tachikawa K, Koinuma T, Miyagawa K, Kimoto A, Nakayama M, Namba N, Yamamoto H, Okano T, Ozono K, Michigami T. Elevated fibroblast growth factor 23 exerts its effects on placenta and regulates vitamin D metabolism in pregnancy of Hyp mice. J Bone Miner Res 2014; 29:1627-38. [PMID: 24470103 DOI: 10.1002/jbmr.2186] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/12/2014] [Accepted: 01/20/2014] [Indexed: 01/24/2023]
Abstract
Fibroblast growth factor 23 (FGF23) functions in an endocrine fashion and requires α-Klotho to exert its effects on the target organs. We have recently demonstrated that the human placenta also expresses α-Klotho, which led us to hypothesize that FGF23 may exert effects on the placenta. Immunohistochemical analysis demonstrated the expression of FGF receptor 1 (FGFR1) as well as that of α-Klotho in the feto-maternal interface of both mouse and human normal-term placentas, which suggested that these areas might be receptive to FGF23. Therefore, we next investigated whether FGF23 has some roles in the placenta using Hyp mice with high levels of circulating FGF23. Hyp and wild-type (WT) females were mated with WT males, and the mothers and their male fetuses were analyzed. FGF23 levels in Hyp mothers were elevated. FGF23 levels were about 20-fold higher in Hyp fetuses than in Hyp mothers, whereas WT fetuses from Hyp mothers exhibited low levels of FGF23, as did fetuses from WT mothers. We analyzed the placental gene expression and found that the expression of Cyp24a1 encoding 25OHD-24-hydroxylase, a target gene for FGF23 in the kidney, was increased in the placentas of fetuses from Hyp mothers compared with fetuses from WT mothers. In an organ culture of WT placentas, treatment with plasma from Hyp mothers markedly increased the expression of Cyp24a1, which was abolished by the simultaneous addition of anti-FGF23 neutralizing antibody. The direct injection of recombinant FGF23 into WT placentas induced the expression of Cyp24a1. The increase in the placental expression of Cyp24a1 in fetuses from Hyp mothers resulted in decreased plasma 25-hydroxyvitamin D levels. These results suggest that increased levels of circulating FGF23 in pathological conditions such as Hyp mice exerts direct effects on the placenta and affects fetal vitamin D metabolism via the regulation of Cyp24a1 expression.
Collapse
Affiliation(s)
- Yasuhisa Ohata
- Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Spevak L, Flach CR, Hunter T, Mendelsohn R, Boskey A. Fourier transform infrared spectroscopic imaging parameters describing acid phosphate substitution in biologic hydroxyapatite. Calcif Tissue Int 2013; 92:418-28. [PMID: 23380987 PMCID: PMC3631290 DOI: 10.1007/s00223-013-9695-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/14/2012] [Indexed: 12/13/2022]
Abstract
Acid phosphate substitution into mineralized tissues is an important determinant of their mechanical properties and their response to treatment. This study identifies and validates Fourier transform infrared spectroscopic imaging (FTIRI) spectral parameters that provide information on the acid phosphate (HPO4) substitution into hydroxyapatite in developing mineralized tissues. Curve fitting and Fourier self-deconvolution were used to identify subband positions in model compounds (with and without HPO4). The intensity of subbands at 1127 and 1110 cm(-1) correlated with the acid phosphate content in these models. Peak height ratios of these subbands to the ν3 vibration at 1096 cm(-1) found in stoichiometric apatite were evaluated in the model compounds and mixtures thereof. FTIRI spectra of bones and teeth at different developmental ages were analyzed using these spectral parameters. Factor analysis (a chemometric technique) was also conducted on the tissue samples and resulted in factor loadings with spectral features corresponding to the HPO4 vibrations described above. Images of both factor correlation coefficients and the peak height ratios 1127/1096 and 1112/1096 cm(-1) demonstrated higher acid phosphate content in younger vs. more mature regions in the same specimen. Maps of the distribution of acid phosphate content will be useful for characterizing the extent of new bone formation, the areas of potential decreased strength, and the effects of therapies such as those used in metabolic bone diseases (osteoporosis, chronic kidney disease) on mineral composition. Because of the wider range of values obtained with the 1127/1096 cm(-1) parameter compared to the 1110/1096 cm(-1) parameter and the smaller scatter in the slope, it is suggested that this ratio should be the parameter of choice.
Collapse
Affiliation(s)
- Lyudmila Spevak
- Hospital for Special Surgery, 535 E. 70th Street, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
13
|
Boskey AL, Lukashova L, Spevak L, Ma Y, Khan SR. The kidney sodium-phosphate co-transporter alters bone quality in an age and gender specific manner. Bone 2013; 53:546-53. [PMID: 23333524 PMCID: PMC3593750 DOI: 10.1016/j.bone.2013.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/03/2013] [Accepted: 01/08/2013] [Indexed: 01/27/2023]
Abstract
Mutations in the kidney NaPiIIa co-transporter are clinically associated with hypophosphatemia, hyperphosphaturia (phosphate wasting), hypercalcemia, nephrolithiasis and bone demineralization. The mouse lacking this co-transporter system was reported to recover its skeletal defects with age, but the "quality" of the bones was not considered. To assess changes in bone quality we examined both male and female NaPiIIa knockout (KO) mice at 1 and 7months of age using micro-computed tomography (micro-CT) and Fourier transform infrared imaging (FTIRI). KO cancellous bones at both ages had greater bone volume fraction, trabecular thickness and lesser structure model index based on micro-CT values relative to age- and sex-matched wildtype animals. There was a sexual-dimorphism in the micro-CT parameters, with differences at 7months seen principally in males. Cortical bone at 1month showed an increase in bone volume fraction, but this was not seen at 7months. Cortical thickness which was elevated in the male and female KO at 1month was lower in the male KO at 7months. FTIRI showed a reduced mineral and acid phosphate content in the male and female KO's bones at 1month with no change in acid phosphate content at 7months. Collagen maturity was reduced in KO cancellous bone at 1month. The observed sexual dimorphism in the micro-CT data may be related to altered phosphate homeostasis, differences in animal growth rates and other factors. These data indicate that the bone quality of the KO mice at both ages differs from the normal and suggests that these bone quality differences may contribute to skeletal phenotype in humans with mutations in this co-transporter.
Collapse
Affiliation(s)
- Adele L Boskey
- Mineralized Tissue Research Laboratory, Hospital for Special Surgery, New York, NY, USA.
| | | | | | | | | |
Collapse
|
14
|
Koehne T, Marshall RP, Jeschke A, Kahl-Nieke B, Schinke T, Amling M. Osteopetrosis, osteopetrorickets and hypophosphatemic rickets differentially affect dentin and enamel mineralization. Bone 2013; 53:25-33. [PMID: 23174213 DOI: 10.1016/j.bone.2012.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/16/2012] [Accepted: 11/13/2012] [Indexed: 01/09/2023]
Abstract
Osteopetrosis (OP) is an inherited disorder of defective bone resorption, which can be accompanied by impaired skeletal mineralization, a phenotype termed osteopetrorickets (OPR). Since individuals with dysfunctional osteoclasts often develop osteomyelitis of the jaw, we have analyzed, if dentin and enamel mineralization are differentially affected in OP and OPR. Therefore, we have applied non-decalcified histology and quantitative backscattered electron imaging (qBEI) to compare the dental phenotypes of Src(-/-), oc/oc and Hyp(-/0) mice, which serve as models for OP, OPR and hypophosphatemic rickets, respectively. While both, Src(-/-) and oc/oc mice, were characterized by defects of molar root formation, only oc/oc mice displayed a severe defect of dentin mineralization, similar to Hyp(-/0) mice. Most importantly, while enamel thickness was not affected in either mouse model, the calcium content within the enamel phase was significantly reduced in oc/oc, but not in Src(-/-) or Hyp(-/0) mice. Taken together, these data demonstrate that dentin and enamel mineralization are differentially affected in Src(-/-) and oc/oc mice. Moreover, since defects of dental mineralization may trigger premature tooth decay and thereby osteomyelitis of the jaw, they further underscore the importance of discriminating between OP and OPR in the respective individuals.
Collapse
Affiliation(s)
- Till Koehne
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Martin A, David V, Li H, Dai B, Feng JQ, Quarles LD. Overexpression of the DMP1 C-terminal fragment stimulates FGF23 and exacerbates the hypophosphatemic rickets phenotype in Hyp mice. Mol Endocrinol 2012; 26:1883-95. [PMID: 22930691 DOI: 10.1210/me.2012-1062] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dentin matrix protein-1 (DMP1) or phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) inactivation results in elevation of the phosphaturic hormone fibroblast growth factor (FGF)-23, leading to hypophosphatemia, aberrant vitamin D metabolism, and rickets/osteomalacia. Compound mutant Phex-deficient Hyp and Dmp1(ko) mice exhibit nonadditive phenotypes, suggesting that DMP1 and PHEX may have interdependent effects to regulate FGF23 and bone mineralization. To determine the relative importance of DMP1 and PHEX in regulating FGF23 and mineralization, we tested whether the transgenic expression of full-length [Dmp1(Tg(full-length))] or C-terminal Dmp1 [Dmp1(Tg(57kDa))] could rescue the phenotype of Hyp mice. We found that Dmp1(ko) and Hyp mice have similar phenotypes characterized by decreased cortical bone mineral density (-35% vs. wild type, P < 0.05) and increased serum FGF23 levels (~12-fold vs. wild type, P < 0.05). This was significantly corrected by the overexpression of either the full-length or the C-terminal transgene in Dmp1(ko) mice. However, neither of the transgenes rescued the Hyp mice phenotype. Hyp/Dmp1(Tg(full-length)) and Hyp mice were similar, but Hyp/Dmp1(Tg(57 kDa)) mice exhibited worsening of osteomalacia (-20% cortical bone mineral density) in association with increased serum FGF23 levels (+2-fold) compared with Hyp mice. Bone FGF23 mRNA expression was decreased and a 2-fold increase in the ratio of the full-length/degraded circulating FGF23 was observed, indicating that degradation of FGF23 was impaired in Hyp/Dmp1(Tg(57 kDa)) mice. The paradoxical effects of the C-terminal Dmp1 transgene were observed in Hyp/Dmp1(Tg(57 kDa)) but not in Dmp1(Tg(57 kDa)) mice expressing a functional PHEX. These findings indicate a functional interaction between PHEX and DMP1 to regulate bone mineralization and circulating FGF23 levels and for the first time demonstrate effects of the C-terminal DMP1 to regulate FGF23 degradation.
Collapse
Affiliation(s)
- A Martin
- University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | |
Collapse
|
16
|
Zhang MYH, Ranch D, Pereira RC, Armbrecht HJ, Portale AA, Perwad F. Chronic inhibition of ERK1/2 signaling improves disordered bone and mineral metabolism in hypophosphatemic (Hyp) mice. Endocrinology 2012; 153:1806-16. [PMID: 22334725 PMCID: PMC3320256 DOI: 10.1210/en.2011-1831] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The X-linked hypophosphatemic (Hyp) mouse carries a loss-of-function mutation in the phex gene and is characterized by hypophosphatemia due to renal phosphate (Pi) wasting, inappropriately suppressed 1,25-dihydroxyvitamin D [1,25(OH)₂D] production, and rachitic bone disease. Increased serum fibroblast growth factor-23 concentration is responsible for the disordered metabolism of Pi and 1,25(OH)₂D. In the present study, we tested the hypothesis that chronic inhibition of fibroblast growth factor-23-induced activation of MAPK signaling in Hyp mice can reverse their metabolic derangements and rachitic bone disease. Hyp mice were administered the MAPK inhibitor, PD0325901 orally for 4 wk. PD0325901 induced a 15-fold and 2-fold increase in renal 1α-hydroxylase mRNA and protein abundance, respectively, and thereby higher serum 1,25(OH)₂D concentrations (115 ± 13 vs. 70 ± 16 pg/ml, P < 0.05), compared with values in vehicle-treated Hyp mice. With PD0325901, serum Pi levels were higher (5.1 ± 0.5 vs. 3 ± 0.2 mg/dl, P < 0.05), and the protein abundance of sodium-dependent phosphate cotransporter Npt2a, was greater than in vehicle-treated mice. The rachitic bone disease in Hyp mice is characterized by abundant unmineralized osteoid bone volume, widened epiphyses, and disorganized growth plates. In PD0325901-treated Hyp mice, mineralization of cortical and trabecular bone increased significantly, accompanied by a decrease in unmineralized osteoid volume and thickness, as determined by histomorphometric analysis. The improvement in mineralization in PD0325901-treated Hyp mice was confirmed by microcomputed tomography analysis, which showed an increase in cortical bone volume and thickness. These findings provide evidence that in Hyp mice, chronic MAPK inhibition improves disordered Pi and 1,25(OH)₂D metabolism and bone mineralization.
Collapse
Affiliation(s)
- Martin Y H Zhang
- Department of Pediatrics, University of California San Francisco, San Francisco, California 94143-0748, USA
| | | | | | | | | | | |
Collapse
|
17
|
Karunaratne A, Esapa CR, Hiller J, Boyde A, Head R, Bassett JHD, Terrill NJ, Williams GR, Brown MA, Croucher PI, Brown SDM, Cox RD, Barber AH, Thakker RV, Gupta HS. Significant deterioration in nanomechanical quality occurs through incomplete extrafibrillar mineralization in rachitic bone: evidence from in-situ synchrotron X-ray scattering and backscattered electron imaging. J Bone Miner Res 2012; 27:876-90. [PMID: 22161748 DOI: 10.1002/jbmr.1495] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bone diseases such as rickets and osteoporosis cause significant reduction in bone quantity and quality, which leads to mechanical abnormalities. However, the precise ultrastructural mechanism by which altered bone quality affects mechanical properties is not clearly understood. Here we demonstrate the functional link between altered bone quality (reduced mineralization) and abnormal fibrillar-level mechanics using a novel, real-time synchrotron X-ray nanomechanical imaging method to study a mouse model with rickets due to reduced extrafibrillar mineralization. A previously unreported N-ethyl-N-nitrosourea (ENU) mouse model for hypophosphatemic rickets (Hpr), as a result of missense Trp314Arg mutation of the phosphate regulating gene with homologies to endopeptidase on the X chromosome (Phex) and with features consistent with X-linked hypophosphatemic rickets (XLHR) in man, was investigated using in situ synchrotron small angle X-ray scattering to measure real-time changes in axial periodicity of the nanoscale mineralized fibrils in bone during tensile loading. These determine nanomechanical parameters including fibril elastic modulus and maximum fibril strain. Mineral content was estimated using backscattered electron imaging. A significant reduction of effective fibril modulus and enhancement of maximum fibril strain was found in Hpr mice. Effective fibril modulus and maximum fibril strain in the elastic region increased consistently with age in Hpr and wild-type mice. However, the mean mineral content was ∼21% lower in Hpr mice and was more heterogeneous in its distribution. Our results are consistent with a nanostructural mechanism in which incompletely mineralized fibrils show greater extensibility and lower stiffness, leading to macroscopic outcomes such as greater bone flexibility. Our study demonstrates the value of in situ X-ray nanomechanical imaging in linking the alterations in bone nanostructure to nanoscale mechanical deterioration in a metabolic bone disease.
Collapse
Affiliation(s)
- Angelo Karunaratne
- School of Engineering and Material Sciences, Queen Mary University of London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Growth in PHEX-associated X-linked hypophosphatemic rickets: the importance of early treatment. Pediatr Nephrol 2012; 27:581-8. [PMID: 22101457 DOI: 10.1007/s00467-011-2046-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 01/10/2023]
Abstract
Inactivating mutations in phosphate-regulating endopeptidase (PHEX) cause X-linked hypophosphatemic rickets (XLHR) characterized by phosphaturia, hypophosphatemia, bony deformities, and growth retardation. We assessed the efficacy of combined calcitriol and orally administered phosphate (Pi) therapy on longitudinal growth in relation to age at treatment onset in a retrospective, single-center review of children with XLHR and documented PHEX mutations. Growth was compared in those who started treatment before (G1; N = 10; six boys) and after (G2; N = 13; five boys) 1 year old. Median height standard deviation score (HSDS) at treatment onset was normal in G1: 0.1 [interquartile range (IR) -1.3 to 0.4) and significantly (p = 0.004) lower in G2 (IR -2.1 (-2.8 to -1.4). Treatment duration was similar [G1 8.5 (4.0-15.2) vs G2 11.9 (6.2-14.3) years; p = 0.56], as were prescribed phosphate and calcitriol doses. Recent HSDS was significantly (p = 0.009) better in G1 [-0.7 (-1.5 to 0.3)] vs G2 [-2.0 (-2.3 to -1.0)]. No effects of gender or genotype on growth could be identified. Children with PHEX-associated XLHR benefit from early treatment and can achieve normal growth. Minimal catchup growth was seen in those who started treatment later. Our findings emphasize the importance of early diagnosis to allow treatment before growth has been compromised.
Collapse
|
19
|
Moriyama K, Hanai A, Mekada K, Yoshiki A, Ogiwara K, Kimura A, Takahashi T. Kbus/Idr, a mutant mouse strain with skeletal abnormalities and hypophosphatemia: identification as an allele of 'Hyp'. J Biomed Sci 2011; 18:60. [PMID: 21854633 PMCID: PMC3175157 DOI: 10.1186/1423-0127-18-60] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 08/20/2011] [Indexed: 12/17/2022] Open
Abstract
Background The endopeptidase encoded by Phex (phosphate-regulating gene with homologies to endopeptidases linked to the X chromosome) is critical for regulation of bone matrix mineralization and phosphate homeostasis. PHEX has been identified from analyses of human X-linked hypophosphatemic rickets and Hyp mutant mouse models. We here demonstrated a newly established dwarfism-like Kbus/Idr mouse line to be a novel Hyp model. Methods Histopathological and X-ray examination with cross experiments were performed to characterize Kbus/Idr. RT-PCR-based and exon-directed PCR screening performed to identify the presence of genetic alteration. Biochemical assays were also performed to evaluate activity of alkaline phosphatase. Results Kbus/Idr, characterized by bone mineralization defects, was found to be inherited in an X chromosome-linked dominant manner. RT-PCR experiments showed that a novel mutation spanning exon 16 and 18 causing hypophosphatemic rickets. Alkaline phosphatase activity, as an osteoblast marker, demonstrated raised levels in the bone marrow of Kbus/Idr independent of the age. Conclusions Kbus mice should serve as a useful research tool exploring molecular mechanisms underlying aberrant Phex-associated pathophysiological phenomena.
Collapse
Affiliation(s)
- Kenji Moriyama
- Department of Medicine & Clinical Science, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya 663-8179, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Lv H, Fu S, Wu G, Yan F. PHEX neutralizing agent inhibits dentin formation in mouse tooth germ. Tissue Cell 2011; 43:125-30. [PMID: 21324501 DOI: 10.1016/j.tice.2010.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/19/2010] [Accepted: 12/27/2010] [Indexed: 10/18/2022]
Abstract
The mutation of phosphate-regulating gene with homologies to endopeptidases on the X-chromosome (PHEX) can lead to human X-linked hypophosphatemic rickets which displays hypo-mineralization in bone and dentin. To study its possible roles in teeth, PHEX antibody was injected into pregnant mice on E15 to explore its roles on the formation of enamel and dentin. Mallory trichrome staining results showed that arrangements of ameloblasts and odontoblasts were irregular after PHEX antibody treatment. Differentiation of odontoblasts and the formation of dentin were inhibited. Spatiotemporal distribution of PHEX protein was observed in various stages of tooth germ. Immunohistochemical results showed positive PHEX signals appeared in the inner enamel epithelium on E16 and became stronger on E18. Ameloblasts and odontoblasts showed much higher PHEX expression on P1 and P3. Expression of PHEX in odontoblasts decreased accordingly. However, enamel formation was only slightly affected. The findings proved that a decrease in PHEX expression could suppress dentin formation.
Collapse
Affiliation(s)
- Hongbing Lv
- Department of Endodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | | | | | | |
Collapse
|
21
|
Zhang B, Sun Y, Chen L, Guan C, Guo L, Qin C. Expression and distribution of SIBLING proteins in the predentin/dentin and mandible of hyp mice. Oral Dis 2010; 16:453-64. [PMID: 20233318 DOI: 10.1111/j.1601-0825.2010.01656.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Human X-linked hypophosphatemia (XLH) and its murine homologue, Hyp are caused by inactivating mutations in PHEX gene. The protein encoded by PHEX gene is an endopeptidase whose physiological substrate(s) has not been identified. Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP), two members of the Small Integrin-Binding LIgand, N-linked Glycoprotein (SIBLING) family are proteolytically processed. It has been speculated that PHEX endopeptidase may be responsible for the proteolytic cleavage of DMP1 and DSPP. To test this hypothesis and to analyse the distribution of SIBLING proteins in the predentin/dentin complex and mandible of Hyp mice, we compared the expression of four SIBLING proteins, DMP1, DSPP, bone sialoprotein (BSP) and osteopontin (OPN) between Hyp and wild-type mice. METHODS These SIBLING proteins were analysed by protein chemistry and immunohistochemistry. RESULTS (1) Dentin matrix protein 1 and DSPP fragments are present in the extracts of Hyp predentin/dentin and bone; (2) the level of DMP1 proteoglycan form, BSP and OPN is elevated in the Hyp bone. CONCLUSIONS The PHEX protein is not the enzyme responsible for the proteolytic processing of DMP1 and DSPP. The altered distribution of SIBLING proteins may be involved in the pathogenesis of bone and dentin defects in Hyp and XLH.
Collapse
Affiliation(s)
- B Zhang
- Department of Oral and Maxillofacial Surgery, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Bone mineralization is possible via complex interactions among fibroblast growth factor 23 (FGF23), phosphate-regulating gene with homologies to endopeptidases on the X-chromosome (PHEX), and matrix extracellular phosphoglycoprotein. A loss-of-function mutation in PHEX disrupts this interaction leading to hypophosphatemic rickets. X-linked hypophosphatemic (XLH) rickets is the most common form of metabolic rickets, and there have been reports linking XLH rickets to craniosynostosis. A clinical report of a patient with XLH rickets and craniosynostosis is presented with a review of literature. A review of physiology of bone mineralization reveals that, at high levels, there is cross-binding of FGF23 with FGF receptors 2 and 3 at the cranial sutures. This may be the reason for the common association of craniosynostosis and XLH rickets. There are complex interactions of proteins required for mineralization, proteins inhibiting mineralization, bone remodeling, and bone-renal phosphate homeostasis. Clarification of this pathway and reproducibility in a mouse model may pave the way for medical prevention of craniosynostosis in rickets.
Collapse
|