1
|
Yu Y, Li Y, Gong Z, Liao P, Ma Y, Zhou L, Gong J. A Moldable, Tough Mineral-Dominated Nanocomposite as a Recyclable Structural Material. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410266. [PMID: 39757557 DOI: 10.1002/smll.202410266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Indexed: 01/07/2025]
Abstract
Flexible hybrid minerals, primarily composed of inorganic ionic crystal nanolines and a small amount of organic molecules, have significant potential for the development of sustainable structural materials. However, the weak interactions and insufficient crosslinking among the inorganic nanolines limit the mechanical enhancement and application of these hybrid minerals in high-strength structural materials. Inspired by tough biominerals and modern reinforced concrete structures, this study proposes introducing an aramid nanofiber (ANF) network as a flexible framework during the polymerization of calcium phosphate oligomers (CPO), crosslinked by polyvinyl alcohol (PVA) and sodium alginate (SA). This approach allows the flexible inorganic nanolines formed through CPO polymerization to be integrated into the organic framework, thereby creating tough mineral-based structural materials (inorganic content: 70.7 wt.%), denoted as PVA/SA/ANF/CPO (PSAC). The multiple intermolecular interactions between the organic and inorganic phases, combined with the integrated nano-reinforced concrete structure, endow PSAC with significantly enhanced tensile strength (86.6 ± 8.6 MPa), comparable to that of high-strength polymer plastics. Moreover, PSAC possesses excellent plasticity and flame retardancy. The noncovalent molecular interactions within PSAC enable efficient recyclability. Consequently, PSAC has the potential to replace high-strength polymer plastics and structural components, providing a promising avenue for developing high-strength and toughness mineral-based structural materials.
Collapse
Affiliation(s)
- Yadong Yu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300072, P. R. China
| | - Yexuan Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Zeyu Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Peng Liao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yanyu Ma
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Lina Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300072, P. R. China
| |
Collapse
|
2
|
Yan Y, Cao X, Li J, Zhang H, Yang Y, Chen F, Zhu R, Liu D, White T, Wu S. Crystallinity and dissolution-recrystallization mechanism controlled As(V) retention by calcium phosphate. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136517. [PMID: 39561542 DOI: 10.1016/j.jhazmat.2024.136517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Retention of toxic metals/metalloids like arsenic via mineral-water interaction plays a crucial role in the environmental behavior of pollutants. However, the influence of mineral crystallinity on the retention of toxic elements, the evolution of liquid composition, and the interaction mechanism are poorly understood. This study investigated the interaction between As(V) and calcium phosphate (CaP) under oxic conditions with varying crystallinities, particularly amorphous CaP (ACP), across varying As(V) concentrations and pH conditions. Results revealed that the amorphous phase substantially influenced As(V) fate, with the As(V) retention potential of ACP and poorly crystalline hydroxylapatite (HAP) being 13.65 and 12.61 times higher than highly crystalline HAP, respectively. As(V) retention involves the dissolution of ACP and the recrystallization of As(V)-substituted HAP, correlated with three distinct ACP transformation stages during recrystallization. The lower pH (7.5) facilitated ACP dissolution, and the elevated Ca2+ concentration enhanced the volume of CaP recrystallization. Conversely, higher pH levels (8.0, 8.5, and 9.0) promoted a higher degree of recrystallization, evidenced by reduced residual Ca2+ levels after 48 hrs (post-crystallization stage). Meanwhile, As-bearing CaP forms with greater competition between PO43- and AsO43- at higher initial As(V) concentrations than lower ones. Additionally, lattice distortion, increases in species of surface bond groups, and reduced crystallinity were observed in the As(V)-bearing CaP product. Overall, this study underscores the pivotal role of ACP and its poorly crystalline counterparts in arsenic retention through the dissolution-recrystallization mechanism.
Collapse
Affiliation(s)
- Yao Yan
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xun Cao
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Jun Li
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Hanxiao Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Yongqiang Yang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Dong Liu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, 510650 Guangzhou, China
| | - Tim White
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore.
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China.
| |
Collapse
|
3
|
Jiménez-Pérez A, Martínez-Alonso M, García-Tojal J. Hybrid Hydroxyapatite-Metal Complex Materials Derived from Amino Acids and Nucleobases. Molecules 2024; 29:4479. [PMID: 39339474 PMCID: PMC11434463 DOI: 10.3390/molecules29184479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Calcium phosphates (CaPs) and their substituted derivatives encompass a large number of compounds with a vast presence in nature that have aroused a great interest for decades. In particular, hydroxyapatite (HAp, Ca10(OH)2(PO4)6) is the most abundant CaP mineral and is significant in the biological world, at least in part due to being a major compound in bones and teeth. HAp exhibits excellent properties, such as safety, stability, hardness, biocompatibility, and osteoconductivity, among others. Even some of its drawbacks, such as its fragility, can be redirected thanks to another essential feature: its great versatility. This is based on the compound's tendency to undergo substitutions of its constituent ions and to incorporate or anchor new molecules on its surface and pores. Thus, its affinity for biomolecules makes it an optimal compound for multiple applications, mainly, but not only, in biological and biomedical fields. The present review provides a chemical and structural context to explain the affinity of HAp for biomolecules such as proteins and nucleic acids to generate hybrid materials. A size-dependent criterium of increasing complexity is applied, ranging from amino acids/nucleobases to the corresponding macromolecules. The incorporation of metal ions or metal complexes into these functionalized compounds is also discussed.
Collapse
Affiliation(s)
| | | | - Javier García-Tojal
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.J.-P.); (M.M.-A.)
| |
Collapse
|
4
|
Gäb F, Bierbaum G, Wirth R, Bultmann C, Palmer B, Janssen K, Karačić S. Enzymatic phosphatization of fish scales-a pathway for fish fossilization. Sci Rep 2024; 14:8347. [PMID: 38594297 PMCID: PMC11003971 DOI: 10.1038/s41598-024-59025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
Phosphatized fish fossils occur in various locations worldwide. Although these fossils have been intensively studied over the past decades they remain a matter of ongoing research. The mechanism of the permineralization reaction itself remains still debated in the community. The mineralization in apatite of a whole fish requires a substantial amount of phosphate which is scarce in seawater, so the origin of the excess is unknown. Previous research has shown that alkaline phosphatase, a ubiquitous enzyme, can increase the phosphate content in vitro in a medium to the degree of saturation concerning apatite. We applied this principle to an experimental setup where fish scales were exposed to commercial bovine alkaline phosphatase. We analyzed the samples with SEM and TEM and found that apatite crystals had formed on the remaining soft tissue. A comparison of these newly formed apatite crystals with fish fossils from the Solnhofen and Santana fossil deposits showed striking similarities. Both are made up of almost identically sized and shaped nano-apatites. This suggests a common formation process: the spontaneous precipitation from an oversaturated solution. The excess activity of alkaline phosphatase could explain that effect. Therefore, our findings could provide insight into the formation of well-preserved fossils.
Collapse
Affiliation(s)
- Fabian Gäb
- Institute of Geosciences, University of Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Richard Wirth
- Deutsches GeoForschungsZentrum (GFZ), Section 3.5 Interface Geochemistry, Potsdam, Germany
| | - Christoph Bultmann
- Radiomed Group Practice for Radiology and Nuclear Medicine, Wiesbaden, Germany
| | - Brianne Palmer
- Bonn Institute of Organismic Biology, Division of Palaeontology, University of Bonn, Bonn, Germany
| | - Kathrin Janssen
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Sabina Karačić
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Pazzaglia UE, Reguzzoni M, Milanese C, Manconi R, Lanteri L, Cubeddu T, Zarattini G, Zecca PA, Raspanti M. Skeletal calcification patterns of batoid, teleost, and mammalian models: Calcified cartilage versus bone matrix. Microsc Res Tech 2023; 86:1568-1582. [PMID: 37493098 DOI: 10.1002/jemt.24388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/24/2023] [Indexed: 07/27/2023]
Abstract
This study compares the skeletal calcification pattern of batoid Raja asterias with the endochondral ossification model of mammalians Homo sapiens and teleost Xiphias gladius. Skeletal mineralization serves to stiffen the mobile elements for locomotion. Histology, histochemistry, heat deproteination, scanning electron microscopy (SEM)/EDAX analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectrometry (FTIR) have been applied in the study. H. sapiens and X. gladius bone specimens showed similar profiles, R. asterias calcified cartilage diverges for higher water release and more amorphous bioapatite. In endochondral ossification, fetal calcified cartilage is progressively replaced by bone matrix, while R. asterias calcified cartilage remains un-remodeled throughout the life span. Ca2+ and PO4 3- concentration in extracellular matrix is suggested to reach the critical salts precipitation point through H2 O recall from extracellular matrix into both chondroblasts or osteoblasts. Cartilage organic phase layout and incomplete mineralization allow interstitial fluids diffusion, chondrocytes survival, and growth in a calcified tissue lacking of a vascular and canalicular system. HIGHLIGHTS: Comparative physico-chemical characterization (TGA, DTG and DSC) testifies the mass loss due to water release, collagen and carbonate decomposition of the three tested matrices. R. asterias calcified cartilage water content is higher than that of H. sapiens and X. gladius, as shown by the respectively highest dehydration enthalpy values. Lower crystallinity degree of R. asterias calcified cartilage can be related to the higher amount of collagen in amorphous form than in bone matrix. These data can be discussed in terms of the mechanostat theory (Frost, 1966) or by organic/inorganic phase transformation in the course evolution from fin to limbs. Mineral analysis documented different charactersof R. asterias vs H. sapiens and X. gladius calcified matrix.
Collapse
Affiliation(s)
- Ugo E Pazzaglia
- DSMC, University of Brescia, Brescia, Italy
- DMC, University of Insubria, Varese, Italy
| | | | - Chiara Milanese
- CSGI, Physical Chemistry Division, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Pickering Emulsions Based in Inorganic Solid Particles: From Product Development to Food Applications. Molecules 2023; 28:molecules28062504. [PMID: 36985475 PMCID: PMC10054141 DOI: 10.3390/molecules28062504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Pickering emulsions (PEs) have attracted attention in different fields, such as food, pharmaceuticals and cosmetics, mainly due to their good physical stability. PEs are a promising strategy to develop functional products since the particles’ oil and water phases can act as carriers of active compounds, providing multiple combinations potentiating synergistic effects. Moreover, they can answer the sustainable and green chemistry issues arising from using conventional emulsifier-based systems. In this context, this review focuses on the applicability of safe inorganic solid particles as emulsion stabilisers, discussing the main stabilisation mechanisms of oil–water interfaces. In particular, it provides evidence for hydroxyapatite (HAp) particles as Pickering stabilisers, discussing the latest advances. The main technologies used to produce PEs are also presented. From an industrial perspective, an effort was made to list new productive technologies at the laboratory scale and discuss their feasibility for scale-up. Finally, the advantages and potential applications of PEs in the food industry are also described. Overall, this review gathers recent developments in the formulation, production and properties of food-grade PEs based on safe inorganic solid particles.
Collapse
|
7
|
Sekaran S, Vimalraj S, Thangavelu L. The Physiological and Pathological Role of Tissue Nonspecific Alkaline Phosphatase beyond Mineralization. Biomolecules 2021; 11:1564. [PMID: 34827562 PMCID: PMC8615537 DOI: 10.3390/biom11111564] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is a key enzyme responsible for skeletal tissue mineralization. It is involved in the dephosphorylation of various physiological substrates, and has vital physiological functions, including extra-skeletal functions, such as neuronal development, detoxification of lipopolysaccharide (LPS), an anti-inflammatory role, bile pH regulation, and the maintenance of the blood brain barrier (BBB). TNAP is also implicated in ectopic pathological calcification of soft tissues, especially the vasculature. Although it is the crucial enzyme in mineralization of skeletal and dental tissues, it is a logical clinical target to attenuate vascular calcification. Various tools and studies have been developed to inhibit its activity to arrest soft tissue mineralization. However, we should not neglect its other physiological functions prior to therapies targeting TNAP. Therefore, a better understanding into the mechanisms mediated by TNAP is needed for minimizing off targeted effects and aid in the betterment of various pathological scenarios. In this review, we have discussed the mechanism of mineralization and functions of TNAP beyond its primary role of hard tissue mineralization.
Collapse
Affiliation(s)
- Saravanan Sekaran
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, Tamil Nadu, India;
| | - Selvaraj Vimalraj
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, Tamil Nadu, India;
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, Tamil Nadu, India;
| |
Collapse
|
8
|
Shaping collagen for engineering hard tissues: Towards a printomics approach. Acta Biomater 2021; 131:41-61. [PMID: 34192571 DOI: 10.1016/j.actbio.2021.06.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
Hard tissue engineering has evolved over the past decades, with multiple approaches being explored and developed. Despite the rapid development and success of advanced 3D cell culture, 3D printing technologies and material developments, a gold standard approach to engineering and regenerating hard tissue substitutes such as bone, dentin and cementum, has not yet been realised. One such strategy that differs from conventional regenerative medicine approach of other tissues, is the in vitro mineralisation of collagen templates in the absence of cells. Collagen is the most abundant protein within the human body and forms the basis of all hard tissues. Once mineralised, collagen provides important support and protection to humans, for example in the case of bone tissue. Multiple in vitro fabrication strategies and mineralisation approaches have been developed and their success in facilitating mineral deposition on collagen to achieve bone-like scaffolds evaluated. Critical to the success of such fabrication and biomineralisation approaches is the collagen template, and its chemical composition, organisation, and density. The key factors that influence such properties are the collagen processing and fabrication techniques utilised to create the template, and the mineralisation strategy employed to deposit mineral on and throughout the templates. However, despite its importance, relatively little attention has been placed on these two critical factors. Here, we critically examine the processing, fabrication and mineralisation strategies that have been used to mineralise collagen templates, and offer insights and perspectives on the most promising strategies for creating mineralised collagen scaffolds. STATEMENT OF SIGNIFICANCE: In this review, we highlight the critical need to fabricate collagen templates with advanced processing techniques, in a manner that achieves biomimicry of the hierarchical collagen structure, prior to utilising in vitro mineralisation strategies. To this end, we focus on the initial collagen that is selected, the extraction techniques used and the native fibril forming potential retained to create reconstituted collagen scaffolds. This review synthesises current best practises in material sourcing, processing, mineralisation strategies and fabrication techniques, and offers insights into how these can best be exploited in future studies to successfully mineralise collagen templates.
Collapse
|
9
|
Magnesium whitlockite - omnipresent in pathological mineralisation of soft tissues but not a significant inorganic constituent of bone. Acta Biomater 2021; 125:72-82. [PMID: 33610767 DOI: 10.1016/j.actbio.2021.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 01/03/2023]
Abstract
Whitlockite is a calcium phosphate that was first identified in minerals collected from the Palermo Quarry, New Hampshire. The terms magnesium whitlockite [Mg-whitlockite; Ca18Mg2(HPO4)2(PO4)12] and beta-tricalcium phosphate [β-TCP; β-Ca3(PO4)2] are often used interchangeably since Mg-whitlockite is not easily distinguished from β-Ca3(PO4)2 by powder X-ray diffraction although their crystalline structures differ significantly. Being both osteoconductive and bioresorbable, Mg-whitlockite is pursued as a synthetic bone graft substitute. In recent years, advances in development of synthetic Mg-whitlockite have been accompanied by claims that Mg-whitlockite is the second most abundant inorganic constituent of bone, occupying as much as 20-35 wt% of the inorganic fraction. To find evidence in support of this notion, this review presents an exhaustive summary of Mg-whitlockite identification in biological tissues. Mg-whitlockite is mainly found in association with pathological mineralisation of various soft tissues and dental calculus, and occasionally with enamel and dentine. With the exception of high-temperature treated tumoural calcified deposits around interphalangeal and metacarpal joints and rhomboidal Mg-whitlockite crystals in post-apoptotic osteocyte lacunae in human alveolar bone, this unusual mineral has never been detected in the extracellular matrix of mammalian bone. Characterisation techniques capable of unequivocally distinguishing between different calcium phosphate phases, such as high-resolution imaging, crystallography, and/or spectroscopy have exclusively identified bone mineral as poorly crystalline, ion-substituted, carbonated apatite. The idea that Mg-whitlockite is a significant constituent of bone mineral remains unsubstantiated. Contrary to claims that such biomaterials represent a bioinspired/biomimetic approach to bone repair, Mg-whitlockite remains, exclusively, a pathological biomineral. STATEMENT OF SIGNIFICANCE: Magnesium whitlockite (Mg-whitlockite) is a unique calcium phosphate that typically features in pathological calcification of soft tissues; however, an alarming trend emerging in the synthetic bioceramics community claims that Mg-whitlockite occupies 20-35 wt% of bone mineral and therefore synthetic Mg-whitlockite represents a biomimetic approach towards bone regeneration. By providing an overview of Mg-whitlockite detection in biological tissues and scrutinising a diverse cross-section of literature relevant to bone composition analysis, this review concludes that Mg-whitlockite is exclusively a pathological biomineral, and having never been reported in bone extracellular matrix, Mg-whitlockite does not constitute a biomimetic strategy for bone repair.
Collapse
|
10
|
Vidavsky N, Kunitake JAMR, Estroff LA. Multiple Pathways for Pathological Calcification in the Human Body. Adv Healthc Mater 2021; 10:e2001271. [PMID: 33274854 PMCID: PMC8724004 DOI: 10.1002/adhm.202001271] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization of skeletal components (e.g., bone and teeth) is generally accepted to occur under strict cellular regulation, leading to mineral-organic composites with hierarchical structures and properties optimized for their designated function. Such cellular regulation includes promoting mineralization at desired sites as well as inhibiting mineralization in soft tissues and other undesirable locations. In contrast, pathological mineralization, with potentially harmful health effects, can occur as a result of tissue or metabolic abnormalities, disease, or implantation of certain biomaterials. This progress report defines mineralization pathway components and identifies the commonalities (and differences) between physiological (e.g., bone remodeling) and pathological calcification formation pathways, based, in part, upon the extent of cellular control within the system. These concepts are discussed in representative examples of calcium phosphate-based pathological mineralization in cancer (breast, thyroid, ovarian, and meningioma) and in cardiovascular disease. In-depth mechanistic understanding of pathological mineralization requires utilizing state-of-the-art materials science imaging and characterization techniques, focusing not only on the final deposits, but also on the earlier stages of crystal nucleation, growth, and aggregation. Such mechanistic understanding will further enable the use of pathological calcifications in diagnosis and prognosis, as well as possibly provide insights into preventative treatments for detrimental mineralization in disease.
Collapse
Affiliation(s)
- Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Jennie A M R Kunitake
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| |
Collapse
|
11
|
Boraldi F, Lofaro FD, Quaglino D. Apoptosis in the Extraosseous Calcification Process. Cells 2021; 10:cells10010131. [PMID: 33445441 PMCID: PMC7827519 DOI: 10.3390/cells10010131] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
Extraosseous calcification is a pathologic mineralization process occurring in soft connective tissues (e.g., skin, vessels, tendons, and cartilage). It can take place on a genetic basis or as a consequence of acquired chronic diseases. In this last case, the etiology is multifactorial, including both extra- and intracellular mechanisms, such as the formation of membrane vesicles (e.g., matrix vesicles and apoptotic bodies), mitochondrial alterations, and oxidative stress. This review is an overview of extraosseous calcification mechanisms focusing on the relationships between apoptosis and mineralization in cartilage and vascular tissues, as these are the two tissues mostly affected by a number of age-related diseases having a progressively increased impact in Western Countries.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Correspondence:
| | - Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Interuniversity Consortium for Biotechnologies (CIB), Italy
| |
Collapse
|
12
|
Reznikov N, Hoac B, Buss DJ, Addison WN, Barros NMT, McKee MD. Biological stenciling of mineralization in the skeleton: Local enzymatic removal of inhibitors in the extracellular matrix. Bone 2020; 138:115447. [PMID: 32454257 DOI: 10.1016/j.bone.2020.115447] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization is remarkably diverse and provides myriad functions across many organismal systems. Biomineralization processes typically produce hardened, hierarchically organized structures usually having nanostructured mineral assemblies that are formed through inorganic-organic (usually protein) interactions. Calcium‑carbonate biomineral predominates in structures of small invertebrate organisms abundant in marine environments, particularly in shells (remarkably it is also found in the inner ear otoconia of vertebrates), whereas calcium-phosphate biomineral predominates in the skeletons and dentitions of both marine and terrestrial vertebrates, including humans. Reconciliation of the interplay between organic moieties and inorganic crystals in bones and teeth is a cornerstone of biomineralization research. Key molecular determinants of skeletal and dental mineralization have been identified in health and disease, and in pathologic ectopic calcification, ranging from small molecules such as pyrophosphate, to small membrane-bounded matrix vesicles shed from cells, and to noncollagenous extracellular matrix proteins such as osteopontin and their derived bioactive peptides. Beyond partly knowing the regulatory role of the direct actions of inhibitors on vertebrate mineralization, more recently the importance of their enzymatic removal from the extracellular matrix has become increasingly understood. Great progress has been made in deciphering the relationship between mineralization inhibitors and the enzymes that degrade them, and how adverse changes in this physiologic pathway (such as gene mutations causing disease) result in mineralization defects. Two examples of this are rare skeletal diseases having osteomalacia/odontomalacia (soft bones and teeth) - namely hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH) - where inactivating mutations occur in the gene for the enzymes tissue-nonspecific alkaline phosphatase (TNAP, TNSALP, ALPL) and phosphate-regulating endopeptidase homolog X-linked (PHEX), respectively. Here, we review and provide a concept for how existing and new information now comes together to describe the dual nature of regulation of mineralization - through systemic mineral ion homeostasis involving circulating factors, coupled with molecular determinants operating at the local level in the extracellular matrix. For the local mineralization events in the extracellular matrix, we present a focused concept in skeletal mineralization biology called the Stenciling Principle - a principle (building upon seminal work by Neuman and Fleisch) describing how the action of enzymes to remove tissue-resident inhibitors defines with precision the location and progression of mineralization.
Collapse
Affiliation(s)
- N Reznikov
- Object Research Systems Inc., 760 St. Paul West, Montreal, Quebec H3C 1M4, Canada.
| | - B Hoac
- Faculty of Dentistry, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada
| | - D J Buss
- Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada
| | - W N Addison
- Department of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, Japan
| | - N M T Barros
- Departamento de Biofísica, São Paulo, Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil
| | - M D McKee
- Faculty of Dentistry, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada; Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada.
| |
Collapse
|
13
|
Qin M, Wang X, Jiang L, Wu N, Zhou W. Bacterial diversity in phosphorus immobilization of the South China Sea. ENVIRONMENTAL TECHNOLOGY 2020; 41:2844-2853. [PMID: 30789084 DOI: 10.1080/09593330.2019.1585479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Marine bacteria play indispensable roles in the phosphorus (P) cycle, primarily responsible for P assimilation and remineralization. The aim of this study was to determine diversity of marine aerobic bacteria from the South China Sea capable of P immobilization. Highly efficient P immobilized genera reached 87.72% of all genera, which were mainly distributed in epipelagic seawater zone and semi-deep sediment zone. Accumulated P in extracellular polymeric substances (EPS) accounted for about 70% of immobilized P of representative bacteria. The sum of bioavailable P (non-apatite inorganic phosphorus, organic phosphorus) amounted to more than 90% of total P in representative bacteria, and orthophosphate monoester was identified as the only extracellular P species. Marine bacteria which participated in P cycle were general, not specific genus. EPS of marine bacteria played an important role in P immobilization, and accumulated P species were bioavailable. Our results may provide a better insight for understanding roles of marine bacteria in P cycle.
Collapse
Affiliation(s)
- Min Qin
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, Shandong, People's Republic of China
| | - Xiaotian Wang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, Shandong, People's Republic of China
| | - Li Jiang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, Shandong, People's Republic of China
| | - Nan Wu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, Shandong, People's Republic of China
| | - Weizhi Zhou
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, Shandong, People's Republic of China
| |
Collapse
|
14
|
Precipitation of Inorganic Salts in Mitochondrial Matrix. MEMBRANES 2020; 10:membranes10050081. [PMID: 32349446 PMCID: PMC7281443 DOI: 10.3390/membranes10050081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 11/17/2022]
Abstract
In the mitochondrial matrix, there are insoluble, osmotically inactive complexes that maintain a constant pH and calcium concentration. In the present paper, we examine the properties of insoluble calcium and magnesium salts, such as phosphates, carbonates and polyphosphates, which might play this role. We find that non-stoichiometric, magnesium-rich carbonated apatite, with very low crystallinity, precipitates in the matrix under physiological conditions. Precipitated salt acts as pH buffer, and, hence, can contribute in maintaining ATP production in ischemic conditions, which delays irreversible damage to heart and brain cells after stroke.
Collapse
|
15
|
Raggi P, Bellasi A, Bushinsky D, Bover J, Rodriguez M, Ketteler M, Sinha S, Salcedo C, Gillotti K, Padgett C, Garg R, Gold A, Perelló J, Chertow GM. Slowing Progression of Cardiovascular Calcification With SNF472 in Patients on Hemodialysis. Circulation 2020; 141:728-739. [DOI: 10.1161/circulationaha.119.044195] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background:
The high cardiovascular morbidity and mortality in patients with end-stage kidney disease could be partially caused by extensive cardiovascular calcification. SNF472, intravenous myo-inositol hexaphosphate, selectively inhibits the formation and growth of hydroxyapatite.
Methods:
This double-blind, placebo-controlled phase 2b trial compared progression of coronary artery calcium volume score and other measurements of cardiovascular calcification by computed tomography scan during 52 weeks of treatment with SNF472 or placebo, in addition to standard therapy, in adult patients with end-stage kidney disease receiving hemodialysis. Patients were randomized 1:1:1 to SNF472 300 mg (n=92), SNF472 600 mg (n=91), or placebo (n=91) by infusion in the hemodialysis lines thrice weekly during hemodialysis sessions. The primary end point was change in log coronary artery calcium volume score from baseline to week 52. The primary efficacy analysis combined the SNF472 treatment groups and included all patients who received at least 1 dose of SNF472 or placebo and had an evaluable computed tomography scan after randomization.
Results:
The mean change in coronary artery calcium volume score was 11% (95% CI, 7–15) for the combined SNF472 dose group and 20% (95% CI, 14–26) for the placebo group (
P
=0.016). SNF472 compared with placebo attenuated progression of calcium volume score in the aortic valve (14% [95% CI, 5–24] versus 98% [95% CI, 77–123];
P
<0.001) but not in the thoracic aorta (23% [95% CI, 16–30] versus 28% [95% CI, 19–38];
P
=0.40). Death occurred in 7 patients (4%) who received SNF472 and 5 patients (6%) who received placebo. At least 1 treatment-emergent adverse event occurred in 86%, 92%, and 87% of patients treated with SNF472 300 mg, SNF472 600 mg, and placebo, respectively. Most adverse events were mild. Adverse events resulted in discontinuation of SNF472 300 mg, SNF472 600 mg, and placebo for 14%, 29%, and 20% of patients, respectively.
Conclusions:
Compared with placebo, SNF472 significantly attenuated the progression of coronary artery calcium and aortic valve calcification in patients with end-stage kidney disease receiving hemodialysis in addition to standard care. Future studies are needed to determine the effects of SNF472 on cardiovascular events.
Registration:
URL:
https://www.clinicaltrials.gov
; Unique identifier: NCT02966028.
Collapse
Affiliation(s)
- Paolo Raggi
- Department of Medicine, Mazankowski Alberta Heart Institute and University of Alberta, Edmonton, Canada (P.R.)
| | - Antonio Bellasi
- Research, Innovation and Brand Reputation Unit, ASST Papa Giovanni XXIII, Bergamo, Italy (A.B.)
| | - David Bushinsky
- Department of Medicine, University of Rochester Medical Center, NY (D.B.)
| | - Jordi Bover
- Department of Nephrology, Fundació Puigvert and Universitat Autònoma, IIB Sant Pau, REDinREN, Barcelona, Spain (J.B.)
| | - Mariano Rodriguez
- Nephrology Unit, Hospital Universitario Reina Sofia, IMIBIC, REDinREN, Córdoba, Spain (M.R.)
| | - Markus Ketteler
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Krankenhaus, Stuttgart, Germany (M.K.)
| | - Smeeta Sinha
- Department of Renal Medicine, Salford Royal NHS Foundation Trust, UK (S.S.)
| | - Carolina Salcedo
- Research and Development, Sanifit Therapeutics, Palma, Spain (C.S., J.P.)
| | - Kristen Gillotti
- Research and Development, Sanifit Therapeutics, San Diego, CA (K.G., C.P. R.G., A.G.)
| | - Claire Padgett
- Research and Development, Sanifit Therapeutics, San Diego, CA (K.G., C.P. R.G., A.G.)
| | - Rekha Garg
- Research and Development, Sanifit Therapeutics, San Diego, CA (K.G., C.P. R.G., A.G.)
| | - Alex Gold
- Research and Development, Sanifit Therapeutics, San Diego, CA (K.G., C.P. R.G., A.G.)
- Department of Medicine, Stanford University, Palo Alto, CA (A.G., G.M.C.)
| | - Joan Perelló
- Research and Development, Sanifit Therapeutics, Palma, Spain (C.S., J.P.)
- University of the Balearic Islands, Palma, Spain (J.P.)
| | - Glenn M. Chertow
- Department of Medicine, Stanford University, Palo Alto, CA (A.G., G.M.C.)
| |
Collapse
|
16
|
Roschger A, Wagermaier W, Gamsjaeger S, Hassler N, Schmidt I, Blouin S, Berzlanovich A, Gruber GM, Weinkamer R, Roschger P, Paschalis EP, Klaushofer K, Fratzl P. Newly formed and remodeled human bone exhibits differences in the mineralization process. Acta Biomater 2020; 104:221-230. [PMID: 31926334 DOI: 10.1016/j.actbio.2020.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/08/2019] [Accepted: 01/05/2020] [Indexed: 12/13/2022]
Abstract
During human skeletal growth, bone is formed via different processes. Two of them are: new bone formation by depositing bone at the periosteal (outer) surface and bone remodeling corresponding to a local renewal of tissue. Since in remodeling formation is preceded by resorption, we hypothesize that modeling and remodeling could require radically different transport paths for ionic precursors of mineralization. While remodeling may recycle locally resorbed mineral, modeling implies the transport over large distances to the site of bone apposition. Therefore, we searched for potential differences of size, arrangement and chemical composition of mineral particles just below surfaces of modeling and remodeling sites in femur midshaft cross-sections from healthy children. These bone sites were mapped using scanning synchrotron X-ray scattering, Raman microspectroscopy, energy dispersive X-ray analysis and quantitative backscattered electron microscopy. The results show clear differences in mineral particle size and composition between the sites, which cannot be explained by a change in the rate of mineral apposition or accumulation. At periosteal modeling sites, mineral crystals are distinctly larger, display higher crystallinity and exhibit a lower calcium to phosphorus ratio and elevated Na and Mg content. The latter may originate from Mg used for phase stabilization of mineral precursors and therefore indicate different time periods for mineral transport. We conclude that the mineralization process is distinctively different between modeling and remodeling sites due to varying requirements for the transport distance and, therefore, the stability of non-crystalline ionic precursors, resulting in distinct compositions of the deposited mineral phase. STATEMENT OF SIGNIFICANCE: In growing children new bone is formed either due to apposition of bone tissue e.g. at the outer ridge of long bones to allow growth in thickness (bone modeling), or in cavities inside the mineralized matrix when replacing tissue (bone remodeling). We demonstrate that mineral crystal shape and composition are not the same between these two sites, which is indicative of differences in mineralization precursors. We suggest that this may be due to a longer mineral transport distance to sites of new bone formation as compared to remodeling where mineral can be locally recycled.
Collapse
Affiliation(s)
- Andreas Roschger
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany; Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria; Department for Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Jakob-Haringer Straße 2a, 5020 Salzburg, Austria.
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Norbert Hassler
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Ingo Schmidt
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Andrea Berzlanovich
- Department of Forensic Medicine, Medical University of Vienna, Sensengasse 2, A-1090 Vienna, Austria
| | - Gerlinde M Gruber
- Department of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna
| | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany
| |
Collapse
|
17
|
Lloyd D, Millet CO, Williams CF, Hayes AJ, Pope SJA, Pope I, Borri P, Langbein W, Olsen LF, Isaacs MD, Lunding A. Functional imaging of a model unicell: Spironucleus vortens as an anaerobic but aerotolerant flagellated protist. Adv Microb Physiol 2020; 76:41-79. [PMID: 32408947 DOI: 10.1016/bs.ampbs.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Advances in optical microscopy are continually narrowing the chasm in our appreciation of biological organization between the molecular and cellular levels, but many practical problems are still limiting. Observation is always limited by the rapid dynamics of ultrastructural modifications of intracellular components, and often by cell motility: imaging of the unicellular protist parasite of ornamental fish, Spironucleus vortens, has proved challenging. Autofluorescence of nicotinamide nucleotides and flavins in the 400-580 nm region of the visible spectrum, is the most useful indicator of cellular redox state and hence vitality. Fluorophores emitting in the red or near-infrared (i.e., phosphors) are less damaging and more penetrative than many routinely employed fluors. Mountants containing free radical scavengers minimize fluorophore photobleaching. Two-photon excitation provides a small focal spot, increased penetration, minimizes photon scattering and enables extended observations. Use of quantum dots clarifies the competition between endosomal uptake and exosomal extrusion. Rapid motility (161 μm/s) of the organism makes high resolution of ultrastructure difficult even at high scan speeds. Use of voltage-sensitive dyes determining transmembrane potentials of plasma membrane and hydrogenosomes (modified mitochondria) is also hindered by intracellular motion and controlled anesthesia perturbs membrane organization. Specificity of luminophore binding is always questionable; e.g. cationic lipophilic species widely used to measure membrane potentials also enter membrane-bounded neutral lipid droplet-filled organelles. This appears to be the case in S. vortens, where Coherent Anti-Stokes Raman Scattering (CARS) micro-spectroscopy unequivocally images the latter and simultaneous provides spectral identification at 2840 cm-1. Secondary Harmonic Generation highlights the highly ordered structure of the flagella.
Collapse
Affiliation(s)
- David Lloyd
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom; School of Engineering, Cardiff, Wales, United Kingdom
| | - Coralie O Millet
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | | | - Anthony J Hayes
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff, Wales, United Kingdom
| | - Iestyn Pope
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Paola Borri
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Wolfgang Langbein
- School of Physics and Astronomy, Cardiff University, Cardiff, Wales, United Kingdom
| | - Lars Folke Olsen
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marc D Isaacs
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Anita Lunding
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
18
|
A Novel Alkaline Phosphatase/Phosphodiesterase, CamPhoD, from Marine Bacterium Cobetia amphilecti KMM 296. Mar Drugs 2019; 17:md17120657. [PMID: 31766749 PMCID: PMC6950083 DOI: 10.3390/md17120657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/24/2023] Open
Abstract
A novel extracellular alkaline phosphatase/phosphodiesterase from the structural protein family PhoD that encoded by the genome sequence of the marine bacterium Cobetia amphilecti KMM 296 (CamPhoD) has been expressed in Escherichia coli cells. The calculated molecular weight, the number of amino acids, and the isoelectric point (pI) of the mature protein’s subunit are equal to 54832.98 Da, 492, and 5.08, respectively. The salt-tolerant, bimetal-dependent enzyme CamPhoD has a molecular weight of approximately 110 kDa in its native state. CamPhoD is activated by Co2+, Mg2+, Ca2+, or Fe3+ at a concentration of 2 mM and exhibits maximum activity in the presence of both Co2+ and Fe3+ ions in the incubation medium at pH 9.2. The exogenous ions, such as Zn2+, Cu2+, and Mn2+, as well as chelating agents EDTA and EGTA, do not have an appreciable effect on the CamPhoD activity. The temperature optimum for the CamPhoD activity is 45 °C. The enzyme catalyzes the cleavage of phosphate mono- and diester bonds in nucleotides, releasing inorganic phosphorus from p-nitrophenyl phosphate (pNPP) and guanosine 5′-triphosphate (GTP), as determined by the Chen method, with rate approximately 150- and 250-fold higher than those of bis-pNPP and 5′-pNP-TMP, respectively. The Michaelis–Menten constant (Km), Vmax, and efficiency (kcat/Km) of CamPhoD were 4.2 mM, 0.203 mM/min, and 7988.6 S−1/mM; and 6.71 mM, 0.023 mM/min, and 1133.0 S−1/mM for pNPP and bis-pNPP as the chromogenic substrates, respectively. Among the 3D structures currently available, in this study we found only the low identical structure of the Bacillus subtilis enzyme as a homologous template for modeling CamPhoD, with a new architecture of the phosphatase active site containing Fe3+ and two Ca2+ ions. It is evident that the marine bacterial phosphatase/phosphidiesterase CamPhoD is a new structural member of the PhoD family.
Collapse
|
19
|
Pathological Mineralization: The Potential of Mineralomics. MATERIALS 2019; 12:ma12193126. [PMID: 31557841 PMCID: PMC6804219 DOI: 10.3390/ma12193126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022]
Abstract
Pathological mineralization has been reported countless times in the literature and is a well-known phenomenon in the medical field for its connections to a wide range of diseases, including cancer, cardiovascular, and neurodegenerative diseases. The minerals involved in calcification, however, have not been directly studied as extensively as the organic components of each of the pathologies. These have been studied in isolation and, for most of them, physicochemical properties are hitherto not fully known. In a parallel development, materials science methods such as electron microscopy, spectroscopy, thermal analysis, and others have been used in biology mainly for the study of hard tissues and biomaterials and have only recently been incorporated in the study of other biological systems. This review connects a range of soft tissue diseases, including breast cancer, age-related macular degeneration, aortic valve stenosis, kidney stone diseases, and Fahr’s syndrome, all of which have been associated with mineralization processes. Furthermore, it describes how physicochemical material characterization methods have been used to provide new information on such pathologies. Here, we focus on diseases that are associated with calcium-composed minerals to discuss how understanding the properties of these minerals can provide new insights on their origins, considering that different conditions and biological features are required for each type of mineral to be formed. We show that mineralomics, or the study of the properties and roles of minerals, can provide information which will help to improve prevention methods against pathological mineral build-up, which in the cases of most of the diseases mentioned in this review, will ultimately lead to new prevention or treatment methods for the diseases. Importantly, this review aims to highlight that chemical composition alone cannot fully support conclusions drawn on the nature of these minerals.
Collapse
|
20
|
Iwayama T, Okada T, Ueda T, Tomita K, Matsumoto S, Takedachi M, Wakisaka S, Noda T, Ogura T, Okano T, Fratzl P, Ogura T, Murakami S. Osteoblastic lysosome plays a central role in mineralization. SCIENCE ADVANCES 2019; 5:eaax0672. [PMID: 31281900 PMCID: PMC6609213 DOI: 10.1126/sciadv.aax0672] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/28/2019] [Indexed: 05/03/2023]
Abstract
Mineralization is the most fundamental process in vertebrates. It is predominantly mediated by osteoblasts, which secrete mineral precursors, most likely through matrix vesicles (MVs). These vesicular structures are calcium and phosphate rich and contain organic material such as acidic proteins. However, it remains largely unknown how intracellular MVs are transported and secreted. Here, we use scanning electron-assisted dielectric microscopy and super-resolution microscopy for assessing live osteoblasts in mineralizing conditions at a nanolevel resolution. We found that the calcium-containing vesicles were multivesicular bodies containing MVs. They were transported via lysosome and secreted by exocytosis. Thus, we present proof that the lysosome transports amorphous calcium phosphate within mineralizing osteoblasts.
Collapse
Affiliation(s)
- Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Tomoko Okada
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Tsugumi Ueda
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Kiwako Tomita
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Shuji Matsumoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Satoshi Wakisaka
- Department of Oral Anatomy and Development, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, and Graduate School of Frontier BioSciences, Osaka University, Osaka 565-0871, Japan
| | | | | | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Toshihiko Ogura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Corresponding author. (To. Ogura); (S. Mu.)
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
- Corresponding author. (To. Ogura); (S. Mu.)
| |
Collapse
|
21
|
Uskoković V, Janković-Častvan I, Wu VM. Bone Mineral Crystallinity Governs the Orchestration of Ossification and Resorption during Bone Remodeling. ACS Biomater Sci Eng 2019; 5:3483-3498. [DOI: 10.1021/acsbiomaterials.9b00255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Engineering Gateway 4200, Irvine, California 92697, United States
- Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, Illinois 60607-7052, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 1600 Fourth Street, San Francisco, California 94158, United States
| | - Ivona Janković-Častvan
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade 11000, Serbia
| | - Victoria M. Wu
- Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, Illinois 60607-7052, United States
| |
Collapse
|
22
|
Ashraf N, Ahmad F, Da-Wei L, Zhou RB, Feng-Li H, Yin DC. Iron/iron oxide nanoparticles: advances in microbial fabrication, mechanism study, biomedical, and environmental applications. Crit Rev Microbiol 2019; 45:278-300. [PMID: 30985230 DOI: 10.1080/1040841x.2019.1593101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbially synthesized iron oxide nanoparticles (FeONPs) hold great potential for biomedical, clinical, and environmental applications owing to their several unique features. Biomineralization, a process that exists in almost every living organism playing a significant role in the fabrication of FeONPs through the involvement of 5-100 nm sized protein compartments such as dodecameric (Dps), ferritin, and encapsulin with their diameters 9, 12, and ∼32 nm, respectively. This contribution provides a detailed overview of the green synthesis of FeONPs by microbes and their applications in biomedical and environmental fields. The first part describes our understanding in the biological fabrication of zero-valent FeONPs with special emphasis on ferroxidase (FO) mediated series of steps involving in the translocation, oxidation, nucleation, and storage of iron in Dps, ferritin, and encapsulin protein nano-compartments. Secondly, this review elaborates the significance of biologically synthesized FeONPs in biomedical science for the detection, treatment, and prevention of various diseases. Thirdly, we tried to provide the recent advances of using FeONPs in the environmental process, e.g. detection, degradation, remediation and treatment of toxic pesticides, dyes, metals, and wastewater.
Collapse
Affiliation(s)
- Noreen Ashraf
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Fiaz Ahmad
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Li Da-Wei
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Ren-Bin Zhou
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - He Feng-Li
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Da-Chuan Yin
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| |
Collapse
|
23
|
Nanostructured magnetic Mg 2SiO 4-CoFe 2O 4 composite scaffold with multiple capabilities for bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:83-95. [PMID: 30889758 DOI: 10.1016/j.msec.2019.01.096] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 01/05/2023]
Abstract
Multifunctional magnetic 3D scaffolds are recently of particular interest because of their applications in hyperthermia-based therapy and localized drug delivery beside of their basic properties to be applied in bone tissue regeneration. In the current study, a magnetic nanocomposite is designed and synthesized through a two-step synthesis strategy in which CoFe2O4 nanoparticles are prepared via sol-gel combustion method and then they are coated through sol-gel method with Mg2SiO4. The characterization relates to the nanocomposite shows that Mg2SiO4-CoFe2O4 is successfully synthesized and it has a core-shell structure. Then, 3D scaffolds are fabricated through polymer sponge technique from the nanocomposite. Physiochemical and biological properties of the scaffolds are assessed in vitro amongst which bioactivity, biodegradability, mechanical properties, hyperthermia capability, controlled release potential, antibacterial activity, cell compatibility and attachment can be mentioned. The results demonstrate that the scaffolds have high porous structure with interconnected porosity and desirable mechanical properties close to cancellous bone. The magnetic scaffold is biodegradable and bioactive and exhibits controlled release of rifampin as an antibiotic drug up to 96 h. Moreover, in the exposure of different magnetic fields it has potential to produce heat for different kinds of hyperthermia-based therapies. The antibacterial activity of drug-loaded scaffold is assessed against S. aureus bacteria. The results suggest that Mg2SiO4-CoFe2O4 nanocomposite scaffold with multiple capabilities has a great potential to be applied in the case of large bone defects which are caused by tumors to not only eradicate remained cancerous tissues, but also prevent infection after surgery and regenerate bone defect.
Collapse
|
24
|
Palmer E, Gale J, Crowston JG, Wells AP. Optic Nerve Head Drusen: An Update. Neuroophthalmology 2018; 42:367-384. [PMID: 30524490 PMCID: PMC6276953 DOI: 10.1080/01658107.2018.1444060] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 12/22/2022] Open
Abstract
Optic nerve head drusen are benign acellular calcium concretions that usually form early in life, just anterior to the lamina cribrosa. Improving imaging using optical coherence tomography suggests they are common and may be present in many clinically normal discs. These drusen may change in appearance in early life, but are generally stable in adulthood, and may be associated with visual field defects, anterior ischaemic optic neuropathy, or rarer complications. Based on long-term clinical data and optical coherence tomography, we propose a refined hypothesis as to the cause of optic disc drusen. Here we summarise recent findings and suggest future studies to better understand the forces involved.
Collapse
Affiliation(s)
- Edward Palmer
- Surgery & Anaesthesia, University of Otago Wellington, Wellington, New Zealand
| | - Jesse Gale
- Surgery & Anaesthesia, University of Otago Wellington, Wellington, New Zealand
- Ophthalmology, Capital and Coast District Health Board, Wellington, New Zealand
- Capital Eye Specialists, Wellington, New Zealand
| | - Jonathan G. Crowston
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Anthony P. Wells
- Surgery & Anaesthesia, University of Otago Wellington, Wellington, New Zealand
- Ophthalmology, Capital and Coast District Health Board, Wellington, New Zealand
- Capital Eye Specialists, Wellington, New Zealand
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| |
Collapse
|
25
|
Keighley D, Boonsue S, Hall D. Phosphatized tungsten-metabolizing coccoid microbes interpreted from oil shale of an Eocene lake, Green River Formation, Utah, USA. GEOBIOLOGY 2018; 16:610-627. [PMID: 30102836 DOI: 10.1111/gbi.12310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Microscopic globular structures have been observed in some beds of oil shale from eastern Utah. These beds comprise carbonate-dominated mud that is interlaminated with variably thick and continuous organic-rich layers. Collectively they are enriched in phosphorus, REEs, and actinides. The beds are considered of lacustrine origin and assigned to the Eocene Green River Formation. The globules themselves are of microcrystalline carbonate fluorapatite (μCFA), often contain concentric internal structures, and usually group together in clusters of up to 80, possibly more. Detailed SEM and microprobe analyses have revealed tungsten (W) to be almost exclusively associated with the globular clusters found within the more organic-rich laminae, often at concentrations of over 200 ppm, two orders of magnitude above shale standards. The globular structures are present in freshly cut sections where they occasionally grade into a μCFA matrix cement. This, together with the draping of the clusters by stringers of organic matter that would have accumulated in the Eocene lake, confirms that the structures are not a contaminant. The limited range of sizes and globular shapes is consistent with the morphology of coccoidal bacteria: Concentric internal structures may represent remnants of the nucleoid and cell wall. Paired concentric structures may indicate cell division (reproduction) processes were occurring until mineralization. The phosphate mineralization itself may have been promoted by release of phosphate from the stressed cells, bringing porewaters to supersaturation, or by the cells acting as nucleation sites. The recording of trace amounts of W almost exclusively in globular clusters preserved in the most organic-rich stringers (anoxia prone) further suggests facultative use of W-enzymes in a microbial metabolism. Combined, their context, morphology, and indication of biogenic process are strong evidence that the structures are fossilized (phosphatized) microbes, possibly sulfate-reducing bacteria, or methanogenic archaea.
Collapse
Affiliation(s)
- Dave Keighley
- Department of Earth Sciences, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Suporn Boonsue
- Planetary and Space Science Centre, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Douglas Hall
- Microscopy and Microanalysis Facility, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
26
|
Long-chain polyphosphate in osteoblast matrix vesicles: Enrichment and inhibition of mineralization. Biochim Biophys Acta Gen Subj 2018; 1863:199-209. [PMID: 30312769 DOI: 10.1016/j.bbagen.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/24/2018] [Accepted: 10/05/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Inorganic polyphosphate (polyP) is a fundamental and ubiquitous molecule in prokaryotes and eukaryotes. PolyP has been found in mammalian tissues with particularly high levels of long-chain polyP in bone and cartilage where critical questions remain as to its localization and function. Here, we investigated polyP presence and function in osteoblast-like SaOS-2 cells and cell-derived matrix vesicles (MVs), the initial sites of bone mineral formation. METHODS PolyP was quantified by 4',6-diamidino-2-phenylindole (DAPI) fluorescence and characterized by enzymatic methods coupled to urea polyacrylamide gel electrophoresis. Transmission electron microscopy and confocal microscopy were used to investigate polyP localization. A chicken embryo cartilage model was used to investigate the effect of polyP on mineralization. RESULTS PolyP increased in concentration as SaOS-2 cells matured and mineralized. Particularly high levels of polyP were observed in MVs. The average length of MV polyP was determined to be longer than 196 Pi residues by gel chromatography. Electron micrographs of MVs, stained by two polyP-specific staining approaches, revealed polyP localization in the vicinity of the MV membrane. Additional extracellular polyP binds to MVs and inhibits MV-induced hydroxyapatite formation. CONCLUSION PolyP is highly enriched in matrix vesicles and can inhibit apatite formation. PolyP may be hydrolysed to phosphate for further mineralization in the extracellular matrix. GENERAL SIGNIFICANCE PolyP is a unique yet underappreciated macromolecule which plays a critical role in extracellular mineralization in matrix vesicles.
Collapse
|
27
|
Stammeier JA, Purgstaller B, Hippler D, Mavromatis V, Dietzel M. In-situ Raman spectroscopy of amorphous calcium phosphate to crystalline hydroxyapatite transformation. MethodsX 2018; 5:1241-1250. [PMID: 30364715 PMCID: PMC6197615 DOI: 10.1016/j.mex.2018.09.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/17/2018] [Indexed: 01/24/2023] Open
Abstract
Amorphous calcium phosphate (Ca3(PO4)2xnH2O; n = 3-4.5; ACP) is a precursor phase of the mineral hydroxyapatite (Ca5(PO4)3(OH); HAP) that in natural settings occurs during both authigenic and biogenic mineral formation. In aqueous solutions ACP transforms rapidly to the crystalline phase. The transformation rate is highly dependent on the prevailing physico-chemical conditions, most likely on: Ca & PO4 concentration, pH and temperature. In this study, we conducted a calcium phosphate precipitation experiment at 20 °C and pH 9.2, in order to study the temporal evolution of the phosphate mineralogy. We monitored and assessed the transformation process of ACP to crystalline HAP using highly time-resolved in-situ Raman spectroscopy at 100 spectra per hour, in combination with solution chemistry and XRD data. Transformation of ACP to crystalline HAP occurred within 18 h, as it is illustrated in a clear peak shift in Raman spectra from 950 cm-1 to 960 cm-1 as well as in a sharpening of the 960 cm-1 peak. The advantages of this method are: •In-situ Raman spectroscopy facilitates quasi - continuous monitoring of phase transitions.•It is an easy to handle and non-invasive method.
Collapse
Affiliation(s)
- Jessica A Stammeier
- Institute of Applied Geosciences, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria
| | - Bettina Purgstaller
- Institute of Applied Geosciences, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria
| | - Dorothee Hippler
- Institute of Applied Geosciences, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria
| | - Vasileios Mavromatis
- Institute of Applied Geosciences, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria.,Géosciences Environnement Toulouse (GET), CNRS, UMR 5563, Observatoire Midi-Pyrénées, 14 Av. E. Belin, 31400 Toulouse, France
| | - Martin Dietzel
- Institute of Applied Geosciences, Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria
| |
Collapse
|
28
|
Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater 2018; 77:1-14. [PMID: 30031162 DOI: 10.1016/j.actbio.2018.07.036] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
Abstract
Calcium phosphate is applied in many products in biomedicine, but also in toothpastes and cosmetics. In some cases, it is present in nanoparticulate form, either on purpose or after degradation or mechanical abrasion. Possible concerns are related to the biological effect of such nanoparticles. A thorough literature review shows that calcium phosphate nanoparticles as such have no inherent toxicity but can lead to an increase of the intracellular calcium concentration after endosomal uptake and lysosomal degradation. However, cells are able to clear the calcium from the cytoplasm within a few hours, unless very high doses of calcium phosphate are applied. The observed cytotoxicity in some cell culture studies, mainly for unfunctionalized particles, is probably due to particle agglomeration and subsequent sedimentation onto the cell layer, leading to a very high local particle concentration, a high particle uptake, and subsequent cell death. There is no risk from an oral uptake of calcium phosphate nanoparticles due to their rapid dissolution in the stomach. The risk from dermal or mucosal uptake is very low. Calcium phosphate nanoparticles can enter the bloodstream by inhalation, but no adverse effects have been observed, except for a prolonged exposition to high particle doses. Calcium phosphate nanoparticles inside the body (e.g. after implantation or due to abrasion) do not pose a risk as they are typically resorbed and dissolved by osteoclasts and macrophages. There is no indication for a significant influence of the calcium phosphate phase or the particle shape (e.g. spherical or rod-like) on the biological response. In summary, the risk associated with an exposition to nanoparticulate calcium phosphate in doses that are usually applied in biomedicine, health care products, and cosmetics is very low and most likely not present at all. STATEMENT OF SIGNIFICANCE Calcium phosphate is a well-established biomaterial. However, there are occasions when it occurs in a nanoparticulate form (e.g. as nanoparticle or as nanoparticulate bone substitution material) or after abrasion from a calcium phosphate-coated metal implant. In the light of the current discussion on the safety of nanoparticles, there have been concerns about potential adverse effects of nano-calcium phosphate, e.g. in a statement of a EU study group from 2016 about possible dangers associated with non-spherical nano-hydroxyapatite in cosmetics. In the US, there was a discussion in 2016 about the dangers of nano-calcium phosphate in babyfood. In this review, the potential exposition routes for nano-calcium phosphate are reviewed, with special emphasis on its application as biomaterial.
Collapse
|
29
|
Azevedo C, Singh J, Steck N, Hofer A, Ruiz FA, Singh T, Jessen HJ, Saiardi A. Screening a Protein Array with Synthetic Biotinylated Inorganic Polyphosphate To Define the Human PolyP-ome. ACS Chem Biol 2018; 13:1958-1963. [PMID: 29924597 DOI: 10.1021/acschembio.8b00357] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phenotypes are established by tight regulation on protein functions. This regulation can be mediated allosterically, through protein binding, and covalently, through post-translational modification (PTM). The integration of an ever-increasing number of PTMs into regulatory networks enables and defines the proteome complexity. Protein PTMs can occur enzymatically and nonenzymatically. Polyphosphorylation, which is a recently discovered PTM that belongs to the latter category, is the covalent attachment of the linear ortho-phosphate polymer called inorganic polyphosphate (polyP) to lysine residues. PolyP, which is ubiquitously present in nature, is also known to allosterically control protein function. To date, lack of reagents has prevented the systematic analysis of proteins covalently and/or allosterically associated with polyP. Here, we report on the chemical synthesis of biotin-modified monodisperse short-chain polyP (bio-polyP8-bio) and its subsequent use to screen a human proteome array to identify proteins that associate with polyP, thereby starting to define the human polyP-ome.
Collapse
Affiliation(s)
- Cristina Azevedo
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Jyoti Singh
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Nicole Steck
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Alexandre Hofer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Felix A. Ruiz
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, United Kingdom
- Research Unit, “Puerta del Mar” University Hospital, School of Medicine, and Institute of Biomedical Research Cadiz (INiBICA), University of Cadiz, Cadiz, Spain
| | - Tanya Singh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Henning J. Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
30
|
The effects of marine eukaryote evolution on phosphorus, carbon and oxygen cycling across the Proterozoic-Phanerozoic transition. Emerg Top Life Sci 2018; 2:267-278. [PMID: 32412617 PMCID: PMC7289021 DOI: 10.1042/etls20170156] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/03/2022]
Abstract
A ‘Neoproterozoic oxygenation event’ is widely invoked as a causal factor in animal evolution, and often attributed to abiotic causes such as post-glacial pulses of phosphorus weathering. However, recent evidence suggests a series of transient ocean oxygenation events ∼660–520 Ma, which do not fit the simple model of a monotonic rise in atmospheric oxygen (pO2). Hence, we consider mechanisms by which the evolution of marine eukaryotes, coupled with biogeochemical and ecological feedbacks, potentially between alternate stable states, could have caused changes in ocean carbon cycling and redox state, phosphorus cycling and atmospheric pO2. We argue that the late Tonian ocean ∼750 Ma was dominated by rapid microbial cycling of dissolved organic matter (DOM) with elevated nutrient (P) levels due to inefficient removal of organic matter to sediments. We suggest the abrupt onset of the eukaryotic algal biomarker record ∼660–640 Ma was linked to an escalation of protozoan predation, which created a ‘biological pump’ of sinking particulate organic matter (POM). The resultant transfer of organic carbon (Corg) and phosphorus to sediments was strengthened by subsequent eukaryotic innovations, including the advent of sessile benthic animals and mobile burrowing animals. Thus, each phase of eukaryote evolution tended to lower P levels and oxygenate the ocean on ∼104 year timescales, but by decreasing Corg/P burial ratios, tended to lower atmospheric pO2 and deoxygenate the ocean again on ∼106 year timescales. This can help explain the transient nature and ∼106 year duration of oceanic oxygenation events through the Cryogenian–Ediacaran–Cambrian.
Collapse
|
31
|
Wang S, Gu Z, Wang Z, Chen X, Cao L, Cai L, Li Q, Wei J, Shin JW, Su J. Influences of mesoporous magnesium calcium silicate on mineralization, degradability, cell responses, curcumin release from macro-mesoporous scaffolds of gliadin based biocomposites. Sci Rep 2018; 8:174. [PMID: 29317753 PMCID: PMC5760662 DOI: 10.1038/s41598-017-18660-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/13/2017] [Indexed: 11/09/2022] Open
Abstract
Macro-mesoporous scaffolds based on wheat gliadin (WG)/mesoporous magnesium calcium silicate (m-MCS) biocomposites (WMC) were developed for bone tissue regeneration. The increasing amount of m-MCS significantly improved the mesoporosity and water absorption of WMC scaffolds while slightly decreased their compressive strength. With the increase of m-MCS content, the degradability of WMC scaffolds was obviously enhanced, and the decrease of pH value could be slow down after soaking in Tris-HCl solution for different time. Moreover, the apatite mineralization ability of the WMC scaffolds in simulated body fluid (SBF) was obviously improved with the increase of m-MCS content, indicating good bioactivity. The macro-mesoporous WMC scaffolds containing m-MCS significantly stimulated attachment, proliferation and differentiation of MC3T3-E1 cells, indicating cytocompatibility. The WMC scaffold containing 40 w% m-MCS (WMC40) possessed the highest porosity (including macroporosity and mesoporosity), which loaded the highest amount of curcumin (CU) as well as displayed the slow release of CU. The results suggested that the incorporation of m-MCS into WG produced biocomposite scaffolds with macro-mesoporosity, which significantly improved water absorption, degradability, bioactivity, cells responses and load/sustained release of curcumin.
Collapse
Affiliation(s)
- Sicheng Wang
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
- Department of Orthopaedics, Zhongye Hospital, Shanghai, 200941, China
| | - Zhengrong Gu
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
- The Department of Orthopaedics, Jing'an District Centre Hospital of Shanghai (Huashan Hospital, Fudan University Jing'An Branch), Shanghai, 200040, China
| | - Zhiwei Wang
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xiao Chen
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Liehu Cao
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Liang Cai
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Quan Li
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, 621749, Republic of Korea
| | - Jiacan Su
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
32
|
Alique M, Ruíz-Torres MP, Bodega G, Noci MV, Troyano N, Bohórquez L, Luna C, Luque R, Carmona A, Carracedo J, Ramírez R. Microvesicles from the plasma of elderly subjects and from senescent endothelial cells promote vascular calcification. Aging (Albany NY) 2017; 9:778-789. [PMID: 28278131 PMCID: PMC5391231 DOI: 10.18632/aging.101191] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/26/2017] [Indexed: 11/25/2022]
Abstract
Vascular calcification is commonly seen in elderly people, though it can also appear in middle-aged subjects affected by premature vascular aging. The aim of this work is to test the involvement of microvesicles (MVs) produced by senescent endothelial cells (EC) and from plasma of elderly people in vascular calcification. The present work shows that MVs produced by senescent cultured ECs, plus those found in the plasma of elderly subjects, promote calcification in vascular smooth muscle cells. Only MVs from senescent ECs, and from elderly subjects' plasma, induced calcification. This ability correlated with these types of MVs' carriage of: a) increased quantities of annexins (which might act as nucleation sites for calcification), b) increased quantities of bone-morphogenic protein, and c) larger Ca contents. The MVs of senescent, cultured ECs, and those present in the plasma of elderly subjects, promote vascular calcification. The present results provide mechanistic insights into the observed increase in vascular calcification-related diseases in the elderly, and in younger patients with premature vascular aging, paving the way towards novel therapeutic strategies.
Collapse
Affiliation(s)
- Matilde Alique
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,These authors contributed equally to this paper
| | - María Piedad Ruíz-Torres
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,These authors contributed equally to this paper
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Facultad de Biología, Química y Ciencias Ambientales, Universidad de Alcalá. Alcalá de Henares, Madrid, Spain
| | - María Victoria Noci
- Unidad de Anestesia, Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - Nuria Troyano
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Lourdes Bohórquez
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Carlos Luna
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Carretera Nacional IV-A, Km 396, E14014, Córdoba, Andalucía, Spain
| | - Andrés Carmona
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - Julia Carracedo
- Departamento de Fisiología Animal (II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.,Institute of Investigation, Hospital 12 de Octubre, Madrid, Spain.,These senior authors contributed equally to this paper
| | - Rafael Ramírez
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,These senior authors contributed equally to this paper
| |
Collapse
|
33
|
The Bruneau Woodpile: A Miocene Phosphatized Fossil Wood Locality in Southwestern Idaho, USA. GEOSCIENCES 2017. [DOI: 10.3390/geosciences7030082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Gonzalez-Martinez A, Rodriguez-Sanchez A, Rivadeneyra MA, Rivadeneyra A, Martin-Ramos D, Vahala R, Gonzalez-Lopez J. 16S rRNA gene-based characterization of bacteria potentially associated with phosphate and carbonate precipitation from a granular autotrophic nitrogen removal bioreactor. Appl Microbiol Biotechnol 2016; 101:817-829. [DOI: 10.1007/s00253-016-7914-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
|
35
|
Lui ELH, Ao CKL, Li L, Khong ML, Tanner JA. Inorganic polyphosphate triggers upregulation of interleukin 11 in human osteoblast-like SaOS-2 cells. Biochem Biophys Res Commun 2016; 479:766-771. [PMID: 27693781 DOI: 10.1016/j.bbrc.2016.09.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 02/03/2023]
Abstract
Polyphosphate (polyP) is abundant in bone but its roles in signaling and control of gene expression remain unclear. Here, we investigate the effect of extracellular polyP on proliferation, migration, apoptosis, gene and protein expression in human osteoblast-like SaOS-2 cells. Extracellular polyP promoted SaOS-2 cell proliferation, increased rates of migration, inhibited apoptosis and stimulated the rapid phosphorylation of extracellular-signal-regulated kinase (ERK) directly through basic fibroblast growth factor receptor (bFGFR). cDNA microarray revealed that polyP induced significant upregulation of interleukin 11 (IL-11) at both RNA and protein levels.
Collapse
Affiliation(s)
- Eric Lik-Hang Lui
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Carl Ka-Leong Ao
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Lina Li
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Mei-Li Khong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Julian Alexander Tanner
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
36
|
|
37
|
Zeth K, Hoiczyk E, Okuda M. Ferroxidase-Mediated Iron Oxide Biomineralization: Novel Pathways to Multifunctional Nanoparticles. Trends Biochem Sci 2016; 41:190-203. [DOI: 10.1016/j.tibs.2015.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 11/29/2022]
|
38
|
Kulakovskaya TV, Lichko LP, Ryazanova LP. Diversity of phosphorus reserves in microorganisms. BIOCHEMISTRY (MOSCOW) 2015; 79:1602-14. [PMID: 25749167 DOI: 10.1134/s0006297914130100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phosphorus compounds are indispensable components of the Earth's biomass metabolized by all living organisms. Under excess of phosphorus compounds in the environment, microorganisms accumulate reserve phosphorus compounds that are used under phosphorus limitation. These compounds vary in their structure and also perform structural and regulatory functions in microbial cells. The most common phosphorus reserve in microorganism is inorganic polyphosphates, but in some archae and bacteria insoluble magnesium phosphate plays this role. Some yeasts produce phosphomannan as a phosphorus reserve. This review covers also other topics, i.e. accumulation of phosphorus reserves under nutrient limitation, phosphorus reserves in activated sludge, mycorrhiza, and the role of mineral phosphorus compounds in mammals.
Collapse
Affiliation(s)
- T V Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
39
|
Bsat S, Yavari SA, Munsch M, Valstar ER, Zadpoor AA. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability. MATERIALS 2015; 8:1612-1625. [PMID: 28788021 PMCID: PMC5507016 DOI: 10.3390/ma8041612] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 11/16/2022]
Abstract
Advanced additive manufacturing techniques such as electron beam melting (EBM), can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bio-functionalized to promote bone growth. In the current work, EBM porous Ti6Al4V alloy was exposed to an alkali acid heat (AlAcH) treatment to bio-functionalize the surface of the porous structure. Various molar concentrations (3, 5, 10M) and immersion times (6, 24 h) of the alkali treatment were used to determine optimal parameters. The apatite forming ability of the samples was evaluated using simulated body fluid (SBF) immersion testing. The micro-topography and surface chemistry of AlAcH treated samples were evaluated before and after SBF testing using scanning electron microscopy and energy dispersive X-ray spectroscopy. The AlAcH treatment successfully modified the topographical and chemical characteristics of EBM porous titanium surface creating nano-topographical features ranging from 200–300 nm in size with a titania layer ideal for apatite formation. After 1 and 3 week immersion in SBF, there was no Ca or P present on the surface of as manufactured porous titanium while both elements were present on all AlAcH treated samples except those exposed to 3M, 6 h alkali treatment. An increase in molar concentration and/or immersion time of alkali treatment resulted in an increase in the number of nano-topographical features per unit area as well as the amount of titania on the surface.
Collapse
Affiliation(s)
- Suzan Bsat
- Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada.
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - Saber Amin Yavari
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - Maximilian Munsch
- Implantcast GmbH, Lueneburger Schanze 26, D-21614 Buxtehude, Germany.
| | - Edward R Valstar
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
- Department of Orthopaedics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Amir A Zadpoor
- Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| |
Collapse
|
40
|
Lichko LP, Eldarov MA, Dumina MV, Kulakovskaya TV. PPX1 gene overexpression has no influence on polyphosphates in Saccharomyces cerevisiae. BIOCHEMISTRY (MOSCOW) 2014; 79:1211-5. [DOI: 10.1134/s000629791411008x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Boyde A, Davis GR, Mills D, Zikmund T, Cox TM, Adams VL, Niker A, Wilson PJ, Dillon JP, Ranganath LR, Jeffery N, Jarvis JC, Gallagher JA. On fragmenting, densely mineralised acellular protrusions into articular cartilage and their possible role in osteoarthritis. J Anat 2014; 225:436-46. [PMID: 25132002 DOI: 10.1111/joa.12226] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2014] [Indexed: 12/11/2022] Open
Abstract
High density mineralised protrusions (HDMP) from the tidemark mineralising front into hyaline articular cartilage (HAC) were first described in Thoroughbred racehorse fetlock joints and later in Icelandic horse hock joints. We now report them in human material. Whole femoral heads removed at operation for joint replacement or from dissection room cadavers were imaged using magnetic resonance imaging (MRI) dual echo steady state at 0.23 mm resolution, then 26-μm resolution high contrast X-ray microtomography, sectioned and embedded in polymethylmethacrylate, blocks cut and polished and re-imaged with 6-μm resolution X-ray microtomography. Tissue mineralisation density was imaged using backscattered electron SEM (BSE SEM) at 20 kV with uncoated samples. HAC histology was studied by BSE SEM after staining block faces with ammonium triiodide solution. HDMP arise via the extrusion of an unknown mineralisable matrix into clefts in HAC, a process of acellular dystrophic calcification. Their formation may be an extension of a crack self-healing mechanism found in bone and articular calcified cartilage. Mineral concentration exceeds that of articular calcified cartilage and is not uniform. It is probable that they have not been reported previously because they are removed by decalcification with standard protocols. Mineral phase morphology frequently shows the agglomeration of many fine particles into larger concretions. HDMP are surrounded by HAC, are brittle, and show fault lines within them. Dense fragments found within damaged HAC could make a significant contribution to joint destruction. At least larger HDMP can be detected with the best MRI imaging ex vivo.
Collapse
Affiliation(s)
- A Boyde
- Biophysics, Oral Growth and Development, Barts and The London School of Medicine and Dentistry, QMUL, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sinha A, Singh A, Kumar S, Khare SK, Ramanan A. Microbial mineralization of struvite: a promising process to overcome phosphate sequestering crisis. WATER RESEARCH 2014; 54:33-43. [PMID: 24531293 DOI: 10.1016/j.watres.2014.01.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
Due to extensive exploitation of non-renewable phosphate minerals, their natural reserves will exhaust very soon. This necessitates looking for alternatives and an efficient methodology through which indispensable phosphorus can be harvested back. The current study was undertaken to explore the potential of a metallophilic bacterium Enterobacter sp. EMB19 for the recovery of phosphorus as phosphate rich mineral. A very low phosphate concentration strategy was adopted. The process led to the mineralization of phosphorus as homogeneous struvite crystals. For each gram of Epsom salt added, the cells effectively mineralized about 20% of the salt into struvite. The effect of different inorganic sources, culture profile and plausible mechanism involved in crystal formation was also explored. The synthesized struvite crystals typically possessed a prismatic crystal habit. The characterization and identification of the crystals were done using single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), energy dispersive X-ray analysis (EDAX) and fourier transform infrared (FTIR). The thermal characteristics were studied using thermo gravimetric analysis (TGA) and differential scanning calorimetric (DSC) processes. The synthesis of struvite by this bacterium seems to be a promising and viable strategy since it serves dual purpose (i) obtaining phosphorus and nitrogen rich fertilizer and (ii) conservation of natural phosphate reserves. This study is very significant in the sense that the process may be used for harvesting and synthesizing other valuable minerals. Also, it will provide new insights into phosphate biomineralization mechanisms.
Collapse
Affiliation(s)
- Arvind Sinha
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Amit Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sumit Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil Kumar Khare
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Arunachalam Ramanan
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|