1
|
Wei F, Hughes M, Omer M, Ngo C, Pugazhendhi AS, Kolanthai E, Aceto M, Ghattas Y, Razavi M, Kean TJ, Seal S, Coathup M. A Multifunctional Therapeutic Strategy Using P7C3 as A Countermeasure Against Bone Loss and Fragility in An Ovariectomized Rat Model of Postmenopausal Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308698. [PMID: 38477537 PMCID: PMC11151083 DOI: 10.1002/advs.202308698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 03/14/2024]
Abstract
By 2060, an estimated one in four Americans will be elderly. Consequently, the prevalence of osteoporosis and fragility fractures will also increase. Presently, no available intervention definitively prevents or manages osteoporosis. This study explores whether Pool 7 Compound 3 (P7C3) reduces progressive bone loss and fragility following the onset of ovariectomy (OVX)-induced osteoporosis. Results confirm OVX-induced weakened, osteoporotic bone together with a significant gain in adipogenic body weight. Treatment with P7C3 significantly reduced osteoclastic activity, bone marrow adiposity, whole-body weight gain, and preserved bone area, architecture, and mechanical strength. Analyses reveal significantly upregulated platelet derived growth factor-BB and leukemia inhibitory factor, with downregulation of interleukin-1 R6, and receptor activator of nuclear factor kappa-B (RANK). Together, proteomic data suggest the targeting of several key regulators of inflammation, bone, and adipose turnover, via transforming growth factor-beta/SMAD, and Wingless-related integration site/be-catenin signaling pathways. To the best of the knowledge, this is first evidence of an intervention that drives against bone loss via RANK. Metatranscriptomic analyses of the gut microbiota show P7C3 increased Porphyromonadaceae bacterium, Candidatus Melainabacteria, and Ruminococcaceae bacterium abundance, potentially contributing to the favorable inflammatory, and adipo-osteogenic metabolic regulation observed. The results reveal an undiscovered, and multifunctional therapeutic strategy to prevent the pathological progression of OVX-induced bone loss.
Collapse
Affiliation(s)
- Fei Wei
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
| | - Megan Hughes
- School of BiosciencesCardiff UniversityWalesCF10 3ATUK
| | - Mahmoud Omer
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
| | - Christopher Ngo
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | | | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC)University of Central FloridaOrlandoFL32826USA
| | - Matthew Aceto
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Yasmine Ghattas
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Mehdi Razavi
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Thomas J Kean
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Sudipta Seal
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC)University of Central FloridaOrlandoFL32826USA
| | - Melanie Coathup
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| |
Collapse
|
2
|
Shao Y, Liu T, Wen X, Zhang R, Liu X, Xing D. The regulatory effect of growth differentiation factor 11 on different cells. Front Immunol 2023; 14:1323670. [PMID: 38143761 PMCID: PMC10739301 DOI: 10.3389/fimmu.2023.1323670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Growth differentiation factor 11 (GDF11) is one of the important factors in the pathophysiological process of animals. It is widely expressed in many tissues and organs of animals, showing its wide biological activity and potential application value. Previous research has demonstrated that GDF11 has a therapeutic effect on various diseases, such as anti-myocardial aging and anti-tumor. This has not only sparked intense interest and enthusiasm among academics but also spurred some for-profit businesses to attempt to develop GDF11 as a medication for regenerative medicine or anti-aging application. Currently, Sotatercept, a GDF11 antibody drug, is in the marketing application stage, and HS-235 and rGDF11 are in the preclinical research stage. Therefore, we believe that figuring out which cells GDF11 acts on and its current problems should be an important issue in the scientific and commercial communities. Only through extensive, comprehensive research and discussion can we better understand the role and potential of GDF11, while avoiding unnecessary risks and misinformation. In this review, we aimed to summarize the role of GDF11 in different cells and its current controversies and challenges, providing an important reference for us to deeply understand the function of GDF11 and formulate more effective treatment strategies in the future.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Ting Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Xiaobo Wen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Zheng XQ, Lin JL, Huang J, Wu T, Song CL. Targeting aging with the healthy skeletal system: The endocrine role of bone. Rev Endocr Metab Disord 2023; 24:695-711. [PMID: 37402956 DOI: 10.1007/s11154-023-09812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/06/2023]
Abstract
Aging is an inevitable biological process, and longevity may be related to bone health. Maintaining strong bone health can extend one's lifespan, but the exact mechanism is unclear. Bone and extraosseous organs, including the heart and brain, have complex and precise communication mechanisms. In addition to its load bearing capacity, the skeletal system secretes cytokines, which play a role in bone regulation of extraosseous organs. FGF23, OCN, and LCN2 are three representative bone-derived cytokines involved in energy metabolism, endocrine homeostasis and systemic chronic inflammation levels. Today, advanced research methods provide new understandings of bone as a crucial endocrine organ. For example, gene editing technology enables bone-specific conditional gene knockout models, which allows the study of bone-derived cytokines to be more precise. We systematically evaluated the various effects of bone-derived cytokines on extraosseous organs and their possible antiaging mechanism. Targeting aging with the current knowledge of the healthy skeletal system is a potential therapeutic strategy. Therefore, we present a comprehensive review that summarizes the current knowledge and provides insights for futures studies.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jia-Liang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jie Huang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Tong Wu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
| |
Collapse
|
4
|
Shao Y, Wang Y, Xu J, Yuan Y, Xing D. Growth differentiation factor 11: A new hope for the treatment of cardiovascular diseases. Cytokine Growth Factor Rev 2023; 71-72:82-93. [PMID: 37414617 DOI: 10.1016/j.cytogfr.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β superfamily that has garnered significant attention due to its anti-cardiac aging properties. Many studies have revealed that GDF11 plays an indispensable role in the onset of cardiovascular diseases (CVDs). Consequently, it has emerged as a potential target and novel therapeutic agent for CVD treatment. However, currently, no literature reviews comprehensively summarize the research on GDF11 in the context of CVDs. Therefore, herein, we comprehensively described GDF11's structure, function, and signaling in various tissues. Furthermore, we focused on the latest findings concerning its involvement in CVD development and its potential for clinical translation as a CVD treatment. We aim to provide a theoretical basis for the prospects and future research directions of the GDF11 application regarding CVDs.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yang Yuan
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Zhang P, Chen H, Xie B, Zhao W, Shang Q, He J, Shen G, Yu X, Zhang Z, Zhu G, Chen G, Yu F, Liang D, Tang J, Cui J, Liu Z, Ren H, Jiang X. Bioinformatics identification and experimental validation of m6A-related diagnostic biomarkers in the subtype classification of blood monocytes from postmenopausal osteoporosis patients. Front Endocrinol (Lausanne) 2023; 14:990078. [PMID: 36967763 PMCID: PMC10031099 DOI: 10.3389/fendo.2023.990078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a common bone disorder. Existing study has confirmed the role of exosome in regulating RNA N6-methyladenosine (m6A) methylation as therapies in osteoporosis. However, it still stays unclear on the roles of m6A modulators derived from serum exosome in PMOP. A comprehensive evaluation on the roles of m6A modulators in the diagnostic biomarkers and subtype identification of PMOP on the basis of GSE56815 and GSE2208 datasets was carried out to investigate the molecular mechanisms of m6A modulators in PMOP. METHODS We carried out a series of bioinformatics analyses including difference analysis to identify significant m6A modulators, m6A model construction of random forest, support vector machine and nomogram, m6A subtype consensus clustering, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between different m6A patterns, principal component analysis, and single sample gene set enrichment analysis (ssGSEA) for evaluation of immune cell infiltration, experimental validation of significant m6A modulators by real-time quantitative polymerase chain reaction (RT-qPCR), etc. RESULTS In the current study, we authenticated 7 significant m6A modulators via difference analysis between normal and PMOP patients from GSE56815 and GSE2208 datasets. In order to predict the risk of PMOP, we adopted random forest model to identify 7 diagnostic m6A modulators, including FTO, FMR1, YTHDC2, HNRNPC, RBM15, RBM15B and WTAP. Then we selected the 7 diagnostic m6A modulators to construct a nomogram model, which could provide benefit with patients according to our subsequent decision curve analysis. We classified PMOP patients into 2 m6A subtypes (clusterA and clusterB) on the basis of the significant m6A modulators via a consensus clustering approach. In addition, principal component analysis was utilized to evaluate the m6A score of each sample for quantification of the m6A subgroups. The m6A scores of patients in clusterB were higher than those of patients in clusterA. Moreover, we observed that the patients in clusterA had close correlation with immature B cell and gamma delta T cell immunity while clusterB was linked to monocyte, neutrophil, CD56dim natural killer cell, and regulatory T cell immunity, which has close connection with osteoclast differentiation. Notably, m6A modulators detected by RT-qPCR showed generally consistent expression levels with the bioinformatics results. CONCLUSION In general, m6A modulators exert integral function in the pathological process of PMOP. Our study of m6A patterns may provide diagnostic biomarkers and immunotherapeutic strategies for future PMOP treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Xie
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui He
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangye Zhu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guifeng Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuyong Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianchao Cui
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhixiang Liu
- Affiliated Huadu Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Zhixiang Liu, ; Hui Ren, ; Xiaobing Jiang,
| | - Hui Ren
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhixiang Liu, ; Hui Ren, ; Xiaobing Jiang,
| | - Xiaobing Jiang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhixiang Liu, ; Hui Ren, ; Xiaobing Jiang,
| |
Collapse
|
6
|
GDF11 Is a Novel Protective Factor Against Vascular Calcification. J Cardiovasc Pharmacol 2022; 80:852-860. [PMID: 36027600 DOI: 10.1097/fjc.0000000000001357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/31/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT Vascular calcification (VC) occurs via an active cell-mediated process, which involves osteogenic differentiation, apoptosis, and phenotypic transformation of vascular smooth muscle cells (VSMCs). As a member of the transforming growth factor-β family, growth differentiation factor 11 (GDF11) can inhibit apoptosis and osteogenic differentiation and maintain the stability of atherosclerotic plaques. In this study, coronary artery calcium score (CACS) of participants with GDF11 measurements was measured using computed tomography angiography and was scored according to the Agatston score. β-glycerophosphate (10 mM), dexamethasone (100 nM), and l -ascorbic acid (50 µg/mL) [osteogenic medium (OM)] were used to induce calcification of human aortic smooth muscle cells. We found that CACS was negatively correlated with serum GDF11 levels in patients and GDF11 was a strong predictor of elevated CACS (OR = 0.967, 95% CI: 0.945-0.991; P = 0.006), followed by age (OR = 1.151, 95% CI: 1.029-1.286; P = 0.014), triglycerides (OR = 4.743, 95% CI: 1.170-19.236; P = 0.029), C-reactive protein (OR = 1.230, 95% CI: 1.010-1.498; P = 0.04), and hypertension (OR = 7.264, 95% CI: 1.099-48.002; P = 0.04). Furthermore, exogenous GDF11 inhibited OM-induced calcification by inhibiting osteogenic differentiation, the phenotypic transformation and apoptosis of human aortic smooth muscle cells. Our study demonstrates that GDF11 plays a crucial role in reducing vascular calcification and serves as a potential intervention target to vascular calcification.
Collapse
|
7
|
Wei Y, Ran Z, Wang R, Ren Z, Liu CL, Liu CB, Shi C, Wang C, Zhang YH. Twisted Fiber Optic SPR Sensor for GDF11 Concentration Detection. MICROMACHINES 2022; 13:mi13111914. [PMID: 36363935 PMCID: PMC9697599 DOI: 10.3390/mi13111914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 05/25/2023]
Abstract
There are few methods and insufficient accuracy for growth differentiation factor 11 (GDF11) concentration detection. In this paper, we designed a twisted fiber cladding surface plasmon resonance (SPR) sensor, which can achieve a high precision detection of GDF11 concentration. The new structure of the fiber cladding SPR sensor was realized by coupling the light in the fiber core to the cladding through fiber thermal fusion twisting micromachining technology; a series of functionalized modifications were made to the sensor surface to obtain a fiber sensor capable of GDF11 specific recognition. The experimental results showed when GDF11 antigen concentration was 1 pg/mL-10 ng/mL, the sensor had a detection sensitivity of 2.518 nm/lgC, a detection limit of 0.34 pg/mL, and a good log-linear relationship. The sensor is expected to play a role in the rapid and accurate concentration detection of pathological study for growth differentiation factors.
Collapse
Affiliation(s)
- Yong Wei
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Ze Ran
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Rui Wang
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Zhuo Ren
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Chun-Lan Liu
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Chun-Biao Liu
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Chen Shi
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Chen Wang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Yong-Hui Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China
| |
Collapse
|
8
|
Wang Z, Jiang P, Liu F, Du X, Ma L, Ye S, Cao H, Sun P, Su N, Lin F, Zhang R, Li C. GDF11 Regulates PC12 Neural Stem Cells via ALK5-Dependent PI3K-Akt Signaling Pathway. Int J Mol Sci 2022; 23:ijms232012279. [PMID: 36293138 PMCID: PMC9602726 DOI: 10.3390/ijms232012279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
Growth differentiation factor 11 (GDF11), belonging to the transforming factor-β superfamily, regulates anterior-posterior patterning and inhibits neurogenesis during embryonic development. However, recent studies recognized GDF11 as a rejuvenating (or anti-ageing) factor to reverse age-related cardiac hypertrophy, repair injured skeletal muscle, promote cognitive function, etc. The effects of GDF11 are contradictory and the mechanism of action is still not well clarified. The objective of the present study was to investigate effects of GDF11 on PC12 neural stem cells in vitro and to reveal the underlying mechanism. We systematically assessed the effects of GDF11 on the life activities of PC12 cells. GDF11 significantly suppressed cell proliferation and migration, promoted differentiation and apoptosis, and arrested cell cycle at G2/M phase. Both TMT-based proteomic analysis and phospho-antibody microarray revealed PI3K-Akt pathway was enriched when treated with GDF11. Inhibition of ALK5 or PI3K obviously attenuated the effects of GDF11 on PC12 neural stem cells, which exerted that GDF11 regulated neural stem cells through ALK5-dependent PI3K-Akt signaling pathway. In summary, these results demonstrated GDF11 could be a negative regulator for neurogenesis via ALK5 activating PI3K-Akt pathway when it directly acted on neural stem cells.
Collapse
Affiliation(s)
- Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
- Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Fengjuan Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Xi Du
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Shengliang Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Haijun Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Pan Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Na Su
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Fangzhao Lin
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Rong Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
- Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
- Correspondence: (R.Z.); (C.L.); Tel.: +86-028-61648527 (R.Z. & C.L.)
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
- Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
- Correspondence: (R.Z.); (C.L.); Tel.: +86-028-61648527 (R.Z. & C.L.)
| |
Collapse
|
9
|
Mukherjee S, Park JP, Yun JW. Carboxylesterase3 (Ces3) Interacts with Bone Morphogenetic Protein 11 and Promotes Differentiation of Osteoblasts via Smad1/5/9 Pathway. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Liu Y, Cai G, Chen P, Jiang T, Xia Z. UBE2E3 regulates cellular senescence and osteogenic differentiation of BMSCs during aging. PeerJ 2021; 9:e12253. [PMID: 34820159 PMCID: PMC8606162 DOI: 10.7717/peerj.12253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Background Osteoporosis has gradually become a public health problem in the world. However, the exact molecular mechanism of osteoporosis still remains unclear. Senescence and osteogenic differentiation inhibition of bone marrow mesenchymal stem cells (BMSCs ) are supposed to play an important part in osteoporosis. Methods We used two gene expression profiles (GSE35956 and GSE35958) associated with osteoporosis and selected the promising gene Ubiquitin-conjugating enzyme E2 E3 (UBE2E3). We then verified its function and mechanism by in vitro experiments. Results UBE2E3 was highly expressed in the bone marrow and positively associated with osteogenesis related genes. Besides, UBE2E3 expression reduced in old BMSCs compared with that in young BMSCs. In in vitro experiments, knockdown of UBE2E3 accelerated cellular senescence and inhibited osteogenic differentiation of young BMSCs. On the other hand, overexpression of UBE2E3 attenuated cellular senescence as well as enhanced osteogenic differentiation of old BMSCs. Mechanistically, UBE2E3 might regulate the nuclear factor erythroid 2-related factor (Nrf2) and control its function, thus affecting the senescence and osteogenic differentiation of BMSCs. Conclusion UBE2E3 may be potentially involved in the pathogenesis of osteoporosis by regulating cellular senescence and osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Yalin Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Guangping Cai
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Peng Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China.,Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Tiejian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Zhuying Xia
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
11
|
The relationship between transforming growth factor β superfamily members (GDF11 and BMP4) and lumbar spine bone mineral density in postmenopausal Chinese women. Arch Gynecol Obstet 2021; 305:737-747. [PMID: 34417839 DOI: 10.1007/s00404-021-06183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The relationship between transforming growth factor β superfamily members (GDF11 and BMP4) and bone metabolism remains controversial. The aim of this study was to investigate the association between serum GDF11 and BMP4 levels and lumbar spine bone mineral density (LBMD) in a cohort of postmenopausal Chinese women. METHODS This was a non-prospective cross-sectional study of 350 postmenopausal women with a mean age of 63.13 ± 8.66 years who came from Shenyang, China. LBMD was measured using dual-energy X-ray absorptiometry. Serum GDF11 and BMP4 concentrations were detected using a sandwich enzyme immunoassay kit. Pearson's correlation analysis and regression analyses were carried out to investigate the relationships between LBMD and serum GDF11 and BMP4 levels. RESULTS A linear association between LBMD and serum LgGDF11 concentration was observed after adjusting for numerous confounders (P = 0.018). In addition, the osteoporosis (OP) was inversely related to LgGDF11 and the odds ratios for postmenopausal women with lumbar OP in LgGDF11 quartile group 2, group 3, and group 4 were 0.46 (95% CI 0.23-0.90, P < 0.05), 0.41 (95% CI 0.20-0.84, P < 0.05), and 0.30 (95% CI 0.14-0.63, P < 0.01), respectively (P = 0.001 for the trend), when compared to the highest quartile of LgGDF11 after adjustments for many confounding variables in this study. CONCLUSIONS This study showed that serum GDF11 levels were linearly related to LBMD, and it was also revealed that serum GDF11 levels were significantly associated with lumbar OP in postmenopausal women. However, serum BMP4 levels were not associated with LBMD and lumbar OP.
Collapse
|
12
|
Endocrine role of bone in the regulation of energy metabolism. Bone Res 2021; 9:25. [PMID: 34016950 PMCID: PMC8137703 DOI: 10.1038/s41413-021-00142-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Bone mainly functions as a supportive framework for the whole body and is the major regulator of calcium homeostasis and hematopoietic function. Recently, an increasing number of studies have characterized the significance of bone as an endocrine organ, suggesting that bone-derived factors regulate local bone metabolism and metabolic functions. In addition, these factors can regulate global energy homeostasis by altering insulin sensitivity, feeding behavior, and adipocyte commitment. These findings may provide a new pathological mechanism for related metabolic diseases or be used in the diagnosis, treatment, and prevention of metabolic diseases such as osteoporosis, obesity, and diabetes mellitus. In this review, we summarize the regulatory effect of bone and bone-derived factors on energy metabolism and discuss directions for future research.
Collapse
|
13
|
Similar sequences but dissimilar biological functions of GDF11 and myostatin. Exp Mol Med 2020; 52:1673-1693. [PMID: 33077875 PMCID: PMC8080601 DOI: 10.1038/s12276-020-00516-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (MSTN) are closely related TGFβ family members that are often believed to serve similar functions due to their high homology. However, genetic studies in animals provide clear evidence that they perform distinct roles. While the loss of Mstn leads to hypermuscularity, the deletion of Gdf11 results in abnormal skeletal patterning and organ development. The perinatal lethality of Gdf11-null mice, which contrasts with the long-term viability of Mstn-null mice, has led most research to focus on utilizing recombinant GDF11 proteins to investigate the postnatal functions of GDF11. However, the reported outcomes of the exogenous application of recombinant GDF11 proteins are controversial partly because of the different sources and qualities of recombinant GDF11 used and because recombinant GDF11 and MSTN proteins are nearly indistinguishable due to their similar structural and biochemical properties. Here, we analyze the similarities and differences between GDF11 and MSTN from an evolutionary point of view and summarize the current understanding of the biological processing, signaling, and physiological functions of GDF11 and MSTN. Finally, we discuss the potential use of recombinant GDF11 as a therapeutic option for a wide range of medical conditions and the possible adverse effects of GDF11 inhibition mediated by MSTN inhibitors.
Collapse
|
14
|
Mazini L, Rochette L, Malka G. Adipose-Derived Stem Cells (ADSCs) and Growth Differentiation Factor 11 (GDF11): Regenerative and Antiaging Capacity for the Skin. Regen Med 2020. [DOI: 10.5772/intechopen.91233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
15
|
Zhu J, Fu Y, Tu G. Role of Smad3 inhibitor and the pyroptosis pathway in spinal cord injury. Exp Ther Med 2020; 20:1675-1681. [PMID: 32742397 PMCID: PMC7388327 DOI: 10.3892/etm.2020.8832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 04/17/2020] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the role of Smad3 inhibitors and the pyroptosis pathway in spinal cord injury, and to determine the underlying mechanism. The pyroptosis signaling pathway may be involved in spinal cord injury during the recovery period. Smad3 inhibitor may serve a role in alleviating spinal cord injury by reducing the pyroptosis of neurons, which is induced by caspase-1, absent in melanoma-2 or NOD-like receptors protein-1 during the recovery period of spinal cord injury. In the present study, spinal cord injury was alleviated by caspase-1 and Smad3 inhibitors. Therefore, a Smad3 inhibitor could relieve spinal cord injury in mice by directly downregulating caspase-1 and reducing neuron pyroptosis following spinal cord injury during the recovery period.
Collapse
Affiliation(s)
- Jiajun Zhu
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning 110000, P.R. China.,Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Huanggu, Shenyang, Liaoning 110032, P.R. China
| | - Yu Fu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Heping, Shenyang, Liaoning 110004, P.R. China
| | - Guanjun Tu
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
16
|
Xie H, Liu M, Jin Y, Lin H, Zhang Y, Zheng S. miR-1323 suppresses bone mesenchymal stromal cell osteogenesis and fracture healing via inhibiting BMP4/SMAD4 signaling. J Orthop Surg Res 2020; 15:237. [PMID: 32600409 PMCID: PMC7322887 DOI: 10.1186/s13018-020-01685-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background Atrophic non-union fractures show no radiological evidence of callus formation within 3 months of fracture. microRNA dysregulation may underlie the dysfunctional osteogenesis in atrophic non-union fractures. Here, we aimed to analyze miR-1323 expression in human atrophic non-union fractures and examine miR-1323’s underlying mechanism of action in human mesenchymal stromal cells. Methods Human atrophic non-union and standard healing fracture specimens were examined using H&E and Alcian Blue staining, immunohistochemistry, qRT-PCR, immunoblotting, and ALP activity assays. The effects of miR-1323 mimics or inhibition on BMP4, SMAD4, osteogenesis-related proteins, ALP activity, and bone mineralization were analyzed in human mesenchymal stromal cells. Luciferase reporter assays were utilized to assay miR-1323’s binding to the 3'UTRs of BMP4 and SMAD4. The effects of miR-1323, BMP4, and SMAD4 were analyzed by siRNA and overexpression vectors. A rat femur fracture model was established to analyze the in vivo effects of antagomiR-1323 treatment. Results miR-1323 was upregulated in human atrophic non-union fractures. Atrophic non-union was associated with downregulation of BMP4 and SMAD4 as well as the osteogenic markers ALP, collagen I, and RUNX2. In vitro, miR-1323 suppressed BMP4 and SMAD4 expression by binding to the 3'UTRs of BMP4 and SMAD4. Moreover, miR-1323’s inhibition of BMP4 and SMAD4 inhibited mesenchymal stromal cell osteogenic differentiation via modulating the nuclear translocation of the transcriptional co-activator TAZ. In vivo, antagomiR-1323 therapy facilitated the healing of fractures in a rat model of femoral fracture. Conclusions This evidence supports the miR-1323/BMP4 and miR-1323/SMAD4 axes as novel therapeutic targets for atrophic non-union fractures.
Collapse
Affiliation(s)
- Hui Xie
- Department of Orthopedics, The Second Affiliated Hospital of Jiaxing University, No. 1518 Huanchengbei Road, Jiaxing, Zhejiang, 314299, China
| | - Ming Liu
- Department of Orthopedics, The Second Affiliated Hospital of Jiaxing University, No. 1518 Huanchengbei Road, Jiaxing, Zhejiang, 314299, China
| | - Yaofeng Jin
- Department of Orthopedics, The Second Affiliated Hospital of Jiaxing University, No. 1518 Huanchengbei Road, Jiaxing, Zhejiang, 314299, China
| | - Haiqing Lin
- Department of Orthopedics, The Second Affiliated Hospital of Jiaxing University, No. 1518 Huanchengbei Road, Jiaxing, Zhejiang, 314299, China
| | - Yushan Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Jiaxing University, No. 1518 Huanchengbei Road, Jiaxing, Zhejiang, 314299, China
| | - Song Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Jiaxing University, No. 1518 Huanchengbei Road, Jiaxing, Zhejiang, 314299, China.
| |
Collapse
|
17
|
Zhang C, Lin Y, Liu Q, He J, Xiang P, Wang D, Hu X, Chen J, Zhu W, Yu H. Growth differentiation factor 11 promotes differentiation of MSCs into endothelial-like cells for angiogenesis. J Cell Mol Med 2020; 24:8703-8717. [PMID: 32588524 PMCID: PMC7412688 DOI: 10.1111/jcmm.15502] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β super family. It has multiple effects on development, physiology and diseases. However, the role of GDF11 in the development of mesenchymal stem cells (MSCs) is not clear. To explore the effects of GDF11 on the differentiation and pro-angiogenic activities of MSCs, mouse bone marrow-derived MSCs were engineered to overexpress GDF11 (MSCGDF11 ) and their capacity for differentiation and paracrine actions were examined both in vitro and in vivo. Expression of endothelial markers CD31 and VEGFR2 at the levels of both mRNA and protein was significantly higher in MSCGDF11 than control MSCs (MSCVector ) during differentiation. More tube formation was observed in MSCGDF11 as compared with controls. In an in vivo angiogenesis assay with Matrigel plug, MSCGDF11 showed more differentiation into CD31+ endothelial-like cells and better pro-angiogenic activity as compared with MSCVector . Mechanistically, the enhanced differentiation by GDF11 involved activation of extracellular-signal-related kinase (ERK) and eukaryotic translation initiation factor 4E (EIF4E). Inhibition of either TGF-β receptor or ERK diminished the effect of GDF11 on MSC differentiation. In summary, our study unveils the function of GDF11 in the pro-angiogenic activities of MSCs by enhancing endothelial differentiation via the TGFβ-R/ERK/EIF4E pathway.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yinuo Lin
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Liu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Junhua He
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Pingping Xiang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Dianliang Wang
- Stem Cell and Tissue Engineering Research Laboratory, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jinghai Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Wei Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
18
|
Al-Azab M, Wang B, Elkhider A, Walana W, Li W, Yuan B, Ye Y, Tang Y, Almoiliqy M, Adlat S, Wei J, Zhang Y, Li X. Indian Hedgehog regulates senescence in bone marrow-derived mesenchymal stem cell through modulation of ROS/mTOR/4EBP1, p70S6K1/2 pathway. Aging (Albany NY) 2020; 12:5693-5715. [PMID: 32235006 PMCID: PMC7185126 DOI: 10.18632/aging.102958] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022]
Abstract
Premature senescence of bone marrow-derived mesenchymal stem cells (BMSC) remains a major concern for their application clinically. Hedgehog signaling has been reported to regulate aging-associated markers and MSC skewed differentiation. Indian Hedgehog (IHH) is a ligand of Hedgehog intracellular pathway considered as an inducer in chondrogenesis of human BMSC. However, the role of IHH in the aging of BMSC is still unclear. This study explored the role IHH in the senescence of BMSC obtained from human samples and senescent mice. Isolated BMSC were transfected with IHH siRNA or incubated with exogenous IHH protein and the mechanisms of aging and differentiation investigated. Moreover, the interactions between IHH, and mammalian target of rapamycin (mTOR) and reactive oxygen species (ROS) were evaluated using the corresponding inhibitors and antioxidants. BMSC transfected with IHH siRNA showed characteristics of senescence-associated features including increased senescence-associated β-galactosidase activity (SA-β-gal), induction of cell cycle inhibitors (p53/p16), development of senescence-associated secretory phenotype (SASP), activation of ROS and mTOR pathways as well as the promotion of skewed differentiation. Interestingly, BMSC treatment with IHH protein reversed the senescence markers and corrected biased differentiation. Moreover, IHH shortage-induced senescence signs were compromised after mTOR and ROS inhibition. Our findings presented anti-aging activity for IHH in BMSC through down-regulation of ROS/mTOR pathways. This discovery might contribute to increasing the therapeutic, immunomodulatory and regenerative potency of BMSC and introduce a novel remedy in the management of aging-related diseases.
Collapse
Affiliation(s)
- Mahmoud Al-Azab
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.,Department of Immunology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Abdalkhalig Elkhider
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Williams Walana
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.,Department of Clinical Microbiology, University for Development Studies, Tamale, Ghana
| | - Weiping Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Bo Yuan
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yunshan Ye
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yawei Tang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Marwan Almoiliqy
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Liaoning, China
| | - Salah Adlat
- Key Laboratory of Molecular Epigenetics of MOE, School of Life Science, Northeast Normal University, Changchun, Jilin Province, China
| | - Jing Wei
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yan Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| |
Collapse
|
19
|
GDF11 promotes osteogenesis as opposed to MSTN, and follistatin, a MSTN/GDF11 inhibitor, increases muscle mass but weakens bone. Proc Natl Acad Sci U S A 2020; 117:4910-4920. [PMID: 32071240 PMCID: PMC7060712 DOI: 10.1073/pnas.1916034117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MSTN, a member of the TGF-β family, has been widely shown to suppress muscle growth, leading to an intense effort being directed at targeting MSTN to treat patients with muscle loss. GDF11 is another TGF-β family member closely related to MSTN, but its postnatal function is less clear. Using conditional knockout techniques, we show that GDF11 enhances bone mass in contrast to MSTN, emphasizing that MSTN/GDF11 inhibitors, such as FST, can induce adverse effects on bone through GDF11 inhibition. Because most MSTN inhibitors also inhibit GDF11 due to the high sequence similarity between MSTN and GDF11, our findings suggest that their opposing roles must be carefully considered when developing MSTN inhibitors for clinical applications. Growth and differentiation factor 11 (GDF11) and myostatin (MSTN) are closely related transforming growth factor β (TGF-β) family members, but their biological functions are quite distinct. While MSTN has been widely shown to inhibit muscle growth, GDF11 regulates skeletal patterning and organ development during embryogenesis. Postnatal functions of GDF11, however, remain less clear and controversial. Due to the perinatal lethality of Gdf11 null mice, previous studies used recombinant GDF11 protein to prove its postnatal function. However, recombinant GDF11 and MSTN proteins share nearly identical biochemical properties, and most GDF11-binding molecules have also been shown to bind MSTN, generating the possibility that the effects mediated by recombinant GDF11 protein actually reproduce the endogenous functions of MSTN. To clarify the endogenous functions of GDF11, here, we focus on genetic studies and show that Gdf11 null mice, despite significantly down-regulating Mstn expression, exhibit reduced bone mass through impaired osteoblast (OB) and chondrocyte (CH) maturations and increased osteoclastogenesis, while the opposite is observed in Mstn null mice that display enhanced bone mass. Mechanistically, Mstn deletion up-regulates Gdf11 expression, which activates bone morphogenetic protein (BMP) signaling pathway to enhance osteogenesis. Also, mice overexpressing follistatin (FST), a MSTN/GDF11 inhibitor, exhibit increased muscle mass accompanied by bone fractures, unlike Mstn null mice that display increased muscle mass without fractures, indicating that inhibition of GDF11 impairs bone strength. Together, our findings suggest that GDF11 promotes osteogenesis in contrast to MSTN, and these opposing roles of GDF11 and MSTN must be considered to avoid the detrimental effect of GDF11 inhibition when developing MSTN/GDF11 inhibitors for therapeutic purposes.
Collapse
|
20
|
Liu W, Zhou L, Xue H, Li H, Yuan Q. Growth differentiation factor 11 impairs titanium implant healing in the femur and leads to mandibular bone loss. J Periodontol 2020; 91:1203-1212. [PMID: 31983062 DOI: 10.1002/jper.19-0247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Growth differentiation factor 11 (GDF11), a secreted member of the transforming growth factor-β superfamily, has recently been suggested as an anti-aging factor that declines with age in the bloodstream, and restoration of the youthful level by administration of its recombinant protein could reverse age-related dysfunctions. However, its effects on titanium implant osseointegration and mandibular bone during aging remain unknown. METHODS Two-month-old and 18-month-old C57BL male mice were given daily intraperitoneal injections of recombinant GDF11 (rGDF11) or vehicle for 6 weeks. Experimental titanium implants were inserted into femurs on the fourth week. Inhibition of GDF11 function was achieved by GDF11 antibody. Implant-bearing femurs were subjected to histomorphometric analysis and biomechanical evaluation. Mandibles were scanned with micro-CT and decalcified for histological measurements. RESULTS In both young adult and aged mice, supraphysiologic GDF11 leads to a significantly decreased bone-to-implant contact ratio (BIC) and peri-implant bone volume/total volume (BV/TV) at the histologic level and reduced resistance at the biomechanical level, indicating weakened implant fixation. Moreover, rGDF11 administration resulted in less trabecular bone volume and thinner cortical thickness in the mandible, which was further compromised in the old animals. In contrast, inhibition of GDF11 improved peri-implant bone healing in old mice. CONCLUSIONS Rather than functioning as a rejuvenating factor, exogenous GDF11 negatively affects not only titanium implant healing but also mandibular bone in both young and old mice. In contrast, neutralization of endogenous GDF11 has positive effects on implant fixation in aged mice.
Collapse
Affiliation(s)
- Weiqing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liyan Zhou
- Dept. of Implant, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hanxiao Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hanshi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Fan FY, Deng R, Lai SH, Wen Q, Zeng Y, Gao L, Liu Y, Kong P, Zhong J, Su Y, Zhang X. Inhibition of microRNA-221-5p induces osteogenic differentiation by directly targeting smad3 in myeloma bone disease mesenchymal stem cells. Oncol Lett 2019; 18:6536-6544. [PMID: 31788114 PMCID: PMC6865756 DOI: 10.3892/ol.2019.10992] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/14/2019] [Indexed: 01/08/2023] Open
Abstract
Myeloma bone disease (MBD) is one of the clinical features of multiple myeloma, which contributes to the attenuation of osteoblast function. Bone marrow mesenchymal stem cells exhibit a high potential for differentiation into osteoblasts. A number of studies have reported that microRNAs (miRs) serve a vital role in mesenchymal stem cell (MSC) osteogenesis; however, the role of miR-221-5p in the osteogenic differentiation of MBD-MSCs remains unclear. The present study revealed that the osteogenic differentiation capacity of MBD-MSCs was reduced compared with that of normal (N)-MSCs. Further experiments demonstrated that miR-221-5p expression was downregulated in N-MSCs following osteoblast induction while no obvious alterations in expression levels were observed in MBD-MSCs. The inhibition of miR-221-5p promoted the osteogenic differentiation of MBD-MSCs. Bioinformatics, luciferase reporter assays, reverse transcription-quantitative PCR and western blotting assays indicated that smad family member 3 (smad3) was a direct target of miR-221-5p in MBD-MSCs. A negative association was identified between the expression levels of smad3 and miR-221-5p. Investigations of the molecular mechanism indicated that suppressed miR-221-5p could regulate the osteogenic differentiation of MBD-MSCs by upregulating smad3 expression. It was also identified that the PI3K/AKT/mTOR signaling pathway was activated following miR-221-5p inhibition, and this increased the osteogenic differentiation capacity of MBD-MSCs. The present study may improve the understanding regarding the role of miR-221-5p in the regulation of osteogenic differentiation, and may contribute to the development of a novel therapy for MBD.
Collapse
Affiliation(s)
- Fang-Yi Fan
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Sichuan 400037, P.R. China.,Department of Hematology and Hematopoetic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Rui Deng
- Department of Hematology and Hematopoetic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Si-Han Lai
- Department of Hematology and Hematopoetic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Qin Wen
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Sichuan 400037, P.R. China
| | - Yunjing Zeng
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Sichuan 400037, P.R. China
| | - Lei Gao
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Sichuan 400037, P.R. China
| | - Yao Liu
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Sichuan 400037, P.R. China
| | - Peiyan Kong
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Sichuan 400037, P.R. China
| | - Jiangfan Zhong
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Sichuan 400037, P.R. China
| | - Yi Su
- Department of Hematology and Hematopoetic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Sichuan 400037, P.R. China
| |
Collapse
|
22
|
Sun L, Sun S, Zhao X, Zhang J, Guo J, Tang L, Ta D. Inhibition of myostatin signal pathway may be involved in low-intensity pulsed ultrasound promoting bone healing. J Med Ultrason (2001) 2019; 46:377-388. [PMID: 31377938 DOI: 10.1007/s10396-019-00962-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/12/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE Low-intensity pulsed ultrasound (LIPUS) is effective in promoting bone healing, and a myostatin deficiency also has a positive effect on bone formation. In this study, we evaluated the effects of LIPUS on bone healing in rats in vivo and investigated the mechanisms in vitro, aiming to explore whether LIPUS promotes bone healing through inhibition of the myostatin signaling pathway. METHODS Rats with both drill-hole defects and MC3T3-E1 cells were randomly assigned to a LIPUS group and a control group. The LIPUS group received LIPUS treatment (1.5 MHz, 30 mW/cm2) for 20 min/day. RESULTS After 21 days, the myostatin expression in quadriceps was significantly inhibited in the LIPUS group, and remodeling of the newly formed bone in the drill-hole site was significantly better in the LIPUS group than that in the control group, which was confirmed by micro-CT analysis. After 3 days, LIPUS significantly promoted osteoblast proliferation; inhibited the expression of AcvrIIB (the myostatin receptor), Smad3, p-Smad3, and GSK-3β; and increased Wnt1 and β-catenin expression. Moreover, translocation of β-catenin from the cytolemma to the nucleus was observed in the LIPUS group. However, these effects were blocked by treatment with myostatin recombinant protein. CONCLUSIONS The results indicate that LIPUS may promote bone healing through inhibition of the myostatin signal pathway.
Collapse
Affiliation(s)
- Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Shuxin Sun
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
| | - Xinjuan Zhao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Zhang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an, 710119, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China.
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China. .,Human Phenome Institute, Fudan University, Shanghai, 201203, China. .,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, 200032, China.
| |
Collapse
|
23
|
Qin J, Sun Y, Liu S, Zhao R, Zhang Q, Pang W. MicroRNA-323-3p promotes myogenesis by targeting Smad2. J Cell Biochem 2019; 120:18751-18761. [PMID: 31218742 DOI: 10.1002/jcb.29187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/28/2019] [Indexed: 11/12/2022]
Abstract
Skeletal muscle is an important and complex organ with multiple biological functions in humans and animals. Proliferation and differentiation of myoblasts are the key steps during the development of skeletal muscle. MicroRNA (miRNA) is a class of 21-nucleotide noncoding RNAs regulating gene expression by combining with the 3'-untranslated region of target messenger RNA. Many studies in recent years have suggested that miRNAs play a critical role in myogenesis. Through high-throughput sequencing, we found that miR-323-3p showed significant changes in the longissimus dorsi muscle of Rongchang pigs in different age groups. In this study, we discovered that overexpression of miR-323-3p repressed myoblast proliferation and promoted differentiation, whereas the inhibitor of miR-323-3p displayed the opposite results. Furthermore, we predicted Smad2 as the target gene of miR-323-3p and found that miR-323-3p directly modulated the expression level of Smad2. Then luciferase reporter assays verified that Smad2 was a target gene of miR-323-3p during the differentiation of myoblasts. These findings reveal that miR-323-3p is a positive regulator of myogenesis by targeting Smad2. This provides a novel mechanism of miRNAs in myogenesis.
Collapse
Affiliation(s)
- Jin Qin
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunmei Sun
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuge Liu
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Zhao
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiyue Zhang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
24
|
Chang KC, Sun C, Cameron EG, Madaan A, Wu S, Xia X, Zhang X, Tenerelli K, Nahmou M, Knasel CM, Russano KR, Hertz J, Goldberg JL. Opposing Effects of Growth and Differentiation Factors in Cell-Fate Specification. Curr Biol 2019; 29:1963-1975.e5. [PMID: 31155355 PMCID: PMC6581615 DOI: 10.1016/j.cub.2019.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/15/2019] [Accepted: 05/01/2019] [Indexed: 12/22/2022]
Abstract
Following ocular trauma or in diseases such as glaucoma, irreversible vision loss is due to the death of retinal ganglion cell (RGC) neurons. Although strategies to replace these lost cells include stem cell replacement therapy, few differentiated stem cells turn into RGC-like neurons. Understanding the regulatory mechanisms of RGC differentiation in vivo may improve outcomes of cell transplantation by directing the fate of undifferentiated cells toward mature RGCs. Here, we report a new mechanism by which growth and differentiation factor-15 (GDF-15), a ligand in the transforming growth factor-beta (TGF-β) superfamily, strongly promotes RGC differentiation in the developing retina in vivo in rodent retinal progenitor cells (RPCs) and in human embryonic stem cells (hESCs). This effect is in direct contrast to the closely related ligand GDF-11, which suppresses RGC-fate specification. We find these opposing effects are due in part to GDF-15's ability to specifically suppress Smad-2, but not Smad-1, signaling induced by GDF-11, which can be recapitulated by pharmacologic or genetic blockade of Smad-2 in vivo to increase RGC specification. No other retinal cell types were affected by GDF-11 knockout, but a slight reduction in photoreceptor cells was observed by GDF-15 knockout in the developing retina in vivo. These data define a novel regulatory mechanism of GDFs' opposing effects and their relevance in RGC differentiation and suggest a potential approach for advancing ESC-to-RGC cell-based replacement therapies.
Collapse
Affiliation(s)
- Kun-Che Chang
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Catalina Sun
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Evan G Cameron
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Ankush Madaan
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Suqian Wu
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; Eye, Ear, Nose, & Throat Hospital, Department of Ophthalmology & Visual Science, Fudan University, 200031 Shanghai, China
| | - Xin Xia
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Xiong Zhang
- Shiley Eye Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin Tenerelli
- Shiley Eye Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Nahmou
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Cara M Knasel
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Kristina R Russano
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; Shiley Eye Center, University of California San Diego, La Jolla, CA 92093, USA; Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
| | - Jonathan Hertz
- Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; Shiley Eye Center, University of California San Diego, La Jolla, CA 92093, USA; Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
25
|
Nehlin JO, Jafari A, Tencerova M, Kassem M. Aging and lineage allocation changes of bone marrow skeletal (stromal) stem cells. Bone 2019; 123:265-273. [PMID: 30946971 DOI: 10.1016/j.bone.2019.03.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 01/02/2023]
Abstract
Aging is associated with decreased bone mass and accumulation of bone marrow adipocytes. Both bone forming osteoblastic cells and bone marrow adipocytes are derived from a stem cell population within the bone marrow stroma called bone marrow stromal (skeletal or mesenchymal) stem cells (BMSC). In the present review, we provide an overview, based on the current literature, regarding the physiological aging processes that cause changes in BMSC lineage allocation, enhancement of adipocyte and defective osteoblast differentiation, leading to gradual exhaustion of stem cell regenerative potential and defects in bone tissue homeostasis and metabolism. We discuss strategies to preserve the "youthful" state of BMSC, to reduce bone marrow age-associated adiposity, and to counteract the overall negative effects of aging on bone tissues with the aim of decreasing bone fragility and risk of fractures.
Collapse
Affiliation(s)
- Jan O Nehlin
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Clinical Research Center, Copenhagen University Hospital, Hvidovre, Denmark.
| | - Abbas Jafari
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michaela Tencerova
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
| | - Moustapha Kassem
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
26
|
Egerman MA, Glass DJ. The role of GDF11 in aging and skeletal muscle, cardiac and bone homeostasis. Crit Rev Biochem Mol Biol 2019; 54:174-183. [DOI: 10.1080/10409238.2019.1610722] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marc A. Egerman
- Age-Related Disorders, Department of Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - David J. Glass
- Age-Related Disorders, Department of Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| |
Collapse
|
27
|
Yuan X, Bhat OM, Lohner H, Li N, Zhang Y, Li PL. Inhibitory effects of growth differentiation factor 11 on autophagy deficiency-induced dedifferentiation of arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 2019; 316:H345-H356. [PMID: 30462553 PMCID: PMC6397385 DOI: 10.1152/ajpheart.00342.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/24/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022]
Abstract
Growth differentiation factor (GDF)11 has been reported to reverse age-related cardiac hypertrophy in mice and cause youthful regeneration of cardiomyocytes. The present study attempted to test a hypothesis that GDF11 counteracts the pathologic dedifferentiation of mouse carotid arterial smooth muscle cells (CASMCs) due to deficient autophagy. By real-time RT-PCR and Western blot analysis, exogenously administrated GDF11 was found to promote CASMC differentiation with increased expression of various differentiation markers (α-smooth muscle actin, myogenin, myogenic differentiation, and myosin heavy chain) as well as decreased expression of dedifferentiation markers (vimentin and proliferating cell nuclear antigen). Upregulation of the GDF11 gene by trichostatin A (TSA) or CRISPR-cas9 activating plasmids also stimulated the differentiation of CASMCs. Either GDF11 or TSA treatment blocked 7-ketocholesterol-induced CASMC dedifferentiation and autophagosome accumulation as well as lysosome inhibitor bafilomycin-induced dedifferentiation and autophagosome accumulation. Moreover, in CASMCs from mice lacking the CD38 gene, an autophagy deficiency model in CASMCs, GDF11 also inhibited its phenotypic transition to dedifferentiation status. Correspondingly, TSA treatment was shown to decrease GDF11 expression and reverse CASMC dedifferentiation in the partial ligated carotid artery of mice. The inhibitory effects of TSA on dedifferentiation of CASMCs were accompanied by reduced autophagosome accumulation in the arterial wall, which was accompanied by attenuated neointima formation in partial ligated carotid arteries. We concluded that GDF11 promotes CASMC differentiation and prevents the phenotypic transition of these cells induced by autophagosome accumulation during different pathological stimulations, such as Western diet, lysosome function deficiency, and inflammation. NEW & NOTEWORTHY The present study demonstrates that growth differentiation factor (GDF)11 promotes autophagy and subsequent differentiation in carotid arterial smooth muscle cells. Upregulation of GDF11 counteracts dedifferentiation under different pathological conditions. These findings provide novel insights into the regulatory role of GDF11 in the counteracting of sclerotic arterial diseases and also suggest that activation or induction of GDF11 may be a new therapeutic strategy for the treatment or prevention of these diseases.
Collapse
Affiliation(s)
- Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University , Richmond, Virginia
| | - Owais M Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University , Richmond, Virginia
| | - Hannah Lohner
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University , Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University , Richmond, Virginia
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
28
|
Chen X, Hua W, Huang X, Chen Y, Zhang J, Li G. Regulatory Role of RNA N 6-Methyladenosine Modification in Bone Biology and Osteoporosis. Front Endocrinol (Lausanne) 2019; 10:911. [PMID: 31998240 PMCID: PMC6965011 DOI: 10.3389/fendo.2019.00911] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022] Open
Abstract
Osteoporosis is a metabolic skeletal disorder in which bone mass is depleted and bone structure is destroyed to the degree that bone becomes fragile and prone to fractures. Emerging evidence suggests that N6-methyladenosine (m6A) modification, a novel epitranscriptomic marker, has a significant role in bone development and metabolism. M6A modification not only participates in bone development, but also plays important roles as writers and erasers in the osteoporosis. M6A methyltransferase METTL3 and demethyltransferase FTO involves in the delicate process between adipogenesis differentiation and osteogenic differentiation, which is important for the pathological development of osteoporosis. Conditional knockdown of the METTL3 in bone marrow stem cells (BMSCs) could suppress PI3K-Akt signaling, limit the expression of bone formation-related genes (such as Runx2 and Osterix), restrain the expression of vascular endothelial growth factor (VEGF) and down-regulate the decreased translation efficiency of parathyroid hormone receptor-1 mRNA. Meanwhile, knockdown of the METTL3 significantly promoted the adipogenesis process and janus kinase 1 (JAK1) protein expression via an m6A-dependent way. Specifically, there was a negative correlation between METTL3 expression and porcine BMSCs adipogenesis. The evidence above suggested that the relationship between METTL3 expression and adipogenesis was inverse, and osteogenesis was positive, respectively. Similarly, FTO regulated for BMSCs fate determination during osteoporosis through the GDF11-FTO-PPARγ axis, prompting the shift of MSC lineage commitment to adipocyte and inhibiting bone formation during osteoporosis. In this systematic review, we summarize the most up-to-date evidence of m6A RNA modification in osteoporosis and highlight the potential role of m6A in prevention, treatment, and management of osteoporosis.
Collapse
Affiliation(s)
- Xuejiao Chen
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wenfeng Hua
- Department of Laboratory Medicine and Central Laboratories, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xin Huang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yuming Chen
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Junguo Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University, Hamilton, ON, Canada
- *Correspondence: Guowei Li
| |
Collapse
|
29
|
Wu Y, Qu J, Li H, Yuan H, Guo Q, Ouyang Z, Lu Q. Relationship between serum level of growth differentiation factors 8, 11 and bone mineral density in girls with anorexia nervosa. Clin Endocrinol (Oxf) 2019; 90:88-93. [PMID: 30281844 DOI: 10.1111/cen.13871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/30/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adolescents with anorexia nervosa (AN) have low body mass and low bone mineral density (BMD). Growth differentiation factor 8 (Myostatin, GDF8) and its homologue growth differentiation factor 11 (GDF11), members of the TGF-β super-family, play an important role in muscle regeneration and bone metabolism in healthy individuals. However, their association with BMD in AN is unknown. The present study was undertaken to investigate the relationship between GDF8, GDF11 and BMD in adolescent girls with AN. METHODS Serum GDF8, GDF11 and BMD were determined in 25 girls (12-16 years old) with AN and 31 healthy girls (12-16 years old). RESULTS Growth differentiation factor 8 levels were lower in AN subjects. On the contrary, GDF11 levels were higher in AN subjects than controls. There was no relationship between GDF8 and BMD. A significant negative correlation between GDF11 and BMD was found. In multiple linear stepwise regression analysis, BMI, 25-hydroxyvitamin D, GDF11, or lean mass, but not fat mass and GDF8, were independent predictors of BMD in the AN and control groups separately. CONCLUSIONS Growth differentiation factor 11 was independent predictor of BMD in girls with AN. It suggested that GDF11 exerts a negative effect on bone mass.
Collapse
Affiliation(s)
- Yali Wu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Science and Education, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haiyan Yuan
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qi Guo
- Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Zhanbo Ouyang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
30
|
GDF11 Modulates Ca 2+-Dependent Smad2/3 Signaling to Prevent Cardiomyocyte Hypertrophy. Int J Mol Sci 2018; 19:ijms19051508. [PMID: 29783655 PMCID: PMC5983757 DOI: 10.3390/ijms19051508] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Growth differentiation factor 11 (GDF11), a member of the transforming growth factor-β family, has been shown to act as a negative regulator in cardiac hypertrophy. Ca2+ signaling modulates cardiomyocyte growth; however, the role of Ca2+-dependent mechanisms in mediating the effects of GDF11 remains elusive. Here, we found that GDF11 induced intracellular Ca2+ increases in neonatal rat cardiomyocytes and that this response was blocked by chelating the intracellular Ca2+ with BAPTA-AM or by pretreatment with inhibitors of the inositol 1,4,5-trisphosphate (IP3) pathway. Moreover, GDF11 increased the phosphorylation levels and luciferase activity of Smad2/3 in a concentration-dependent manner, and the inhibition of IP3-dependent Ca2+ release abolished GDF11-induced Smad2/3 activity. To assess whether GDF11 exerted antihypertrophic effects by modulating Ca2+ signaling, cardiomyocytes were exposed to hypertrophic agents (100 nM testosterone or 50 μM phenylephrine) for 24 h. Both treatments increased cardiomyocyte size and [3H]-leucine incorporation, and these responses were significantly blunted by pretreatment with GDF11 over 24 h. Moreover, downregulation of Smad2 and Smad3 with siRNA was accompanied by inhibition of the antihypertrophic effects of GDF11. These results suggest that GDF11 modulates Ca2+ signaling and the Smad2/3 pathway to prevent cardiomyocyte hypertrophy.
Collapse
|
31
|
Brunauer R, Muneoka K. The Impact of Aging on Mechanisms of Mammalian Epimorphic Regeneration. Gerontology 2018; 64:300-308. [DOI: 10.1159/000485320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/15/2017] [Indexed: 01/02/2023] Open
Abstract
Aging is associated with a significant decline of tissue repair and regeneration, ultimately resulting in tissue dysfunction, multimorbidity, and death. Salamanders possess remarkable regenerative abilities and have been studied with the prospect of inducing regeneration in humans and counteracting regenerative decline with aging. However, epimorphic regeneration, the full replacement of amputated structures, also occurs in mammals. One of the best studied models is digit tip regeneration, which is described for mice, and occurs in humans in a comparable manner. To accomplish regeneration, the amputated digit tip has to undergo three interdependent, overlapping steps: (i) wound healing without formation of a scar; (ii) formation of a blastema, a highly proliferative cell mass; and (iii) spatiotemporally regulated differentiation to generate a pattern similar to the original structure. Aging likely interferes with each of these steps. In this article, we provide an overview of the critical signaling pathways for regeneration, as revealed by investigating mammalian digit regeneration, the possible impact of aging on these pathways, and approaches to induce regeneration in the elderly. We hypothesize that with aging, increased Wnt signaling, NF-κB and tumor suppressor activity, and loss of positional information hampers regeneration. Knowledge about the impact of aging on regenerative mechanisms will enable us to safely activate endogenous regeneration in the elderly, and to generate a regeneration-permissive environment for cell therapies.
Collapse
|
32
|
Role of growth differentiation factor 11 in development, physiology and disease. Oncotarget 2017; 8:81604-81616. [PMID: 29113418 PMCID: PMC5655313 DOI: 10.18632/oncotarget.20258] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/28/2017] [Indexed: 12/31/2022] Open
Abstract
Growth differentiation factor (GDF11) is a member of TGF-β/BMP superfamily that activates Smad and non-Smad signaling pathways and regulates expression of its target nuclear genes. Since its discovery in 1999, studies have shown the involvement of GDF11 in normal physiological processes, such as embryonic development and erythropoiesis, as well as in the pathophysiology of aging, cardiovascular disease, diabetes mellitus, and cancer. In addition, there are contradictory reports regarding the role of GDF11 in aging, cardiovascular disease, diabetes mellitus, osteogenesis, skeletal muscle development, and neurogenesis. In this review, we describe the GDF11 signaling pathway and its potential role in development, physiology and disease.
Collapse
|
33
|
Abstract
In addition to its roles in embryonic development, Growth and Differentiation Factor 11 (GDF 11) has recently drawn much interest about its roles in other processes, such as aging. GDF 11 has been shown to play pivotal roles in the rescue of the proliferative and regenerative capabilities of skeletal muscle, neural stem cells and cardiomyocytes. We would be remiss not to point that some controversy exists regarding the role of GDF 11 in biological processes and whether it will serve as a therapeutic agent. The latest studies have shown that the level of circulating GDF 11 correlates with the outcomes of patients with cardiovascular diseases, cancer and uremia. Based on these studies, GDF 11 is a promising candidate to serve as a novel biomarker of diseases. This brief review gives a detailed and concise view of the regulation and functions of GDF 11 and its roles in development, neurogenesis and erythropoiesis as well as the prospect of using this protein as an indicator of cardiac health and aging.
Collapse
Affiliation(s)
- A Jamaiyar
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA; School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - W Wan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA; Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, China
| | - D M Janota
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - M K Enrick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - W M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - L Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
34
|
Riley LA, Esser KA. The Role of the Molecular Clock in Skeletal Muscle and What It Is Teaching Us About Muscle-Bone Crosstalk. Curr Osteoporos Rep 2017; 15:222-230. [PMID: 28421465 PMCID: PMC5442191 DOI: 10.1007/s11914-017-0363-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW This review summarizes what has been learned about the interaction between skeletal muscle and bone from mouse models in which BMAL1, a core molecular clock protein has been deleted. Additionally, we highlight several genes which change following loss of BMAL1. The protein products from these genes are secreted from muscle and have a known effect on bone homeostasis. RECENT FINDINGS Circadian rhythms have been implicated in regulating systems homeostasis through a series of transcriptional-translational feedback loops termed the molecular clock. Recently, skeletal muscle-specific disruption of the molecular clock has been shown to disrupt skeletal muscle metabolism. Additionally, loss of circadian rhythms only in adult muscle has an effect on other tissue systems including bone. Our finding that the expression of a subset of skeletal muscle-secreted proteins changes following BMAL1 knockout combined with the current knowledge of muscle-bone crosstalk suggests that skeletal muscle circadian rhythms are important for maintenance of musculoskeletal homeostasis. Future research on this topic may be important for understanding the role of the skeletal muscle molecular clock in a number of diseases such as sarcopenia and osteoporosis.
Collapse
Affiliation(s)
- Lance A Riley
- Myology Institute, University of Florida, 1345 Center Dr., M552, Gainesville, FL, USA
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 1345 Center Dr., M552, Gainesville, FL, USA
| | - Karyn A Esser
- Myology Institute, University of Florida, 1345 Center Dr., M552, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 1345 Center Dr., M552, Gainesville, FL, USA.
| |
Collapse
|